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Abstract— The discontinuities and multi-modality introduced
by contacts make manipulation planning challenging. Many
previous works avoid this problem by pre-designing a set
of high-level motion primitives like grasping and pushing.
However, such motion primitives are often not adequate to
describe dexterous manipulation motions. In this work, we
propose a method for dexterous manipulation planning at a
more primitive level. The key idea is to use contact modes
to guide the search in a sampling-based planning framework.
Our method can automatically generate contact transitions and
motion trajectories under the quasistatic assumption. In the
experiments, this method sometimes generates motions that are
often pre-designed as motion primitives, as well as dexterous
motions that are more task-specific1.

I. INTRODUCTION

It is hard to estimate the set of manipulation skills
used by humans or animals, and even harder to reproduce
all of those skills. Byrne [1] documented 72 functionally
distinct manipulation primitives used by foraging mountain
gorillas. Nakamura [2] studied human grasping behaviors in
grocery stores and noticed that existing taxonomies cannot
categorize all the observed behaviors. Within robotics, many
researchers have explored individual skills at depth, including
pushing [3] [4], pivoting [5]–[7], tumbling [8], whole-body
manipulation [9], extrinsic dexterity [10], grasping [11] [12],
shared grasping [13], etc. Clearly, designing a high-quality
robotic manipulation skill for a specific task takes significant
human labor. When planning for robotic manipulation tasks,
it is therefore desirable to find an approach that reduces the
programming effort required and creates skills that generalize
to many scenarios.

Manipulation tasks can be broken down into discrete and
continuous parts. The discrete part is about the changes of
contacts and their modes. For challenging manipulation prob-
lems, the planner will need to deal with the combinatorial
explosion associated with making a sequence of discrete
choices. Even if the sequence is known, the next challenge
is to find a piecewise continuous trajectory which satisfies
dynamic equations, force limits, and endpoint constraints for
each piece of the sequence.

In this paper, we focus on quasistatic dexterous manipula-
tion planning for robot/finger contact point motions in 2D (an

This work was supported by the NSF Grant IIS-1909021.
1The code is available at https://github.com/XianyiCheng/

Dexterous-Manipulation-Planning-2D. The supplementary
video is available at https://youtu.be/2yYYLN3JAbs.
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Fig. 1: Pickup a blade: one example of the 2D manipulation
planning problems to solve in this paper.

example is shown in Figure 1), without pre-defined high-level
motion primitives. To this end, we propose a sampling-based
planner guided by contact modes. The guidance of contact
modes is similar to the automatic generation of “motion
primitives”. This planner can generate solutions that cannot
be found by a regular sampling-based planner, and are hard
to describe as sequences of manually designed macro motion
primitives. The core idea is to find all possible discrete modes
through contact mode enumeration; utilizing contact mode
constraints, we project randomly sampled configurations onto
manifolds defined by contact modes and forward integrate
towards the goal configuration on the lower-dimensional
manifolds to allow efficient exploration over these continuous
spaces. The contact mode guidance enables the discovery
of solutions in the zero-volume manifolds in the C-space,
which have zero possibility of being randomly sampled.
The sampling-based nature of this method enables fast ex-
ploration over large continuous and discrete spaces to plan
contact-rich motions. A random tree version of this planner
is proved to be probabilistic complete in Section V-B. As
a result, in Section VI, this planner shows the advantages
of simplicity and speed — it requires little hand-tuning for
different tasks in 2D and can generate complicated trajec-
tories within seconds. This framework can also integrate a
stability margin method [13] to pick robust motions for robot
execution in Section VI-B.

II. RELATED WORK

A. Dexterous Manipulation Planning
To reduce the complexity of planning through contacts,

many works use predefined high-level motion primitives
[14]–[18]. Often it becomes a Task and Motion Plan-
ning problem [15]. Efficient search and optimization algo-
rithms have been developed to solve these motion sequenc-
ing/planning problems [15] [14]. Hierarchical planning [19]
[16] is designed to reduce the search space by dividing the
whole planning problem into sub-problems. Sampling-based
planning methods like CBiRRT are developed to efficiently

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

6520

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
07

66

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 07,2022 at 15:19:37 UTC from IEEE Xplore.  Restrictions apply. 



explore the manifolds by a variety of constraints [20] [18].
Most of the methods above require predefined states or
primitives, which require extra engineering efforts given a
new task or environment. Their solutions are also confined
to be the combinatorics of predefined states/primitives.

Contact formations [21] have been explored in [22] [23]
[24] [19] to plan motions between two rigid bodies. This
paper shares a similar idea with them: use contacts to
decompose the search space into smaller chunks. Search and
planning within contact formations are later combined into
a complete solution.

If we consider each point contact as a robot instead of a
finger tip, this work is also related to multi-robot/distributed
manipulation [25]. The applications are mostly focused on
planar manipulation. Multi-robot box-pushing [26], furniture
moving [27], part reorienting [25], caging with obstacles
[28], etc. have been explored in this area.

Our method can be seen as an extension of constrained
sampling-based planning algorithm [18] [29]. Our method
uses instantaneously enumerated contact modes to find and
explore various lower-dimensional manifolds of the C-space,
while a regular constrained sampling-based planner only
exploits known constrained manifolds provided by the users.
One can view our contact mode guidance as the automatic
generation of “motion primitives”.

B. Contact-rich Trajectory Optimization

Contact-Invariant Optimization methods [30] [31] produce
complex whole-body and manipulation behaviors in simula-
tion, assuming soft contacts which may violate physics laws.
Dynamic manipulation planning for rigid bodies are explored
in [32] [33] [34] [35]. They can plan simple manipulation
actions with small numbers of contact transitions, such
as pushing and pivoting. Trajectory optimization could be
time-consuming and intractable without good initialization,
especially when contact schedules are not specified [32],
[35], [36]. To our best knowledge, there has not been any
trajectory optimization method that can solve the tasks of a
similar level of complexity presented in this paper.

III. PROBLEM DESCRIPTION

The inputs to our method are the start and goal configura-
tions of the object, the geometries, and the properties of the
object and the environment:

1) Object start configuration: qstart ∈ SE(2).
2) Object goal: object goal configuration qgoal ∈ SE(2)

and the allowable goal region Qgoal ⊂ SE(2).
3) Object properties: a rigid body O with known polyg-

onal geometry (can be non-convex), and the friction
coefficients between the object with environment µenv

and the object with the manipulator µmnp.
4) Environment: an environment E with known geome-

tries. As it is 2D, the environment could either be in
the horizontal plane, like a tabletop with friction, or in
the vertical plane with gravity.

5) Manipulator: we assume a simplified manipulator
model which is just Nmnp point contacts. The manipu-
lator’s configuration can be represented by the contact
locations on the object [pmnp

1 , pmnp
2 , . . . , pmnp

Nmnp
].

Our method outputs a trajectory π that moves the object
from its start to goal. The trajectory is a sequence of
object motions, contacts, and contact modes. The trajectory
π includes:

1) Object motion: object configuration q(t) at step t.
2) Environment contacts: the set of contact points of

the object with the environment. The number of en-
vironment contacts Nenv(t) at each step may vary.
The kth environment contact is specified by its contact
location penvk (t), contact normal nenv

k (t) and contact
force λenv

k (t). In practice, they are generated by the
collision detection of the object and the environment.

3) Manipulator contacts: the set of contact points
of the object with the manipulator: cmnp(t) =
[cmnp

1 (t), cmnp
2 (t), . . . , cmnp

Nmnp
(t)]. The kth manipulator

contact is specified by its contact location pmnp
k (t),

contact normal nmnp
k (t) and contact force λmnp

k (t).
4) Contact mode: the contact mode m(t) of the environ-

ment contacts and the manipulator contacts: m(t) ∈
{separate, fixed, right-slide, left-slide}Nmnp+Nenv(t).

We make the following model assumptions: (1) Rigid
body: the object, environment, and manipulator are rigid. (2)
Quasistatic: the speeds of the object motions are low. Inertial
forces and impacts are not considered. (3) The manipulator
contact modes are fixed only.

IV. QUASISTATIC MULTI-CONTACT MANIPULATION
MODEL

In this section, we introduce the contact mechanics and
derive the motion generation method based on contact modes
that are later used in our planning framework in Section V.

A. Contact Mode Constraints
Contact constraints are difficult to deal with due to the

presence of multi-modality and discontinuities. The con-
tact constraints can be modeled as complementarity con-
straints, and they are the main source of problems during
contact implicit trajectory optimization (CITO). Assuming
Coulomb’s law, we break down the contact constraints into
sets of linear equality and inequality constraints by enu-
merating all feasible contact modes of the system. Each
feasible contact mode maps to a set of local dynamical
equations for the system. In 2D, the set of kinematically
feasible contact modes of n contacts can be defined as
M ⊆ {fixed, right-slide, left-slide, separate}n by the relative
motion of the object in the contact frames. All feasible 2D
contact modes can be enumerated in O(n2) [37].

By specifying the contact mode m ∈ M for a quasistatic
system, we obtain linear constraints on object motions and
contact forces.
Velocity constraints: Contact velocities can be written as:

vc = GT vo −
[
Jq̇
0

]
(1)
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where vo is the object velocity; G is the grasp map [38]; q̇ is
the manipulator joint velocity and J is the manipulator’s Ja-
cobians; the 0 part is for environment contacts that have zero
velocities. For point manipulator, q̇ can be simply written as
the point contact’s translational velocity [ẋ1, ẏ1, . . . , ẋn, ẏn]
and J is an identity matrix.

For the ith contact, its contact mode mi indicates that its
relative contact velocity vic is constrained as:






vic,n > 0 if mi = separate
vic,n = 0, vic,t = 0 if mi = fixed
vic,n = 0, vic,t > 0 if mi = right-slide
vic,n = 0, vic,t < 0 if mi = left-slide

(2)

where vic,n and vic,t are vic in contact normal and tangential
directions respectively.
Force constraints: Under Coulomb’s friction law, the force
constraints under a mode mi can be written as:






λi
n = 0,λi

t
+
= 0,λi

t
−
= 0 if mi = separate

µλi
n − λi

t
+
> 0, µλi

n − λi
t
−
> 0 if mi = fixed

µλi
n = λi

t
−
,λi

t
+
= 0 if mi = right-slide

µλi
n = λi

t
+
,λi

t
−
= 0 if mi = left-slide

(3)
where λi

n is the contact normal force, λi
t
+ and λi

t
− are the

contact tangential force magnitudes in the positive direction
(right-slide) and negative direction (left-slide) respectively.

Given a contact mode m = [m1,m2, . . . ,mN ] for all
the contacts on the object, let all contact forces be λ =
[λ1

n,λ
1
t
+
,λ1

t
−
, . . . ,λN

n ,λN
t

+
,λN

t
−
], combining Equation 2

and 3 for all the contacts, the velocity and force constraints
can be written as linear equalities and inequalities:

Aineq

[
v λ

]T
> bineq

Aeq

[
v λ

]T
= beq

(4)

Given the desired contact mode and desired object velocity
vd, we can find the closest feasible object velocity by solving
a quadratic programming problem:

min
vo,q̇,λ,

‖vd − vo‖+ ελTλ (5)

where ελTλ is a regularization term on the contact forces.
This optimization problem is subject to the contact mode
constraints in Equation 4 and the static equilibrium con-
straints below:

Gλ+ Fexternal = 0 (6)

where vo is the object velocity; G and λ are the grasp map
and contact forces for all contacts; Fexternal include forces
and torques that are not modeled in λ, such as gravity.

B. Projected Forward Integration
Starting from an object configuration, all reachable con-

figurations under a contact mode form a manifold with
boundary in the object configuration space. However, this
manifold does not has explicit representation since the con-
tact mode only provides linear velocity and force constraints
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(a) The gray solid block shows the start pose of the object with two
blue manipulator contacts (both fixed) and two yellow environment
contacts (contact mode: separate, left slide). In goal configuration
1, the block is 180 degree flipped (the dotted green block). Its
closest configuration on the contact mode manifold is the solid
light green block, as current mode is interrupted by new contact
with the table. For goal configuration 2 (the dotted red block), its
closest configuration is shown as the solid light red block.

�	����	����

���	���

�	����	����

���	���

���
���	����

���	�

(b) The iterative process of forward integration. At every timestep
it moves towards the goal configuration on the manifold. For goal
configuration 1, this process finds a point on the boundary. For goal
configuration 2, it finds a point in the interior.

Fig. 2: Two examples of the forward integration process for
a specified contact mode in Section IV-B.

for each point on the manifold, thus we cannot directly
project a configuration onto this manifold. In this section, we
describe an iterative method that finds the closest reachable
configuration to a goal configuration on a contact mode
manifold, as visualized in Figure 2.

Given a desired configuration qd, forward integration
moves towards qd on the contact mode manifold by itera-
tively integrate vo computed in Equation 5 through the Euler
method:

qk+1 = Tr(qk, hvo
k) (7)

where h is the length of the time-steps, Tr is the rigid
body transformation computed from the body velocity hvok,
applied on qk [38]. At each timestep, the desired velocity
vd is computed as the body velocity between qk and qrand
in the twist coordinate [38], and environment contacts are
updated by collision checking. The forward integration stops
when: (1) vok is zero: qk is the closest configuration on
the contact manifold to qd (2) No feasible vok: the static
equilibrium cannot be maintained anymore (3) Collision:
the fingers collide with the environment, or new object-
environment contacts are made. In the simulation, we use
linear interpolation to go back to zero contact distances.
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Algorithm 1 Contact Mode Based Manipulation Planner
Input: qstart, qgoal
Output: tree T

1: T .add-node(qstart)
2: while (Time limit has not been reached) do
3: qrand ← SAMPLE-OBJECT-CONFIG(qgoal)
4: qnear ← NEAREST-NEIGHBOR(T , qrand)
5: cmnp

near ← NODE-PROPERTY(qnear)
6: cenvnear ← COLLISION-DETECTION(qnear)
7: M ← CONTACT-MODE-ENUMERATION(qnear)
8: for m ∈ M do ! Iterate every contact mode
9: EXTEND(m, qnear, qrand, c

mnp
near, c

env
near)

10: return T
11: function EXTEND(m(mode), qnear, qrand, cmnp

near , cenvnear)
12: v ← CLOSEST-FEASIBLE-VEL(qnear, qrand, c

mnp
near, c

env
near,m)

13: if ‖v‖ == 0 then
14: cmnp

new ← CHANGE-MANIP-CONTACT(qnear, c
mnp
near,m)

15: else
16: cmnp

new ← cmnp
near

17: qnew ← FORWARD-INTEGRATE(qnear, qrand, c
mnp
new ,m)

18: if qnew $= qnear then
19: ASSIGN-FINGER-CONTACT(qnew, c

mnp
new )

20: T .add-node(qnew)
21: T .add-edge(qnear, qnew)
22: return

The following property states that this forward integration
process is a projection operation.

Property 1. The forward integration process described in
Section IV-B is a projection operator P (·) to a manifold M
which has the following properties:

1) P (q) = q if and only if q ∈ M
2) If q ∈ M is the closest point to q1 /∈ M, P (q1) = q.

V. CONTACT MODE GUIDED SAMPLING BASED PLANNING

While the exploit of contact modes can be used in different
planning frameworks, we adopt a rapidly exploring random
tree (RRT) as the high-level planning framework (Algorithm
1). During the EXTEND process of RRT, our method project
the randomly sampled object configuration onto the contact
mode manifolds of its nearest node. This ensures random
sampling on zero-volume manifolds in the C-space. As the
proofs show in Section V-B, a random tree version of our
method (Algorithm 2) is probabilistic complete.

A. Planning Framework
Our planner is presented in Algorithm 1. An object

configuration qrand is drawn from the configuration space
through SAMPLE-OBJECT-CONFIG function, where qrand has
user defined possibility p of being a random sample and 1−p
of being qgoal. For qrand, its nearest neighbor qnear in the tree
T is found through a weighted SE(2) metric:

d(q1, q2) =

√
(q(x)1 − q(x)2 )2 + (q(y)1 − q(y)2 )2

+wr min(|q(θ)1 − q(θ)2 )|, 2π − |q(θ)1 − q(θ)2 )|)
(8)

where wr is the weight that indicates the importance of
rotation in the tasks. Then the properties of node qnear, previ-
ous finger contacts cmnp

near and environment contacts cenvnear, are

obtained from T . Function CONTACT-MODE-ENUMERATION
enumerates all possible environment contact modes M for
qnear (manipulator contact modes are always fixed). Under
each environment contact mode m ∈ M, the EXTEND
function is performed. The EXTEND function projects the
qrand onto the contact mode manifold through the forward
integration process and switch the manipulator contacts if
necessary. If EXTEND is successful, a new node qnew and a
new edge between qnew and qnear will be added to T .

In the EXTEND function, we first check the fea-
sibility of the motion towards qrand through function
CLOSEST-FEASIBLE-VEL, by solving the quadratic program-
ming problem in Equation 5. If there exists a non-zero
solution, the motion is feasible and previous manipulator
contacts can remain unchanged. If the motion is not feasible,
or the finger contacts collide with the environment, CHANGE-
MANIP-CONTACT tries to relocate a random number of ma-
nipulator contacts to randomly sampled collision-free contact
locations. The relocation is successful if static equilibrium
can still be maintained without the relocating finger contacts.
The outputs are new manipulator contacts cmnp

new . Finally, qnew
is computed by function FORWARD-INTEGRATE as described
in Section IV-B.

Besides the main algorithm shown above, we can evaluate
the robustness of a motion to force disturbance under the
specified contact mode by the stability margin score in [13].
This stability margin can be used to filter out potentially
unstable motions in the planning process — only a node with
enough stability margin will be added to the tree. The plans
for real robot experiments in Section VI-B are generated this
way. It can also be used to select better manipulator contacts
in CHANGE-MANIP-CONTACT.

B. Probabilistic Completeness

Let Q be the object configuration space, in our case Q ⊆
SE(2). We denote Bd

δ (q) as an open d-dimensional ball of
radius δ centered at q ∈ Rn. Let U be the parameter space
of N finger contacts on the object surface.

Definition 1. A quasistatic trajectory π : [0, tT ] → Q ×
U is with clearance δ so that: at every point π(ti), there
exists an open ball Bdi+N

δ (π(ti)) on the Cartesian product
of its di-dimensional contact mode manifold Qmi and the
manipulator contact set U , where static equilibrium of the
object can be maintained.

We assume that there exists a trajectory π : [0, tT ] →
Q × U with clearance δ. The trajectory begins at qstart
and terminates at qgoal. The trajectory also captures discrete
changes including adjacent contact mode transitions, contact
encounters, and finger contact switches: there is a point on
the trajectory at every discrete change. We prove that if
such trajectory exists, a random tree framework shown in
Algorithm 2 is probabilistic complete of finding it.

Lemma 1. Suppose that RRT has reached π′(ti) ∈
Bdi+N
δ (π(ti)), π′(ti+1) ∈ Bdi+1+N

δ (π(ti+1)) under contact
mode mi+1 has nonzero probability of being sampled.
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Algorithm 2 Contact Mode Based Manipulation Random
Tree Planner (probabilistic complete)
Input: qstart, qgoal
Output: tree T

1: T .add-node(qstart)
2: while (Goal region has not been reached) do
3: qr ← SAMPLE-OBJECT-CONFIG(qgoal)
4: for qn ∈ T do ! Iterate every node
5: cmnp

n ← NODE-PROPERTY(qn)
6: cenvn ← COLLISION-DETECTION(qn)
7: M ← CONTACT-MODE-ENUMERATION(qn)
8: for m ∈ M do ! Iterate every contact mode
9: cmnp

new ← CHANGE-MANIP-CONTACT(qn, c
mnp
n ,m)

10: qnew ← FORWARD-INTEGRATE(qn, qr, c
mnp
new ,m)

11: if qnew $= qnear then
12: ASSIGN-FINGER-CONTACT(qnew, c

mnp
new )

13: T .add-node(qnew)
14: T .add-edge(qn, qnew)
15: return T

Proof.(Sketch) There are three possible situations for
π(ti+1), we prove them all have nonzero sampling probabil-
ity: (1)The contact state in π(ti+1) doesn’t change. The set of
contact modes Mi = Mi+1. There is no manipulator contact
switch. (2)There is a manipulator contact switch ui, ui+1 ∈
U , ui (= ui+1. (3)Only the contact state is changed Mi (=
Mi+1 (encounter new environment contacts).

Situation (1): As Algorithm 2 iterate every possible contact
mode for every existing node, contact mode mi+1 will be
visited with possibility 1. A random sample xrand is drawn
and project onto the manifold for mi+1 through forward
integration in IV-B. By Theorem 5 in [18], the projection
sampling using a project operator with Property 1 covers the
manifold, which means the probability to place a sample into
Bdi+1+N
δ (π(ti+1)) is nonzero.
Situation (2): Since static equilibrium will be maintained

within clearance δ. The probability of the manipulator con-
tacts to be resampled from to BN

δ (ui+1) is nonzero.
Situation (3): New environment contacts are encountered

at the boundaries of the contact mode manifold. As described
in Section IV-B, linear interpolation is perform to go back
to the boundary when penetration happens. The linear inter-
polation is also a projection operator with Property 1. By
Theorem 5 in [18], the probability to place a sample into
Bdi+1+N
δ (π(ti+1)) is nonzero.

Theorem 1. If there exist a trajectory satisfying Definition
1, the probability of Algorithm 2 to find a trajectory within
its clearance is nonzero.

Proof. (Sketch) At t0, we have x0 = xstart and the initial
manipulator contacts u0 are randomly sampled in U (line
8, Algorithm 2). The probability of the initial sample to be
within B3+N

δ (π(t0)) is nonzero (|B2
δ |/|U|). By Lemma 1,

there is nonzero probability of reach from Bdi+N
δ (π(ti)) to

Bdi+1+N
δ (π(ti+1)). By proof of induction, the probability of

Algorithm 2 finding a solution is nonzero.

VI. EXPERIMENTS AND RESULTS

A. Experiment Validation

We test our planner on several 2D scenarios that need dex-
terous strategies. Figure 3 gives an overview of all scenarios.
All scenarios are designed based on real-world manipulation
applications and observations of human manipulation behav-
iors, to show that our planner has the potentials to address
such problems, or automatically plan similar behaviors. Table
I provides the planning statistics for all the problems under
10 random runs performed on a personal computer with Intel
Core i7-6560U 2.2GHz CPU. No parameter has been specifi-
cally tuned for any problem above. Our results show that this
planner is suitable for a variety of 2D manipulation tasks.
We visualize one representative solution of each problem
in Figure 4. Please check our supplementary video for all
solutions for the 10 random runs of each problem.
Problem 1: Move and Pivot a Block. A two-point ma-
nipulator needs to move and pivot a heavy block that it
cannot directly pick up. This planner consistently generates
the strategies of first pushing and then pivoting the block.
As summarized in Table I, it can get all solutions at around
0.3 seconds with a small number of total nodes explored.
Problem 2: Pick up a Blade. The manipulator cannot
contact the short edges of a blade-like object. A common
strategy used by humans is to slide the object out of the
edge of the table to expose its bottom surface for grasping.
Our planner is able to consistently generate similar strategies
shown in Figure 4(2) at about 2 seconds (Table I)
Problem 3: Unpacking. The hardest part of picking up well-
packed objects is the first object. The small gaps prevent two
fingers from picking up the first object directly. As shown in
Figure 4(3), this method plans to push the object to create a
wider gap that lets the fingers slide up the object from one
side. Similar strategies have been observed in decluttering
actions in human grasping [2].
Problem 4: Move a Block up to the Cliff. A single-point
manipulator needs to take a block up to a cliff, as shown in
Figure 3. Only given the start and goal object configuration,
our planner successfully generates strategies of push on the
floor, push along the cliff, and pivot under gravity.
Problem 5: Manipulator’s Obstacle Course. This problem
shows our planner capability for planning over longer hori-
zons. Due to force limits, the manipulator needs to get the
object through a simple ’obstacle course’ without picking
it up. This planner can plan different strategies with many
contact switches to get through the obstacles, by using the
contacts with the environment.
Problem 6: In-hand Manipulation for Non-Convex Ob-
ject This is a simplified in-hand manipulation scenario to
show that our method works for non-convex polytopic-shape
objects and can generate plans that are not even intuitive
to human. As shown in Figure 3, the blue rectangle is the
palm, and the workspace of each fingertip is a half side of
the hand. The goal is to flip the T-shape object 180 degrees
with respect to the palm. The planned strategy is to use the
palm as extra support to change finger locations. Due to
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Fig. 3: The start configurations (green, “S”) and the goal configurations (red, “G”) for each test problems. Problem 1-6 are
in the 2D gravity plane. Problem 7 is a planar manipulation problem.
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Fig. 4: Representative solutions generated by our planner. Object configurations drawn in solid lines for Problem 1-4 indicate
that manipulator contact changes are made here, where new manipulator contacts are drawn with red dots. For Problem 5
and 7, as there are many manipulator contact changes, we only visualize the object trajectories. For problem 6, we only
visualize where manipulator contact changes happen.

Problem 1 2 3 4 5 6 7

Success (Total nodes <200) 10/10 10/10 10/10 9/10 8/10 6/10 (nodes<1000) 10/10

Time (second)
Min 0.11 0.64 0.45 3.18 2.05 1.98 0.71

Median 0.26 1.97 1.46 4.25 7.56 16.97 3.62
Max 0.61 12.84 3.62 8.74 15.78 43.12 5.54

Nodes (median) in tree 7 14.5 16.5 44 107 480 68.5
in path 4 5 8 11 17 25.5 18.5

Contact Modes in Path (median) 3 3 5 5 9 4.5 (fingertip states) 9.5

TABLE I: Planning time, tree sizes and solution sizes of our planner for Problem 1-7. Contact Modes in Path: the number
of different contact states and contact modes in the solution path; for Problem 6 we show the number of different finger
contact states instead.

the sampling-based planning nature, the redundant motion
problem is obvious here. Trajectory optimization can be used
to smoothen the motions as shown in the video.
Problem 7: Narrow Passage for Planar Pushing Our
method is also general enough for planar manipulation. The
problem is to push the object through the narrow hallway
with one contact. As shown in the video and Figure 4, our
planner consistently generates the strategies of utilizing the
environment contacts to move and reorient the object.

B. Robot Experiments
We validate our plans of Problem 4 and 5 on an ABB

IRB-120 robot with a point-finger. The plans are generated
by Algorithm 1 with a stability margin filter as describe
in Section V-A. The plans are executed by a hybrid force
velocity controller [13]. The experiments are presented in
Figure 5 and in the supplementary video.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose a contact mode guided sampling-
based 2D manipulation planning framework which generates
quasistatic motion trajectory and contact transitions. This
method has the potentials to be used in hand manipulation
where contact points are fingertips, and in multi-robot ma-
nipulation where contact points are mobile robots.

Fig. 5: Two trajectories recorded during robot experiments.
Left: push a block up to the cliff. Right: take the block
through the obstacle using one contact. Three manipulator
contact changes are planned.

One limitation of this method is that every motion needs
to be quasistatic, which makes our algorithm fails to plan
simple dynamic motions like releasing the fingers to drop
the object. While quasi-dynamic or dynamic formulations
may double the dimensions of the search space, one potential
solution is to perform short periods of dynamic simulation
between two quasi-static states under some special circum-
stances. This planner can also be augmented by local plan-
ners for fingertip placement and fingertip sliding. Moreover,
the contact mode guidance can also be applied on other
possibly more efficient constrained sampling-based planning
frameworks [29].
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