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We present preliminary results for strange and charm contributions to nucleon charges and mo-

ments. The scalar, axial and tensor charges, and unpolarized first moments are calculated using

clover-on-HISQ formulation and cover four lattice spacings, 0 = {0.06, 0.09, 0.12, 0.15} fm, and

three pion masses, "c = {310, 220, 130} MeV. The renormalization factors are calculated non-

perturbatively using the RI-sMOM scheme. We carry out a chiral and continuum extrapolation to

obtain physical results.
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Figure 1: Left: Disconnected diagram on lattice. Connected NPR diagrams (Middle) for all operators and

mixing diagrams (right) for the scalar charge.

1. Introduction

Nucleon charges and moments are important quantities to study for the elucidation of the

nucleon structure. The scalar charge plays an important role in dark matter search, and gives the

pion-nucleon sigma term. The axial charge is the contribution of quark spins to the proton spin, and

enters in the spin-dependent dark matter cross-section. The tensor charge gives the contribution of

the quark Electric Dipole Moment (EDM) to the neutron EDM. The first unpolarized moment gives

the momentum fraction of the quark, an important quantity to describe the quark PDF especially for

sea quarks. These quantities for the isovector (D − 3) case have been calculated with high precision

using lattice QCD. As the precision of light quark calculation improves, the contributions from

heavier quark flavors, strange and charm, also need to be precisely determined.

All operators for charge and moment calculations are quark bilinears, $ = @̄Γ@. Specifically,

for the charge operators, Γ = 1 for the scalar charge, Γ = W8W5 for the axial charge, Γ = f8 9 for the

tensor charge, are local operators. On the other hand, Γ = �4W4 −
1

3

∑

8 �8W8 is a non-local operator

for the first unpolarized moment, which gives the momentum fraction carried by the quark.

For strange and charm quarks, the contribution only comes from disconnected diagrams, ie, the

correlation of the self contraction of the quark bilinear operator @̄Γ@ (forming a quark loop) with

the nucleon, as shown in Fig. 1. The details of disconnected calculations can be found in Ref. [4].

2. Lattice Setup, Matrix Elements and Renormalization

We calculated 2- and 3-point functions on six ensembles generated with 2+1+1 flavors of

highly improved staggered quarks (HISQ) [5] by the MILC collaboration [6]. They cover four

lattice spacings, 0 ≈ {0.06, 0.09, 0.12, 0.15} fm, and 3 pion masses of "c ≈ {130, 220, 310} MeV.

To reduce statistical noise, the lattices are hypercubic (HYP) smeared [7] before the calculation of

the quark propagators. The details of the ensembles are summarized in Table 1. We computed the

nucleon two point correlators of the nucleon interpolating operator j with different projections P:

�P
2pt(g) = 〈0|Pj(g) j̄(0) |0〉, (1)
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a (fm) "c (MeV) !3 × ) #2
conf

#B
conf

#2
src #B

src
#

2pt
src

cfg

0.06 320(2) 48
3 × 144 469 87 4000 4000 32

0.09 313(3) 32
3 × 96 633 889 6000 6000 32

0.09 138(1) 64
3 × 96 721 310 4000 4000 32

0.12 310(3) 24
3 × 64 983 897 4000 8000 32

0.12 228(2) 32
3 × 64 902 869 5000 5000 32

0.15 321(4) 16
3 × 48 n/a 1795 n/a 2000 32

Table 1: Parameters of the 2+1+1-flavor HISQ ensembles used for the strange and charm contributions to

the nucleon charges and moments. #conf gives the number of gauge configurations, #src is the number of the

noise source measurements to approximate the disconnected loop propagators, and
#

2pt
src

2 5 6
is the number of the

two-point sources on each configuration.

where Punp
= (1 + W4)/2 for unpolarized projection, and Ppol

= (1 + W4) (1 + 8W5W8)/2 for polarized

projection. Then we compute the disconnected loops:

�$
loop =

∑

=

Tr
[

$̂((=)
]

(2)

These two are combined together to obtain the disconnected contribution.

�O
3pt(C, g) =

〈(

�P
2pt (g) − 〈�P

2pt (g)〉
) (

�$
loop(C) − 〈�$

loop(C)〉
)〉

We make 2-state fits to the correlators using their spectral decomposition:

�PD=?

2pt (g) = |�0 |
24−�0g + |�1 |

24−�1g (3)

�$
3pt(C, g) =

(

|�0 |
2〈0|$ |0〉4−�0C4−�0 (g−C) + �0�1〈1|$ |0〉4−�0C4−�1 (g−C)+

�1�0〈0|$ |1〉4−�1C4−�0 (g−C) + |�1 |
2〈1|$ |1〉4−�1C4−�1 (g−C)

)

(4)

to extract the ground state matrix elements 〈0|$ |0〉. The fit results are displayed in Fig. 2 along

with the data for the ratio of 3-point to 2-point functions, '(C, g) = �$
3pt

(C, g)/�PD=?

2pt
(g). The fit

results are consistent with the data points.

To renormalize the matrix elements, we used the regularization-independent symmetric mo-

mentum subtraction (RI-sMOM) scheme. In this scheme, we choose symmetric momentum con-

figurations for the external quark state and the momentum transfer ?2

1
= ?2

2
= (?2 − ?1)

2
= `2

'
, as

shown in the middle panel of Fig. 1. They are then matched to "( scheme using 2-loop perturba-

tion theory, and run to ` = 2 GeV. The `'-dependence is then removed by fitting the /-factors to

/Γ(`) = /Γ + 21`
2

'
+ 22`

4

'
. The renormalization for the scalar charge and the momentum fraction

is more complicated. The momentum fraction for quarks mixes with other flavors as well as gluons,

which is not included in our work so far. The scalar charge also mixes with other flavors, as shown

in the right of Fig. 1, and we have included the mixing between strange quark and light iso-scalar

combination, but not for the charm quark so far. The two diagrams for calculating /( are done for
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