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Lieb-Liniger understanding the origins of the integrability of the NLS in
terms of a scaling limit of a quantum integrable system.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Motivation

Integrable partial differential equations (PDE) are a special class of equations which,
broadly speaking, can be solved explicitly,® for instance by the inverse scattering trans-
form (IST) discovered by Gardner, Greene, Kruskal and Miura [26] and its subsequent
reformulation by Lax [44]. In the years since these (and many other) landmark works,
there has been much activity on determining which equations, and more generally, sys-
tems, are or should be integrable and the mathematical consequences of being integrable
(e.g. see the survey [14]). Despite the lively, ongoing debate [84] over the defining fea-
tures of integrability, consensus holds that certain equations, such as the Korteweg-de
Vries (KdV) or one-dimensional cubic nonlinear Schrédinger equation (NLS), should be
integrable under any reasonable definition of the term. Even with the vast research on
the implications of an equation’s integrability, such as conserved quantities, solitons, or
hidden symmetries, it remains unclear why equations which are so physically relevant
also happen to be integrable [11], and, in particular, how integrability is preserved under
scaling limits. Mathematical insight into this line of inquiry would certainly deepen our
understanding of the important models that comprise the extensive catalog of known
integrable systems.

The present work considers the familiar one-dimensional cubic NLS

10y + A = 250> ¢, :RxR—=C, kec{£l}, (1.1)

which was shown by Zakharov and Shabat [85] to be exactly solvable by the IST (see also
[1,23,83]). Equation (1.1) appears in several distinct physical contexts, but our interest
is in its significance as an effective equation for a one-dimensional system of interacting
bosons. More, precisely, the NLS arises from the Lieb-Liniger (LL) model [46], which is
a well-known exactly solvable model describing N bosons on the line with d-potential
interactions, when the coupling constant scales like 1/N so that we are in the mean-field
regime. Our long-term objective is to understand the extent to which it is possible to
“derive” the integrable structure of the NLS from the underlying Lieb-Liniger model in
this scaling regime. An important object, at least formally, in the derivation of the NLS
is the Gross-Pitaevskii (GP) hierarchy, an infinite system of coupled linear equations
satisfied by the reduced density matrices of the N-body system in the limit as N — oc.
The NLS is then obtained from the GP hierarchy by restricting to a special class of
so-called factorized solutions. As a step towards our aforementioned long-term goal,
the present work seeks to understand the integrability of the NLS in terms of the GP
hierarchy, in particular to provide evidence for the GP hierarchy as a new integrable
system, of which the NLS is then a special case.

8 Originally, the typical method employed to solve such systems was by method of “quadratures,”

other words, integration.

or, in
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The remainder of the scientific content of this introduction consists of five subsections.
In Section 1.2, we review the derivation of the NLS from quantum many-body systems
and, in particular, the role of the GP hierarchy in this derivation. In Section 1.3, we
acquaint the reader with our prior work [57], which considers the derivation of the geo-
metric structure of the NLS from quantum many-body systems and establishes that the
GP hierarchy is itself a Hamiltonian system. In Section 1.4, we discuss the implications of
the integrability of the 1D cubic NLS in terms of a hierarchy of commuting Hamiltonian
flows. In Section 1.5, we give informal statements of the main results of this paper and
briefly discuss the ideas behind the proofs of these results. Finally, in Section 1.6, we
close the introduction by returning to our longer-term vision and the further questions
raised and left unaddressed by the present work.

1.2. From bosons to NLS via GP hierarchy

Having described the motivation behind the present work, we now properly introduce
the GP hierarchy and its relationship with the NLS by briefly reviewing the derivation
of the NLS from quantum many-body systems, a well-studied topic in recent years (e.g.,
see the review texts [9,30,52,59,71,72]). We focus here only on the one-dimensional case
of interest to the present article.

Our starting point is the Lieb-Liniger model for N bosons, which is the many-
2
sym

Schrodinger equation

body problem on L2, (RY), the space of symmetric L? functions, described by the

N

. 2K

10:®n = Hy Dy, Hy = E 7Azj + m E 5(X] — Xk), (12)
j=1 1<j<k<N

where the coupling constant has been taken to be proportional to 1/N so that we are
in the mean field scaling regime. The value of k € {£1} determines whether the system

is repulsive (k = 1) or attractive (k = —1). Here, Hy may be realized as a self-adjoint
operator on L2, (RY) by means of the KLMN theorem (see Theorem X.17 of [67]).

The many-body problem (1.2) is a toy model for a quasi-one-dimensional di-
lute Bose gasses [16,22,68,81], and both mathematical [51,74,75] and physical interest
[17,38,50,61,62,65,66] in (1.2) stems from its remarkable property of being ezactly solv-
able. More precisely, Lieb and Liniger used the Bethe ansatz’ in their seminal paper
[46] to obtain explicit formulae for the eigenfunctions and spectrum of the Hamiltonian
Hy. Analogous to the free Schrodinger equation, one has an explicit distorted Fourier
transform associated to Hpy, which by solving an ordinary differential equation in the
distorted Fourier domain yields a formula for the solution to (1.2).

7 Bethe ansatz refers to a technique in the study of exactly solvable models introduced by Hans Bethe to
find exact eigenvalues and eigenvectors of the antiferromagnetic Heisenberg spin chain [10]. For more on
this technique, we refer the reader to the monographs [27] and [43].
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The connection between the LL model and the NLS is via an infinite particle limit.
More precisely, one considers the reduced density matrices

W = Trepr v (1On) (@), k€N (13)
where Tryp4q,.. n denotes the partial trace over the k + 1,..., N coordinates and, by

convention, 7](\];) = 0 for k > N. The {7](\];)},?’:1 then solve the BBGKY hierarchy,®
which is a coupled system of linear equations describing the evolution of finitely many
interacting bosons. In the limit as N — oo, the sequence {7](\];)};@61\; formally converges
to a solution {7 },cn of the cubic Gross-Pitaevskii (GP) hierarchy

k
107 = [ =8, 7™ 420 Y T (00X = Xes) 7)), keN,  (14)
j=1
where we have introduced the notation A,, = Z§:1 A, and [+, -] denotes the usual com-

mutator bracket. While (1.4) is a linear system, it is coupled, rendering its mathematical
study nontrivial. The connection with the NLS (1.1) is then as follows:

(Y ken, 7* = [62F) (6*| solves the GP (1.4)
<= ¢:[0,7] x R — C solves the NLS (1.1). (1.5)

Thus, the NLS may be viewed as a special case of the GP hierarchy corresponding to fac-
torized solutions. The above formal discussion has been made rigorous in one dimension
in the works [2,3,70]. We note that these works follow in the footsteps of a number of
important contributions to the derivation of NLS-type equations from quantum many-
body systems, including [47-49] in the static case and [18-21,28,29,34,69,76] for general
dynamics.

1.3. The NLS and GP as Hamiltonian systems

The preceding derivation of the NLS from the many-body problem for N bosons via
the GP hierarchy concerned the derivation of dynamics: proving solutions of one equa-
tion converge to solutions of another as N — co. In recent work [57], the authors used
the BBGKY and GP hierarchies to rigorously derive the geometric structure underly-
ing the NLS. More precisely, the NLS is a Hamiltonian system, meaning that there is
an underlying (weak) Poisson manifold (in the sense of Definition 4.24) and choice of
Hamiltonian, such that one can rewrite the NLS equation as the flow along the associated
Hamiltonian vector field. We showed in [57] that it is possible to derive this Hamiltonian
structure from the many-body problem (1.2), which is also a Hamiltonian system. A key

8 Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
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ingredient in the work [57] is the proof that the GP hierarchy is itself a Hamiltonian
system. We will not go through the steps of this derivation; the interested reader may
consult [57, Section 2] for an overview. Instead, we recall here the Hamiltonian structure
of the NLS and GP hierarchies and the relationship between the two, as the present work
will build upon this structure.

To introduce the phase space for the NLS, we endow the Schwartz space S(R) with
the standard weak symplectic structure’ given by

wr2 (¢, 1) = 2Im /dxww(x) . (1.6)
R

Consider the real unital'® algebra with respect to point-wise multiplication
As ={H € C*(S(R);R) : V,H € C*(S(R); S(R))}. (1.7)

Above (and throughout this paper), the notion of derivative and smoothness is in the
sense of Gateaux derivative of a map between locally convex spaces, as discussed in
Section 4.1 below. Here, V is the symplectic gradient associated to the form wrz (see
Definition 4.33 and Remark 4.34 for definitions). With the symplectic form, we obtain a
canonical Poisson bracket by defining for F,G € Ag,

{F,G}2(0) = w2 (VF (), V.G(9), V¢ eSR). (1.8)

The solution to the NLS (1.1) is then the integral curve to the Hamiltonian equation of
motion associated to the energy

Inps(6) = / 4z (| (@) + wlo()]). (19)
R
That is,
(5¢) 0 = Vdasto). (1.10)

The Hamiltonian structure of the GP hierarchy is more involved than that of NLS.
In particular, the Poisson structure is not canonically induced by a symplectic form,
but rather is an example of a Lie-Poisson structure. To define this structure, we must
first introduce a Lie algebra of “observables” which then by duality leads to a canonical
(weak) Poisson manifold of “states” on which the GP hierarchy is then a Hamiltonian
flow.

9 See Section 4.3 for background material on weak symplectic and weak Poisson structures.
10 1. the algebra has a multiplicative identity.
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Namely, we define a real topological vector space &, by the locally convex direct sum

Goo =D hgmp:  rgmp = {AD) € Loy (S.(RF), S{(RF)) : A®) = —(AD)* v},
k=1

(1.11)
Elements of &, which we call observable co-hierarchies, are finite sequences A =
(A®))pen, where each A%®) belongs to a certain subspace of L£(S,(RF),S.(R*)), the
space of continuous linear maps from the k-particle symmetric Schwartz space Ss(RF),
equipped with its usual topology, to the k-particle symmetric tempered distribution
space S.(R¥), equipped with the strong dual topology. Elements of gj gm, have the
additional property that they are skew-adjoint as distribution-valued operators, in the
sense that A®) = —(A®))* 11 The subscript gmp, which stands for good mapping prop-
erty, is too technical to state here in full (see Definition 2.2); but it refers to elements
of L(Ss(RF), S (RF)) which can be composed in a single coordinate, a property not
possessed by an arbitrary element of £(S,(R*),S!(R¥)). For our purposes, the good
mapping property allows us to define a Lie bracket [-,-]  on &. This then gives us
our Lie algebra (S, [, ] ) of observable oo-hierarchies.

With this Lie algebra of observables, we can define a dual Lie-Poisson manifold of
states, which consists of three ingredients: an underlying manifold, a unital algebra of
smooth functionals on the manifold, and a Poisson bracket defined on this algebra. We
define the real topological vector space

&% = (T = (e € [] LSURD, SR :4® = ((9) vk} (112)
k=1

equipped with the product topology. Using the Schwartz kernel theorem (e.g. [82, Theo-
rem 51.6, Corollary]), elements of &7, which we call co-hierarchies of density matrices,
are infinite sequences of self-adjoint integral operators with Schwartz-class kernels. The
space &% is our manifold, and since &7 is a locally convex vector space, we can iden-
tify tangent spaces with &% . We take our algebra A, of smooth functionals to be the
algebra with respect to pointwise product generated by the constant functionals and the
set

(F el ;R): F(-) =iTr(A), A€ Gl (1.13)

where Tr denotes the duality pairing between elements of &, and elements of &% .
Finally, we can define a Poisson bracket {-, -}4. :Asx X Ao — Ao by the formula

{F.G}g. =iTx([dF[[],dG[]s - T), I e&r, (1.14)

' Our usage of the terminology adjoint for distribution-valued operators is nonstandard and was introduced
in our previous work [57]. We refer the reader to Appendix C.1 for elaboration.
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where dF[['],dG['] are the Gateaux derivatives of F,G, respectively, at the point T,
which we can identify as elements of &, thanks to our definition of the algebra A...
There is a distinguished element —iWgp = —i(—As,, k(X1 — X2),0,...) of &,
such that if we consider the functional
HGP(F) = iTI'(—iWGp . F)

(1) (2) (k) * (1'15)
= —Tr1(Ap; 7)) + 6 Tr12(6(X1 —22)7'),  T'= (" )een € &%,

which belongs to the algebra A., defined in the preceding paragraph, then the GP
hierarchy equation (1.4) may be rewritten as

(70 = Xer 0. (1.16)

where X4;,,,, the Hamiltonian vector field associated to H¢p, is the unique vector field
on &7 with the property that

Q[T (Xngp (D)) = {F, Haph(T),  VF € As, T € G, (1.17)

The connection between the GP hierarchy and the NLS is through the map
VSR) = 8%, u(6) = (16%%) (6% |)en (1.18)
which is a Poisson morphism in the sense that
{Fouit,Goui};(¢) = {F,G}@;(b((ﬁ)), VE,G € Ay, ¢ € S(R). (1.19)
Moreover,

Har((d)) = INLs(®), ¢ € S(R). (1.20)
1.4. Nonlinear Schridinger hierarchy

We saw in the last subsection that the NLS and GP hierarchy are both Hamiltonian
systems. In the finite-dimensional case, a Hamiltonian system may possess additional
structure known as Liouville integrability. The notion of a Liouville integrable Hamilto-
nian system refers to a finite-dimensional Hamiltonian system where there is a maximal
(in the sense of degrees of freedom) independent set of Poisson commuting first integrals.
More precisely, assume for simplicity that the phase space M is an open subset of R?"
endowed with the Poisson bracket

{F,G} = (0,,F0,,G — 0,,F0,,G). (1.21)

Jj=1



D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525 9

Given a smooth Hamiltonian H € C°°(M;R), the corresponding Hamiltonian vector
field Xy = (VyH,—V,H), where V, = (0z,,...,0z,) and Vy, = (0y,,..., 0y, ), is said

to be completely integrable (in the Liouville sense), if there exist n smooth functions
Fi,...,F, € C®(M;R) such that {F;, F;} =0and {F;,H} =0forall 1 <i4,j <nand
such that the differentials d(, ) F1, ..., d( ) Fn € T(w v
linearly independent on a dense open subset of M. The classical Arnold-Liouville theorem

R2" (i.e. the cotangent space) are

(e.g. [4, Section 50]) then asserts that such a Liouville completely integrable system,
which satisfies some technical conditions, can be solved by a change of coordinates to
action-angle variables, which allow for explicit integration of the system.

In the infinite-dimensional case, such as for PDE, there is not a universally agreed
upon definition of integrability, but the notion of Liouville integrability does have an ana-
logue. Regarding the 1D cubic NLS, Liouville integrability is a consequence of the exact
solvability of the equation by the IST, which was formally shown in the aforementioned
work [85] and has been mathematically revisited by numerous authors in the years since,

g. [5-8,15,31,33,39-42,78,79,86,87]. For our purposes, we are interested in the fact that
the Hamiltonian is one element of a countable sequence of functionals in nontrivial'?
mutual involution. More precisely, one recursively defines (see Appendix A.2) a sequence
of operators

wig] =
wn : S(R) — S(R), 1.22
( )_> () {wn+1[¢] = _iawwn[ ]+“¢ Zk 1 wk[ ]wn—k[¢] ( )
Each w, generates a functional I,, : S(R) — C by
I(¢) = / de(r)wn[d)(z), Vo€ S(R), (1.23)

R

which is, in fact, real-valued (see Lemma A.5). Then one can verify (see Appendix A.3)
that

{In, I} 2(¢) =0, V¢ € S(R), ¥n,m € N, (1.24)

where {-,-},, is the L? Poisson bracket defined in the previous subsection. In particular,
if ¢ € C*®([to,t1]; S(R)) is a classical solution to (1.1), then I,(¢) is conserved on the
lifespan [tg,t1] of ¢ for every n € N. Furthermore, each of the functionals I, has an
associated equation of motion

(9) 0 = vunatoo. (1.25)

12 By nontrivial, we mean that these functionals are not all Casimirs for the Poisson structure (i.e. they
Poisson commute with any functional).



10 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525

Following the terminology of Faddeev and Takhtajan [23], we call (1.25) the n-th nonlin-
ear Schrodinger equation (nINLS). The n = 1,2 equations are trivial, the n = 3 equation
is the NLS (1.1), and the n = 4 equation is the complex mKdV equation

Ohp = 830 — 6k|¢*0nh,  r € {£1}. (1.26)

To our knowledge, the n-th nonlinear Schrédinger equations do not have specific names
for n > 5. Together, the family of n-th nonlinear Schrédinger equations constitutes the
nonlinear Schrodinger hierarchy, as termed by Palais [64]. We remark that existence and
uniqueness of solutions to the NLS hierarchy in the class C*°(R; S(R)) is known [5,86,87].

1.5. Informal statement of main results

So far, we have discussed the GP hierarchy and its relationship to the NLS via fac-
torized solutions both in terms of dynamics in Section 1.2 and in terms of Hamiltonian
structure in Section 1.3. We have also seen in Section 1.4 that the NLS is a special
Hamiltonian system having the property of being integrable, for which there exists an
infinite sequence of Poisson commuting functionals I,,, which include the NLS Hamilto-
nian and which generate a hierarchy of commuting flows (i.e. the NLS hierarchy). Given
the relationship between the NLS and the GP hierarchy, one naturally asks if an anal-
ogous sequence of Poisson commuting functionals H,, also exists for the GP hierarchy.
The present work provides an affirmative answer to this question, evidencing Liouville
integrability of the GP hierarchy.

We now informally state the main results of the present article and discuss at a very
high level the strategy behind their proofs. We defer a mathematically precise statement
of the results and a more detailed discussion of their proofs to Section 2.2, so as not to
make the introduction overly technical.

Our first result (Theorem 2.8) shows that the one-dimensional cubic GP hierarchy
possesses an infinite sequence of functionals {H, },en containing the Hamiltonian Hgp
for the GP hierarchy and belonging to the algebra A, introduced in Section 1.3, which
are in nontrivial involution with respect to the Poisson bracket {-,-}4. . In fact, the
functionals H,, take the form H,(-) = Tr(W,,-), for —iW,, € &%_. An immediate conse-
quence of this result is that the functionals H,, are conserved along the flow of the GP
hierarchy. Additionally, when evaluated on factorized states I' = (|¢®F) (¢®F|)ren, We
have the correspondence H,,(I') = I,,(¢).

Theorem 1.1 (Informal main result I). For every n € N, there exists an observable co-
hierarchy —iW,, = (—iW%k))keN € &, such that the associated trace functional H,
defined by

H,o (D) =Te(W,-T), Tea: (1.27)
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pairwise Poisson commutes with every H.,
{Hn, Him}e- (T') =0, vl € &%, m,n € N. (1.28)

Additionally, H3 = Hap, and for every n € N, we have the correspondence

Ha(U(9) = 1n(9),  u(¢) = (16%) (%] ren. (1.29)

Our second main result (Theorem 2.11) shows that for every n € N, the functional
‘H,, defines a Hamiltonian system

(%F) (t) = X, (T(t), (1.30)

where X3, is the Hamiltonian vector field associated to H,,, which we call the n-th GP
hierarchy, and when restricted to factorized solutions I' = (|¢®*) (¢®*|)ren, the n-th
GP hierarchy reduces to the n-th NLS equation (1.25). This result can be viewed as a
one-dimensional extension of Theorem 2.10 from our companion work [57], which proves
a Hamiltonian formulation for the GP hierarchy in all dimensions.

Theorem 1.2 (Informal main result II). For every n € N, the n-th GP hierarchy (1.30)
admits a special class of factorized solutions T'(t) = 1(¢(t)), where ¢ is a solution to the
n-th NLS equation (1.25).

Let us briefly comment on the proofs of our main results, focusing on the proof of
Theorem 1.1. As commented above, the functionals #, which we construct are trace
functionals associated to the family of observable co-hierarchies {—iW,},en belonging
to the Lie algebra &, discussed in Section 1.3. Thus, our initial main task is to construct
the W,, = (W%k))keN, which we do incrementally. The bulk of the work consists in
constructing a family {VV”}Z" 1, with w e Lymp(S(RF),S'(R¥)) for every k,n €
N, by recursion inspired by the recursive formula (1.22) for the one-particle nonlinear
operators {wn}nen. Once we have the W,,, we then bosonically symmetrize f(W +
(W )*) to obtain W,,. For the construction of the W.,,, an important new observation of
this work is that the functionals I,, defined in (1.23) are finite sums of multilinear forms
whose arguments are restricted to a single function ¢ € S(R) and its complex conjugate

¢ € S(R):

N(n)

Zﬂk) (;S é,...,0], N(n)eN. (1.31)
k: k

Each multilinear form I,(Lk) can in turn be written as
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IMpr, . brbry . ]
:/dxwl(x)w%k)[(bla7¢k7w233¢k]($)3 ¢1?w1---a¢ka¢k E‘S(R)v (132)

R

where the multilinear operators w( : (S(R))?*~1 — S(R) satisfy a recursion relation

wg:zl[qbla .. '7¢k;¢27' .. 7¢k]
= (_Za:c)wr(y,k)[ﬁblv e '7¢k;w23 .. a¢k]

n—1
+K/Z Z ¢£+1w%)[¢17~~,¢£§¢27-~'7¢e]w£2m[¢z+17~~~7¢k§we+2w~7¢k}»

m=1¢,j>1;0+j=k
(1.33)

with base case wgl) [$1] = ¢1 and wgk) = 0 for k > 2. It turns out that (1.33) is the right
recursion relation to make the connection with the GP hierarchy, leading us to construct
the W,, by giving rigorous meaning to the recursion

n—1
Wi = (it ) WP 4> S 6% = X)) (W @ W), (139)
m=14,j>1;4+j=k

with base case Wl = (Id;,0,...). This step, carried out in Section 5.1, is quite involved
and relies heavily on the notion of the wave front set of a distribution to determine when
two distributions-valued operators can be composed.

To prove the Poisson commutativity of the functionals H,, with respect to the Poisson
structure of &7, we show that Poisson commutativity of the H,, is equivalent to Poisson
commutativity of certain functionals I, defined in (2.52), which are associated to an
integrable system generalizing the NLS.'® We rewrite the NLS (1.1) as the system

{i@td) = —A¢ + 2k¢% (1.35)

i0i6 = AG — 256 ¢

and relax the requirement that ¢ denotes the complex conjugate of ¢ (i.e. ¢ and ¢ are
independent coordinates on S(R)). We then show that the family {I ,, } nen is mutually
involutive (see Proposition A.14). By also showing that there is a Poisson morphism
from the phase space of (1.35)'* to the phase space of the GP hierarchy, generalizing the
Poisson morphism ¢ from (1.18), we obtain the desired conclusion. This equivalence we

13 The inspiration for considering this system comes from a remark of Faddeev and Takhtajan [23, Remark
13, pg. 181].

14 Strictly speaking, the domain of the morphism is a quotient space of the phase space of (1.35) with the
property that the elements are “self-adjoint”.
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prove, recorded in (2.60) below, is quite interesting in its own right and was not expected
by the authors at the onset of this project.

Remark 1.3. In [56], four of the co-authors of the present article identified an infinite
sequence of conserved quantities for the GP hierarchy, which agreed with the I, defined
in (1.23) when evaluated on factorized states. At the time of [56], a Hamiltonian struc-
ture for the GP hierarchy had not been identified, so it was premature to ask if the
conservation of these quantities was a consequence of their Poisson commuting with the
GP Hamiltonian, let alone their being in mutual involution, as is the case with the func-
tionals I,,. The current work also provides a substantial generalization of the previous
work [56], in that the definition of the functionals #,, in [56] used the quantum de Finetti
theorems [37,45,77]. Indeed, these functionals are initially defined on factorized states of
the form in (1.5), and then their domain of definition is extended to statistical averages
of such factorized states by means of quantum de Finetti. In contrast, we now estab-
lish that these functionals are defined on the entire GP phase space. In particular, we
construct H,, without any considerations of admissibility'® and without any recourse to
representation theorems, such as the quantum de Finetti theorems. In fact, admissibility
plays no role in this paper.

1.6. Longer-term outlook

We close the introduction with an eye towards future work. As we previously com-
mented in Section 1.1, our ultimate goal is to give a mathematical derivation of the
integrability of the NLS from the exact solvability of the Lieb-Liniger model, comple-
menting (in 1D) our previous rigorous derivation of the Hamiltonian structure of the
NLS [57]. At present, this goal is out of reach. Instead, the present work is a step to-
wards it by developing a mathematical understanding of the integrable structure of the
NLS in terms of the GP hierarchy, a quantum object arising as a scaling limit for the
reduced density matrices of the Lieb-Liniger model. Specifically, our work provides evi-
dence of integrability for the GP hierarchy by showing that there is a family of Poisson
commuting functionals which encode the nonlinear Schrédinger hierarchy.

Given that the works [2,3,70] mathematically demonstrate that the NLS (1.35) is the
mean field limit of the LL model (1.2), it is natural to ask if there exists a connection
between our functionals H, together with the family of n-th GP hierarchies—and by
implication the functionals I,, together with the nonlinear Schrédinger hierarchy—and
the LL model. Establishing this connection in rigorous mathematical terms seems a
difficult but worthwhile task. We believe that the core difficulty lies in understanding
the connection between classical and quantum field theories via the processes of second
quantization in the sense that the LL model is the second-quantized 1D cubic NLS and

15 An infinite sequence of trace-class density matrices {y"},cn is said to be admissible if v*) =
Trier (75D,
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mean field limit understood as a “semi-classical” limit with parameter h = 1/N. This
connection figures prominently, although not specifically for the 1D cubic NLS, in the
work of Frohlich, Tsai, and Yau [24] and Frohlich, Knowles, and Pizzo [25] and references
therein. We also mention the work [80], in which Thacker posits a conjecture related to
this line of inquiry, and the work [13], in which Davies discusses the issues that arise
with naive quantization of classical approaches to integrability. We hope that the work
of our paper together with the derivation of the Hamiltonian formulation of the NLS in
our companion paper [57] will inspire others to join us in elucidating these fascinating
connections.

1.7. Acknowledgments

The authors thank Karen Uhlenbeck for helpful discussion on the role of geometry
in the study of integrable systems during the course of this project. The authors also
thank Jiirg Frohlich for helpful comments regarding references which have enhanced the
presentation of the article. Finally, the authors thank the anonymous reviewer for the
suggestions to improve the clarity of the exposition.

2. Statement of main results and blueprint of proofs

In this section, we provide an outline and discussion of the main results of this article
and their proofs. We begin by recalling in Section 2.1 several of the main geometric
results from [57] which are needed in the current work.

2.1. Review of [57]

As it will be important for the remainder of this section,'® we clarify that S(R?)
is the Schwartz space with its usual topology, which is a nuclear Fréchet topological
vector space. S'(R?) denotes the dual space of tempered distributions endowed with the
strong dual topology. A subscript s is used to denote functions/distributions which are
symmetric with respect to permutation of particle labels. In particular, S(R?), S’(R9)
are locally convex spaces, and there is a well-defined calculus for maps between locally
convex spaces, in particular a notion of a smooth map. The reader unfamiliar with this
calculus may consult Section 4.1. Furthermore, we use £, as in £(S'(R9), S(R?)), to
denote a space of linear maps between locally convex spaces equipped with the topology
of bounded convergence, which again defines a locally convex space.

A major source of difficulty in [57] is the construction of an infinite-dimensional Lie
algebra of observable co-hierarchies and its dual weak Lie-Poisson manifold of density
matrix oo-hierarchies, which together form the geometric foundation of the Hamiltonian

16 We give a more thorough discussion in Section 4.1 of locally convex spaces and calculus for maps defined
between such spaces.
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formulation of the GP hierarchy. The analytic difficulties in this definition stem primarily
from the fact that the GP Hamiltonian Hgp = Hgz is the trace functional associated
to a distribution-valued operator (DVO).'” The natural Lie bracket for such operators
requires composition of two operators in a given particle coordinate. Such a definition is
not possible in general since the composition of two DVOs may be ill-defined. Overcoming
these difficulties necessitated the identification of a property for DVOs which we termed
the good mapping property. To better motivate this property, let us first briefly recall how
the Lie algebra and Lie-Poisson structures for the GP hierarchy mentioned in Section 1.3
arise as N — oo limits.
For each k£ € N, we set

g1 = {A®) € L(S,(RY). S.(RY)) : (AW)" = —4®)},

endowed with the subspace topology of L£(Ss(R¥),S:(R¥)). We define a Lie algebra
(9k, [, 4, ), With Lie bracket defined by

[A(k), B(k)} — k[A(k), B(k)}, (2.1)
9k

where the right-hand side denotes the usual commutator bracket appropriately rescaled.

We restrict to a smaller subspace in our definition of g, compared to that of gi gmp in

(1.11) precisely to be able to make sense of the above commutator. For N € N, we then
define the locally convex direct sum

N
6]\7 = @glw (22)
k=1

which is the space of observable N -hierarchies.
To define a Lie bracket on &y, we consider the smooth map

€k,N - 9k — ON, (2.3)

for N € N and k € N<p, which embeds a k-particle bosonic observable in the space of
N-particle bosonic operators so as to have the filtration property

[ee,n(8e)s €58 (87)] 3, C €min{etj—1,8}.N (Bminferj—1,83) C ON- (2.4)

Using this filtration property and the injectivity of the maps € n, we can define a Lie
bracket on &y by

17 Not to be confused with operator-valued distributions in quantum field theory.
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sl = % ah(fan(19)n(BN)] ) ke,

1<t,j<N
min{{+j—1,N}=k

(2.5)
so that (B, [, ], ) 15 a Lie algebra in the sense of Definition 4.43.
To obtain a dual Lie-Poisson manifold of states, we define the real topological vector
space

&% = {Ty = (YW, € Hc S/(R), S, (R¥%)) : ( YN (26)
k=1

which is the space of density matriz N-hierarchies. Leting Ay n be the algebra with
respect to point-wise product generated by the functionals in the set

(F e C%(64:R) : F() = iTr(Ay"), Ay € 6y} U{F € C®(65:R): F() = C € R},
we can define a Lie-Poisson structure on &%, by

{F,G}gs (In) = iTr([dF[Cn],dGCN]]g, - Tn), VN € By, (2.7)
for F,G € A n.

Remark 2.1. In [57, Theorem 2.3|, we showed that the N-body BBGKY hierarchy is a
Hamiltonian flow on the weak Poisson manifold (&%, Ay N, {- '}05}%) with Hamiltonian
functional

Hepexky, NTn) =Te(Wgpery,n - T'n), (2.8)

where —iW ppaiy,n is the observable 2-hierarchy defined by
Wieseky,N = (—A4, kVN (X1 — X32),0,...). (2.9)
We now address the N — oo (i.e. infinite-particle) limit of the above described con-

structions. Via the natural inclusion map, one has &y C &y, for M > N, leading to the
limiting algebra

Foo = P ar. (2.10)
k=1

By embedding & into §oo, the Lie bracket [-, ']6N converges pointwise to a much simpler
Lie bracket: for Ng € N and A = (A®)) e, B = (B®¥))en € &, , we have that

lim [4,Bly, =C=(C")pen. (2.11)

N—oc0
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where

oW = 3 symk([A“),B(j)L), (2.12)

4,5j>1
(+5—1=k

in the topology of §~. Here, Sym; denote the k-particle bosonic symmetrization oper-
ator (see (2.25)) and [-,-]; is a certain separately continuous, bilinear map, the precise
definition of which is given below in (2.24).

There is a problem, though: the topological vector space given in (2.10) does not
contain the generator —iWegp (recall (1.15)) of the GP Hamiltonian Hgp. Indeed, the
2-particle component KV (X1 — X3) of Wgpaky converges to k§(X; — Xs5) as N — oo,
but the operator —ikd(X; — Xa) does not belong to go because it fails to map Sg(R?)
to itself. Since we need our Lie algebra &, of observable co-hierarchies to contain the
generator of Hgp, this necessitates that we consider a larger underlying topological
vector space which includes distribution-valued operators. As we will see, the definition
of the bracket [-,-]; involves compositions of distribution-valued operators in a single
coordinate. In general, such composition is not possible, thus motivating our introduction
of the good mapping property.

Definition 2.2 (Good mapping property). Let £ € N. We say that an operator A(®) ¢
L(S(RY),S'(R*)) has the good mapping property if for any a € N, the continuous
bilinear map

S(RY) x S(R") = S (R; S, (R))
(f(e),g(z)) — / dry...dxe_1dTayq ... da:gA(Z)(f(f))(xl, ceeyTp)
Ré-1

X g(e)(xlv ey Ta—1, x/om Ta+1y--- wTZ);
may be identified with a continuous bilinear map S(R?) x S(R*) — S(R?).'®

The good mapping property has the following important consequence: let (o, 8) €
N<y x N¢j, and let A®) € £(S(R?),S'(RY)) and BY) € L(S(R7),S’(R7)) have the good
mapping property. Introducing the notation z; ; == (@i, Tig1, .. xg), if k=047 -1,
then the bilinear map

18 Here and throughout this paper, an integral involving a distribution should be understood as a distri-
butional pairing unless specified otherwise.
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S(R¥)% — S(a

Al
—a—17§a+1;£7§1)

(B P ot Zagie ) () © 9P o))

R x R x R4 8L (R))

S'(RI)—S(RI)’

f=1
(f®,g™) = ;
BY) (k) N o) (2 . >
(BE. 511 PP @t B ) OO 9Ol ) o
B#1
(2.13)
may be identified with a unique smooth bilinear map
@B(j)7a7ﬁ : S(Rk) X S(Rk) — S(§e7§2)(R2€) (214)
via
/dxa<I>B<j>,a,ﬂ(f(’“),g(’“))(ge;zé)cb(:va)
R
() (k) : : (k) (o . > -
_ <B(17 7])(f (£a717 7£a+1;€7 ))a(b@g (&Za ) S’(Rj)—S(]Rj), /6 =1
(4) k k
<B(%,~-’B,1,B+1,.--,j)(f( N(Za-1 Zatre ) 0 ® 9 (ah, .)>31(R1)*S(R1)7 F#L
(2.15)
for any ¢ € S(R) and (21,41, 244 1.0,2;) € R*71. Here, the subscript (2,...,8,1,8 +
1,...,7) is to be interpreted in the sense of the subscript notation in (2.25) (see also
Proposition C.11).'” Hence, by the Schwartz kernel theorem isomorphism
L(S(R¥),S'(R¥)) = S(R?), (2.16)
we can define the following composition as an element
(A®) of BU)Y e £(S(R¥),S'(RF)) (2.17)

by

(Ao BU) 0, g8 = (Kao: Pl o 5(F .

S/(R2k)_S(R2k)’
(2.18)
where K ¢ denotes the Schwartz kernel of A®) and @Y,  ,(f*),¢™) denotes the

transpose of @B(j)7a7ﬁ(f(k)7 g™*)) defined by

>5/(Rk)_3(m) :

i) 05 (f 9" (@53 2)) = 50 as(fY, g @fs2)),  V(g,2)) eRY. (2.19)

19 30 as to avoid a cumbersome consideration of cases in the sequel, we will not distinguish between the
B =1 and B # 1 cases going forward.
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Note that A®) of BU) coincides with the composition

40 g

(1) P, o4 =1,0,048,...k) (2.20)

when the latter is defined. We let Ly, (S(R?),S'(R*)) denote the subset of £(S(RY),
S'(R*)) of elements with the good mapping property, and Lgmp (S(R?), S'(R*)) denote
the further subset of elements which are skew-adjoint (see Lemma C.1 and Definition C.3
for the definitions of adjoint and skew-adjoint for a DVO). We established in [57, Lemma
6.1, Remark 6.3] that the composition

(-) 05 () Lgmp,x(S(R), S (RY)) X Lgmp,«(SRY),S'(R7)) = Lgmp,«(S(RY), S'(RY))
(2.21)
is a separately continuous, bilinear map.
With the composition map (-) o (-) in hand, we proceed to reviewing the main geo-
metric actors from [57]. We recall that

Brgmp = {A®) € Lomp(S:(RY), S((RY)) : (AW)* = —AWy, (2.22)

where S, (R¥) is the subspace of S(R¥) consisting of functions invariant under permuta-
tion of coordinates (see Definition 4.17), and

o0
=P ok.gmp (2.23)

k=1

endowed with the locally convex topology. We equip &, with a Lie bracket given by’

[4, Bl = C = (C")ien

¢ J ) ) (2.24)
C®) = Sym, 3 ZZ((A“) o BY) — (B og Aw))) ’
0,j>18+j—1=k a=1 =1
where Sym,, denotes the bosonic symmetrization operator given by
(k (k) _ (k) -1
Symy, (AM) = Z e ey Ay =m0 A® om L, (2.25)

TESk

Proposition 2.3 (/57, Proposition 2.7]). (oo, [, |s_ ) is a Lie algebra.

20 Strictly speaking, a priori it is not the operators A® and BY that appear in the right-hand side, but
instead extensions A®) € L, (S(RY), S (R?)) and BY) € Lymp(S(RY), S’ (R)). The right-hand side is
independent of the choice of extension, as shown in [57, Remark 6.5], and therefore we will not comment
on this technical point in the sequel.
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Next, we recall the definition of the weak Lie-Poisson manifold (&%, Asc, {, -} g+ )
which is the phase space underlying the GP hierarchy. We define the real topological
vector space

gi = {1 € L(SIRY), S,(RM)) 19 ®) = (1)} (2.26)

and define the topological direct product

& = H o5 (2.27)
k=1

Attached to &} is the admissible algebra of functionals Ao, defined to be the real algebra
with respect to point-wise product generated by functionals in the set

(FeC™=(®;R): F()=iTr(W.), W e S} U{F € C(6;R): F(-) = C € R}.
(2.28)

Most importantly, our choice of A, contains the trace functionals associated to the
observable co-hierarchies {—iW,,}52 ;. We can then define the Poisson bracket of func-
tionals F,G € A, by

{F,G}g, T) =iTx([dF[I),dGl]s_-T), VI €®. (2.29)
In the right-hand side of (2.29), we identify the Géateaux derivatives dF'[I'] and dG[I'],
which are a priori continuous linear functionals, as elements of &.,. This identification
is possible thanks to the definition of A., and the next lemma, which characterizes the

dual of &%.

Lemma 2.4 (/57, Lemma 6.8]). The topological dual of &%, denoted by (&%)* and en-
dowed with the strong dual topology, is isomorphic to

={Ae @c ), SLRF)) (AR = — 4y (2.30)

equipped with the subspace topology induced by @r-, L(Ss(R¥), SL(RY)), via the canon-
ical bilinear form

iTe(A-T) =Y Try ,(AFY®) VD = (1 W)en € 8, A= (AW)1en € 64
(2.31)

In [57], classical results on the existence of a Lie-Poisson manifold associated to a Lie
algebra were unavailable to us due to functional analytic difficulties, such as the fact that
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®oo C 6. Nevertheless, we verified directly that our choices for &%, Ax, and {-, -} -
satisfy the weak Poisson axioms of Definition 4.24, thereby establishing the following
result.

Proposition 2.5 (/57, Proposition 2.8, Lemma 6.15]). (&%, Asc, {-, } &~ ) i a weak Pois-

son manifold. Furthermore, for any F € A, the Hamiltonian vector field X is given
by the formula

s L
XF(F)(Z) — Z] Troy1,. o45—1 ( [Z dH[F]EZI),€+1,...,e+j—1)’ 7(£+J1)] > ,

Jj=1 a=1
teN, Ted:, (2.32)
where the extension dH[F]Ei)ZH ttj_1) s defined via Proposition C.11.

2.2. Statement of main results

Having reviewed the results from [57] presently germane, we are now prepared to
state the main results of the current work. We previously introduced the GP hierarchy
in (1.4), which we recall now. We say that a sequence of time-dependent kernels (’y(k)) kEN
of k-particle density matrices is a solution to the GP hierarchy if

i0y*) = — [A%,Wﬂ] + 26Bri1 (vFHY), keN, (2.33)

with k € {£1}, and

B (0*0) = 37 (Bt — By ) 0%, (2.34)

=1
where for every (z;,z}) € R?*,

B;‘Skﬂ(’}’(kﬂ))(t,ﬁk;&;c) : (]Hl)(

=
By (Y (25 ) = Ty, 2 2, ).

t,l 7$';§/ax')a
R S (2.35)

When x = 1, we say that the hierarchy is defocussing and for kK = —1, we say that the
hierarchy is focusing (in analogy with the defocussing and focusing NLS, respectively).

To address Theorem 1.1, we must first establish the existence of an infinite sequence
of observable co-hierarchies {—iW, },en € & by a recursion argument inspired by
that for the operators w,, in (1.22). Due to analytic difficulties, once again stemming
primarily from the need to consider the composition of DVOs, we proceed in three steps.
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The first step consists of constructing an element
W, € @ L(S(RF),S'(R¥))

by the recursive formula

W1 = E1 = (Idl,O,)

B (—i0,, )W) 4 § j S 6 - Xz+1)(W( ) ®w§3>m) Vk €N,
m=14,j>1;0+j=k
(2.36)

Note the structural similarity between this recursion and the one for the operators w,
stated in (1.22). While the DVO W Wgﬁm is well-defined by the universal property
of the tensor product, the composition

§(X1 — Xoi1) (Wm oW m) (2.37)

is a priori purely formal, since evaluation on a Schwartz function leads to products of
distributions, in particular products of § functions and their higher-order derivatives.
Thus, the challenge is to give meaning to this composition. The key property which
allow us to make sense of the composition is that if we formally expand the recursion,
we will only find products such as 6(z; — z2)d(x2 — x3), which is well-defined as the
Lebesgue measure on the hyperplane {z, € R* : z; = x5 = z3}. To systematically
handle the products of distributions, we use the wave front set and a useful criterion
of Hérmander for the multiplication of distributions (see Proposition D.12 and more
generally, Appendix D).

A priori, Hérmander’s criterion only yields that the product of two tempered distri-
butions is a distribution, not necessarily tempered, which is problematic since we work
exclusively with tempered distributions. Moreover, we wish any definition of the compo-
sition (2.37) to satisfy the property

§(X, — X WO oW O @ N, ¢ & ¢
<( 1 6+1)( m ® n7m><f ® )97 ®g >S'(]R’€)—S(]Rk)

N (2.38)
:/dx (I)VT/%)(f(€)7g(€))(m7x)(I)Vvﬁjlm(f(])’g(j))(x’x)’

R

where

o S(RY)? = S(R?), Py S(R7)? = S(R?) (2.39)

are the necessarily unique maps identifiable with
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SRY? - 5. (R: S'(R © Oy (WO 1O () & O (2.
(R = Sy @iSLR) (F0.g0) o (WSO, g0 ) o
SRIN? 5 S (R:SLR))  (FO) g0 s (W) 0D () @ g0 (..
(R = Sy RsSUR) (1999 s (W £, ()0 gDy
(2.40)

via

/ Az (1,90 (w2 )o(w) = (WD, 6.0 90 (@)

R

/dx(pW(-Q (f(j),g(j))(x;x’)qb(x) — <Wfflmf(j),¢®g(j)(a?/, .)>
R

S'(RY)-S(RE)
(2.41)

S/ (RI)-S(RI)’

for any ¢ € S(R).

We ensure that this is achieved thanks once more to the good mapping property of
Definition 2.2. Indeed, proceeding inductively and exploiting the recursion formula and
the induction hypothesis that

Wi, . W, € P Lomp(SRE), S'(RY))
k=1

together with some Fourier analysis, as described in the proof of Lemma 5.1, we show
that the composition (2.37) is the unique distribution in D’(R*) satisfying (2.38), which
can then be shown to be tempered. Moreover, by further appealing to the good map-
ping property and the universal property of the tensor product, we can show that the
composition (2.37) indeed belongs to L, (S(R¥),S’(R¥)). The preceding discussion is
summarized by the following proposition.

Proposition 2.6. For each n € N, there exists an element

W, € écgmpw(R’f),szk))
k=1

defined according to the recursive formula (2.56), where the composition (2.37) is well-
defined in the sense of Proposition D.12.

Since we are interested in the action of the elements Wn on density matrices, which
are self-adjoint, the second step in the construction is to make each Wn self-adjoint
in the sense of Definition C.3. By the involution property of the adjoint operation (see
Lemma C.1), the DVO

Wi oo = (Wn + VTI;;) (2.42)

DN | =
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is a self-adjoint element of £L(S(R¥), S’(R¥)). Since we want to preserve the good mapping
property throughout each step of the construction, the challenge is to show that W:‘l
also has the good mapping property. Naively taking the adjoint of the recursive formula
(2.36), we should formally have that

n—1
W= W (Cig, )46 Y Y (W%’*@Wﬁf};)&(xl—xw). (2.43)
m=14,j>1;4+j=k

While the expression on the right-hand side is, a priori, meaningless,?! by inducting on
the statement that W”{, e i?vV;L1 having the good mapping property and exploiting
duality, the recursion for W, and the good mapping property for W,,, we are able to
prove that the Wj‘l have the good mapping property, as desired.

The third, final, and easiest step of the construction is to symmetrize the W, 4,
so that we obtain an oo-hierarchy which belongs to ... The motivation is that we
always restrict to permutation-invariant test functions, reflecting the bosonic nature of
the underlying physics. To obtain a formula for W,, from W,, 5, is straightforward. We
record this definition in the following proposition:

Proposition 2.7. For each n € N,

W, = —i Sym(W.q) = 7%' (sym (Wn) + Sym (v”vn)) € Boo, (2.44)

where Sym is a bosonic symmetrization operator, the definition of which is given in
Definition 4.20.

Having constructed the oco-hierarchies {—iW,}5° ,, we define trace functionals H,, €

Ao by
Hn(T) = Tr(W,, - T), resl. (2.45)

Since the functionals I,, are generated by the operators w,,, much in the same manner
as the trace functionals H,, are generated by the W,,, our next task is to relate W,, to
the one-particle nonlinear operators w,, defined in (l 22). Doing so necessitates under-

W (k)

standing the action of the k-particle components W’ and W(k)’ on pure tensors of

the form

|¢1®®¢k> <w1®®¢k|v ¢117¢k7¢177¢k€8(R) (246)

To make this connection precise for the arguments in Section 8, our strategy is to replace
the nonlinear operator w, with a multilinear operator by generalizing the recursion

21 Among other issues, we note that for f(*) € S(R*), the tempered distribution §(z; — z[_'.l)f(k) does
not belong to the domain of W{)* @ Wifl;l
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(1.22). See Section 6.1 for more details. As most of the results in Section 6 are of a
technical nature, and perhaps not so enlightening at this stage, we mention only the
following result, which connects H,, to the functionals I,, and can be obtained as an easy
corollary of Proposition 7.2:

Ho(T) =1n(9), VT = (6%) (6°*ken. ¢ € S(R). (2.47)

Next, we turn to establishing the involution statement of Theorem 1.1, which we
record in the following theorem:

Theorem 2.8 (Involution theorem). Let n,m € N. Then
{Hn, Hm}ee =0 on &% . (2.48)

To prove Theorem 2.8, we proceed on both the one-particle and infinite-particle fronts.
We prove that there is an equivalence between the involution of the functionals H,
and the involution of certain real-valued functionals I, ,,, defined in (2.52) below, on a
weak Poisson manifold of mixed states. We find this equivalence, explicitly stated in
Theorem 2.10 below, quite interesting its own right. We now provide some details of the
proof of this equivalence.

On the one-particle front, we relax (1.1) to a system

{i@tqbl = —A¢1 + 266702, ’ (2.49)

02 = Ay — 2kp5P1

where ¢1,¢2 : R x R — C. We study (2.49) as an integrable system on a complex weak
Poisson manifold (S(R?), As ¢, {-, ‘}12.¢), see Proposition 4.40 for the precise definition
of this manifold, by revisiting in detail the treatment of the NLS (1.1) in [23]. Specifically,
we show that there are functionals

jn(¢17¢2) = /dx¢2(x)wn,(¢1,¢2)(x)a V(¢1,¢2) € S(R)Qa n e Na (250)
R

where w,, (4, ¢,)(%) satisfies a similar recursion formula to the wy, see (A.47), such
that I3 is the Hamiltonian for NLS system (2.49), and such that the I,, commute on
(S(Rz)v AS,(Cu {'7 '}L2,C)'

Since we are ultimately interested in real, not complex, weak Poisson manifolds,
we pass to another weak Poisson manifold of mized states,” (S(R;V), As.yv, {, Frev)s
where the space S(R; V) consists of Schwartz functions v taking values in the space V of
self-adjoint, anti-diagonal 4 x 4 complex matrices:

22 Note that “mixed states” here is used in a restricted sense corresponding to non-orthogonal rank-one
projectors.
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We refer to (4.68), (4.70), and Proposition 4.37 for the precise definition and properties
of this weak Poisson manifold.

We use the I, to define real-valued functionals Iy, € Asy on the manifold
(S(R; V), As,v, {*, "} 12,) via the formula

Ion(7) = = (In(¢1, d2) + In(d2, 01)), (2.52)

DN | =

and we show in Proposition A.14 that the family {I} , } nen is in mutual involution with
respect to the Poisson bracket {-,-},. ,,. As we do not feel the results described in this
paragraph are the primary contribution of this work, but nevertheless believe they may
be of independent interest to the community, we have placed them in Appendix A and
not the main body of the paper.

On the infinite-particle front, we first demonstrate that there is a Poisson morphism

lm * (S(Rﬂ))vAS,V’ {'» ‘}L2,V) — (®zmAOO’ {'a }ngo)

Lok ok ®k\ [ &k 1. - - (2.53)
Lm(’V) = §(|¢1 > <¢2 |+ |¢2 > <¢1 |)k€N’ Y= Eadlag(¢1a¢23¢2a¢l)'

The subscript m signifies that ¢y, produces a mixed state element of &7 .

Theorem 2.9. The map im is a Poisson morphism of (S(R;V), Asyv,{-,-};2) into
(65, Ao, {-s -} ); d.e., it is a smooth map with the property that

L:i{'a'}@; = {L;'aL:*L'}L{V? (254)
where 1% denotes the pullback of tm.

Theorem 2.9 is a generalization of [57, Theorem 2.12] in our companion paper and,
in fact, recovers this previous theorem since Proposition 4.37 demonstrates that there is
also a Poisson morphism

Lpm : (S(R)7A57 {'3 '}Lz) — (S(R;V)7AS,V7 {'7 '}L{V)? (b — %adiag(¢7$7 ¢35)7
(2.55)

and the composition of Poisson morphisms is again a Poisson morphism.
The motivation for Theorem 2.9 is the following. Since

Ipn(7) = Hn(m(7)), V¥ €S(R;V) (2.56)
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by Proposition 7.2, and since {Itn;lpm} 2, = 0 on S(R;V), for any n,m € N, by
Proposition A.14, Theorem 2.9 implies that

0= {Hn, Hin}g: (tm(7))

= %ZiTI‘L...,k([*Z‘Wn, fin]E,f; ( |¢§§k> < §®k| + |¢é®k> <¢<1g>k|)) (2.57)
k=1

Note that only finitely many terms in the above summation are nonzero. Next, we use a
scaling argument to show that (2.57) implies that each of the summands in the right-hand
side of (2.57) are identically zero:

(1= W, =W (165%) (65" + 165%) (674])) =0,
Vor1,¢2 € S(R), k€ N. (2.58)

The intuition is that if a polynomial is identically zero then all of its coefficients are zero.
By unpacking the definition of the Poisson bracket {H,,, Hm } g , (2.58) yields

1
(Mo HnYor (1) =0, V0 = S (1625 @351+ I625) @241) o (2:50)

where ¢y 1, ¢r,2 € S(R) for every k € N. By then using an approximation argument from
Appendix B involving symmetric-rank-1 approximations (see Corollary B.8) together
with the continuity of {Hy,Hm}e- , we obtain from (2.59) that Poisson commutativ-
ity of the I, implies the Poissonxcommutativity of H,,. The reverse implication is a
straightforward consequence of Theorem 2.9. Summarizing the preceding discussion, we
have the following equivalence result:

Theorem 2.10 (Poisson commutativity equivalence). For any n,m € N,
Uy o} o (1) =0, ¥y € S®R;V), (2.60)
if and only if
{Hn,Hm}®:Q(F) =0, VI € &7. (2.61)

In light of Proposition A.14, which asserts the validity of (2.60), we then obtain
Theorem 2.8 from Theorem 2.10 (cf. Theorem 1.1).

We now address Theorem 1.2. For each n € N, we define the n-th GP hierarchy (nGP)
to be the Hamiltonian equation of motion generated by the functional H,, with respect
to the Poisson structure on &7 :

(%r) = Xy, (D), (2.62)
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where Xy is the unique Hamiltonian vector field defined by H,,. See (P3) of Defini-
tion 4.24 for the definition of the Hamiltonian vector field. We generalize the fact that
solutions to the NLS generate a special class of factorized solutions to the GP hierarchy
by proving that the same correspondence is true for the (nNLS) and (nGP). Thus, we
are led to our final main theorem (cf. Theorem 1.2).

Theorem 2.11 (Connection between (nGP) and (nNLS)). Let n € N. Let I C R be a
compact interval and let ¢ € C(I;S(R)) be a solution to the (nNLS) with lifespan I.
If we define

FeC™(ey), = (16%) (6°M), e (2.63)
then T' is a solution to the (nGP).

Remark 2.12. In [57], we defined the Gross-Pitaevskii Hamiltonian functional Hap by

Hep(T) = Tr <7Ax1*y(1)) + kTry (5(X1 - XQ)")/(Z)), VD = (v))pen € B2,
(2.64)
In particular, Hgp = Hs, and in the one-dimensional case, we recover Theorem 2.10
from [57], which asserts that the GP hierarchy (2.33) is the Hamiltonian equation of
motion on (&7, Aso, {*; -} ) induced by Hep.

Remark 2.13. Theorem 2.11 does not assert that the factorized solution ( [¢®*) (¢®F|)ren
is the unique solution to the n-th GP hierarchy starting from factorized initial data, only
that it is a particular solution. More generally, Theorem 2.11 makes no assertion about
the uniqueness of solutions to the (nGP) in the class C*°(I; &% ). While the (nNLS) are
known to be globally well-posed in the Schwartz class by the work of Beals and Coif-
man [5] and Zhou [86], unconditional uniqueness of the n-th GP hierarchy in the class
C>(I; &%), for some compact interval I, is an open problem, the resolution of which we
do not address in this work. We also do not address the existence of solutions to the n-th
GP hierarchy in C*°(I; &%) for general initial data in &% . Of course, we have existence
of factorized solutions by the aforementioned existence result for the n-th NLS equation.
More generally, we have existence of superpositions of factorized solutions of the form

A1) = / BH2F) (D) dpo(6), kN, (2.65)
S(R)

where pg is a given finite Borel measure on S(R) and for each ¢ € supp(po), ¢(t) is the
solution to the n-th NLS equation with initial datum ¢.

To prove Theorem 2.11, we need to show that the n-th GP Hamiltonian vector field
X4, can be written as
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k
Xog,, (D)™

> (162070 @ V.L(9) @ 64 (694 + [6°F) (6% @ V.1 (6) © 6],

a=1

(2.66)

for I' as in the statement of Theorem 2.11. We remind the reader that V,I,, denotes the
symplectic gradient of I,, with respect to the form wy2, see Definition 4.33. To establish
the identity (2.66), we use a formula from Section 6.2 for VI, which is in terms of
the Gateaux derivatives of the nonlinear operators w,,. Combining this formula with the
computation of Xy (I") for factorized I' (see Lemma 8.2), which extensively uses the
good mapping property of the generators of the H,, (i.e. —iW,,), we obtain (2.66) and
hence the desired conclusion.

2.3. Organization of the paper

We close Section 2 by commenting on the organization of the paper. In Section 4, we
review the notation and background material used throughout this paper. Section 4.1
briefly reviews the Gateaux derivative and calculus in the setting of locally convex spaces,
as well as smooth manifolds modeled on locally convex spaces. Section 4.2 introduces the
relevant spaces of bosonic test functions and distributions, symmetrization and contrac-
tion operators, and tensor products. Section 4.3 is a crash course on weak symplectic and
Poisson manifolds in addition to discussing several important examples of such objects
which appear frequently in this work. Lastly, Section 4.4 quickly reviews the definition
of a Lie algebra as well as the classical Lie-Poisson construction. As this subject is thor-
oughly treated in Section 4.2 of our companion paper [57], we have omitted proofs and
instead refer the reader to that work for more details.

In Section 5, we construct our observable oco-hierarchies —iW,,, thereby proving
Proposition 2.7. The section is divided into three subsections corresponding to each
stage of the construction: the preliminary version, followed by the self-adjoint version,
followed by the final bosonic, self-adjoint version.

Section 6 is devoted to analyzing the correspondence between the w,, and the W, and
the consequences of this correspondence. Section 6.1 contains the “multilinearization” of
the w,,. Section 6.2 contains the proof of a formula for the symplectic gradients of the I,,.
Section 6.3 connects the multilinearizations of the w,, from Section 6.1 with the partial
traces of the W,,.

In Section 7, we prove our involution result, Theorem 2.8, in addition to the main
auxiliary results involved in the proof of this theorem, which might be of independent
interest. This section is broken down into four subsections in order to make the pre-
sentation more modular. Section 7.1 contains the proof of the Poisson morphism result,
Theorem 2.9. Section 7.2 connects the infinite-particle functionals #,, to the one-particle
functions I, via the Poisson morphism of Theorem 2.9 and the correspondence results
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of Section 6.3. Section 7.3 contains the proofs of the Poisson commutativity equivalence
result, Theorem 2.10, and the involution result, Theorem 2.8. Lastly, Section 7.4 contains
the proof of Proposition 7.3, which asserts that there is at least one functional which
does not Poisson commute with a given H,,.

In the last section, Section 8, of the main body of the paper, we prove our n-th GP/n-
th NLS correspondence result, Theorem 2.11. Section 8.1 is devoted to the computation
of the Hamiltonian vector fields of the H,, evaluated on factorized states, and Section 8.2
is devoted to the proof of Theorem 2.11. To close the section, we compute in Section 8.3
the fourth GP hierarchy, which corresponds to the complex mKdV equation.

We have also included several appendices to make this work as self-contained as pos-
sible. Appendix A revisits the treatment in Faddeev and Takhtajan’s monograph [23]
of the involution of the functionals I, in the more general setting of the system (2.49).
We were unable to find a reference covering this generalization. Therefore, we provide a
fairly thorough presentation at the expense of a lengthy appendix. Appendix B contains
a quick review of some facts from multilinear algebra on symmetric tensors, which we use
to establish approximation results for bosonic Schwartz functions and density matrices.
Appendix C is devoted to technical facts about distribution-valued operators and topo-
logical tensor products, which justify the manipulations used extensively in this paper.
Furthermore, this appendix includes an elaboration on the good mapping property, in
particular, some technical consequences of it which are used in the body of the paper.
Appendix C is also included in [57]; however, we include it here, with most of the proofs
omitted, for convenient referencing. Appendix D contains technical material on products
of distributions, specifically on when the product of two distributions can be rigorously
defined.

3. Notation

3.1. Index of notation

We include Table 1, located at the end of the manuscript, as a guide for the frequently
used symbols in this work. In this table, we either provide a definition of the notation
or a reference for where the symbol is defined.

4. Preliminaries

4.1. Calculus on locally convex spaces

We begin by recalling some definitions related to calculus on locally convex spaces,
which we make use of in the sequel. For further background material, we refer the reader
to the lecture notes of Milnor [58].
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Definition 4.1 (Locally convex space). A topological vector space (tvs) X over a scalar
field K is said to be locally convex if every neighborhood U 3 0 contains a neighborhood
U’ 5 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type
result.

Proposition 4.2 (Hahn-Banach). If X is locally convez, then given two distinct vectors
x,y € X, there exists a continuous K-linear map £ : X — K with {(x) # {(y).

Definition 4.3 (Gateauz derivative). Let X and Y be locally convex K-tvs, let Xo C X
and Yy C Y be open sets, and let f : Xg — Y be a continuous map. Given a point
r € X and a direction v € X, we define the directional derivative or Gateaux derivative
of f at x in the direction v to be the vector

fl(l‘;’l)) — f/ (’U) — lim f(.%‘ + tU) — f(x)

(4.1)

if this limit exists. We call the map f, : X — Y the derivative of f at the point xo. We
use the notation df [x](v) = f'(z;v).

The map f: Xg — Yy is C? Gateaux if f is a C' Gateaux map and for each v; € X
fixed, the map

Xo—Y, x— f(z;01) (4.2)

is C! with Gateaux derivative

i @+ toa3v1) — (@ 01)
t—0 t

(4.3)

depending continuously on (x; vy, v2) € Xo X X x X equipped with the product topology.
If this limit exists, we call it the second Gateaux derivative of f at x in the directions
v1,v2 and denote it by f”(x;v1,v2). We inductively define C™ maps Xo — Yo. If a map
is C" for every r € N, then we say that f is a C'°* map or alternatively, a smooth map.

Proposition 4.4 (Symmetry and r-linearity of ng;)) If for r € N, the map f is C", then
for each fized xy € Xo, the map

Xx--xXY, (1, ..., 0p) = f) (@001, ., 0,) (4.4)

r

is r-linear and symmetric, i.e. for any permutation m € S,

TN (@05 0(1)s - - -y Vn () = f (o301, 2y 00). (4.5)
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Proposition 4.5 (Composition). If f : Xog — Yy and g : Yo — Zy are C" maps, then
gof: Xo— Zyis C" and the derivative of (g o f) at the point x € Xy is the map
g}(w)of;:X%Z.

We now use the calculus reviewed above to introduce the basics of smooth manifolds
modeled on locally convex topological vector spaces. Much of the theory parallels the
finite-dimensional setting, where the model space R? is now replaced by an arbitrary,
possibly infinite-dimensional locally convex tvs.

Definition 4.6 (Smooth manifold). A smooth manifold modeled on a locally convex space
V' consists of a regular, Hausdorff topological space M together with a collection of
homeomorphisms ¢, : V, — M, satisfying the following properties:

(M1) V, C V is open.

(M2) M, C M is open and |J, M, = M.

(M3) @El 00t pa H(MaNMpg) — cpgl (M,NMg) is a smooth map between open subsets
of V. We refer to the maps ¢, as local coordinate systems on M and the maps

0.t as coordinate charts.

Remark 4.7. We will sometimes say that the manifold M is a Fréchet manifold if the
locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we
can define the notion of a smooth map between manifolds.

Definition 4.8 (Smooth map). If M; and My are smooth manifolds modeled on locally
convex spaces V7 and Vs, respectively, then a continuous function f : My — Ms is smooth
if the composition

¢ra0fopar i (Mian fTH(Mag)) = Vag (4.6)

is smooth whenever f(Mi o) N Mag # 0. We say that f is a diffeomorphism if it is
bijective and both f and f~! are smooth.

Definition 4.9 (Submanifold). A subset N of a smooth locally convex manifold M is a
submanifold if for each m € N, there exists a chart (M,,p_') about the point m, such
that ¢ 1(M, N N) = o (M,) N W, where W is a closed subspace of the space V on
which M is modeled.

Remark 4.10. The submanifold N is smooth locally convex manifold modeled on W.
Indeed, the reader may check that the maps vo|v,.nw : Vo N W — M, N N are homeo-
morphisms which satisfy properties (M1) - (M3).
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In this article, we use the kinematic definition of tangent vectors (i.e. equivalence
classes of smooth curves), as opposed to the operational definition (i.e. derivations).
These two definitions are equivalent in the finite-dimensional setting but are generally
inequivalent in the infinite-dimensional setting.

Definition 4.11 (Tangent space). Let ¢4 : Vi, — M, be a local coordinate system on M
with zg € M,. Let p1,ps : I — M be smooth maps on an open interval I C R with
pi(0) = xo for i = 1,2. We say that p; ~ py if and only if

d

d
EQP;I op1)li=o = E(@;l © pa)li=o0- (4.7)

The reader may verify that ~ defines an equivalence relation on smooth curves p : I — M
with p(0) = zo. The set of all such equivalence classes is called the tangent space at xo,
denoted by T, M.

Definition 4.12 (Tangent bundle). We define the tangent bundle TM as a set by

]_[ T, M.

zeEM

We define a smooth locally convex structure on 7'M modeled on V' x V' by the local
coordinate systems

Yo : Vo x V — TM, C TM, (4.8)

where 1, (u,v) is defined to be the equivalence class containing the smooth curve ¢t —
Yo (u+tv) through the point ¢, (u) € M. The reader may verify that ¢, maps {u} x V
isomorphically onto the tangent space T, _ (., M.

Definition 4.13 (Derivative). Let M; and My be smooth locally convex manifolds. A
smooth map f : M; — Ms induces a continuous map

fo 1 ToMy — Ty Mo, [p1] = [f o p1] (4.9)
called the derivative of f at x. Together, the maps f! induce a smooth map
fo:TMy = TMy,  (2,0) = (f(2), f(v)) (4.10)
which maps T, M; linearly into Ty, Ma.
Definition 4.14 (Smooth vector field). A smooth vector field on M is a smooth map

X : M — TM such that X(z) € T, M. We denote the vector space of smooth vector
fields on M by X(M).



34 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525

4.2. Bosonic functions, operators, and tensor products

We now review the main spaces of test functions and distributions and some basic
facts about tensor products used extensively in the body of the paper.

We denote the pairing of a tempered distribution u € S'(R¥) with a Schwartz function
f e S(R¥) by

(u, f>5/(Rk=)_3(Rk)- (4.11)
For 1 < p < oo, we use the notation LP(R¥) to denote Banach space of p-integrable
functions with norm || - || z»s). In particular, when p = 2, we denote the L? inner
product by
(7o) = [ o Faotay) (412)
Rk

Note that we use the physicist’s convention that the inner product is complex linear in
the second entry. Similarly, for u € S'(R¥) and f € S(R¥), we use the notation (u|f)
and (f|u) to denote

(ulf) = (u, s ®ry-smry  and (flu) = (ulf). (4.13)

Alternatively, the right-hand side of the first definition may be taken as the definition of
the tempered distribution u. Throughout the paper, we will use an integral to represent
the pairing of a distribution and a test function.

We denote the symmetric group on k letters by Sy. For a permutation m € Sy, we
define the map 7 : R*¥ — R* by

7T<£k) = (xﬂ'(l)? v 7x7r(k))~ (414)
For a complex-valued, measurable function f : R¥ — C, we define the permuted function
(mf)(zy,) = (fom)(@p) = f(Zn(r)s-- s Trry)s  Vaj € RE. (4.15)

Definition 4.15. We say that a measurable function f : R¥ — C is symmetric or bosonic
if

m(f)=f, YV € Sg. (4.16)

Definition 4.16. We define the symmetrization operator Sym,, on the space of measurable
complex-valued functions by

Syme(H)(z) = 15 3 w(Hey), Ve, €RE (4.17)

TESK
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By duality and continuity of the symmetrizing operation, we can extend the symmetriza-
tion operator to S’'(RF).

Definition 4.17 (Bosonic test functions/distributions). For k € N, let S;(R¥) denote
the subspace of S(R¥) consisting of Schwartz functions which are bosonic. We say that
a tempered distribution u € S’(R¥) is symmetric or bosonic if for every permutation
T € Sk,

(u,g0 77_1>3/(Rk),3(Rk) = (u, g>3/(Rk),3(Rk)7 (4.18)
for all g € S(R¥). We denote the subspace of such tempered distributions by S’(R¥).

Remark 4.18. It is straightforward to check that Sym,, is a continuous operator S(R¥) —
Ss(RF) and &' (R*) — S.(R¥). Furthermore, a tempered distribution u is bosonic if and
only if w = Sym,,(u).

Lemma 4.19. We have the identification
Si(R") = (Ss(RF)), (4.19)
where (Ss(RF))* denotes the topological dual of Ss(RF).

Given two locally convex spaces E and F', we denote the space of continuous linear
maps E — F by L(E, F). We topologize L(E, F') with the topology of bounded conver-
gence. For our purposes, we will typically have E, F € {S(R¥), S;(R¥), S'(RF), SL(R*)}.
In the case that F = S(R¥) and F = &'(R¥), the bounded topology is generated by the
seminorms

([ Al = fsuepm (Af, g)S’(Rk)fs(]Rk)lv VA e ﬁ(S(Rk)’Sl(Rk»: (4.20)
»9

where 9 ranges over the bounded subsets of S(R¥). An identical statement holds with all
spaces replaced by their symmetric counterparts. We topologize S’(R¥) with the strong
dual topology, which is the locally convex topology generated by the seminorms of the
form

1fllB = sup [{f,¥)s/®rr)-s®R )| > (4.21)
peB

where B ranges over the family of all bounded subsets of S(R¥). Note that since S(R¥)
is a Montel space, bounded subsets are precompact. An identical statement holds with
all spaces replaced by their symmetric counterparts.
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Given two locally convex spaces E and F over a field K, we denote an®® algebraic
tensor product of F and F consisting of finite linear combinations

S hej@f, B fjeF NeK (4.22)
j=1

by E ® F. We note that since the spaces we deal with in this paper are nuclear,
the topologies of the injective and projective tensor products coincide. Hence, we can
unambiguously write EQF to denote the completion of E ® F under either of the afore-
mentioned topologies. Given locally convex spaces E; and Fj for j = 1,2 and linear maps
T:FE, — Eyand S: F| — Fy, and a tensor product

B:FEi X Fy — E1 Q Es, (4.23)
the notation T'® S denotes the unique linear map T® S : E; ® F; — E5 X F5 such that
(T'®S)oB=TxS. (4.24)

Note that the existence of such a unique map is guaranteed by the universal property of
the tensor product.

When E and F are subspaces of measurable functions on R™ and R"™ respectively,
and e € F and f € F, we let e ® f denote the realization of the tensor product given by

e@f:R"xR" = C,  (e® f)(@mizh) =e(x,,)f(@,),  Y(zm, z,)€R™ xR,

(4.25)
which induces a bilinear map E x ' — E ® F. Similarly, if £’ and F’ are the duals of
spaces of test functions F and F (e.g. B/ = D'(R™) and F' = D'(R")), we let u ® v
denote the unique distribution satisfying

(u@v)(e® f) = ule) v(f). (4.26)

Finally, if ¢ : R™ — C is a measurable function, we use the notation ¢®*, for k € N, to
denote the measurable function ¢®* : R™* — C defined by

k
¢®k<£m,1’ ce 7§m,k) = H (b(&m;f)? (427)
(=1

and we use the notation ¢** to denote the measurable function ¢** : R™ — C*
(@) = (@), - D(2))- (4.28)

23 The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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For A®) € L£(S,(R¥),S.(R¥)) and 7 € Sy, we define

A(k)

(m(1),...,7(k)) =moAMorl, (4'29)

In particular, Aglf,).,_,k) =AM,

Definition 4.20. Given A®®) € L(S(RF),S'(R¥)), we define its bosonic symmetrization
Symy,(A®) by

1
Symy, (A®) = o S AR ) (4.30)

TESK

For A= (A®)en € D2, L(S(RF), S (RY)), we define

Sym(A) = (Symk(A(k))) (4.31)

keN'

Definition 4.21 (Bosonic operators). Let k € N. We say that an operator A®) : S(RF) —
S'(R¥) is bosonic or permutation invariant if A maps S,(R¥) into S’(R¥).

The analogue of Remark 4.18 holds for the symmetrization of operators: bosonically
symmetrized operators are indeed maps from bosonic Schwartz functions to bosonic
tempered distributions.

Lemma 4.22. Let k € N. If AR € £(S(RF),S'(R¥)), then
Sym,, (A®) e £(S,(R¥), S.(RF)). (4.32)
Furthermore, if A®) € L,,,,(S(RF),S'(RF)), then
Symy,(AW) € Ly (Ss(RF), SL(RY)). (4.33)

The following technical lemma is frequently used implicitly in the sequel. For defini-
tions and discussion of the generalized trace, see Definition C.5.

Lemma 4.23. Let k € N, and let y*) € L(S/(R*), S,(RF)) and A®) € L(S(R¥), S’ (RF)).
Then for any permutation T € Sy, we have that

Tl"l,...,k (Aéljzl),mﬁ(k))?/(k)) = Trl,.“,k (A(k)')/(k)) (434)
4.8. Weak Poisson structures and Hamiltonian systems

We recall the definition of a weak Poisson structure due to Neeb et al. [60] generalized
to allow for complex-valued functionals. The presentation closely follows that of Section
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4.1 in our companion paper [57]. In what follows below, M is a smooth manifold modeled
on a locally convex space.

Definition 4.24 (Weak Poisson manifold). A weak Poisson structure on M is a pair con-
sisting of a unital sub-algebra A C C°°(M;C) and a bilinear map {-,-} : Ax A — A
satisfying the following properties:
(P1) The bilinear map {-,-}, is a Lie bracket®* and satisfies the Leibniz rule
(F.GH} = {F,G}H + G{F,H}, VF,G,H € A. (4.35)
We call {-,-} a Poisson bracket.
(P2) For every m € M and v € T,, M satisfying dF[m](v) = 0 for all F' € A, we have

that v = 0.
(P3) For every H € A, there exists a smooth vector field Xy on M satisfying

XyF={FHY, VYFeA, (4.36)

where in the left-hand side of the identity, we regard Xy as a derivation. We call
Xy the Hamiltonian vector field associated to H.

If properties (P1) - (P3) are satisfied, then we call the triple (M, A, {-,-}) a weak Poisson
manifold.

We now record some observations from [60] about the definition of a weak Poisson
structure.

Remark 4.25. (P2) implies that the Hamiltonian vector field Xy associated to a given
H € A is uniquely determined by the relation

(F,H}Y(m) = (XgF)(m) = dF[m)(Xz(m)),  VF € A. (4.37)

Indeed, if X1 and X g2 are two smooth vector fields satisfying the preceding relation,
then the smooth vector field Xy := Xg 1 — X 2 satisfies

dFm)(Xy(m)) =0, VFeA, (4.38)
for all m € M, which by (P2) implies that Xz = 0.

24 See Definition 4.43 for details.
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Remark 4.26. For all F, G, H € A, we have by the Jacobi identity that

[XFvXG]H = {{H’G}7F} - {{H7F}>G}
- {H’ {G7F}}
= XV{G’F}I‘I7 (4.39)

where [ X, X¢g| denotes the commutator of the vector fields X, X regarded as deriva-
tions. Hence, by Remark 4.25, [Xr, Xg]| = X(q ry for F, G € A. Additionally, the Leibniz
rule for {-, -} implies the identity

Xpe = FXg+GXp, VFG e A (4.40)

There is also a notion of a weak symplectic manifold, which we have generalized to
allow for complex-valued symplectic forms. The modifier “weak” here refers to the fact
that for locally convex spaces, not every continuous functional is necessarily represented
by the symplectic form.

Definition 4.27 (Weak symplectic manifold). Let M be a smooth locally convex manifold,
and let X' (M) denote the space of smooth vector fields on M. A weak symplectic manifold
is a pair (M,w) consisting of a smooth manifold M and a closed non-degenerate 2-form
w:TM xTM — C.

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector
fields on M by

ham(M,w) ={X € X(M) : 3H € C>*(M;C) s.t. w(X, ) =dH}. (4.41)

With this definition in hand, we see that weak symplectic manifolds canonically lead
to weak Poisson manifolds.

Remark 4.28 (Weak symplectic = weak Poisson). Let (M,w) be a weak symplectic man-
ifold. Let

A={HeC®(M;C):3Xyg € X(M) st. w(Xpu,-)=dH}, (4.42)
and let
{,}:Ax A= A, {F,G} =w(Xp,Xg) =dF[Xg] = XGF. (4.43)

The formula (4.43) defines a Poisson bracket satisfying properties (P1) and (P3). If we
additionally have that for each v € T,,, M,

(w(X(m),v) =0, VX € ham(M,w)) = v =0, (4.44)
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then property (P2) is also satisfied. Consequently, the triple (M, A4, {-,-}) is a weak
Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Poisson
structures. This leads to the notion of a Poisson map, alternatively Poisson morphism.

Definition 4.29 (Poisson map). Let (M;, A;,{-,-};), for j = 1,2, be weak Poisson man-
ifolds. We say that a smooth map ¢ : M; — Ms is a Poisson map, or morphism of
Poisson manifolds, if p* Ay C A; and

O {F, G}, ={¢"F, "G}, VE, G € As, (4.45)
where ¢* denotes the pullback of ¢.
Remark 4.30. In [60], the authors define a Poisson morphism
@ (M, A, {5 }y) = (Mo, Az, {5 3,)
with the requirement that ¢*As = A;. We relax this requirement in our Definition 4.29.

We need several examples of weak Poisson/symplectic manifolds in this work. An
example we discussed at length in [57] is the Schwartz space S(R¥), as well as its bosonic
counterpart Ss(R¥). We collect the main conclusions and refer the reader to [57] for
proofs.

We equip the space S(R¥) with a real pre-Hilbert inner product by defining

<f|g>Re = QRG{R/ dikm‘g(zk) ) Vfag S S(Rk) (446)

The operator J : S(R¥) — S(RF) defined by J(f) = if defines an almost complex
structure on (S(RF), (-|-)g.), leading to the standard L* symplectic form

wrz(f,9) = (Jfl9)re = 2Im{m/ da, f(zp)g(zy) ¢y Y .9 € S(RF). (4.47)

With these definitions in hand, we record the following well-known fact.
Proposition 4.31. (S(R¥),w;2) is a weak symplectic manifold.

Now given a functional F € C®(S(RF);R), the Gateaux derivative of F' at the point
f € S(R¥), denoted by dF|f], defines an element of S’(R¥). We consider the case when
dF[f] can be identified with a Schwartz function via the inner product (-|-)g.-
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Lemma 4.32 (Uniqueness). Let F € C®(S(R¥);R) and f € S(R¥). Suppose that there
ezist g1, g2 € S(R¥) such that

(9116 f)re = dF[f1(0f) = (9210 f)ge, VoS € S(RF). (4.48)
Then g1 = go.

Letting A be the algebra defined in (4.42) and F' € A, we see from Remark 4.25 and
Remark 4.28 that X (f) is the unique element, hereafter denoted by VF(f), satisfying

dF[f](6f) = wi=(VsF(f),0f),  Vof € S(R").
Consequently, we can define the real and symplectic gradients of functionals.
Definition 4.33 (Real/Symplectic L? gradient). We define the real and symplectic L>

gradient of F € C™(S(R¥);R) at the point f € S(R*), denoted by VF(f) and VF(f),
respectively, to be the unique elements of S(R¥) (if they exist) such that

dF[f1(6f) = (VF(/)6f)re = wiz(VsF(f).6f),  Vof € S(RF). (4.49)

We say that F has a real, or respectively symplectic, L? gradient if VF : S(R¥) — S(RF),
respectively VF : S(RF) — S(RF), is a smooth map.

Remark 4.34. Recalling that
wrz(f,9) = (Jfl9)ge »
we see that V F(f) = —iVF(f).

Remark 4.28 implies that the symplectic form wy2 canonically induces a Poisson
structure on S(R*), a fact we record in the next proposition.

Proposition 4.35. Define a subset As C C(S(R*);R) by
As = {H € C*(S(R¥);R) : V. H € C®(S(R¥); S(R¥))}, (4.50)
and define a bracket {-,-},;. by
{F,G} 2 = w2 (VF,V,G), VF,G € As. (4.51)

Then (S(R*), As, {-,-},2) is a weak Poisson manifold.
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Remark 4.36 (Variational derivatives). For functionals F,G € C°°(S(R¥);R) having a
special form discussed below, there is a computationally more convenient way to express
their symplectic gradients and Poisson bracket in terms of variational derivatives. Given
a smooth functional F : S(R¥)2 — C, we define the variational derivatives V. F and
V5 F by the property?

dﬁ‘[qsl,%](&qslv 5%)
= /dgk (V1F(¢17%)5¢1 + VQF(QSM%)(;@) (gk)a v(asla@), (6¢17 6%) € S(Rk)Q

Rk
(4.52)
The reader can verify that the variational derivatives, if they exist, are unique.
Let F,G € C>*(S(R*);R). Suppose that
F(¢)=F(¢,9), FeC>(SR"%C), (4.53)
where F satisfies the conditions
F(¢1,02) = F(po,d1),  ViF, V5F € C°(S(R")?; S(R¥)), (4.54)

and similarly for G and G. Then we claim that F,G € Ag and their Poisson bracket
{F,G} ;. may be rewritten as

?) — VaF(¢,9)V1G(¢,))(x).  (4.55)

R

Indeed, observe that

F(¢1 + €661, pg + e6h2) — F(¢r1, b2)

dF[¢1,62)(561,062) = lim

€
i F(%HE,EHW%F(@,E)
= c

= dF (92, 61)(502,501)
— [ o (Vi F (02001503 + V3 F (62,0000 ) (1)

Rk
(4.56)

25 Qur notation for variational derivatives is nonstandard. In the calculus of variations literature, one
typically finds % and % instead of Vi f(¢1, ¢2) and V5(¢h1, ¢2), respectively. We prefer our notation as
it emphasizes the nature of the variational derivatives as vector fields. The motivations for the seemingly
odd use of the subscript 2, as opposed to just 2, will become clear later in this subsection.
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where the ultimate equality follows by definition of the variational derivatives. Since

dF[¢1, $2] (561, 662) = /dgk (V1F(¢1,02)801 + V3 F (¢1,02)002) (x4, (4.57)

Rk

we conclude by uniqueness of variational derivatives that

V1F(¢1,02) = VaF(¢2,¢1), VaF (¢1,¢2) = V1F (2, 61). (4.58)

Now recalling the definition of the symplectic gradient, we have that

wrz2 (VsF(¢)7¢) =dF [¢](¢)

— dF(6, 9(4, D)
/ W (ViE (6,3 + V3 (6, )D) ()

= QRGL/ d&kV1F(¢, 5)(%)#}(%) ) (4.59)

where the ultimate equality follows from the relations (4.58). By uniqueness of the sym-
plectic gradient, we conclude that

V.F(6) = ~iViF(6,0) = ~iVaF(6,6) = 3 (IViF(6,0) — iVaF(6,9)).  (460)

Since the right-hand side of the preceding identity defines an element of C*°(S(RF);
S(R¥)), we obtain that F' € As. Now we can rewrite the Poisson bracket as

wr2(VsF(9), ViG(9)) = QIm{‘R/ dx;, (iV1F(¢, E)Nlé(sb@))(zk)

where the ultimate equality follows from the relations (4.58).

In the sequel, all of the functionals we consider will satisfy the requirements (4.54).
Consequently, we will pass between the variational derivative formulation (4.55) and the
symplectic gradient formulation of the Poisson bracket without comment.
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To motivate our next extension of the weak Poisson manifold (S(R¥), As, {-,-},.), we
observe that we can identify a one-particle wave function ¢ with the pure state

) (¢l

We can define a real topological vector space of pure states by considering the space of
Schwartz functions taking values in the space of self-adjoint, anti-diagonal 2 x 2 complex

(% ﬁ) . (4.62)

The natural generalization of a pure state is a mixed state,

matrices:

S (191) (2] + 192} (6],

and we can define a real topological vector space of mixed states as follows: let V denote
the real vector space of self-adjoint, anti-diagonal 4 x 4 matrices of the form

1
Eadiag(a, b,b,a), a,beC. (4.63)

We let S(R¥;V) denote the space of Schwartz functions taking values in the space V.
Elements of S(R¥; V) have the form

1 . — —
v(zy) = Gadiag(dn(zy), d2(zi)s P2(i), dr(zp)), Vi € R*, ¢1,¢2 € S(R).
(4.64)
We can define a real pre-Hilbert inner product on S(R*;V) by

(r12)gey =2 / dzy, trezec: (11 () 2,swap(2y)); V71,72 € S(RF; V), (4.65)
Rk

where trczgc2 denotes the 4 x 4 matrix trace and

Toowap = gadiag(62,51,61,02), 2 = gadiag(61,52,62,01).  (166)
The matrix left-multiplication operator
J: S(R¥; V) — S(R¥; V), J = diag(i, —i,i, —1) (4.67)
defines an almost complex structure. We can then define a symplectic form wr2y by

wL27V(71a72) = <J’Yl|72,swap>Re7V . (468)
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Analogous to Proposition 4.35, we have that (S(R¥;V),wr2) is a weak symplectic
manifold. Moreover, the obvious map

lpm * S(Rk) — S(Rk, V), Qb — %adiag(¢7$7 ¢a a) (469)

is a symplectomorphism. Additionally, if we denote the symplectic gradient with respect
to the form w2y by Vv, then one can show that if we define

Asy = {F € C®(S(R*;V);R) : V,,F € C(S(R*; V), S(R*; V))}, (4.70)

and let {-,-} . |, be the Poisson bracket canonically induced by the form wyz ), then the
triple

(S(Rk§v)7AS,Va{'a'}L2,v) (4.71)

is a weak Poisson manifold. We summarize the preceding discussion with the following
proposition.

Proposition 4.37. (S(R*; V), wr2 ) is a weak symplectic manifold, and (S(R*; V), As.v,
{5} 12.y) ds a weak Poisson manifold, where

{F.G} 2 (7) = wrz v(Vs v F(7), Vs vG(7)). (4.72)
Furthermore, the map tpm 5 a symplectomorphism; i.e., it is a smooth map such that
LomWI2,Y = W2, (4.73)
where iy, denotes the pullback of tpwm, so that
tpm  (S(RY), As, {1, }p2) = (SRM V), Asw, {} e y) (4.74)
is a Poisson morphism.

Remark 4.38. Remark 4.36 carries over to the setting of S(R¥; V). More precisely, suppose
F € C*(S(R¥;V);R) is such that

. — — 1 — —
F(’y) = F((bla ¢2a ¢2a ¢1)’ Y= §a‘diag(¢la ¢27 ¢2a (bl) € S(Rk7 V)7 (475)
where F € C*(S(RF)*;C), is such that
V.F, V3F, VyF, ViF e C®(S(RF)* SR")), (4.76)

where the four variational derivatives are uniquely defined by
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dF (1, ¢a, P2, ¢1) (01, 0, 62, 6b7)

— [ (V15561 + V300, + VaFo0+ V1 F067) (60,63, 00,00 @), 77
R*
and F has the involution property
F(¢17 ¢Q7 ¢27 (bi) = F(¢_17 %7 ¢_§7 a) (478)

Then F' € As,y. Additionally, if F, G are two such functionals, then their Poisson bracket
may be rewritten as

(F,G}pap(7) = —i / dz, (V1 F(1)V3G(7) — V3 F(1)V1G() (1)

R (4.79)

iy / dzy (Vo F () V1G(7) — ViF(7)V2G(7)) (),
Rk

where we identify v with the 4-tuple (¢1, @2, o, 1) for the sake of more compact nota-
tion.

In the sequel, all the functionals on S(R¥; V) we consider satisfy the conditions of the
remark. Consequently, we will pass between the variational derivative and symplectic
gradient formulations for the Poisson bracket without comment.

Lastly, we make heavy use of a “complexified” version of the weak symplectic man-
ifold (S(R¥),wr2). More precisely, consider the cartesian product S(R¥)? and define a
complex-valued map

wirc(f, g,) = / day tres (Je f,g,) (@), (4.80)
RF
where
=4 ) a=(n %) csmr (13

trcz denotes the 2 x 2 matrix trace, and J¢ is the left-matrix multiplication operator
diag(i, —i). Here, we identify a Schwartz function taking values in the space of anti-
diagonal 2 x 2 matrices with an element of S(R¥)? in the obvious manner.

Remark 4.39. Note that if f, = adiag(f, f) and g, = adiag(g,9), for f,g € S(RF), then

wrzc(f,9,) —Z/dl'k fg— fa)(zy) —2Im{m/d$kf z)9(zy) p = wr2(f,9). (4.82)
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Proposition 4.40. Define a subset Asc C C®(S(R¥)2;C) by
Asc ={H € C®(S(RF);C) : V,cH € C*(S(R)*;S(R)?)}, (4.83)
and define a bracket {-,-} 1. ¢ by
{F.G} 2 c = wr2c(VscF, Vs cG). (4.84)
Then (S(R*)2, As ¢, {- ‘}r2.c) is a weak Poisson manifold.

Remark 4.41. As before, if F,G € C™(S(R¥)?;C) satisfy the condition (4.54), then
F,G € Asc and

(F,G} s ¢ (1, 32)
=i [ A (VAF (01,52 95G(61,2) — Vo (61,52) V1601 2) 2.

Rk
(4.85)

Remark 4.42. All the Schwartz space examples given in this subsection have their 2L-
periodic analogues, where S(R¥) is replaced by C>(TF). We will need the periodic
examples in Appendix A.

4.4. Some Lie algebra facts

We close Section 4 by collecting some facts about Lie algebras for easy referencing.
Following our presentation in [57, Section 4.2], we outline a canonical construction of a
Poisson structure on the dual of a Lie algebra, which is known as a Lie-Poisson structure
following the terminology of Marsden and Weinstein [53]. We refer the reader to [54,55]
for a more thorough discussion.

Definition 4.43 (Lie algebra). A Lie algebra is a locally convex space g over the field

F € {R,C} together with a separately continuous binary operation [-,:] : g X g — g
called the Lie bracket, which satisfies the following properties:

(L1) [-,] is bilinear.

(L2) [z,z] =0 forall z € g.
(L3) [, ] satisfies the Jacobi identity

[z, [y, 2] + [z, [z, 9]l + [y, [2,2]] = 0 (4.86)

for all z,y,z € g.
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Remark 4.44. Usually (see, for instance, [63]), a Lie bracket is required to be continuous,
as opposed to separately continuous. We drop this requirement in this work, due to
functional analytic difficulties stemming from the separate continuity of the distributional
pairing.

Definition 4.45 (Nondegenerate pairings). Let V and W be topological vector spaces over
the field I, and let

(1Y VxW ST

be a bilinear pairing between V and W. We say that the pairing is V-nondegenerate
(resp., W-nondegenerate) if the map V. — W*, & — (x|} (vesp., W — V* y — (-|y)) is
an isomorphism. If the pairing is both V- and W-nondegenerate, then we say that the
pairing is nondegenerate.

Definition 4.46 (dual space g*). Let (g, [, ]) be a Lie algebra. We say that a topological
vector space g* is a dual space to g if there exists a pairing (-\-)Q_g* 1 g X g* = F which
is nondegenerate.

Example 4.47. If g is a reflexive Fréchet space, for instance the Schwartz space S(R?),
then taking g* to be the topological dual of g equipped with the strong dual topology,
the standard duality pairing

gxg" = F:(zfp),_q =¢(2)
is nondegenerate.

Lemma 4.48 (Existence of functional derivatives). Let g be a Lie algebra, and let g* be

dual to g with respect to the nondegenerate pairing (-|-) . For any functional F €

g—g*
Cl(g*; ), there exists a unique element g—i € g such that

SF .
<5— <m> — dFO),  mineg. (4.87)
K g—g*

Proposition 4.49 (Lie-Poisson structure). Let (g,[-,"],) be a Lie algebra, such that the Lie
bracket is continuous, and let g* be dual to g with respect to the nondegenerate pairing
([)g—g+- Define the Lie-Poisson bracket

{1 C=(g5F) x C=(g%F) = C™(g"; F) (4.88)
by

(F,G}p) = <[‘f5—i %

Then (C*(g*;F),{-,-}) is a Lie algebra.

u> ,  HEQ (4.89)
o
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5. The construction: defining the W,

We now define the operators W,, giving rise to the Hamiltonian functionals H,,. As
detailed in Section 2, in order to construct the operators W,,, we proceed incrementally.

5.1. Step 1: preliminary definition of operators

Let

W, = (W), oy € @Lgmp M), 8 (RY)), W, :=E, (5.1)
where we recall that
E; = (E)en € @cgmp ),8'(RY),  EW = Idy o, (5.2)

where Idy, is the identity operator in £(S(R*),S’(R¥)) and &5 is the Kronecker delta
function. We regard E; as the j" coordinate element of ;- , L(S(R¥),S'(R¥)). It is
clear that these operators satisfy the good mapping property.

We would like to recursively define

Woir = (W )en € D) Loy (S(RY), S'(B) 53)
k=1

by the formula

n—
W = =i, W k> > 6K = X)) (W o WD), ke,
m=10,j>1;0+j=k

(5.4)
where we regard the multiplier operator —id,, as a k-particle operator by tensoring
with the identity in the Xs,..., X; coordinates. Similarly, we regard the multiplica-
tion 6(X1 — Xy41) as k-particle operator simply by tensoring with the identity in the
Xo, ..., Xp, Xp49, ..., X coordinates.

Our aim is then two-fold. First, we need to make sense of the definition (5.4). At
first glance, the right-hand side of (5.4) is purely formal, since for n > 4, the sum
will contain products of § functions. However, as we will prove in the next lemma, the
operators in (5.4) are well-defined elements of £,,,,(S(R*),S’(R¥)). Intuitively, this is
because the products in (5.4) never contain delta functions with identical arguments,
such as 62(X; — X5). Subsequently, we will show that all but finitely many terms in the
recursion are non-zero, which justifies our use of the direct sum notation. Thus, we are
led to Proposition 2.6, the statement of which we recall below.
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Proposition 2.6. For each n € N, there exists an element

W, € ézgmp(sm’f),s'(w))
k=1

defined according to the recursive formula (2.56), where the composition (2.37) is well-
defined in the sense of Proposition D.12.

We begin the proof of Proposition 2.6 with establishing the recursion (5.4).

Lemma 5.1 (Rigorous recursion). For every k,n € N, the distribution-valued operator
W is an element of Lymp(S(RF),S'(R¥)) and satisfies the following:

(R1) There exists a finite subset AP NE of multi-indices such that

WS = 37 wa w05/, v € SRY), (5.5)

o EAgzk)

where ug, » € S'(R¥).
(R2) For every oy, € AP | either

Case 1: WF(uq, n) =0, or
Case 2: WF(uq, n) # 0 and satisfies the non-vanishing pair property:

(2x,€,) € WF(ua, n)
= 3, j € Ney s.t. £<j and both & # 0 and &; # 0. (5.6)

Remark 5.2. In other words, (R1) means that W can be written as a linear combina-
tion of terms, where each term consists of a differential operator left-composed with a
distributional multiplication operator. The motivation for the non-vanishing pair prop-
erty is to exploit the fact that the products of delta functions in (5.4) do not have the
same arguments.

Proof of Lemma 5.1. We prove the assertion by strong induction on n > 1. The base
case, namely that the claims hold for n = 1, is clear. Next, let n > 1 and suppose that
for every k € N, we have that

W W e £, (SRF), S'(RF)) (5.7)

are defined according to (5.1) and (5.4) and satisfy the properties (R1) and (R2).
We will show that for any k& € N, the observable Wfﬁl is a well-defined element of
Lymp(S(RF),S'(R¥)) and satisfies the properties (R1) and (R2). We organize our argu-
ment into several steps:
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Step I: We first prove (R1). If AP ¢ N{ is a finite subset of multi-indices such that

WSS = 37 e n0gi /0, vf® e SRY), (5.8)

where uq, , € S'(R¥), then by the product rule,

(=i YW 1O = 57 (00,100, )02 SN = g, 02, 05079 ), WS 0) € S(RF),

oy GASQ
‘ (5.9)
Let A%) and Agflm be finite subsets of N§ and Nj, respectively, such that
WO = 37 ug, oz fO, VO e SRY) (5.10)
a, €Al
WL D = 3 g w2 9, V) € S(RY), (5.11)
a; EAffzm
where g, € S’(R*) and Ug; n—m € S'(R7). Define the set
AP = A0 x AV CNExN] (5.12)
so that
(W0 0 ,) 1
= Y (vapm @ e ) (0 @019, VY € SRE),
(ap.a;)eA ),
(5.13)
Hence, to prove the claim, it suffices to show that
5(X1 — Xp41) (VVS,‘? ® Vvﬁlﬂm) (5.14)

is well-defined in £(S(R¥),S’(R¥)), and that for all f(*) ¢ S(R*), (5.14) admits the
representation

(5(X1 — Xot1) (‘NN%) ® ngm))f(k)

=3 O = wesn) (Mo, @ a0 ) (920 @ 02 ) O, (5.15)

(ay 7Qj)eA$1,k,')m,

where 0(z1 — Z¢41)(Ua,,m ® Ua,,n—m) is well-defined in S’(R¥). We will do this in two
steps:
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« First, we will show that (5.14) admits the representation (5.15) for all f(*) € S(R¥),
and that 0(z1 — 2e4+1)(Ua,m @ Ua,n—m) € D'(R*) in the Hérmander product sense
of Proposition D.12.

e Second, we will show that the products are, in fact, tempered distributions.

To show that the product of distributions

(s — o) (WD 0 W, ) (79) (5.16)

is well-defined in D'(R¥) for every f*) € S(R¥), it suffices by Hérmander’s criterion
(Proposition D.12) to show that

(2€,) € WF( (w1 — we11)) = (m,—€,) ¢ WF((WD @ W, ) r®). (5.17)

By Lemma D.8, which computes the wave front set of §(z1 — x¢41), we need to show
that if & # 0, then

(($1a£2;£7m17£2+2;k;)3 (51792;[’ _£I7Q€+2;k)) ¢ WF((W%) ® W'I('szm) f(k)) (518)

Since for any (ay, ;) € AS{% and for any g*) € S(R¥), we have the inclusion

WE ( (1t ® 1 110 )9 © WE (1,10 100, 011 ). (5.19)
by Proposition D.7(f), it follows from Proposition D.7(c) and (5.13) that

WE(WR oW, )r®) e ) WF(uaym @t mm), VO eSEE).

(ap,a;) eAll,

(5.20)
Now by Proposition D.7(e), we have that
WF(U%m ® ugj,n_m) c (WF(ugbm) x WF(u%,n_m»
U (supp(ta,.m) % {0,}) x WF (ugﬁn_m) (5.21)

UWEF (ug,,m) X (supp(uzwn#n) X {Qj}).
Note that we abuse notation with the cartesian products on the right-hand side of
the preceding inclusion in the following sense: we denote an element of WF(uy, m) X

WF (ug, n—m) by

(£f7£Z+1;k’§e7§£+1;k)7 (522)
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where

(§E7§g) € WF(ua,,m), (§£+1;k7§4+1;k> € WF(ugj,n—m)

and similarly for elements of (supp(ua,,m) X {0¢}) X WF(ua, n—m) and WF(uq,,m) %
(supp(ua,,n—m) x {0;}). We now consider three cases based on the values of the sets
WF (ua,,m) and WF (ua, n—m)-

(i) Suppose that WF (uq,m) and WF (u%,n_m) are both empty. Then it follows read-
ily from (5.21) that

WF (u%m ® ugj,n_m) — 9, (5.23)

and so (5.18) is satisfied.
(if) Without loss of generality, suppose that WF (ua n— m) () and that WF (ug [,m) *

() and satisfies the non-vanishing pair property. Then by (5.21), we have

WF(u%,m ® ugjm_m) C WF (ug, m) % (supp(ugjm_m) X {Qj}). (5.24)

Observe that the set on the right-hand side does not contain an element of the form

(71, Zo0r T15 T 2.00)5 (61,000 =61, 0 0.10)), &1 #0, (5.25)

since WF(ugq,,m) is nonempty and satisfies the non-vanishing pair property.
(iii) Suppose that both WF (ng,m) and WF (ugj,n7m> are both nonempty and satisfy

the non-vanishing pair property. Then if (z;,¢,) € WF (ug[,m ® ugjm_m), one of
three sub-cases must occur:

. §,= 0 and there exists l;,lo € {{+1,..., £+ j} such that &, # 0 and &, # 0.
£Z+1 . = 0 and there exists l1,l> € {1,..., ¢} such that &, # 0 and &, # 0.
£, ;é 0, §Z+1 # 0, and there exist l1,l2 e{l,...,0} and l3,ly € {£+1,...,k}
SuCh that §l1 7é 0, glz 7é 0, glg 7é 0 and €l4 7é 0.

1
2.
3.

Any of these three sub-cases guarantees (5.18).

To summarize, we have shown that

((x17£2;£’ $17£Z+2;k)7 (51792;87 _£I7Q€+2;k>) ¢ U WF <ugz,m ® ug,wn*m)’
(ap,a;)EAL )
(5.26)
and therefore
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§(x1 — a2) (W“) oW )( Q) (5.27)

is defined in D’(R*) according to Proposition D.12, proving the first claim.
We now show that this Hormander product is tempered:

31 — xgﬂ)(W(é) o W) )( FOy e S(RF), VB e S'(RF). (5.28)

Since by the inductive hypothesis, \,7\\7%) and Wfﬁm satisfy the good mapping property
of Definition 2.2 (and we refer to Appendix C.3 for more details on the good mapping
property), there exist unique continuous bilinear maps

P o SR)? = Sy (R?), P 5 S(R)? = Sy ar) (R?),

o€ NS[: ﬁ S NSj (5.29)

identifiable with the maps
RO - S, (R:S' (R 0 4O WO £® Gra
SR'Y — 8 (R 8}, ), (/O,69) = (WD, () 0 gl )) oo
7)2 J(R-S' (@) o) W) £ (. G (o 2.
SR = 8., (R; S, (R)), (fD,g9) o (WRFD, ()05 6Dy ) oo
(5.30)

via

/dxaq)wgﬁ)7a(f(£)?g(Z))(xavxix)¢(xa) = <W%)f@)7 ¢ ®0¢ g(Z)('ax,ou )>

R

/ Az o(FD,9D) wsiap)o(ws) = (WL, f9, 6 @5 g9 (a5, ) )

R

S'(RY)—S(RY)

S/(RI)-S(R7)’

(5.31)

for ¢ € S(R), respectively. Above, the notation (-) ®4 g (-, 2/, ) and (-) @45 g (-, g, )
is defined by

(¢ @0 09700 (1) = )9 Wy oy TorUoyye) Vi, € R
_ _ 5 Vo € S(R).

(025 99250 ) () = 0We)g D Yy oo bsy,)s VY, € R
(5.32)

Now given f(*), g(¥) € S(R¥), we see that

(2o 29) = Pggr o (F (@), 9" (2l ) € Say ) (R Sy ) (R?)). (5.33)
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Thus, we can define a map Yo | S(RF)? — S(R2(H1)

1

Y&o 4 (F®, ") (@ 15 2hy1)

= (I){fv(j) (f(k) (QZ’ '>7g(k) (Qza '))(forl; $2+1>, V(§Z+1’£2+1> € RQ(“_H’

n7m71

(5.34)

which is bilinear and continuous. Now since @5 , : S(RY)?> — S(R?) is bilinear
and continuous, the universal property of the tensor product and the identification of

S(R?) = S(RY)®S(R?) implies that there exists a unique continuous linear map

5’v~v5ﬁ>,1 : S(R%*) — S(R?), (5.35)
with the property that
o (f99Y) =dgo  (fP o), v gD eSRY).  (5306)
Hence, the function
S (Yo D) aeriap))@nal),  Y@nzen,al, o) € RY

defines an element of S(R*), and moreover,
S(R¥)? — S(RY),
(f*, g™ ‘i’wggl’l (‘I’nglm’l(f(k),g(k))(val; ) $Z+1)> (1527), (5.37)

/ / 4
V(x1, wep1, 27, 29,1) €R

is a continuous bilinear map. Thus, we may define a functional u ;) on S(R¥) by

<uf(7<)7g(k)>5’(R’c)—S(Rk)
= /d.%‘ldxz+15(m1 - $e+1)‘i)vT/$ﬁ’,1 <\I/VV5flm,1(f(k)’g(k))("w“; -,xe+1))(331;331),
RQ

vg®) € S(RF).
(5.38)

This functional u ) is evidently linear, and it follows from the continuity of ) and

w1
that it is continuous S(R*) — C, hence a tempered distribution. Furthermore,

nomo L

we claim that the map

S(Rk) — Sl(Rk)a f(k) = <uf(k) ) '>5/(Rk),S(Rk) (5.39)
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satisfies the good mapping property. Indeed, replacing f*), ¢*) with 7 f®*) 7g®*) for
any ™ € Sy, it suffices to verify this assertion for the case @ = 1 in Definition 2.2.
Additionally, it suffices by the universal property of the tensor product and the Schwartz
kernel theorem isomorphism S(R¥) = S(R*)®S(R7) to show that there is a (necessarily
unique) continuous, multilinear map

®, : (S(RY) x S(RT))? = S(R?),
such that for ¥, ¢(® € S(R?) and f), gl) € S(RI),

/ dz®, (fO, fD, g® gD) (252" )p(x)
R (5.40)

= (Upr g0, ® (9 ® g\ (', ) s/ (RF)—S(RF) V¢ € S(R), a’ €R.

Now for any ¢ € S(R), the bilinearity of ¢

W implies

,1

7

nglmﬂ ((f(Z) & f(j))(zéa ')7 (¢ & (g(Z) & g(]))(l’/, ))@Za )) (I€+1; x2+1)
= FO(z)p(z})g® (' b)) <f<j)’ gu)) (Tes137)4e), (5.41)

/ / 2043
v(gé—kl?g&i—la € ) eR .

(92900 (99 @ g D)@ ) (@i zi)

= f(é) (@e)ﬁb(xi)gu)(x/,&lg;z)‘bwwm)l(f(j)7g(j))(xéJrl; $2+1), V(Ez+17£2+1) € R2(HD,

(5.42)
’ 3 ~(£) £
For 2’ € R and ¢ € S(R), define the function g,’, € S(R®) by
(¢
() = o(ai)g V(@ 2y, Y € R, (5.43)

so that we can write

Ywo 4 (f(e) ® [, 6@ (¢ @ g") (', )) (Zpg132041)

» o
= (I e @i a)qe (FDgD) @ersain), Ve, gi,) € R,
(5.44)

Therefore, using identity (5.44) and the linearity of the map ® we see that

W, 1
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) 1 (F0@ 19,6060 0 D)@, ) (s, whi)) (@050
=0 L (FD. 09 @i 2 ) g (fm ® gi%) (w1321)

=0g0 (9,9 @ei15 24 ) g0 (FO, 507, (215 21), (5.45)

PFw (‘I’Wm

where the ultimate equality follows from the property (5.36). Recalling the definition
(5.38) for u ), we obtain that

) (£) G (2! >
<Uf(z)®f(1>»¢®(g @), ) S'(R¥)—S(R¥)

- /da:ldxul(s(ffl - WH)Q)VNV%)J
RQ

(U (F0 090060 @g0) @) (aeinaen) ) (@)

= /dmld$e+15(ﬁﬂl - $e+1)‘1>v~vglm’1(f(j),g(j))(wﬂ;$e+1)‘1’wgg>,1(f(e),ég(f?qa)(l‘l;931)

R2
= /dx@’vvglm,l(f(j)’Q(j))(ﬂf;x)‘l’vvgg,l(f( ), 5% )¢)($ z)
R

— . J
= (Wi, @ngyl(ﬂn,gm)|y:y,g§,3¢>g(w)7$(w)7

where ®

W (f(j) g9))|,=, denotes the restriction to the hyperplane {(y,y') : y =
y'} C R? and the ultimate equahty follows from the definition of (I)W(z) L in (5.29).
Unpacking the definition of § gr,, P from (5.43) and applying the definition of PG | once
more, we conclude that
WO £ .. (@) o) =) >
<Wm f a(bwijlm’l(f » g )|y:y gz/7¢ S/(RO)—S(R?)
— (W® £ . () )
= (W70 00 (79 6Dlm) 906 0) L
= / drdg o, (f9, 9 ) (@2 )p@) g0 (FP, gV (s52). (5.46)
R
Therefore, the desired map ®,, is given by
@ (fO, 19,90, gD (@32") = @, (f9, N @ NG (PP (5 2),
(5.47)

which is evidently multilinear and continuous (S(Rf) x S(R’))? — S(R?) being the
composition maps. Thus, the proof that f*) — user) has the good mapping property is
complete.
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Lastly, we claim that u,x) coincides with the Hérmander product

(S(.’El — {17[+1) (W%) ® Wfllm) (f(k))

defined above via Proposition D.12. To prove the claim, we rely on the uniqueness cri-
terion for the product. We set

g(k) = g(l) ® 9(5—1) ® g(l) ® g(j—l), ¢(k) = ¢(1) ® ¢(Z—1) ® é(l) ® ¢(j—1) (548)

for g0, ¢ FN € SR), g¥=V, ¢ e SRI-1), and gi-D,40-1 € SRI-Y),
By density of linear combinations of tensor products, it suffices to show that
2
(F(g®) Uf(’“>)a¢(k)>8'(Rk)—S(Rk)
= (FlgWd(er — ze1)) * Flg® WD @ W) (FM)), 60) 5y sy
(5.49)
since pointwise equality then follows from the localization lemma (see Chapter 2, §2
of [35]) together with the continuity of the Fourier transforms involved. This is then

an exercise, the details of which we leave to the reader, relying on the good mapping
property and the distributional Plancherel theorem.

Step II: The property (R2) is readily established by the arguments in the previous step
and the fact that A;’% defined in (5.12) has finite cardinality, it then follows from another
application of Proposition D.7(c) that either

WF<W;@1JC(I€)) =0
or

WF (Wgﬂl f (k)) # () and satisfies the non-vanishing pair property.

Step III: Next, we show that the map f*) — nglf(k) satisfies the good mapping
property for every k € N. Since differentiation is a continuous endomorphism of S’(RF),
it is immediate from the induction hypothesis that

—i0y, WH) € £, (S(RF), 8 (RF)). (5.50)
Since Lgmp(S(RF),S'(R¥)) is a vector space, it remains to show that
P9 8 = wesn) (W @ W) (50) (5.51)

satisfies the good mapping property for every ¢,j € N with £+ j = k and m € N, 5.
But this follows from Step II, where we showed that u s defined in (5.38) coincides with
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the Hormander product in the right-hand side of (5.51) and that the DVO f*) — Upk)
defined in (5.38) has the good mapping property.

Step IV: Finally, we show that
WH : S(RF) — &'(RF)
is a continuous map. As argued before, it suffices to show that the map
(FOf9) = 81 = ) (WD @ W) (£O @ £ (5.52)
is a continuous bilinear map S(RY) x S(R7) — S’(R¥). Bilinearity is obvious. For conti-

nuity, suppose that ( A2 fﬁj)) — 0 € S(RY) x S(RY) as 7 — co. We need to show that
for any bounded subset R of S(R¥),

lim sup |(0(a1 — ze) (W @ W) (19 @ 19),9M) g ge—sqae| = 0. (5.53)

r— 00 g(k)em

But this follows from our analysis proving the good mapping property of the map f*) —
uga in Step IL. O

We now turn to showing that only finitely many components of Wn are nonzero for
a given n € N. This property justifies our use of the direct sum notation.

Lemma 5.3. For all n € N, we have
W =0 e £(S(RF), S (R¥)) k€ Nspiq, (5.54)
and
Wi =0e L(S(R*),S'(RF), k€ Ns,io (5.55)

Proof. We prove the lemma by strong induction on n. We first establish the base case
n = 1. It follows from the recursion (5.4) that

W, = —i0,, Ey. (5.56)

Since Egk) =0 for k& > 2, it follows that Wék) =0 for £ > 2. To see that ng) =0 for
k > 3, observe that

(—i0,, W) = 0 € L(S(R¥), S'(R)), (5.57)

since Wék) =0.If k > 3 and ¢,j € N satisfy £ + j = k, then max{¢,j} > 2. Since
ng) =0 for m > 2, we obtain that
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W o W) =0 e £(S(RF),S'(RF)), (5.58)

which implies that 6(X1 — Xyy1) (ng) ® ng)) =0.
We now proceed to the inductive step. Let n € N>» and suppose that for all integers
m € Ngn,

W = 0e £(SRY),S'(RF),  Vk € Nspys (5.59)
Wéﬁﬂ =0 € L(S(R"),S'(R")), Vk € N>pmyo. (5.60)

We now need to show that these identities hold with m = n+ 1. We first handle the case
of even indices. Specifically, we show that

W

st =0 € LISR),S'(RY)), k€ Nxpya.

k)

Observe that if & > n+2, then by the induction hypothesis, Wé(n—i—l)—l = 0 and therefore

—i0y, Wiy =0 € LISRF), S'(RY)). (5.61)

We now consider the Hérmander product terms
§(X1 — Xet1) (vaﬁ) ® vaj,fﬂ,m), C+i=k (5.62)

arising in the recursion relation (5.4) for wk) By symmetry, it suffices to consider

2(n+1)"
the following case: if m is odd (i.e. m = 2r + 1 for some r € Ny) then 2n+1—m is even

(i.e. 2n+1 —m = 27’ for some 7’ € N), and we can write n = r + /. By the induction

hypothesis
W =0, V€N (5.63)
Wgz)—&-l—m =0, Vje NZT’—H- (564)

Ifk>n+2=r+7r"+2, then either £ > r+2or j > '+ 1, since if both £ <r + 1 and
j <7r’, then

k=0+j<r+7 +1 (5.65)
Thus,
5(X1 = Xeyn) (W @ WL, ) = 0 € £(S(RF),S'(RY)), (5.66)

and so it follows from the recursion relation (5.4) that wh o —0¢ L(S(R¥),S"(R*))

2(n+1)
for k > n + 2.
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We next handle the case of odd indices, namely we show that

W

st =0 € L(S(RY),S'(RY),  k>n+3. (5.67)

As before, observe that if & > n + 3, then

(—i0, W) =0 € L(S(R¥),S'(RF)) (5.68)

2(n+1)

by the result of the preceding paragraph. Now consider the Hérmander product terms
6(X1 = Xopa) (VA\/’%) ® Wgz—&-Q—m) (5.69)

(k)

Yt 1)41° We consider two cases:

in the recursion relation (5.4) for w

C1. Suppose m is odd (i.e. m = 2r + 1 for some r € Ng). Then 2n + 2 —m is odd (i.e.
2n+2—m = 2r'+1 for some r’ € Ny), and we can write 2(n+1)+1 = 2(r+r'+1)+1.
Itk > (r+r +1)+2, then either £ > r+ 2 or j > r’ + 2, since if both £ < r +1
and j < 7’ + 1, we have that

k=l+j<(r+r+1)+1, (5.70)

Hence applying the induction hypothesis to obtain Wsﬁ) =0 or Wéjn) yoom = 0,
respectively, we conclude that

6(X1 = Xen) (W 0 WS, ) = 0 € LS(RF), S'(RY). (571
C2. Suppose m is even (i.e. m = 2r for some r € N). Then 2n + 2 — m is even (i.e.

2n+2—m = 2r' for some 1’ € N), and we can write 2n +2 = 2(r +1’). Once again,
if k>r+7"+1, then either £ >r+1or 7 > 1"+ 1, since if £ < r and 7 < 7/, then

k=0+j7<r+7. (5.72)

Hence, we obtain again that
5(X; — Xg+1)(WS,‘;) ® W§Q+2_m) — 0 L(S(RY),S'(R"),  (5.73)

by the induction hypothesis.
In now follows from the recursion relation (5.4) that WS&H)H =0 € L(S(RF),S'(R¥))

for k > n + 3, completing the proof of the inductive step. O
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5.2. Step 2: defining self-adjoint operators
Our goal is now to define the self-adjoint elements W, 5., proving the following:

Proposition 5.4. For each n € N, there exists an element

n sa € @ ‘cgmp * Sl(Rk))
given by
1 K7 N*
W = 5 (Wn + Wn). (5.74)
Remark 5.5. Recall that
(W) ® = Wi,
is the adjoint operator defined in Lemma C.1.

It follows readily from Lemma C.1 that
'n, sa 6 @ E S/ Rk))

and is self-adjoint. Thus, in order to prove Proposition 5.4, we only need to verify each
W, 5, satisfies the good mapping property, for which it suffices by linearity and the fact
that each W € Lymp(S(R¥), S'(R¥)) to prove that

W € £0,(S(RF),S'(R¥)),  VkeN. (5.75)

n

Using the recursion (5.4), the linearity of the adjoint operation, and the fact that
(<i0:, WiP) " = W (<i0,) € Lomp(S(RY), S'(RY)) (5.76)
by Lemma C.2, we just need to show that
(3061~ X)) (W 0 W, )) € Loy (SRELS®RY) (577)

for any m € N<,,_; and ¢, j € N satisfying £+ j = k. We prove this assertion by another
induction argument.

Lemma 5.6. Let n € N>, and suppose that VV”{, . ,W;_l €D, Lomp(S(RF),S'(RF)).
Then (5.77) holds.
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Proof. Let k € N. Given f*) € S(R¥), we define the tempered distribution V) by
g™ = (F98(X1 = Xoa) (WD 0 WL, )g)), (5.78)

where the composition 6(X; — Xg+1)(W( o WY

n—m

) is well-defined by Lemma 5.1. It
is easy to check that the map

S(R") — S'(R¥), AR Vg (5.79)

is a continuous linear map, so it remains for us to verify the good mapping property. As
in the proof of Lemma 5.1, it suffices to show that for any oo € N<y, the map

(SRY) x S(R?))* = Sy, (R; S, (R))

) , (5.80)
(fO, FD gO gDy sy <vf(z)®f(j) () ®a (9@ ® gD)(-, a,.)>, 2! €R,

may be identified with a (necessarily unique) continuous map (S(R) x S(R7))? — S(R?),
which is antilinear in the f©, f() variables and linear in the ¢(), () variables. The
reader will recall that the notation ®,, is defined in (5.32). To simplify the presentation,
we will assume o < £. The case ¢ < a < k follows mutatis mutandis. Moreover, by
replacing f©, @ with 7f©, 7g®, for 7 € Sy, we may assume that a = 1. For any
¢ € S(R), we have by the distributional Fubini-Tonelli theorem that,

<<Uf(é>®f<j>
= <vf(e>®f<j> @ (99 ® gW)(2}, )>
= (19 @ fO @1 —2e) (WD @ W, ) (00 901, ) 0 99) )

= <(5(ac1 — Zyy1) (Wfﬁ) ® Wiﬁm) (d) ®g Z)( ) g(”) fO® f(j)>

(06 ©gN)E)) o)

5/ (R*)~S(R¥)
(5.81)

Using the identifications of (5.31) and the action of the DVO 6(X;—Xp41) (WS,‘? ®W£ﬁm)
given by (5.38) in Step II of the proof of Lemma 5.1, we find that

(5.81) Z/dI1@~(1> 1 (g @) f(]))($1 Il)‘b“m 1(¢®9(£)( ), f_)($1§331)

R
<f< . 9D, FD)yy )Ww)((b@g(z)( ))>
(W

Wi ( @) (09 Ty ) |6 @ 9021, )) (5:82)

n—m?
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where the ultimate equality follows from the definition of the adjoint of a DVO, see
Lemma C.1. As before, the notation |,—,, denotes restriction to the hyperplane {(y,y’) :
y =1’} C R2. By the induction hypothesis, \7\//%)’* possesses the good mapping property.
Therefore, for any o € N<y, we can uniquely identify the map

S(RZ)Q N Sg,:l (Ryséa (R)% (f(l)’g(e)) — <W%),*f(e)’ () Ra ~(£)( ,xa, .)>S’(R£)—$(RZ)

(5.83)
with a continuous bilinear map

o : SRY)? = Sz ar) (R?)

W%)’* ,Q

/dxa(bﬁ/%)'*,a(f(l)ag(é))(xa; xla)¢($04) = <W%)7*f(€)7 ¢ (2)( 7xa7 )>

R

S'(RY)—S(R?)’

¢ € S(R).
(5.84)
Hence,
= —_ /WO e _ G FON _, O (! -
(5.82) <Wm (f o (g9 f )nyy),</>®g (@1, )>S,(Rl)_5(w)
= [t (1O G0 FD)my, g i )3e1)
R
/qu’W(z)* (f(’z)@wgglmyl(g(j)yW)\y:y’>W)($1;$'1)¢(9?1)- (5.85)
R
Defining the map
(f O, 19,99, g9)) ‘?VV%),*J(JC(Z)‘I)W;Q /( ) FO)ly=yr, ) (5.86)

yields the desired conclusion, being the composition of continuous maps, antilinear in
the £, fU) variables, and linear in the ¢(¥), gU) variables. O

Since the base case ng)* € Lymp(S(R¥),S'(RF)) for every k € N is trivial, the
lemma and the remarks preceding it imply the Proposition 5.4.

5.8. Step 3: bosonic symmetrization
We now modify the definition of the operators W,, 4, from the previous subsection in

order to obtain a bosonic operator which generates the same trace functional as W, 4,
when evaluated on elements of &7 . As an immediate consequence of Lemma 4.22, we
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obtain Proposition 2.7, completing the main objective of Section 5. We conclude this
subsection by explicitly computing W3 and Wy.

Example 5.7 (Computation of W3). From the recursion (5.4), we have that

W = (—i0,, )W +5 3 6(X - X¢+1)(W§£)®W§j)>

l+j=k
(—i0x,)?, k=1
= Ii(s(Xl — XQ)IdQ = /{5(X1 — XQ), k=2 (587)
Ok, k>3

Since the components W:(,,k) are already self-adjoint and bosonic, it follows that

Wi = W = ((—id,,)?, k(X1 — X2),03,...). (5.88)
Example 5.8 (Computation of Wy ). Similarly, from the recursion (5.4), we have that

Wi = (—io,, (k)+/<az Z 6(X1 — Xé+1)(W%)®W:(5jjm)' (5.89)
m=1/4+j=k

If kK =1, then

Wi = (—ite W5 = (—i0n,)* = W', (5.90)
since (—idy,,)? is self-adjoint and bosonic. If k = 2, then
W = (—i0, )W + k(X — X5) (v~v§” ® Wg”) + kO(X1 — X2) (Wé” ® v”vg”)

= k(=10 )0(X1 — X2) + 0(X1 — X2)(Idy ® (—i0y)) + 6(X1 — Xo)((—i0,) ® Idy))
= —m(é)xlé(Xl — XQ) + 5(X1 — XQ)(axl + 69,:2)) (5.91)

The term —id(X1 — X2)(0x, + O0y,) is evidently bosonic, and it is self-adjoint since
[0z, + Ou,, 0(X1 — X2)] = 0.

For the term —i0,, (X1 — X3), Lemma C.2 implies that the adjoint is given by —id(X; —
X2)0y,, and therefore

5 Symy((=id, )5(Xy = Xo) + (X1 — Xa)(=id), )

K

= Z((_Zaim - 283;2)5()(1 - X2) + 5(X1 - XQ)(_iaﬂh - Za$2))

g(—i@zl —i0,,)0(X1 — Xo), (5.92)
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where we use that ¢ is an even distribution and again that [0, + Oy,,0(X1 — X2)] = 0.
We conclude that

3K

w = 5 (—is, —i01,)0(X1 — Xo). (5.93)

Finally, it is evident that Wik) = 0y for k > 3.
6. The correspondence: W,, and w,,
6.1. Multilinear forms wy,

In this subsection, we analyze the structure of the nonlinear operators w,, as sums of
restricted multilinear forms. For each k € N, we define a (2k — 1)-C-linear operator

wSLk) : S(R)k XS(R)kil %S(R% (¢17 L} (,bk; ¢27 e 71/)/6) = w,ELk)[(bl7 ey ¢k’ wQa cee ,ﬂ}kh
(6.1)
recursively by

w§k)[¢1, s Oy, k] = P16k,

w;ﬁzl[¢1a .. '7¢k};¢27' .. 7,(/)]6]
= (_Zax)w%k)[(bla .. 'a¢k;1r/)2a .. '7¢k]

n—1
+KZ Z wé-i-lw%)[qblv"'aqsf;w?a“'71/)£]w£52m[¢2+17"'a¢k;w2+27"'7wk},

m=14,j>1;4+j=k
(6.2)

where §51 denotes the usual Kronecker delta. The next lemma establishes several impor-
tant structural properties of the w,, including that wgf) is identically zero for all but

finitely many k& € N.
Lemma 6.1 (Properties of w,(lk)). The following properties hold:

o For each odd n € N, wﬁﬁ) =0 fork > "7'*'1 and for k < ’%1 we have

wglk)[(blv'-'7¢k;¢27"'awk]
k

k
- Z an,(gk,g;_l)(n afc“d)r)(H Iz y), (6.3)

(.0 _DENE e
lag[+lag 1 |=n—1-2(k—1)

where ay (a, o ) € R.

Qg Qg
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o For each even n € N, w,(f) =0 for k> 5 and for k < 5 we have

w7(1k)[¢13 Tt ¢k;w2, cee ,/(/)k]
k k
=1 > tn (opap ([T 05 o) ([T 05 000), (6.4)
r=1 r=2

k—
(oo _1)ENGH

loeg [+lag _y |[=n—1-2(k—1)

where ay (q, y ER.

Q1
Proof. We prove the lemma by strong induction on n. We begin with the base case n = 1.
That (6.3) holds for n = 1 is tautological. For the induction step, suppose that there
exists some n € N such that either (6.3) or (6.4) holds for every odd or even j € N<,,
respectively. We consider two cases based on whether n is even or odd.

Consider the even index case. We first show that wék) =0 for k > % Since n — 1 is
odd, the induction hypothesis implies that

(—idg)w®, =0, k> g (6.5)
Now suppose that ¢, j € N are such that ¢+ j = k and
w @wd, ,, #0, (6.6)

where 1 < m < n— 2. By symmetry, it suffices to consider when m is odd and n—1—m
is even. By the induction hypothesis,

1 A 1
w =0, (> % and wflj_)l_m =0, j> % (6.7)
Consequently, we must have that
1 —-1-
k—f4j< ol m m_n (6.8)

- 2 2 2

It then follows from the recursion (6.2) that wi =0 for k > 5
Next we establish the asserted expansion formula. By the induction hypothesis,

w£@1[¢1a'~'a¢k;¢27' 7wk]

k k

= 3 -t apap ([T 0576 (T 05740, (6.9)
r=2

(op 0, NG = -
log | +lag,y [=n—2-2(k—1)

where the coefficients a,,_1 (a, ) _,) are real. Hence by the Leibniz rule, we can define
real coefficients b, (4, o, ,) such that
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—i0,w® [p1, .., Do, - U]
k k

=1 > b (o) ([ ] 2570 (T1 957 ). (6.10)

(oo _y)ENG r=1 r=2
’
lag | +laj 1 |=n—-1-2(k=1)

Similarly, for m € N<,,_2 and ¢, j € N, the induction hypothesis implies that
wy(yl;)[d)l, <. '7¢€;¢27 s JW]

3 ¢
Z am(%,gg_l)(H (’“);XT(;ST)(H 927y), m odd,
r=1 r=2

{—
(crg,ap_y)ENG ™!

lag|+lap_ i |[=m—1-2(¢~1)

£ ¢
L Z am,(gz,gz,l)(H 8;“%)(1_[ 0z271by), m even
r=1 r=2

20—1
(eg,0p_1)€ENg

lag|+laf_y [=m—1-2(¢-1)

(6.11)

and

wff_)l_mWH,...,m;1/Je+2, ok

k k
{ Z anflfm,(gj,g_’j_l)( H agr¢r)( H agrwr)’ m odd

(a0 1)ENG ™! r=t+1 r=t+2

lo;[+lef s [=n—2—m—2(—1)

k k
Z anflfm,(gj,g;._l)( H 6(;T¢T)( H 83'7.1/)7“)’ m even

(aja_)eNG’ ™! r=t+1 r=£+2

o [+le s |=n—2—m—2(j—1)

)

(6.12)

where @y, —1-m,(a,.a; ;) @n—1-m,(a0;_,) € R. For £+ j =k and (Qpap 1), (0,05 1)
as in the summations above, the multi-index

/ / 2k—2
(glagjaglflvgjfl) € NO

satisfies

(@ aj)l + (@, a)_1)|=m—1-2(=1) +n—-2-m—2(j — 1)
=n—1-2(k—1). (6.13)

Consequently, we can define real coefficients c,, such that

(Q,af_q)
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n—1
Z Yow b, ... du0,. .. 7¢j}w7(lﬂllfm[¢g+1, e ks osay s Uk
m=1
i LI (6.14)
= Z Cn,(gk,g;,l)(n 33"@)(1_[ Oz "Yy).
(ay.aj_,)eNg ! r=1 2
g [+]ef_y [=n—1-2(k—1)
Defining
Un (o 0h_y) = On(agag_y) T Cnlagah_y)s (6.15)

and summing (6.10) and (6.14) shows that (6.4) holds.
Next, consider the odd index case. To establish that wflk) =0 for k > ”TH, we have
by our previous discussion in the even case, that

-1
—iopw®, =0, k> — (6.16)
Suppose that ¢, j € N are such that £+ j = k and
w® @uw? | #0, (6.17)

where 1 < m < n — 2. If m is odd, then n — 1 — m is odd, and so by the induction

hypothesis,
1 , _
wh =0, (> % and wff_)l_m =0, j> z 2m (6.18)
Consequently, we must have that
1 — 1
sz—i—jgm; +”2m:”;r . (6.19)

Similarly, if m is even, then n — 1 — m is even, and so by the induction hypothesis

() . n-m-1

wh =0, (> % and wy)l =0, ] 5 (6.20)
Consequently, we must have that
m n—-m-1 n-—1
= < — = . 6.21
k=0(+j< 5 T 5 5 (6.21)

It now follows from the recursion (6.2) that wfzk) =0 for k > ”TH Repeating the proof
mutatis mutandis from the n even case, we see that w) has the representation (6.3).

Thus, the proof of the induction step is complete. O
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We establish now some notation we will use here and in the sequel. For k,n € N, we
define densities

P b1, br;¥n, ] = 01w @, ..., dri b, ..., ] € S(R), (6.22)

and we define

IP[gr, o dri s ] = /de,(f)[cbh---,¢k;¢1,---7¢k](az)- (6.23)

R
It is clear from Lemma 6.1, that P* : S(R)?* — S(R) is a 2k-C-linear, continuous map,

and thus L(Lk) : S(R)?¢ — C is a 2k-C-linear, continuous map. For k € N, we recall the
notation ¢** from (4.28) to denote the measurable function ¢** : R™ — C*

(@) = (D), 0(2,))s (6.24)
and similarly for ¢ <%,

Remark 6.2. Tt is clear from the recursion (6.2) that

i[ [0*% 67",  Voe S(R), (6.25)
k=1

where I, is as defined in (1.23).

Remark 6.2 and the structure result Lemma 6.1 allow us to give a proof of the seem-
ingly obvious fact that the functionals I,, are not constant on S(R). We obtain this fact
as a consequence of a more general lemma. Note that since I,,(0) = 0, the nonconstancy
of I, is equivalent to I, Z 0.

Lemma 6.3. Let n € N, and let ¢ = {cx }reny C C such that ¢; # 0. Define the map
Lic: SR) = C, Lio(d) =Y al®p*%6"),  voeS®).  (6.26)

Then I, . # 0.

Proof. Assume the contrary. Then for any A € C, we find from the 2k-complex linearity
of the functionals I3 that

0=Ic(00) = 3 aIP[A0)* 00) = S AP I 65 3], Vg e S(R).
k=1 k=1

(6.27)
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Now fix ¢ € S(R) and define a function

PociC = Co ppe(N) =l APFIP 97k 6™, (6.28)
k=1

which is well-defined and smooth since I,(Lk) = 0 for all but finitely many indices k. Now
observe that

0 = (085pp.e)(0) = 1 IV [956] = 1 /dw d(2)(=i0:)" " ¢ (). (6.29)

R

Choosing ¢ € S(R) to be a function whose Fourier transform (;AS satisfles 0 < ¢ <1

~ {1, 2<¢<3
¢(£)—{0’ £<1 £>4’ (6.30)

we obtain a contradiction from Plancherel’s theorem, since ¢; # 0 by assumption. 0O
6.2. Variational derivatives

In this subsection, we show that the functionals I,, satisfy the conditions of Re-
mark 4.36 and explicitly compute their symplectic gradients. To this end, we record

here a recursive formula for the functions w,, (4, 4,), Which generalizes the recursive
formula (1.22) for wy,, given by

W1 (g o) () = 1 ()

wn+17('¢1,¢2)( z) = —i0,w 7(1/1171112) ) + Ko (x Z W, (w171/12) Wn— m,(d)l,wz)(‘r)

(6.31)

and we refer to (A.54) for more details. We define I,, : S(R)? — C by

j7l(1/)131/}2) :/dwa( )’LUn whwz)( ) V(¢1,¢2) GS(R)2 (632)

R

Remark 6.4. By comparing the recursion (6.31) to the recursion (6.2), we see that

k—
W, (Y1,32) Zw ) X( 1)} (6.33)

and consequently
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oo

L1, 1) = ergk)[ 1 p5H. (6.34)

k=1

We now use the multilinear w%k) introduced in the previous subsection in order to

compute the variational derivatives, defined in (4.52), of the functions I,,. We first dis-
pense with a technical lemma asserting the existence of a partial transpose for the wSLk)
in C*°(S(R)#~1;S(R)). The proof follows from the structural formula of Lemma 6.1

and integration by parts; we leave the details to the reader.

Lemma 6.5. Let n,k € N. Then for 1 < j < k, there exists a unique partial transpose
(k € C®(S(R)?*~1; S(R)), such that for every 6¢ € S(R) and ¢1,. .., ¢k, V2, ...k €
S(]R) we have

/dxaqs(x) Oty bkt ()

R

= /dw%(f)wgk) [¢17 ey ¢j*1,5¢7 ¢j+17 ] ¢k;w23 e 7¢k](m)

R

(6.35)

Stmilarly, for 2 < j < k, there exists a unique partial transpose wit e C>(S(R)?+—1,

’
n,Jj

S(R)), such that for every 0 € S(R) and ¢1, ..., ¢k, Y2, ... Y € S(R) we have

/ dzop (@) o, ki Vs ()

(6.36)
/d.ﬁ'(/) ¢17 RN (bk;z/)Qa reey wj—la 6wa ¢j+17 e 7’(/)16](1:)
For convenience of notation, we define wn 1, € C®(S(R)?*~1 S(R)) b
Slki/t[¢la ey ¢k7 1/)27 R ﬂﬁk} = wék)[¢17 vy (bka ,(/)Qa R ¢k] (637)

We may now proceed to establish formulae for the variational derivatives of the I,,.

Lemma 6.6. For n € N, we have that

o k

Vila(00) = 30 D w6 0D, X D), (6.38)
k=1j=1
o k
ZZ (Bt gk, = (-] (6.39)
k=1j=1

for every (¢,v) € S(R)2. In particular,
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oo k
1,(6) = —i 3 S wl) [pxG-1, 5, gx - 5 ")

k=1j=1
—x(k—1)
:_Zzzw(k)t[¢xk x ]
k=1 j=1
ZZ( L N R )}
k=1j5=1

(6.40)

Proof. Fix a point (¢,v) € S(R)2. Unpacking the definition of I,, and using the chain
rule for the Gateaux derivative, we obtain that

oo k

AL, [, )00, 00) = > ( / dzPP <0, 66, ¢ B9 ) (x)
k=1j=1 ‘R
(6.41)
+ / d:cPé“[qbX’f;W“—“,éww“k—ﬁ](az)).
R
Since
P61 66,k = P [p* U7, 5, * =9 x D] (6.42)
and
5¢w(k) [gbxk.wx(kfl)] i1
P(k)[¢><k,,¢]><(j—l) 6w wx(k—j)] _ n ) ) J
n > ) ) wwflk)[quk;wx(j72)76,(/)’w><(kfj)]7 2<j<k )
(6.43)
upon application of Lemma 6.5, we see that
[ dsPW1 D, 59, 0x49; 24 (0)
® (6.44)

:/dm5¢(x)wfl’f;’t[¢x(j_l)7¢7¢X(k_j);¢x(k_l)](x)
R

and

/ da P ¢ X 00, 5op, =D () = / dad @)l (6750 (). (g 45)

Substituting (6.44) and (6.45) into (6.41), we arrive at the identity
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T (6, 0)(50, 61) = ZZ(/dxaqs RN R el (€9
k=1j=1
(6.46)

+/dm51/1(x)w£’2?t[¢m;wx(k1)}(95))-
R

Using that there are only finitely many indices k yielding a nonzero contribution by
Lemma 6.1, we can move the summations inside the integral to conclude that

ok
dfn[¢a7/’](5¢,57/1):/dx5¢ ZZ (]Tj)tqsxj 1) 1/} ¢>< (k—j3). wx (k— 1}( )

R (6.47)

/dméw Zw P R Tl (€9

R k=1 j=1

which yields the desired formula for the variational derivatives in light of (4.52).
To see the second assertion for the symplectic gradient VI, (¢), we recall that from
the fact that I,,(¢) = I,,(¢, ), Remark 4.36, and (4.60) that we have the identity

Vil (¢) = —iV1I,(¢, ) = =iV, (4, ¢).

Substituting the identities for V11, (¢, @), Vsl (¢, @) into the right-hand side of the
previous equality completes the proof. O

6.3. Partial trace connection of W,, to wy,

We next connect the linear DVOs Wflk) constructed in Section 5 to the multilinear
Schwartz-valued operators w%k) constructed in Section 6.1. We note that since the def-
inition of the W,, is fairly straightforward given the definition of Wn, it will suffice to
establish these connections for the latter operators.

It will be important to remember the following consequence of the fact that W%k)

satisfies the good mapping property: the generalized partial trace

k k
. (W;M R (R w), 6.45)
/=1 /=1

which is a priori the element of £L(S(R),S’(R)) given by the property

k k
<’1'T2k (W;’“) |® be) <® ¢Z|> ?, ¢>
1 e S/R)-S®R)
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k k
- <W%k)®¢f’¢®<®%¢> >
=1 =1 Siy R)=S2; R o/ (mE)_s(RF)

= (¢1]) < k>®¢e,w®®w> : (6.49)

5/(R})-S(RF)

for every ¢, € S(R), is in fact uniquely identifiable with the element in S(R?) which
we denote by

(I)ngk)(¢17a¢kaaa7%)

via

K K
<Tr2,...,/c (ng) X oe) (X 1/},3|> f7g>
=1 =1 S'(R)-S(R)

= /dxdxl@vvggc)(%wo-#ﬁk%%;~~~»%)($;x/)f($/)g(x)~

R2

(6.50)

Moreover, the map

S(R)Qk_)S(Rg)v (¢1a"'7¢k7w17"‘7’¢k)'_>q)wgk)((blw"?qsk;mﬂ"'?%) (651)

is continuous. The objective of the next lemma is to obtain a formula for <I>V~V<k) in terms

ofwk).

Lemma 6.7. Let k,n € N. Then the following properties hold:

o For any m € Sy, with (1) = 1, we have that for all (z,2') € R?,

(I)i)VV(k) (¢17-~~7¢k§%w”7%)($§x/)
n(m (1), (R)) (6.52)

= d)l (xl)w'S‘Lk) [(rb‘n'(l)a LRRE ¢7‘r(k);wﬂ'—(2)7 s 7¢7‘r(k)](x)a

and

(I)W(k),*l R (¢1a"'a¢k§%a"',%)(m;x/)
n,(w(1),..., 7(k)) (653)

(k]).’t[(blv %r (2)s--- 7w7r(k); ¢7\'(2)7 Tt (bﬂ'(k)](x)
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o For any € Sy, with (1) # 1, we have that for all (x,2') € R?,

q){fv(k) (¢1a"'a¢k§%a'"7%)(I;‘r,)
n,(w(1),...,m (k)
= wl ('r/)wifz-r’fl(l)/[qbw(l)? LN ¢7r(k)7 ww(Q)a s 7¢7‘r(7‘r*1(1)—1)a ww(l)a wﬂ(ﬂ'*l(l)—&-l)? EERR
V(i) (@),
(6.54)
and
(I)W(k)y* (¢1,-~'7¢k;mv"'7%)(m;xl)

n,(w(1),..., 7 (k))

= 77111(33’)10;177),{1(1)[1/&(1)7 s Y1 (1) = 1) Pr(1)s V(w1 (1) 41) s - - s W (k) P (2)s - -+ » P (i) (2),
(6.55)

Proof. We will begin by establishing the first claim for the identity permutation, that
is, for each k € N and for any ¢1,..., ¢k, ¥1,...,¢%r € S(R), we have that

gt (Br. -, Bus D, D) (3 2)

R . - (6.56)
= 1/11(90')11%(1 )[¢17 ] ¢k;q/}27 e 7wk](x)a V(.’E,{L'l) € R2'
By Lemma 5.3, it suffices to prove (6.56) by induction on
{(k,n) € N?: k <n}. (6.57)

We begin with the base case, (k,n) = (1,1). Since ng) = Id; € L(S(R),S'(R)), we
have the Schwartz kernel identity

(Wi 101) 1l) (@1321) = dr(@0)a (@) = Br@Dwl Vil (1), Vlwr,af) € R?,
(6.58)
which proves (6.56) for the base case.
For the induction step, suppose that there is some n € N such that for all integers

j € Ng, the following assertion holds: for all integers k € N<; and for all functions
D1,y Py 1, ..., € S(R), we have that

(I){}vak) (¢17 LI} (bkaaa v 7%)(5(;7 xl)
= E(l‘/)wyc) [¢1a ey d)k;EQv ce. agk]('x)) V('T, 1'/) S R2' (659)

We now prove (6.59) with 7 = n + 1. By the recursion relation (5.4) and the bilinearity
of the generalized trace, we have that
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k k
(WL @00 @)
(=1 (=1
N k k
= Tr2,“.,k <(_2811)W51k) |® ¢r> <® wr|>
r=1

r=1
n—1
+EY D> Tro ik (5(X1 - Xé+1)(VV(IZ 2 W) ) |® r) ® Uy )
m=14+j=k r=1
=: Termy j, + Termy . (6.60)

We first analyze Termy; . Since (fiazl)ffvﬁl’“) € L(S(R*),S'(RF)), it follows from the
definition of the generalized partial trace that

k k
Term, , = (—idy) Tra_ (vNV;’@ R o) (KR ¢T|> . (6.61)
r=1 r=1

It follows from the induction hypothesis that

k

(=i0) Tra, ( W |®¢ <®wr) (2:27)
r=1

= (=100 g (D1, Bi B, Bx) ) (32)

with equality in the sense of tempered distributions on R2. Substituting (6.62) into
(6.61), we obtain that

Termy j, = ¢1 (m’)(—i@x)wff) (1. 12, ... U] (). (6.63)

We next analyze Termg ;. By the computed action of the Hérmander product 6(X; —
Xot1) (VV%) ® ngm> given by (5.38) and the definition of @« and g
that

Trz,u.,k<6<X1 Xegn) (W) @ W )|®¢r ®wr>

= (b{j(/(wl;) (¢17 .. '7¢5;E7 v ,%)(.ﬁ,x )(I)W;jzm(qsf-i-la .. 'a¢k;w€+l7 e 7%)(‘x7$)
(6.64)

W we have

n—m

in the sense of tempered distributions. Using the induction hypothesis for VV%) and
W(J)

n—m?

respectively, we also have that
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(I)VNV%) (¢la .. ~a¢£5aa cee 7%)(1,,1_/)

o o (6.65)
= d)l(x/)w'sﬁ) [¢1a sy d)fa d)Qv o ﬂ/%](@; V(‘1‘171‘/) S Rz

and

(I)VVSLJ) (¢f+17"'7¢k;’(/)7+17"'7%](x;$/)

= Y1 (@) [best s brs P, URl(@),  V(w,2) € R

(6.66)

Substituting the two preceding expressions into (6.64), we find that

(6.64) =01 (@) e 1 (@) w1, .., b3 bay s el (@)l [deras - - s Bis Beyas - - - i) ().
(6.67)
Hence,

Terms  (z; z') (6.68)

_HZ Z 1/11 w@+1 ) e)[(ﬁl,...,(ﬁg;%,...,%](x)

m=14+j5=k

X wfzjzm[¢f+lv .. '7¢k;w€—+27 cee 7%](‘%)

Combining our identities for Term; ; and Terms ;, we obtain that

(Termy s, + Terms ) (x; 2")

= wl(x/)(_18z>w(k) [(blv crt ¢k;%7 see ,%](1’)

+HZ Z ’(/)1 ,(/)Z+1 ) é)[(blw-'a(bﬁ%w'w%](x)

m=1/(+j=k

(J [¢5+17 ,¢kawl—+23a%](x)a

with equality in S’(R?). Now applying the recursive relation (6.2) for wfﬁzl[@, cee s Gk
o, ..., Y], we find that

(Term, ; + Termy 1) (x; 2') = ¥y (') w ;’21[¢1,-~-7¢k;%,---,@](ﬂf)a (6.69)

which completes the proof of the induction step for showing (6.56).
We now use (6.56) to prove the adjoint assertion of the lemma. For f,g € S(R), we
have by definition of the generalized partial trace (see Proposition C.9) that
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k k

<Tr2,4..,k <W$Lk)’* |® br) <® ¢r|> f:g>
r=1 r=1

= (¥1lf) <W<’“>’ ®¢> g®®wr

r=2 >s'<Rk>s<Rk>

S'(R)-S(R) (6 70)

By Lemma C.1,

e k
<W(k ® br, TR ® ¢T> <W(k) ® ® > .
S/ (RF)—S(R¥) S'(RF)—S(R¥)

r=2
(6.71)
We can rewrite

r=2 r=1 >3/(Rk)8(]Rk)

k k
= <Tr2 ,,,,, K (%“ @ @) (f® ®¢r|>w1,a> :
S’ (R)—S(R)

r=2 r=2

Now applying (6.56) to this expression, we obtain that the right-hand side of (6.72)
equals

/dmd‘rlq)\;’vgbk) (ga 1/}2, e ,wk; 77 %7 e a%)(xv 53/)1/)1 (ml) 1(%)

R2

- / dada' (@YW (G, b, -« o Bas -+ Br) (@) ()1 ()

R2

- / dada’ ('Yl (G, o o o Br -2 0] (2) B (2 )oh (). (6.73)

Next, using the Fubini-Tonelli theorem and applying Lemma 6.5 in the z-integration, we
find that

(6.73) = (%) / dzw®) B s ki o ) (@)(2)

=

= (ulf) / dwl ) [Br s s B2 80l (2)9 (). (6.74)
R

Since f,g € S(R) were arbitrary, going back to the left-hand side of (6.70) and using the

uniqueness and properties of ¢ we conclude the pointwise in R? identity

W%k)v’ﬂ
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Dyt (D1, s k31, -y y) (w3 2") = Y1 (@S [B1, o, ks B - B ().
(6.75)
We next need to generalize (6.56) and (6.75) to arbitrary permutations m € Si. By
definition of the notation

W

I
(Ui = 7O Wi om ™!

we have that for any ¢q,..., ¢, € S(R),

k k

n,gﬂ'(l) ..... w(k))(® or) = WOW%“((@ ¢r)om ), (6.76)

r=1 r=1

where the reader will recall from (4.14) and (4.15) how a permutation acts on vectors
and functions, respectively. Setting f(*) = ®f:1 ¢, we have by definition that

k
(f(k) o Wﬁl)(ik) = f(k) (xﬂ'_l(l)’ cee 7x7r_1(k)) = H ¢T(xﬂ_1(T))' (677)
r=1
Making the change of variable ' = 7=1(r), we see that
k k
H xw 1(r) H (bﬂ" r’) xr (® ¢7r(r))(£k) (678)
r=1 r'=1 r=1

Therefore,

ook
Try ok (Wn,zﬂ(l),,,,m(k)) |©F_16¢) <®§:1¢£|)

k k
:Trg’m)k<(7ro/\x/';k)) |®¢W(4)> <®¢Z|> (6.79)
(=1 (=1

as elements of L, (S(R), S’ (R)). Next, it follows from the characterizing property of the
generalized partial trace and the fact that we define a permutation to act on tempered
distribution by duality that

k k
<Tr2,...,k<<7T°W5Lk)) |§ bre)) <§W|> f79>

S'(R)—S(R)
k

= (P1lf) < ®¢7r(€ ®®%)0ﬂ'71

> (6.80)
=2 S’ (RF)—S(R¥)

Repeating the computation which yielded (6.78), we find that
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k r=1(1)—1 k
goQvlor ' =( Q) Ur)®90( QK  Unn) (6.81)
(=2 =1 t=n—1(1)+1

where per our notation convention, the tensor product on the right-hand side is to be
interpreted as g ® ®§=2 Yr(p) if m(1) = 1. Thus,

n*1(1)—1
(6.80) = (1]f) <W<’“>®¢ Q) e gl ® ww )>
(=1

L=m—1(1)+ S'(Rk)—S(Rk)

k ’1(1
_ <T W @ra) 6 ( @ )

=1

k
g@( ® Yoyl f7¢w—(1)>

L=m—1(1)+1 S'(R)—S(R)
By definition of @, this last expression equals
/ dad’ @ wk) (Dr(1ys s Px (k)i DL P2+ s V1 (1) 1) & P(m—L(1) 2 1)0 - - - » Pl ) (@5 27)
R2
X f (@)1 ().

Applying the result we have just established for the identity permutation, recorded in
(6.56), and using the Fubini-Tonelli theorem and Lemma 6.5, we obtain

/dﬂcdiﬁl%(x’)w,(f)[%(m,---,¢w(k);¢w(2),~-~M%(rlu 1) G V(-1 (1)+1)s - - » V(i) ) (T)
RQ

< f(@')thm(1)(2)

k),
= /dxd$/w£72rfl(1)/ [¢7r(1)3 vy ¢7r(k); 1/J7r(2), e 7w7r(7r_1(1)71)a ¢w(1), wﬂ'(ﬂ'_l(l)Jrl)? cey
R2

Ve[ (@)h1 (2 g () f(2).

Since f,g € S(R) were arbitrary, we conclude that

(I)W(k) ((rbla'"7¢k;aa"'a%)($;x/)

n,(w(1),...,m(k))

= wl (x/)wn’ﬂ-’fl(l)/ [¢7r(1)7 R ¢7‘r(k)a ,(/)71'(2)7 s 7,(/J7'r(7r*1(1)—1)7 ,(/Jﬂ'(l)a 1/171'(77*1(1)+1)a R

V()] (@), (z,2") € R
(6.82)
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For the assertions about the adjoint, consider the expression

/dfﬂdl‘ D (Pr(1)s -+ P (k) VL Vm(2)s -+ s V(= 1(1)=1)2 G V(1 (1) 4 1)+ -+ » Y (k) (@5 2)
RQ

X f(@ )Py (@) (6.83)

By (6.75), we have

(bwgbk)v* (¢ﬂ(1)7 ) ¢7r(k)7%7 1%(2)» s 71/}71'(#_1(1)—1)797 w‘n’(ﬂ_l(l)-i-l)a v ﬂﬁn(k))(ﬂ?’ xl)

= 1/11($’)w,(zlfi’t[¢>7r(1)71%(2)7 e V(1 (1)=1)5 T V(=1 (V)15 - -+ Ve (k)5 Pre(2) 5+ - - » Pre (i) ()
(6.84)

()7

By the characterizing property of w,, ;" from Lemma 6.5, followed by a second application

of Lemma 6.5, we have that

Ot = —
/dw wﬂ'(l)(x)wi&t[(bw(l):w‘rr(?%"'>ww(w’l(l)flwg7w7r(7r*1(1)+1)7"'awﬁ(k);¢7r(2)7'"7¢>ﬂ'(k)]($)

R

= /d:[ ¢Tr(1)(x)w$l]) [ww(1)7 cee 71/}#(#*1(1)—1)5?7 ¢W(w*1(1)+1)7 s 7w7‘r(k)a ¢7‘r(2)7 ey ¢7r(k)](x)

R

E——— — —
= /dm g(‘r)wfhzrilﬂ)[wﬂ(l)a---71/}77(77*1(1)71)7¢7r(1)7w7r(7r*1(1)+1)7"'7w7r(k);¢)7r(2)a"'3¢7r(k)](x)~
R
(6.85)

By substituting (6.84) into (6.83), then using Fubini-Tonelli theorem and the preceding
identity, we conclude that

<I)Vv(k),* (¢17"'7¢k;ma'"7%)(x;x/)

n,(w(1),..., 7(k))

= 1 (2" )w! N ,r_l(l)[ll)ﬂu), s Un (1 (1)=1) P (1) V(1 (1) +1)5 - - 5 P (k) Pre(2)5 - - + > P (i) (T)
(6.86)

point-wise in R?, which establishes the final claim and completes the proof. O

By taking the (1-particle) trace of the DVOs

k k
(k (k),
Tr21-4vk<wn(7r(1), ,w(k>>|®¢f ®W|> Tr, .., (Wn(w(l), m(k))“?‘w <E®¢€>
=1 =1

and using the definition (6.23) of 1% we obtain the following corollary of Lemma 6.7:
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Corollary 6.8. Let k,n € N. Then for any permutation m € Sy and any functions
D1y ey Oy h1, .., U € S(R), we have the identities

k

Ty ok (Wi gﬂ(l),...m—(k)) |®F_1 d¢) <®IZ:11/)£|) = I [hr(1)s - s Phys Vm(lys - - - V(i)

)

(6.87)

.....

(6.88)

7. The involution: H,, and Iy,
In this section, we prove Theorem 2.8. We recall the definition of the trace functionals
H,(T) == Te(W,, - T), VI € &7%,. (7.1)
The statement of the theorem is then the following:
Theorem 2.8 (Involution theorem). Let n,m € N. Then
{Hn, Him}te: =0 on &. (2.48)

As discussed in the introduction, we prove Theorem 2.8 by showing that the Poisson
commutativity of the functionals #,, on the weak Poisson manifold (&%, Ao, {-, } ¢ )
is equivalent to the Poisson commutativity of the functionals I, on the weak Poisson
manifold (S(R; V), As v, {- '}LQ’V). See (4.68), (4.70), and Proposition 4.37 for definition
and properties of this manifold. Since the Poisson commutativity of the I3 ,, is established
in Proposition A.14, this equivalence will complete the proof of Theorem 2.8.

Establishing this equivalence relies on the detailed correspondence between the ob-
servable oo-hierarchies —¢W,, and the multilinear forms w,, which we have obtained in
Section 6, the reduction to symmetric-rank-1 tensors described in Appendix B, and the
demonstration of a Poisson morphism

lm : (S(R; V)? A57V7 {'7 '}LQ,V) — (620’ AOO’ {'v '}QS’(;O)'
We establish the existence of this Poisson morphism in the next subsection.
7.1. The mixed state Poisson morphism

Analogous to Theorem 2.12 from our companion paper [57], which shows that there
is a Poisson morphism between (S(R), As, {,-}2) and (8%, A, {; -} - ) given by

o) = (16%") (6" Dren, Vo € S(R) (7.2)
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Theorem 2.9 stated below demonstrates that we have a Poisson morphism ¢, between
the weak Poisson manifolds (S(R; V), As v, {", }12) and (&%, A, {*, }- ) given by

(7)== (1655 (054 + 65%) (6P lien, ¥y = gading(or, G2, 6, 61) € S(R; V).
(7.3)

Theorem 2.9. The map iy is a Poisson morphism of (S(R;V), As v, {-,}.2) into
(&5, Aso, -}« )5 dee., it is a smooth map with the property that

L:f“{.’.}ﬁéc = {L:""L;'}L2,V’ (2.54)

where % denotes the pullback of L.
Before proceeding with the proof of Theorem 2.9, we first record the Gateaux deriva-
tive of the map iy, which is used in the proof of the theorem. The computation is an

easy exercise relying on multilinearity which we leave to the reader.

Lemma 7.1 (Derivative of i ). The Gateaux derivative of the map Ly is given by

e [](67) ™
k
= 3 30 (10870 @09 @ 675 (0¥ + 167 (657 @ 6gn @ 67|
a=1

+105%) (057 © 092 0 65|+ 1657V @ g2 @ 05 7) (954])
(7.4)

for every k € N, where

1. —_— — . — —
Y= §adlag(¢17 ¢27 ¢27 ¢1)u 67 = §adlag(6¢1> 6¢27 6¢27 5¢1) € S(Ra V) (75)
We now turn the proof of Theorem 2.9.
Proof of Theorem 2.9. The proof of this result proceeds similarly to the proof of [57,

Theorem 2.12]. Smoothness of ¢, follows from its multilinear structure, therefore it
remains to check that

(i) thAs C As,v,

(ii) Lﬁu{‘v'}@;o = {L;'M;'}Lav

We first prove assertion (i). Let F' € Ay, and set f := F o 1. By the chain rule for
the Gateaux derivative, we have that
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df [Y](67) = dF [tm (7)](dem[](67))

=i > T, (AF o ()] Vel ) (57) @)
k=1

oo

oy, (dF <’“>|Z¢> V@ 5py @ ¢PH) <¢£‘?’“I>
k=1 a=1

N | .

Ty (m ()P [65*) qu;@(“ V@ d¢, @ P

a=1

a=1

+ Trl,...,k (dF[Lm( )] |¢)®k Z ¢®(a 1) ® s @ ¢®(k oz)‘

a=1

+Tr,., (dF (Y IZ¢§’(“ V@ dp @ 65 * ) ¢>®’“>
6)

(7.

where the ultimate equality follows from application of Lemma 7.1.
Next, observe that by Definition C.5 for the generalized trace and Definition 2.2 for
the good mapping property, we have that

k
Tri. (dF[me(“ 655) (3P TV @ ip @ ¢>;®<’“‘“>|>

a=1

k
= <Z o2 @ 6y @ P dF[am<v>1(’“)¢§’“>
a=1

= (001|YF2.k) s (7.7)

where Ypor € S(R) is the necessarily unique Schwartz function coinciding with the
antilinear functional

k
81 — <<Z(.) Ou ¢i®(k—1)

dF[Lm(v)}(k)¢§®k> ,5¢1>

S'(R)—S(R) (7.8)

k
= <Z o7 @06, @ o7 "

a=1

dF [t (7)) §k>

and where the reader will recall the definition of the notation ®, from (5.32). By the
same reasoning,

k
Try, g (dF[me(“ 655 (D" 65V @ dg @ ¢§<’““>|> = (5althpa), (7.9)
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where 11 1 is the necessarily unique Schwartz function coinciding with the antilinear
functional

k
<Z( ) Ba ¢2

a=1

D1dF[im(7)] ’f><z>i®’€> : (7.10)

Next, using that dF[tm(7)]*) is skew-adjoint,
Try,... (dF )| *) |Z o7V @61 ® o7 ") <¢§’“|>

a=1
<dF L (7Y

k
_ _<Z ¢<18’(04—1) ® 5¢1 ® (b?(k—(’)

a=1

®(a—1) ®5¢ ®¢®(k ey >

dF [t (7)] §k>

= —(01[Yr2k)
= — (Vp2,kl001) - (7.11)

By the same reasoning,

Try, (dF )| ®) |Z 65V @ 6y @ 055 7Y) <¢>i®’“|> = — (hp1k]|00a) .
(7.12)

Substituting identities (7.7), (7.9), (7.11), and (7.12) into (7.6), we find that

Al ]67) = 5 S (00110r) + Ebalimns) — (br2uldor) — Wi eld6a))

k=1

= L (Forkbra) + (06alra) — Wraldd) — (raldo)),  (T13)

where we have defined ¢p; = 21?;1 Yr1,, and similarly for ¢¥ro. Note that these
are well-defined Schwartz functions since dF(®) is zero for all but finitely many k by
assumption that F' € A, (recall that A is generated by the set (2.28)). The preceding
formula can be rewritten as

df[Lm (7)] (57) = % tI‘(C2®(C2 (Jadiag('lz[}F,l 5 wTQv u)F,2a W)adlag(dgﬁ% Ma 5¢1a %))7
(7.14)
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where J = diag(i, —i,4, —i). Recalling definition (4.68) for the symplectic form wzz y, we
then see from (7.14) that the symplectic gradient of f with respect to the form w2 y,
which we denote by V, v f, is given by

1 N -
Vsvf(y) = §adiag(¢F,1,¢F,27¢F,2,1/1F,1)- (7.15)
That the map
SR;V) = S(R;V), 7= Vivf(v) (7.16)

is smooth follows from the fact that v depends smoothly on (¢r1,%r2), a consequence
of the good mapping property. This completes our verification of assertion (i).

We now verify assertion (ii) using the formula (7.15). By definition of the Hamiltonian
vector field in (P3) of Definition 4.24 together with Proposition 2.5, which gives a formula
for the vector field X (tm(7)), we have that

{F, G} (tm(7))
=dF[tm(7)](Xe(tm (7))

(o] o]
ZZ’L'TTL...J@ AF [t (7)) ¥ ZjTrk-i-l,‘.”k-i-j—l

k=1 7j=1

( ZdG tm (Y (ak+1, Shi—1)7 (7)(k+j_l)]>>>

By the bosonic symmetry of dG[tm(7)]V,

k
Z] Trpq1,. ktj—1 < [Z dG Lm (a KLy B —1)7 Lm(,\/)(k-i-,]—l)] )

j=1

S k i
- ZTY’“L---J“H* Z Z dG[Lm(V)]EiL, kA B=1,0, kA By k= 1) b () 97
j=1 a=1pB=1

(7.17)
It is then a short computation using the Schwartz kernel theorem and the definition of

Lm that

J

(4) k+j—1
ZdG[Lm(7)](i+1,...,k+671,a,k+6,..‘,k+j71)Lm(v)( Y
B=1

= 5 (165070 & dGlm ()] (67 (657 (7.18)

165" & dGlm (NP (857)) (7)),
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where ¢?(k71) @% dGum (7)) (627 is the element of S'(R¥+~1) defined by
k—1 « j j

(674" @ dGlm(M D GF) ) (@45-1)

®R(a—1 ®(k—a
1( )(lafl)qsl( ) a+1k ZdG (J (bl )(£k+1;k+ﬁ—1vxmngrﬁ;kJrjfl) ;

(7.19)

and similarly for ¢>;®(k71) @ dGim (7)) (¢57). Since dG|im(7)] has the good mapping
property by assumption that G € A, Remark C.14 and the definition of the generalized
trace imply that for every 1 < a <k,

J
O ZdG[Lm(PY)]E?C)—i-l,...,k+ﬁ—l,a,k+ﬁ,...,k+j—1)Lm(f)/)(k+j71)
B=1
1 ®(k—
= 5 (1677 @ van, @ 67" ) (6541 + 1057 ® Y2, © 65 (88H)),

(7.20)

where ¥g 1,5, %2, € S(R) are the necessarily unique Schwartz functions satisfying

(la,y) = <Z 6 ®s 65" dG[Lm(v)](])¢i®J> (7.21)

B=1

(Dlva2,;) = <Z¢>® 29 AG 1 (7)] ;‘?’j>, Vo € S(R). (7.22)

By repeating the same arguments and now using that the skew-adjointness of
dGtm(7)]Y), we also obtain that for every 1 < o < k,

J
Trrgr,. ki1 ZLm('Y)(kJrjil)dG[Lm(7)]521@4—1,...,1@-«—]’—1)
s=1

1 o . . -
=5 (1655 (65 @ vaa5 © 654+ 165%) (677 @ vany @ 674)).
(7.23)

Substituting identities (7.20) and (7.23) into (7.17) above, we find that

{F7 G}Qﬁ’;o (Lm('V))

. 00 [e's) k
(3 a o
:§§ Tryn | dF[em ()] [ D0 1D 7 Veva;® et (6]
': a=1
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k
1) 65V @ pga, @5 Y) <¢1®’f|>>

a=1

+ }:ﬂL$ dF[tm (7 2]&“ Xy@”1®wqm®¢1kﬂ

+ [pEF) <Z $2V @ g a0, ® P E™ ‘”|))
a=1

k
AF 1 (y (Z ¢P ™ @ ve,,; ® ¢®(k_°"> >

<¢®k

k
dF[tm (Z $2C @ Y, ® ¢5®<k_a)> >
<Z 620D g i1 g B

AF[tm ()N“¢§k>

<Z¢®(a D @ sy @ pSE

AF[tm(y )](k)¢i®k> 7 (7.24)

where the ultimate equality is immediate from the definition of the generalized trace.
Recalling the definitions of ¥p 1 ; and Yoy in (7.7) and (7.9), respectively, we have that

k
<z 550D 5 1 B

a=1

dF[Lm(V)](k)¢§)k> = (Ya1,;lYr2k), (7.25)

k
<z 50 ey B
a=1

dF[Lm(v)]<’“)¢‘?’“> = (aoilvrar).  (7.26)

Now using the skew-adjointness of dF[ty ()], we find that

k
<¢ggk dF[Lm(,y)](k) (Z ¢<1€<>(a71) ® a1 ® ¢<1X>(ka)>>

k
_ _<Z ¢£®(0‘—1) ® wGJ,j ® (b?(k—a)

a=1

dF[Lm(V)](’“)¢§®k>
— (Yr2klYa,;) - (7.27)

Similarly,

<¢®k

k
AF [t ()] (Z 2@ @ hea; ® ¢§®<ka)> > = — (Yr1klYa.2,) -

(7.28)
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Hence,

{F, Gle: (tm(7))

DY Wanilrar) + Wazilvrir) — Craklens) — Crikltes)

Jj=1k=1

= (Was

N | .

2) + (Va2|Vr1) — (Yrolva1) — (Wrilta,2)), (7.29)

where we have defined ¢pg == > o ¥rek, for £ € {1,2}, and similarly for ¢¢ . Note
that these are well-defined elements of S(R) since ¥p ¢k, ¥ .e,; are identically zero for
all but finitely many k, j. By (7.15), we know that

1 - -

Vivf(y) = §adiag(wF,1a Yr2,Yr2, V1), (7.30)
1 - -

Vivg(y) = §adiag(¢6‘,1a¢G,2>¢G,271/)G,1)~ (7.31)

Hence by recalling the definition (4.68) for the symplectic form wg2y and Proposi-
tion 4.37, then proceeding by direct computation, we find that

{f7g}L2 V(W)
ZWLZ,V( svf( ), ng(’Y))

1 . L . - -
— §/dxtr<cz®(cz (dlag(z,—2,27—z)adlag(wpyl,wpﬁg,pr’g,z/}p’l)
R

xadiag(Va 2, ¥a.1, Ve, Ya,2)) (x)
= (7.29). (7.32)

Therefore, we have shown that

{F, Gl (tm(7) ={F19} 20 (7), (7.33)

completing the proof. O
7.2. Relating the functionals H,, and I,

We now use the analysis of Section 6.3 to relate the functionals H,,, defined in (2.45),
on the infinite-particle phase space &% to the functionals I, ,, defined in (2.52), on the
one-particle mixed-state phase space S(R;V), defined in (2.51).

Proposition 7.2. For every n € N, it holds that

Ho(tm() = Ln(7), Yy € S(R;V). (7.34)
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Proof. Fix n € N and let v = fadiag(¢1, ¢2, @2, ¢1), for ¢1,¢2 € S(R). Unpacking the
definition (2.45) of H,,, the definition (2.44) for W,,, and the bilinearity of the generalized

trace, we see that

11 ~ (K
Hi(tm(y)) = 1 Z o Tri, (Wi,zﬂ(l)wm(h)) |¢?k> <¢§®k|>
k=1 """ neSy
(k) k k
+ Trq,. k(W (1), (K)) “b? ) <¢i® |) (7.35)
k),
e (W 1689 (057)

.
T (WG 1957 (657).

By Corollary 6.8, we have the identities

(k) ®k _
Iry,.., (Wn (r (1), 91 ) = b6,
—
Tri,. ok (Wivzﬂ.(l)y_”ﬂ(k)) |¢ ¢®k|> - ¢1 )7 - a
Tr W k)* Bk) (8] = (k) xk, XKy (7.36)
1,....k n,(7(1),...,m(k)) |¢ ¢2 | - )7

k R <r —xk.
Trr,k (W0 iy 1957) <¢;®k|):1£’< k575,

for every k € N and 7 € Si. Consequently, by Remark 6.4,

> k —xk
= I3 (190658 + 10055

k=1

—xk ——y
1) + 1P 8 >)

.m»—

Hn Lm

y (A.61), we know that the I,, have the involution property

So, we obtain by the definition of I ,, in (2.52) that

(f (P1,02) + In(¢2,01)) = Ip.n(7), (7.39)

l\DlH

Ho(tm(7)) =

as required. O
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7.8. Proof of Theorem 2.8 and Theorem 2.10
The goal of this subsection is to complete the proof of Theorem 2.8:
Theorem 2.8 (Involution theorem). Let n,m € N. Then
{Hn,’Hm}qﬁ;O =0 on &% . (2.48)

As detailed in the introduction, we will establish Theorem 2.8 by proving Theo-
rem 2.10, the statement of which we recall here.

Theorem 2.10 (Poisson commutativity equivalence). For any n,m € N,
{Iom; Iom}re () =0, Yy e SR;V), (2.60)
if and only if
{HmHm}QS;O(F) =0, VI € &%,. (2.61)
We refer to (2.52) for the definition of I ,,. In light of Proposition A.14 which estab-
lishes the validity of (2.60), Theorem 2.8 is then an immediate corollary of Theorem 2.10.
Thus we focus on proving Theorem 2.10.
Proof of Theorem 2.10. The implication that
{Hn,Hm}% =0= {lyn: Loym}p2) =0
is a consequence of Theorem 2.9 and Proposition 7.2. Indeed, the latter states that
Hn(tm (7)) = Io.n(7),
and hence by Theorem 2.9, we have
{Lon Iom} 2 (V) = {Hn, Hintgs, (tm(7)) = 0.
To show the reverse implication, we first claim that it suffices to show that
{Hon Moo (1) = 0,

VL = (Y ren, 75 = S (1F2F) @25+ 192%) (FE5)), fr,gx € S(R).  (7.40)

DN | =

Indeed, for any k € N, Corollary B.8 gives that finite linear combinations of the form
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Ny,
Z; (155 (g% + 165%) (fP¥]), a; €C, fj.9; € S(R), Ny €N (7.41)

are dense in gj (recall (2.26)). Since by definition & is the topological direct product
of the g} (recall (2.27)), elements I' = (y¥),cny € &% of the form

Z%U ) G5+ |95 (F5H), ke, (7.42)

where fir, g5 € S(R) and a;i € C with aj; = 0 for all but finitely many j € N, are
dense in &% . Now recalling the definition (2.29) for the Poisson bracket {#,, Hm } -
and using the bilinearity of the generalized trace, we need to show that for I' in the form
of (7.42),

0= {Hy, Ho o (T)

o0 oo . )
= 3N T (=W =Wl (1755 (051 + 95) (F31) )

k=1 j=1
= Zajk{anHm}égo(Fj)’ (743)
j=1
where
D= 0 en, = S (159 W5+ 15 (M), (7.44)

Note that because [—iW,, —in}(écl is zero for all but finitely many k, and for each
fixed k € N, aj;, is zero for all but finitely many j, it follows that there are only finitely
many nonzero terms in the double series above, and consequently, there are no issues
of convergence. (7.40) will imply that each summand in (7.43) is zero, so by continuity
of {Hn,Hm}e- and by density of elements of the form (7.42) in &%, we arrive at the
desired implicz;zion.

Thus, we proceed to show (7.40). Unpacking the definition of {H.,, Hm}@;c (T"), we see
that

{Hos Hon} e, (T Zm (W = W8 (1529 6241+ 1925 (F24)

(7.45)
For each k € N and A € C, consider the element 5 » € S(R;V) defined by

1 S
Vex = §ad1ag()\fk, AGks Ak, Af%) (7.46)

Then by the assumption (2.60) and Theorem 2.9,
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0 = {]b,nv-[b,m}L27v(’yk,)\)
= {Hn,Hm}@;(bm(%,/\))

= Z 1 Trl,...,j ([*iwna *in]gZo Lm('Yk,/\)(j))
j=1

v .
g 2 A
Jj=1

)
= —pr(\). (7.47)

pr is well-defined on C, since there are only finitely many indices j for which the summand
is nonzero. Since for any r € N,

0= (0303 k)(0) = 1Ty (1= W, =W ]G (1FE7) (0871 + 1987) ETD),
(7.48)
it follows that

Tt ([=Wo, =W Jo) (I25) (0241 + 1924 (FE5D) =0, (T49)

Therefore, each summand in the right-hand side of (7.45) vanishes, yielding (7.40). Thus,
the proof of Theorem 2.9 is complete. O

7.4. Nontriviality

In this subsection, we prove that the statement of Theorem 2.8 is nontrivial in the
sense that the functionals #,, do not Poisson commute with every element of A... The
proof of this fact proceeds by a reduction to proving a one-particle result.

Proposition 7.3. For every n € N, there exists a functional F € A, and an element
I' € & such that

{F Moo (D) #0. (7.50)

Proof. We proceed by contradiction and suppose that for every F € A, it holds that
{F,Hn}s« =0 on &%, . So by the Definition 4.24(P3) for the Hamiltonian vector field,
we have that

0= {F,Hu} . (T) = dF[T)(Xs, (T). (7.51)

By duality, it follows that X3, = 0 on &% . In particular, for any pure state I' = ¢(¢),
where ¢ is as in (7.2) and ¢ € S(R), we have by Theorem 2.11 (to be proved in the next
section) that
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X0, (L(0) D) = |9) (VIn(9)| + |VIn()) (¢] =0 € g (7.52)

Taking the 1-particle trace of the right-hand side and using the characterization of the
symplectic gradient (see Definition 4.33), we obtain that

0= dL[g](¢) = 3 2kIP[**: 3™, (7.53)
k=1

where the ultimate equality follows by direct computation. However, (7.53) is a contra-
diction by Lemma 6.3, and therefore the proof is complete. O

8. The equations of motion: nGP and nNLS

In this last section, we prove Theorem 2.11. Before recalling the statement of this
theorem, we first recall that for each n € N, the Hamiltonian functionals H,, are given
by the formula

M, (D) = Te(W, -T), V[ €& (8.1)

and the Hamiltonian equation of motion defined by the functional #,, on &, which we
have called the n-th GP-hierarchy (nGP), is given by

d
0= X, (1), (8:2)

where X4, is the Hamiltonian vector field associated to H,,.

Theorem 2.11 (Connection between (nGP) and (nNLS)). Let n € N. Let I C R be a
compact interval and let ¢ € C°(I;S(R)) be a solution to the (nNLS) with lifespan I.
If we define

PeC*(6%),  Ti=([6%) (6°)) e (2.63)
then I' is a solution to the (nGP).

Theorem 2.11 asserts that (nGP) admits a special class of factorized solutions of the

form

D=0 gen, A" = 10%5) (0%, ¢ € C™(LSR)), (8.3)

where ¢ solves the n-th nonlinear Schrédinger equation (nNLS):

(%qﬁ) () = VoL (6(t), Vel (8.4)
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and where V, is the symplectic gradient with respect to the L? standard symplectic
structure (recall Definition 4.33 and Remark 4.34). We note that existence and unique-
ness for the (nNLS) equation in the class C*°(I; S(R)) follows from the inverse scattering
results of [5,86,87].

8.1. nGP Hamiltonian vector fields

We first relate the formula given by Proposition 2.5 for the Hamiltonian vector field
X3, to the nonlinear operators wy,. This connection underpins the proof of Theorem 2.11.
For n € N, Proposition 2.5 gives

o0 ¢
Xy, (F)(f) - Zj Troq1,.. o451 ( [Z(—iwn)&{eﬂ 7777 e+j1)’7(e+a—1)] )7

j=1 a=1

(eN, Teor,. (8.5)

The main lemma is a formula for

¢
TrZJrl ..... L+5-1 ( [Z(_iwn)gi{Hl,...,Hj1)”7(“]_1)] )
a=1
in the special case where 7(*+7=1) is of the form
I = 2 (18EH70) (g0 4 gD (p2E0)) fg e S(R).

1
2
(8.6)

Lemma 8.1. Let ¢,j € N. Suppose that T~ s of the form (8.6). Then for any
a € N<y and 8 € Nj, it holds that

j l45—1 .
Tr”l’""”jfl((W"’S“)EZ—L..-,€+ﬂ—17a,€+,@,‘-.7é+j—1)7( "~ ))(%@2)

1 _ -
= 1f®(6 1)(§a—17£a+1;€)g®g(§2)

. , - . . , _ — . . (71)
x (wfi%f[f“sg*“ D) (@a) + w0 [gx(B-1, F, g, TV }(xa>) . (87)
9 @y 1, 2o y10) O ()

e , R
x (w75 T wa) + w3 X 00,5, 605570 D] (@a)

e

+

and
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l+5—1 j .
TTHLM,HJ‘%(V( A )(Wn’sa)Ez)ﬂ,...,e+ﬁ71,a,e+ﬁ,...,é+jfl))(gl’ﬂ)

1
= Zgw@z)f@(l*l)@/a—p£;+1;e)

——— N
x (w%f[f”;gx(] D)(aty) + wly [g* P, T ¥ O ](xa)). (8.8)

s

1
+Zf®l( )g®(ﬁ 1)( a—1> a+1€)

><< i])ﬁf[ Xj. f ]( 1)+ (J)t[fx(ﬁ D g, fXU=5),gx0- 1)]( ))

In all cases, equality holds in the sense of tempered distributions.

Proof. By considerations of symmetry, it suffices to consider the case o = ¢. Then by
Proposition C.11 for the (¢+j—1)-particle extension, Proposition C.9 for the generalized
partial trace, and the definition (5.74) for W, 54, we find that

) (4) (L+5-1)
Tropa,erj—1 (Wn,sa,(z+1,...,e+5—1,z,é+ﬁ,...,e+j—1)7

— w () U+j-1 @U+j-1
—1rﬁfﬂwfﬂ’*l(Wn,(m,...,z+ﬁ71,é,z+5,...,z+jfl) [FEEHITD) (g2 )‘)

1 W) ®+i—1)\ 7 ®E+i—1
+1“¢+1»~~74+J’*1( n7(€+17...,€+/3—17€,€+B,---,€+j—1)‘f( ) (g )|)
1 w QU+j—1 ®(b+5—1
+1T”+1»~~7€+J’—1< S R R N N =) (r )|)
1 w(d)* QU4j—1 ®(l+5—1
+ZTre+1,..4,€+j—1(“n],(e+1,...,e+ﬁ—1,e,z+5,..i,e+j—1) ‘9( ! )> <f( ! )|)

1 B B — . .
= 1) (g @ (Tra s (W, g 179 (6])
+ T, (WS s 119 (0%]))
1
1) (D @ (Tra, g (W iy 9% ><f®J\)

(4)* j
+Tr2’ (W J)( 2,...,6,1,8+1,.. ’] ‘g > <f®]|)) ’
(8.9)

where the ultimate equality follows from the tensor product structure. We introduce the
permutation 7 € S; defined by

a+1l, 1<a<pg-1
m(a) =<1, a=0 , (8.10)
a, f+l<a<j

so that we can then write
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W(J) — W(])

15(2,08,1,841,.,9) 1y (7 (1) (5)) (8.11)

and similarly for the adjoint. Using the notation P introduced in (6.50),

)
W o1 (4))

and similarly for the adjoint, we have that

Tea,s (WY miy ) 0% ) 5 a) 4 T, g (WO 1F57) (%)) (i)

= o~ v s 3G, ) () + @ . e yeees g

W‘Ei (m(1),..., w(j))(f f g g)(x . ) Wif)('rr(l) ..... w(j))(f f g )(x z )
(8.12)

and

Tz (WEL (r(1),ini) 1977 ) B2+ (Wff)m) i 19%) <f®j|)(x; *)

:(I)Nj 7 ! @ J)* gy ;_,...,_ ) !

W (gngi i e )+ Pxu e G f (@)

(8.13)

in the sense of tempered distributions on R2. Next, applying Lemma 6.7, we obtain that
for (1) = 1 it holds that

(8.12) = M(wéj)[f”;?ﬁ“”](x) + W) [F, gx G-, 7*“”](@), (8.14)

and

(8.13):W(w;ﬂ[g”;?x“‘”](x)+wa,)1t[ G070 ))7 (8.15)

while if w(1) # 1, we have

(8.12) = g(z') (wi{léil(l),[fXj;?X(j_l)](x)

n,mw

+w (J)_l( )[ g (W)= F gx(G-m (1) fx(j_l)](x)>, (8.16)
and

(8.13) = f(@') (w}iﬂ;’il(l), 75 7))

Fud 00, g U WG (s7)

Since 771(1) = B by definition of the permutation 7, we obtain (8.7) after a little
bookkeeping.

To obtain (8.8) from (8.7), observe that the self-adjointness of W; b and y(Hi—1)
implies the Schwartz kernel identity
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.....

(8.18)

_ l4+j—1 () "
= Treya,. €+j71('7( . )Wnsa(eH ..... O+B—1,a,046,..., €+j71))(£15’£€)'

Substituting (8.7) into the left-hand side of the preceding identity yields the desired
conclusion. O

We conclude this subsection by recording the required formula of the Hamiltonian
vector field X4, which follows from the previous lemma and some algebraic manipula-
tions.

Lemma 8.2. Suppose that T' = (|¢%F) (¢®*|)ren, for some ¢ € S(R). Then for any
n € N, we have the Schwartz kernel identity

X0, (D)9 (2 2))
. o0

1
_522 |¢®(é b ¢®(€ 1)‘( Lo_15 a+1f’ La—1> onrll)

J
Z( ¢X] —x(j— 1)] wff;,)(;t[¢x( ), b, pli—h); ¢X(] 1])(:zcoé)

B=1
Z( it <07 + w;f;}fw—w,aw—m;a*“”1)<x;>
B=1

(8.19)

for every £ € N.

Proof. We use the formula (8.5) and recalling definition (2.44) for W,,, we obtain that

(F) (ffz,ﬂfe)
0o £
(4) (e+5—1)
ZZ G — 1) XS: ([Z:lWn,sa,(Tr(oc),7r(€+1),.4.,7r(2+,8—1))’7 ! ])v
j=1 TE a=

(8.20)

where here, S; denotes the symmetric group on the set {a,¢+1,...,¢+j —1}. We can
decompose S; by

S; = U {reS;:m Ha)=r}=S;,. (8.21)
re{a,l+1,...,0+5—1}

Note that each set in the partition has cardinality (j — 1)!. It is a straightforward com-
putation using the bosonic symmetry of y(*+7=1 that
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(7) tj-1
rm“"“’”j’l([wnj’say(ﬂ(a)m(f+1),.‘.,7r(e+jf1))’7( +J )D

’I‘I‘E+1,~‘.,€+j*1 < |:W1('L],la,(a,l+1,...,é+j—1)’ ’Y(“_j_l)} )7 r=uo

) (4) (e+5-1)
Trerl ~~~~~ 5+J*1<|:Wn,sa,(€+1,...,r,a,r+1 ..... Z+j71)7’y ’

re{l+1,....04+5—1}

(8.22)

Using these observations and applying Lemma 8.1 to (8.20), we obtain the Schwartz
kernel identity

(8.20)
oo /£
Z—ZZZZTI“Z+1, Slj— 1([W£l)sa (41,0 4B, 0,048, b j—1) UJH_I)D(&@;Q)
j=1a=1p=1
i oo /L
522 M)@([ Y <¢®(é 1)‘( La—1rLat1;00 La—1> oz+1l)
j=la=1

Z( O ”]+wiﬂ;iﬁqw—w,qsw—m;a*“‘”})@ca)

B=1
J .
Z( A w“if{w(ﬁ—”,¢,¢x<ﬁ—ﬁ>;qu“‘”J)(x;)
B=1

(8.23)

This yields the desired formula. O
8.2. Proof of Theorem 2.11

In this subsection, we prove Theorem 2.11.

Proof of Theorem 2.11. Fix n € N. We would like to establish that I' = ( [¢®*) (¢®*|)sen,
where ¢ € C*°(I; S(R)), satisfies

%F Xy (D), (8.24)

i.e. I' is a solution to the n-th GP hierarchy, if

d

i.e. ¢ is a solution to the n-th NLS. By the Leibniz rule,
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(£) L
d d d
)y = ®(a—1) ®(—a)y (40! ®fy [ ®(a—1) ®(t—a)|
(dt ) a§:1 [ ® P®¢ ) (@77 + [9%F) (@ ® 9@ |

(8.26)

Substituting equation (8.25) into the right-hand side of the preceding equality, we obtain
that

d \®
(#)
l
=Y 0% @ V. I,(¢) @ o) (%] + [¢%) (6% @ V.1, (¢) ® 6P
a=1
(8.27)

Now the reader will recall that VI, is the symplectic gradient with respect to the form
wrz and by (6.40) is given by the formula

. o0 J
I _ _ (w(j)7t ><(571)7_’ X(j,g);_x(ﬂl*l) w(j),:f ><j;_><(j*1) )
Vil (9) 2; ﬁ; e R T R I T
(8.28)
Substituting identity (8.28) into the right-hand side of (8.27) and comparing the resulting
expression with the formula (8.19) given by Lemma 8.2 yields the desired conclusion. O

8.3. An example: the fourth GP hierarchy

We conclude this section with an example computation of one the n-th GP hierarchies.
Specifically, we explicitly compute the equation of motion for the fourth GP hierarchy,
which is the next one after the usual GP hierarchy (the third one in our terminology). In
light of our Theorem 2.11, the fourth GP hierarchy corresponds to the complex mKdV
equation

Ohp = 036 — 6rl0[20,0, k€ {1}, (8.20)

Example 8.3 (Fourth GP hierarchy). We first recall from Example 5.8 that the

W, = ((—iazl)ﬂ 00, +0,,)5(X) — X2),0,.. ) (8.30)

Substituting (8.30) into the right-hand side of the (2.62), using Lemma 2.4 and the fact
that dH[T|V) = fiwgf ) once again, the fourth GP equation, written in operator form,
simplifies to
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J
oy = Z Z Z Try, . e4j-1 ((—in))(z+1,...,e+571,a,e+5,...,e+jf1)7(”j71))

L
_ (1) [ )y (1) (2) 041 041 (2)
=iy (W4,<a>7( D+ OW oy + Treg (W4,<a,e+1ﬂ( g )W4,<a,e+1>)

(2) 041 4+1)yw(2)
T (W47(5+La)’y( o )W4,(e+1,a)>)’

where we recall that the subscript notation is used to specify the variables on which the
ng ) operators act. By direct computation, this expression simplifies to yield

£
0 = 303, + 03 0 = 68 (B 41 (0,7 4 Brg (0,7 ), (831)

a=1

which is the fourth GP hierarchy, and which can readily be seen to yield (8.29) for
factorized solutions.

Appendix A. NLS Poisson commutativity
A.1. Transition and monodromy matrices

In this appendix, we sketch the proof that the 1-particle functionals I,, are involution
with respect to the Poisson bracket {-,-},.. We generalize the presentation to allow for
the case where the two Schwartz functions 1, are independent, since this is the actual
1-particle result that we use in Section 7. Hence, rather than considering the scalar NLS
equation (1.1), we consider the system

{(i@t + A)y = 2Ky L ke f{x1) (A.1)

(z@t — A)’lﬂg = —2[{’(/}%’(#1

Our presentation will proceed at a high level, following the exposition in [23, Chapter I
and Chapter III]; however, the reader may consult Chapter I, §7 and Chapter III, §4 of
the aforementioned reference to fill in any omitted analytic details. We also consider the
L-periodic case rather than entire real line. The extension to the latter case follows from
truncation and periodization to fundamental domain [—L, L], application of the periodic
result, and then passage to the limit L — co.

We start by fixing some notation. For L > 0, we let Ty, denote the domain [—L, L]
with periodic boundary conditions and C*°(Ty) the space of smooth functions on Ty.
Equivalently, C°°(Ty) is the space of smooth functions on the real line whose derivatives
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of all order are 2L-periodic. Given a (C? ® C?)-valued functional My, 4,y on C*°(Ty),
we define

i Ny
M(U’lﬂbz) '_ M(¢27¢1) (A2)

where the complex conjugate of the matrix is taken entry-wise. Evidently, the t operation
is involutive.

The system (A.1) is a compatibility condition for the overdetermined system of equa-
tions

{&CF(%,%) (t, Z, )\) = U(wl’wz) (t, Z, )‘)F(’l/)l”lﬁz) (t, Z, /\), (AS)

atF(dlMM) (t’ T, A) = V(d’lﬂ/f'z) (t’ T, )‘)F(¢17¢2) <t’ T, )‘>

where Fly, 4,) 18 a spacetime C?-valued column vector and Uy, 4,) and Vi, 4,) are
A-dependent 2 x 2 matrices given by

. _ 0 % 11 0
Utpr )N = Vo, 0) T AU Vo (gy.00) = VE (1/}1 02> » Uii=o (0 —1)
(A'4)

and

V(d)l,wz)(/\) = V(J,(1/;1,1/;2) + /\Vlv(wlﬂbz) + )\QVQ,

. K — 0Oy
Vo, (1 02) = ik (\/(;a:g;be \/Etﬁibz) s Vi) = —Uo,(gr40)s Vo= UL
(A.5)

In the preceding and following material, A plays the role of an auxiliary spectral pa-
rameter. It will be convenient going forward to introduce notation for the 2 x 2 Pauli

matrices:
_ {0 1 _ ({0 — (1 0 ! + 109 01 — 109
or=\1 o) 2=(,;, o) 3={g 3 70’+.——2 ,0,.—72 .
(A.6)
Written using U and V, the compatibility condition for the system (A.3) is then
0 U 2) = OaViwn ) + [Utwra) Viwn )] = 0 (A7)

point-wise in A. In the sequel, we will omit the subscript (11, 9), which shows that the
matrices are really matrix-valued functionals evaluated at a specific point, except when
invoking the dependence is necessary. We hope that this omission will not result in any
confusion on the reader’s part.

There is a geometric interpretation to (A.7) in terms of local connection coefficients
in the vector bundle R? x C2. Equation (A.7) then says that the (U, V)-connection has
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zero curvature. For this reason, (A.7) is often called the zero curvature representation in
the literature. We will not emphasize this geometric aspect in the appendix, as it does
not play a role for us.

Now fix a time ¢y and consider the auziliary linear problem

0. F = Ulto,z, \)F. (A.8)

The object of interest associated to (A.8) is the monodromy matriz, which is the matrix
of parallel transport along the contour ¢ = tg, —L < x < L positively oriented:

L
TL (A to) :=eXp / dzU (z,to, \) |, (A.9)
L

where e?p denotes the path-ordered exponential.?® By using the superposition principle
for parallel transport and the fact that parallel transport along a closed curve is triv-
ial, one can show that the monodromy matrices are conjugate for different values of t.
Consequently, the trace of the monodromy matrix is constant in time:

tree TL()\,tQ) = trez TL()\,tl), Vi1, t2 € R, (A.ll)

where trc2 denotes the 2 x 2 matrix trace. Furthermore, one can show that the choice
of fundamental domain [—L, L] in the definition (A.9) is immaterial to computing the
trace. We conclude that

Fr(\) = trca To (V) (A.12)

is a generating function for the conservation laws of (A.1).
More generally, we have the transition matriz, which is the matrix of parallel transport
from y to x along the z-axis:

T(z,y,\) ==exp / dzU(z,\) |. (A.13)
Y
The monodromy matrix is then the special case of the transition matrix obtained by

setting (x,y) = (L, —L). From the definition (A.13), it is immediate that the transition
matrix satisfies the Cauchy problem

26 For A € L°°(T;C™ ® C"), the path-ordered exponential of A is defined by

T T2

ekp (] dzA(z)) = i ]dmn / dxp_1 - /dmlA(mn)-~~A(x1). (A.10)
L n=0_"p :

—L —L
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{&T(w, v, A) = U@, VT (2,9, ) (A.14)

T(l’, Y, )\)|z:y = I([jz

where Ic2 is the identity matrix on C2. T'(x,y, ) is a smooth function of (z,y) and is
also analytic in A due to the analyticity of U(z, A) and the initial datum. By using that

f; = — [Yin (A.13), we see that T(z,y, A) also satisfies the ODE

OyT(z,y,\) = =T (x,y, \)U(y, \). (A.15)

Additionally, the transition matrix has several elementary properties, which we record
with the following lemma.

Lemma A.1. The following properties hold:

(i) T(x,2,\)T(z,y,\) = T(z,y, ),
(ii) T(x,y,\) =T (y,z,\),
(iii) detc2T(x,y,\) = 1.

Proof. Properties (i) and (ii) are straightforward, and we leave them to the reader. For
property (iii), the reader will recall Jacobi’s formula that for any n x n matrix A(t),

dA(t)

%detcn(A(t)) = tren (adj(A(t))T), (A.16)

where adj(A(t)) is the adjugate of A(t) (i.e. the transpose of the cofactor matrix of
A(t)). Fixing y, A and applying Jacobi’s formula to T'(x,y, A) with independent variable
x instead of ¢ and also using the equation (A.14), we find that detcz(T(z,y,A)) is a
solution to the Cauchy problem

{axdetcz(T(:ﬂ, y,\) = tree(adj(T(z, y, \)U(z, )T (z, 5, \), A1)

detc2 (T(z,y,A))|a=y =1
Since

it = (T8N ). (A18)

it follows by direct computation that
T(x,y, Nadj(T(z,y,A)) = detc2(T'(z,y, A)) Idc>. (A.19)

So by the cyclicity and linearity of trace, detcz (T (x,y, A)) is the unique constant solution
to the Cauchy problem
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{Bxdet(ca(T(x,y, A)) = detez(T(z,y,\) trez (U(z, y, \)Ig2) = 0 7 (A.20)

detc2(T(z,y,A\))|z=y =1
where we use that U(z,y, A) is trace-less. Thus, the proof of (iii) is complete. O

It is evident from its definition (A.4) that

U(Twlﬂbz)(m’ )\) = UU(Zblﬂ/Jz)(mv 5\)0', (A.21)
where
=1
o=g7 " ; (A.22)
o2, k=—1

where k is the defocussing/focusing parameter in (A.1) and o1, o5 are the Pauli matrices
in (A.6). The transition matrix also satisfies an important involution relation leading to
the special structure of the matrix T'(z,y, A), which we isolate in the next lemma.

Lemma A.2. T(z,y,\) has the involution property

UTWL#&) (.’L’, Y, 5‘)0 = T(Td,hwz) (CC7 Y, )\) (A.23)

Consequently, we can write the monodromy matric T, p, y, (A) as

T _
T oy () = [ Pt ) s8I 4y ) (V) ) (A.24)
e br,rw)(N) Ay (g, ) (D)

where aTL,(whm)()\) = m and analogously for bzy(wl)%).

Proof. Since the Cauchy problem (A.14) has a unique solution and o2 = Ice, it suffices
to show that the matrix

T(wl,wz)(fﬂ, Y, )‘) = UT(T¢17¢2)(137 Y, )\)U (A.25)

is a solution of (A.14).

It is evident from T{y, y,) (%, ¥, \)|s=y = Ic2 and 0% = I¢2 that the initial condition
holds. Now using that 9, commutes with left- (and right-) multiplication by a constant
matrix and complex conjugation, we find that

0T 0) (@9, X) = 00Tz 57 (2,9, M)

= oUg, 0y (0 N, ) (2,9, Ao
_ T ot -
o UUWJL@/&) (:L’, /\)T(z/;l,q/;Q) (iL’, Y, >‘)07 (A26)
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where the penultimate equality follows from application of (A.14) with (11, 9) replaced
by (12,1) and the ultimate equality follows from the definition of the dagger superscript.
Since 02 = I¢2, we can use the associativity of matrix multiplication together with the
identity (A.21) to write

U/

" _
(r2) (% NI (1) (&9 A ( (o i) (T AT )(UT(%,wz)(w,y, A)U)

U(dﬂ ﬂ&)(x /\)T (%1, 7!’2)(1; Y, )‘>7 (A27)

which is exactly what we needed to show.

We now show the second assertion concerning the structure of the monodromy matrix.
We only present the details in the case k = 1 and leave the kK = —1 case as an exercise
for the reader. Writing

(@4, 0) T(3 gy (@9, )
Tlgun:0) = (5 (00 , (A.28)
(rwa) (¢1 1112)(33 y’/\) T(’Plﬁlb)(x’y’)\)
we see from direct computation that

_ 0 1\ (T2 (z,9,\) Tw o (@ N)
0Ty p0) (Y, N)o = ( ) ( (b1,2) A
o L 0\ TG @8N TG, ) (@0, 0)

22 \ 21 3
_ (T(féhwz)(x,yv)\) T(flihdu)(xvy’ A)) ) (A29)
T(fl)lﬂl)z) (@, A) T(wl,qu) (z,y,7)

Now by the involution property (A.23) and the definition of T(T 1 ipa)s WE S€E that

T (z,y,\) T2 __ (x,y,))

(¢2,91) (¥2,91) i
=T (z,y,\)
21 22 ($1,9p2) \ 77 92
Taan @y A T @9, A)

2 3 21 3
_ (T(wl ) (@Y A) T (Y, M)
Y 11 Y N
T @9 A T, (@9, 0)
(A.30)

Evaluating this identity at (z,y) = (L, —L) and defining
aL:(d’lﬂl’z)(}‘) = Tllz}(’lbl,wz)()\)’ bL;(Tl’l,wz)()‘) = Tg,l(wl,zpz)()‘)v (A.31)
we obtain the desired conclusion. 0O

Remark A.3. Since the transition matrix is an entire function of A, it follows that the
functions ahwhw),a} (1 ¢2)7bL,(w1,wz)vi (6 4p) TE entire functions as well. In fact,
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they are of exponential type L. Moreover, the unimodularity property (iii) for the tran-
sition matrix implies the normalization condition

aL 0y )N (g gy N = 380(R)DL (0, 20y VL (4 4y N =1, AER. (A32)

We close this subsection with an alternative way to see that the trace of the mon-
odromy matrix, which we called Fy,(\) in (A.12), is conserved in time. By differentiating
both sides of equation (A.14) with respect to time and performing some algebraic ma-
nipulation, one finds that

T (t,w,y,A) =V (t, 2, VT (t, 2, y,A) = T(t, 2,5, )V (t,y, A) (A.33)

Since V is 2L-periodic and therefore V (¢, L, \) = V(t,—L, \), it follows that the mon-
odromy matrix satisfies the von Neumann equation

OTr(t,\) = [V (£, L, \), Tr(t, \)]. (A.34)

Since differentiation commutes with the trace and the trace of a commutator is zero, it
follows that

O trez (T (¢, A)) = 0. (A.35)
A.2. Integrals of motion

We now use an asymptotic expansion for the generating functional F 7(A) (recall
(A.12)) to identify conserved quantities for the system (A.1). We start by finding a
gauge transformation that reduces the transition matrix to diagonal form exp Z(z,y, \):

T(z,y,\) = (Ic2 + W(x, ) exp(Z(z, 4, \)) ez + W(y, A) ", (A.36)

where W and Z are anti-diagonal and diagonal matrices, respectively. We will see that
W and Z have the large real A asymptotic expansions

T —y)Ao > Zn(z,y, A
2wy 3 ~ EIT 5 ED)  a)

n=1 n=1

where the reader will recall the Pauli matrix o3 from (A.6). Here and throughout the
appendix, the asymptotic should be interpreted as follows: for any k& € N,

k
o(|A7*) = sup_, W (2 Z

(A.38)

+  sup || Z(z,y,)) -
—L<y,<L
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as |A\| = oo on the real line, where || - || denotes any matrix norm.
Proceeding formally to identify the relevant equations, we substitute (A.36) into the
transition matrix differential equation (A.14) and use the Leibniz rule to obtain that

Uz, \)(Ic2 + W (z, ) exp(Z(z,y,\)) (Ic2 + W(y,\) ™"
= 0, W (z, \) exp(Z(z,y,\))(Ic2 + W (y, \) (A.39)
+ (I(C2 + W(.’L‘, )‘))8$Z<x7 Y, )‘) exp(Z(ac, Y, )\))(I@2 + W(ya )‘))_17

which can be manipulated to yield
Uz, \)(Ic2 + W(x, ) = 0, W (x, \) + (Ic2 + W(x, N))0:Z(x,y, A). (A.40)

Recalling from (A.4) that U(x,\) = Up(x) + AUy, where Uy is anti-diagonal and U is
diagonal, and decomposing both sides of (A.40) into anti-diagonal and diagonal parts,
we find that W and Z satisfy the coupled system of equations

(A.41)
8.7 = UgW + AUy

{&W+W@Z:%+MMV
Substituting the second equation into the first one and using that U; anticommutes with
W, we find that W satisfies the matrix Riccati equation

O W +idasW + WUW — Uy = 0. (A.42)

One can rewrite (A.42) as an integral equation and use the fixed-point method to show
that (A.42) has a smooth solution on T, for sufficiently large A depending on the data
(ol Lr (s |l oo (11, L), with the asymptotic expansion (A.37). We can then solve for
Z subject to the initial condition Z(z,y, \)|z=y = Oc2 by

x

Z@%M—&%ﬂ@+/W%@W@M (A.43)

In particular, the asymptotic expansion of Z is then determined by the asymptotic
expansion for W. W and Z satisfy (A.36) since both the left-hand side and right-hand
side of the equation (A.36) are solutions to the same Cauchy problem, which has a unique

solution.

oo Wy(x)
n=1 A\n
coefficients W, () satisfy the recursion relation

Next, substituting the expansion Y into equation (A.42), we find that the
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) . 0 —a(x
Wi(z) = —iosUp(z) = ivk (1/11(113) w(z)( )) ,

Wn+1(1‘)=i03< —i—ZWk W, — k( ))

(A.44)

Evidently, the matrices W,,(x) are 2L-periodic and are polynomials of the derivatives of
Up(z). By equation (A.42) for W and the continuity method together with the equation
(A.43) for Z, one can show that the asymptotic (A.37) holds. In the next lemma, we
record an important involution property of the W,,. As before with U, we include the
subscripts (¢1,12) in the sequel to denote the underlying dependence.

Lemma A.4. For every n € N, it holds that W, is anti-diagonal and

W (@) = W oy ) (@), (A.45)
where o is as in (A.22). Additionally, Wy, (, v, (%) has the form
ivE ( 0 _wjz,(wl,w)(“’)) : (A.46)
W, (4 apo) (2) 0
where the functions wy, (y, v,)(T) satisfy the recursion relation

W1 (4 ) (T) = P1(T),

. (A.AT)
Wit 1, (y,92) (T) = —10pwn () + Kip2( Zwk (1,12) (D) Wr—ke, (1,12) (T)-

Proof. We prove the lemma by strong induction on n using the recursion formula (A.44).
The base case n = 1 follows from

Uga(wl,wz)(x) = UUOv(U)l,l/Jz)(x)a (A.48)

and the fact that o anti-commutes with o3.

For the induction step, suppose that for some n € N, the involution relation holds for
all k € N¢,,_1. Multiplying (A.44) by o on the left and right and using that 0% = I¢2,
we find that

Wit 1, (41 102) (2) O

n—1
=1003 <3an,(w1,w2)($) + Z Wk,(wl,m)(m)Uo,(m,wz)(@Wnk,(%,@)(@) o
k=1

= —103 (aa; (UWn,(’L/Jth) (J,‘)O')
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n—1
+ Z(UWk,(wl,wz)(w)U)(UUo,(wl,wz)(w)a)(JWn—k,(w1,¢2)($)U)>
k=1

. t 1 t
= o3 <8an,(w1,w2 Z k (wl,wz Uo,(wl,wz)<x)Wn—k,(w1,wz)(x)> g
(A.49)

where we again use (A.48) and the anti-commutativity of o and o3 to obtain the penul-
timate equality and the induction hypothesis to obtain the ultimate equality. Since
(io3)! = —io3 and the f operation is a homomorphism of algebras which commutes
with differentiation, (A.45) is proved. Since Wy (y, 4s)s - -+ Wa, (1, ,02) are anti-diagonal,
it follows from some basic algebra and the diagonality and anti-diagonality of o3 and Uy,
respectively, that W, 1 (y, y,) is anti-diagonal. Thus, the proof of the induction step is
complete.
Now since W, (y, 4,) is anti-diagonal, it takes the form

0 w}f
Wn,(ﬂ)l,d&) = ( 21(11} va) 7(161’1/)2)) ) wi?(wlwwz)’wi%(wlﬂ/)z) S COO(TL), (A.50)
1,92

which by direct computation implies that

0 sgn(k)w?!
W, = m(nv2) ) A51
OWn,(1,42)9 <sgn(m)w}f(¢l o) 0 ( )

Now the involution relation (A.45) implies the equality

21 12,1
< 012 Sgn(ﬁ)wn,(ﬂnﬂﬂz)) _ WJF _ . 0 wﬂ,(dnﬂ/’z) .
sen()ul?y, o 0 monen =\l 0

n,(Y1,92)
(A.52)
Therefore, defining W, (yy,y,) = W} 1y, 4,/ (iVK), we can write Wi, (y, 4, in the form

; 0 —w! (x)
w, =ivk ( n,(Y1,92) ) (A.53)
n,(P1,92) W, (i) () 0

where by (A.44), the functions wy, (y, ,) () satisfy the recursion relation

wy (¢17¢2)(:E) = ’1/11(.%),

(A.54)
Wit 1, (1 ,162) (B) = —100Wn, (4, ,4) (T) + K2 (T Zwk W1,102) (T)Wn— ke, (1,902) (T)-

Thus, the proof of the lemma is complete. O



112 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525

By using the equation (A.42), one can also show that Wy, »,)(z, A) satisfies the same
involutive property as W,,. So we can write

Wi, ) (2, 2) = Z'\/E<w(w1,w2) (z,\)o- — wgww/,z)(xv 5‘)‘74-)’ (A.55)

where o are defined in (A.6) and where w(y, 4,) has the large real lambda asymptotic

expansion
ZOO wl,w )
’w(wl ¢2) xZ, )\ 2) . (A56)

Using equation (A.43) for Z(y, 4,)(7,y, ) and evaluating (z,y) = (L, —L), we find that

ZLa(wlﬂ/Jz)()‘)
= Z(d’lﬂ/&)(L’ —L, )\)

L
AL
= 703+/dzU(¢1,¢2)(Z)W(w1,wz)(2»>\)
—L
[ —iAL 0
- 0 IAL

i .
(R ) S )

_ [Ttk f_LL dztpa (2) Wiy, ) (2, N) 0
0 z)\L—mf dz1p (2 ) (pr m) (5 A)
(A.57)

Evaluating both sides of equation (A.36) at (x,y) = (L, —L), we find that the monodromy
matrix T (\) has the representation

Ty i) = (Te2 + Wi, gy (1 N)) ex0( 2, 4, V) (T2 + Wi, (L )\))_1.
(A.58)

We now turn to finding a formula for the generating function Ff,()\) (recall (A.12)) in
terms of the functions w and w’. We first have an important involution property for the

entries of Zr()).

Lemma A.5. For every (11,12) € S(R)? and A € R sufficiently large so that Wiy, 77y (5 A)
exists, it holds that
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L L L
[ astatyg, e n = [ i@, @) = [ o, )
L —L -L

(A.59)

In particular, if for every n € N, we define

Tn(r,00) = [ deba(oh, () VT2 €SRE, (A0

then

Proof. Since detc2(T}, (4, 7;)(A)) = 1 by the unimodularity property Lemma A.1(iii)
and
—1
(T2 + Wiy g (L N) = Tez + Wiy, 3y (=L, A) (A.62)

by the 2L-periodicity of W (-, \), it follows from the multiplicative property of determi-
nant that

1= detcz (Ty (y, 5y (V) = detcs (exp ZL’(%%)(A)). (A.63)
Now for any matrix A € C" ® C™, Jacobi’s formula implies the trace identity
detcn (e?) = exp(tren A). (A.64)
Hence,
1 = exp (tm ZL(%@(A)) = 1= trc2 Zy, 1y 5y (N) = 0. (A.65)

So by identity (A.57), we obtain that

/dxz/)g )Wy, 52 (@A) /dmwl (w 72 (x,\) /dxz/Jl Wy, 7y (T, A),
(A.66)

where the ultimate equality follows by definition of the { superscript. Substituting the
asymptotic expansions (A.56) for w,, (2, A) and w,, 7+ (2, A) into the left-hand and
right-hand sides of the preceding equation, respectively, and using the definition (A.60)
for I,,(1,49) and I, (1o, 1), the second assertion follows as well. O
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Lemma A.6. For every (1,v2) € S(R)? and X € R sufficiently large as in Lemma A.5,
it holds that

L

FL(wl,%; A) = 2cos —)\L+/€/dm%(x)w(wh%)(x,)\) , (A.67)
L

where Fy, is defined in (A.12).

Proof. Since the trace is invariant under unitary transformation and W, - is 2L-
periodic, we have that

Fr (1,92 \) = trez Ty, 5y (V) = trez exp (ZLWI@(A)), (A.68)

so we have reduced to considering the right-hand side expression.
Using that Z; ., 2y () is diagonal and applying formula (A.57) and Lemma A.5, we
find that

AT
(—ML +ik ffL data (x)w(y, 77y (2, N) 0 )

0 iAL — ik ffL dx%(x)w(wh@) (z,A))
(A.69)

it follows that the exponential of Z; , - () is the diagonal matrix with the entries
given by the exponential of the entries of Zp(\). Using the elementary trigonometric

identity
e + e % =2cos(2), z € C, (A.70)
we then obtain that
L
trez eXp(ZL,(wl,E)()‘)) =2cos| —AL+k / dx%(x)w(whﬁ)(x,k) , (A.71)
.y

which completes the proof of the lemma. O

Remark A.7. By Lemma A.2, we have the involution relation

tre2 Ty g, gy V) = tre2 (0T} (o) =trea T] oo () = trea (T gy ),

(A.72)
where we use the cyclicity of trace and ¢ = I¢2 to obtain the penultimate equality.
Consequently, we have that
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Fr(vn, §2; ) = Fu(th2, ¥1; V). (A.73)
Consequently, if we take twice the real part of Fy, (11, a; \),
FL,Re(wla%; A) = ZRG{FL(I/)h%v /\)}, v(wl7%7 )‘> S C(OO(V]TL)2 X (C7 (A74)

then we obtain from (A.67) that

L

Frre($1,92;A) = 2cos | =AL+ & / datha (2)wy, g (%, A)
L
) (A.75)
+2cos| AL+« / dx%(x)w(%ya)(a:, \)
L
Similarly, if we take twice the imaginary part of F, (1)1, 12; \),
Frim (1, P23 A) = 2Im{FL(¢1,%)}» (A.76)
then we have that
L
FL,Im(wla%; A)=—i|2cos| =AL+k / dx%(x)wwh%) (z,A)
.y
; (A.77)
—2cos| AL+ & / dx%(a:)w(w%m)(x,X)
L

Moreover, we can regard Fr, ge(-,-; A) and FL 1m (-, -; A), respectively, as restrictions of the
complex functionals of four variables to the subspace 17 = 11,15 = 2. More precisely,
for fixed A € C, define complex-valued functionals on C*°(Ty)?* by

Fr re(1,103, 2,913 N) = Fr(¥1, a5 A) + Fr (12,913 M),

) g ’ _ (A.78)
FL,Im(wlana ¢271/)i§ )\) = _Z(FL(¢1a¢Q7 A) - FL(,(/)Qaq?bi; A)),

so that

Frre(11,%3; ) = Fp Re(¥1, o, o, 15 \)

) AR (A.79)
Frim(¥1,%3;A) = Frim (Y1, 92,902,913 A).

Consequently, F, ge(A) and F, im(A) extend with an abuse of notation to well-defined
smooth functionals on the space C*°(Tr;V) (recall the space of matrices V in (4.63))
given by
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{FL,RE(W; A) = Fp re(d1, 92 \),

1 _ _
Do v =5 d ’ ? ) ) A80
Frim(v;\) = Frim(¢1, 925 \) =58 iag(¢1, ¢2, P2, 1) ( )

which belong to the admissible algebra As )y, provided that Fj, € As.c, a result we
postpone until the next subsection. By the same reasoning, the functionals

Ib,n (’7)

(fn(¢1a %) + jn((an E))

DN | =

L
1 — 1 _ _
= § / dx (¢2(‘r)wn,(¢1,@) (Z‘) + (bl (‘r)wn,(¢2,a) (.Z')), vry = Ea’diag(d)la ¢2) ¢27 ¢1)7
—L
(A.81)

where the subscript b is to denote the dependence on two inputs, extend to smooth
functionals on C*°(T; V) which belong to As y. This latter admissibility can be verified
using the results of Section 6.2. Note that by Lemma A.5, the functionals I ,, are real-
valued.

A.8. Poisson commutativity

In this last subsection of the appendix, we show that the functionals I, defined
in (A.81) are in involution with respect to the Poisson bracket {-,-},., defined in
Proposition 4.37. We obtain this result by first showing that the generating function-
als Fr,(\), Fr(p), for A\, € C, are in involution with respect to the Poisson bracket
{*s}12.c- The reader will recall that the Fp, was defined in (A.12) above.

Given two complex-valued functionals F, G on C°°(Tp)? satisfying the conditions of
Remark 4.41, we recall their Poisson bracket is defined by

{F, G}L2,C (Y1, 12)

L

=—i / dx(V 1 F(1,92)V5G(1,v02) — V3 F(¢1,9%2)V1G (Y1, 92))(x), (A.82)

—L

where V1 and V35 denote the variational derivatives defined in (4.52). Now let A and B
be two complex-matrix-valued functionals on C°°(T)2. We introduce the notation

L
{A9B} 2 c(¥1,v2) = —i / dx(V1A(1,12) @ V5 B(41,v2)
g

— V5A(1,12) @ V1B(W1,v2)) (z), (A.83)
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where our identification of the tensor product is the 4 x 4 matrix
(A®B)jk,mn = Aijkna jam7k7n S {132}a (A84)
so that

{A@B}LZ,cjk’mn = {AjmyBkn}Lz’((y (A85)

Remark A.8. An observation important for our identities in the sequel is that the nota-
tion {®} admits an obvious extension to general n X n matrices.

The reader may check that the above tensor Poisson bracket notation has the following
properties:
Skew-symmetry:

{A9B}r2c = —P{BYA}2 P, (A.86)

where P is the permutation matrix in C? ® C? defined by P(é ®7) = n® ¢, for
&neC2
Leibniz rule:

{ASBC} 12 c = {A9B} 1o c(ler © C) + (Ie» © BY{ASCY o, (A8T)
Jacobi identity:

0={A%{BYC}r2c}r2,c + PiaPas{C%{ASB} 2 c}12,c PasPi3

(A.88)
+ Pi3Pio{B${C%A} 12 ¢ }r2,c P12 Pis,

where P;; is the permutation matrix in (C2)®3 which swaps the i'" and j
element of a tensor & ® & ® &3, for 4,5 € {1,2,3}.

Remark A.9. The reader can also check that P is idempotent (i.e. P2 = I¢2) and P(A®
B) = (B® A)P, for any 2 x 2 matrices A, B.

With the above notation in hand, we proceed to compute Poisson brackets. Let us
consider Uy, 4,)(2,A) from (A.4) as a functional of (v1,%2), for fixed (z,)). For the
reader’s benefit, we recall that

A A
U ) (2, A) = 573 +Uo(z) = ;78 +VE@2(z)oy + 1 (x)o), (A.89)

where Up(z) is defined in (A.4). The first objective is to prove the following lemma which
gives the so-called fundamental Poisson brackets.
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Lemma A.10 (Fundamental Poisson brackets). For any (A, p) € C?, we have the distri-
butional (on T?) identity

{U(z, NSU(y, w}trec = =[r(A = p), Uz, A) @ Ic2 + Ic2 @ U(y, p)]o(z —y), (A.90)

where r(\ — p) == — ()\f#)P.”
Proof. We recall the (classical) canonical commutation relations

{1(@), 01(W)} 2 ¢ = {2(2), 02(W)} 20 = 0, {¥1(2), 2 (Y)} 2o ¢ = —i0(z —y),
(A.91)
which should be interpreted in the sense of tempered distributions on TZ2. It then follows
from (A.89) that

(VlU(f, A))(,(/)la ¢2) = \/EO-—(SZD’ (VQU(.T, A))(wla 1/}2) = \/E0'+6w, (A92)
where d, is the Dirac mass centered at the point x. Hence,

U, )SU(y, ) Y2, (Y1, v2)

= - / d=((V1U (2, A)) (6, 2) (V5T 1)) (0, 52)
“L
—(V3U(z, N)(¢1,%2) (VU (y, 1)) (Y1, 92)) (2)

=—ik | d26(z —2)0(z —y)(o- QoL —0r Qo)

—=

—L

=—ikd(x —yY)lo-®oy —0or ®o_).

One can check from the commutation relations for the Pauli matrices defined in (A.G)
that

1 1
O'_®O'+—O'+®O'_=§[P,O'3®I(C2]:—§[P7IC2 ®0’3]. (A93)
Therefore,
. IR an
iK(o_®oy —04 ®o_) = (0-®oy —04®o0_) — (0-®oy —04r®0_)
A—p A— L
K A I
= — —|P I —|P, I . A.94
o (GPae el Mo en]). (A

27 This matrix 7 is called an r-matriz in the integrable systems literature and is a central object in the
study of such systems.
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Now recalling the definition of U(x,\) in (A.89) and that P commutes with the ten-
sor Up(z) ® Ic2 + Ic2 @ Up(z) by the symmetry of the latter, we obtain the desired
conclusion. 0O

The importance of the fundamental Poisson brackets is that they yield a formula
for the Poisson brackets between the entries of the transition matrices T'(x,y, \) and
T(x,y, ), regarded as matrix-valued functionals, as the next lemma shows.

Lemma A.11. For fivred —L < y < < L and (\,u) € C2, regard T(x,y,\) as the
C? @ C*-matriz valued functional C>=(Ty)? defined by (¥1,v2) — Ty, s (@, 4, A) and
stmilarly for T'(x,y, ). Then it holds that

{T(:C’ Y, A)@T(Z‘v Y, ,U')}Lz,(C = —[7’(/\ - H’)? T(.CC, Y, >‘) ® T(xv Y, ,U')] (A95)

Proof. We use the differential equations (A.14) and (A.15) for the transition matrix in
order to prove the lemma. Since the (a, b) entry of the matrix-valued functional T'(x, y, A)
depends on (1, 1s) through the entries of the matrix-valued functional U(z, \) it follows
from the definition of the Poisson bracket {, },. ¢ reviewed in (A.82) and the chain rule
that

{Tab(a:? Y, /\)’ TCd(:C’ Y, M)}LQ,C(¢17 '(Z)Q)
= [ [ e (Fuiy Ty N1 2D HU 0. U ) (1, 2)
y vy

X (VU“"(M)TCd(xa Y, .u“) (71}1; 1/}2))(2/)5
(A.96)

where VT (z,y,A) and Ve (T (2, y, 1) are the variational derivatives
uniquely defined by (a priori in the sense of distributions)

dTab(xa Y, A)[q/jlv wQ]((SUJk(/\)) = dZ(VUjk()\)Tab(xa Y, )‘)(wh ¢2))(z)5Ujk(Z7 >‘)7

AT (,y, 1) [1, 2] (U (1)) = [ de(Vyem T (2, y, 1) (1, 42))(2")6U ™ (2, ).

/
/

(A.97)

In (A.96), we use the convention of Einstein summation, so the summation over repeated
indices is implicit.

We now seek a formula for VUjk()\)Tab(l’, y, A) and VUem(“)TCd(x, y, ). To find such
a formula, we take the Gateaux derivative of both sides of (A.14) at the point U(-, A) in
the direction 6U (-, A) to obtain the equation
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+ 06U (z, \)T'(z, y, A), (A.98)
dT'(z,y, N[U( DIOU(, M) |a=y = Ic2.

The reader can check by direct computation that the solution to this equation is given
by

dT (z,y, N[U(, N](0U(-,\)) = /dzT(x,y,AﬁU(z,)\)T(z,y,k). (A.99)

Examining identity (A.99) entry-wise, we have that

dT“b(x,y,)\)[U(-,/\)](dU(-,A)) = /dzT“j(a:,y,A)cSUjk(z,)\)ka(z,y, A),

Y

N (A.100)
dTCd($7 Y, :u’)[U(7 A)] (6U(7 )‘)) = / dZTce(Qj? Y, :u’)éUem(z/7 /'L)de(zl> Y, :U’>7
Y
which upon comparison with (A.97) yields the identity
(VUJ‘k(/\)Tab(l"ay: A) (Y1, 92))(2)
_ @ﬁmﬂ%%Mﬂﬂmﬂ%%M’*L<y<z<x<L’
0, otherwise
(A.101)

(VU’Z’"()\)TCd(mv Y, /u’) (wla 1212)) (ZI)

— T(C;ﬁl,qu)(xa y7M)T(7;Zi¢2)(ZI,y,M), —-L< y < Z/ <z <L
0, otherwise

Substituting the identity (A.101) into (A.96), we find that
{T(Jj, Y, )\)@T(JE, Y, /’(‘)}LZ,(C (wla ¢2)

— [ [ 2 (T (2.3 © T o2 0) (U MU ) 1. 0, )
y vy

x (T(Tl’hﬂ&) (zv Y, )\)@T(wl,wQ) (Zlu Y, N))
(A.102)

Using the formula given by Lemma A.10, we obtain that the right-hand equals
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_ /dz(Twl,M(x, 2N) @ Ty ) (20 10)) [P = 1), U (2, 3) @ I + Igo @ U2, )]
Y

X Ty ) (2095 A) @ Ty ) (2,95 1)) -
(A.103)

We now claim that the integrand is the partial derivative with respect to z of

(T(iblﬂbz) (x’ 2, >‘) ® T(w17¢2)(~737 2, :LL))T()‘ - U) (T(Iblﬂl)z) (Z7 Y, )‘) ® T(wl,wg) (Za Y, H’))v
(A.104)

which then completes the proof. Indeed, the reader may verify this is the case by direct
computation using the Leibniz rule and the equations (A.14) and (A.15) for the transition
matrix. So upon application of the fundamental theorem of calculus and using the initial
condition T'(x,y, A)|z=y = Ic2, we obtain the desired conclusion. O

We next check that the functional Fr,(\) defined in (A.12), is admissible (i.e. it belongs
to As ¢ defined in (4.50)). This admissibility will then imply that Fr, ge(A) and Fr 1m ()
defined in (A.74) and (A.76), respectively, belong to As,y defined in (4.70). First, observe
that by taking the direction

U (2, \) = V(6o (2)oy + dp1(2)0-) (A.105)

n (A.99), we find that

(V (m Y, )(’(/)1,¢2)>(Z) = \/ET(¢1,¢2)($7Z’ /\)O',T(whqm)(&y’)\)’

(A.106)
(V (.73 Y, )(1/)1’ ¢2))(z) = \/ET(ll)hwz)(m? Zy /\)U+T(1b1,1b2) (Z’ Y, )‘)7

for z € [y,z], and zero for z € (—L, L) \ (y,z). Letting z — L™ and y — L, we find
that

(VlTL()‘)(wlv ’(/)2))(2) = \/ET(TM,TZ&) (L7 Z, )\)O',T(w17w2)(z7 _Lv )‘)7

(A.107)
(VQTL(/\)(%, I/JQ))(’Z> = \/ET(QZH,U&) <L7 2, /\)0-+T(1b1,¢2) (Z’ —L, )‘)

Note that V1T (A)(¥1,%2), V3TL(A)(¢1,12) are smooth in (—L, L) but discontinuous
at the boundary, and consequently do no belong to C*°(Ty) (i.e. T1()) is not an admis-
sible functional). However, if we take the 2 x 2 matrix trace of both sides of the preceding
identities and use that the variational derivative commutes with the trace together with
the cyclicity of trace, we obtain that the resulting expressions extend smoothly period-
ically to the entire real line. We summarize the preceding discussion with the following
lemma.

Lemma A.12. For any A € C, F}, € As c. Consequently, Fr, re(N), FLim(\) € Asy.
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We now show that traces Ep(\), Fr(u), for fixed u, A € C, are in involution with
respect to the Poisson bracket {-,-},. . They key ingredient of this result is the identity
of Lemma A.11 for the Poisson brackets between the entries of the transition matrices.

Lemma A.13. For any A\, u € C, we have that
{FL(\), Fr(u)} r2c =0. (A.108)

Proof. Applying Lemma A.11, we have that

[T(A - 'u‘)7 T(¢17w2)(xa Y, >\) ® T(wlﬂbz)(m’ Y /u‘)]

L
= / dZ(VlT($7 Y, >‘) ® VQT(xa Y, M) - ViT(xa Y, )‘) ® VlT(x7 Y, M))(¢17 (;52)(2)
L
(A.109)

Taking the 4 x 4 matrix trace trc2gcz of both sides and using that the trace of a
commutator is zero together with the algebraic identity

treege:? <A® B) = tI‘([jz(A) tree (B), (A.llO)

for any 2 x 2 matrices A, B, we obtain that

L
0=— /dz (Vi(trez(T(z,y, )V trez (T(z, y, 1)) (o1, $2) (2)
J (A.111)
_(Vé trc: (T(.’IJ, Y, )‘))Vl tree (T((E, Y, :U’)))((bh ¢2)(’z)) )

where we also use that the trace commutes with the variational derivative. Now using
the continuity in (z,y) of the integrand, we can let x — L~ and y — —L* and use
that tre2(TL(N) = FL(\) by definition (A.12) and tre2(Tr(p)) = Fr(u) to obtain the
desired conclusion. 0O

Now we show that the functionals I, defined in (A.81) are mutually involutive with

respect to the Poisson structure on C*°(Tr;V). We begin by defining the generating
functional

pr(o1, do; ) = arccos(%ﬁi(gzﬁl,@; A)), Y(¢1, P2, A) € COO('JTL)2 x C, (A.112)

where we take the principal branch of the function arccos. We first want to show that

{PLN), (1)} 2o (b1,02) =0, V(¢1,¢2) € CF(T1)?, (A.113)
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for A, p € R with sufficiently large modulus, which requires us to compute the variational
derivatives of pr(\), pr(u).
Recall from (A.67) that

L
%IE‘L(qSl,E; A)=cos| —AL+ & / dxgo(x )Wy, 5@ A) | (A.114)
-L

We want to show that we can choose A so that the cos in the right-hand side of the
preceding equation is at positive distance from 41 for all (¢, $2) in a closed ball of
C>(Tp). To this end, we know from Appendix A.2 that given (¢1, ¢2) € C°(Tr)?, we
can choose

A= Alp1llr(ryys D1l (rr)s D2l (rr)s D2l (TL), L) € R

with sufficiently large modulus so that there exists w4, ;) (A) in (A.55) with the asymp-
totic expansion (A.56). Consequently, for any k& € N, we have that

k k
Wy, ¢> W, ($1,62) 1w, (9,82 12 (1)
000 =219 < 00,37 () — 32 =522 Y
n=1 Lo (Ty) n=1
k " N wk gy 2= (10)
=o(IA") + o , (A.115)

n=1

where the implicit constant in o(|A|*) depends only the data |02 ¢, Lo (T, ) for n €
N<i41 and j € {1,2}. By the analysis of Section 6.1,

k
Wi g0 am o) Sk Y (10561l oo (r,) + 105 b2l L (T.))- (A.116)
n=0

Hence,

L

/dl‘%(x)w(m,@(%)\) < 2L|[ @2 oo () 1wy 33y (M Loe (T, )
L

1
oL . i
S 5 (9l i=cry) + 107 dallcrs))-
=0 (A.117)

Thus, given € > 0, we can choose A € R with sufficiently large modulus depending the
data

(&, L 103 b5l (Ts)),  V(n,j) € {0,1} x {1,2},
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so that

L

/dﬂc%(m)w(d)h@)(x,/\) <e. (A.118)
L

Also choosing A so that mingez{|A\L — kn|} > 2e, we conclude that given R > 0,

L

i Y o — > All

I];(lelél{ km— A —&-/@/da:(ﬁg(x)w(m’%)(x,)\) } >6>0 ( 9)
L

for all (ﬁl,% € CDO(TL) with ||6;L¢1||L00(TL), ||6;L¢2||L°°(TL) <R, forn € {0, 1}. For such
choice of A\, we have that

L
pL(601,350) = AL+ [ duda(@u, (e V), 01Fa € C(TL). (A120)
L

for all ¢1,py € COO_(TL) with max{||0} ¢1 ||z (1), | P2llL=(T,)} < R, n € {0,1}. More-
over, for such ¢1, @2, we can use the chain rule without concern over the singularity of
arccos(z) at z = %1 to compute the variational derivatives py,, finding

N _ o\ —1/2
(V150 (N) (61, 52) = %(1 - (o) ) (Vi) (1, ),

(A.121)

- _ o\ —1/2
(Vahe ()91, 2) = §<1 - (Bl ) (VaF()(61.32).

where by Lemma A.12, the variational derivatives of F7,(\) are elements of C>(C°°(Ty)?;
C*°(TL)). Recalling the definition (4.84) for the Poisson bracket {-,-},> ¢, we then find
that for appropriate A\, p € R,

{ﬁL()\),ﬁL(H)}La«:(%,%)
. — 2\ —1/2 ~ — 2\ —1/2
i Fr(¢1, 0257 Fr(o1, a5 1)
:_Z<1_<%>> <1_(%2/~‘)>

L
< [ e (VL)1) (V22 0) (61, )

—L

—(V3EL(N) (61, 62) (Vi FL (1)) (1, 92)) (@)
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1 Fo(on o 0\Y) Fulon g\
L\P1, P2; (@1, P2
4o () (- (BB
X {FL(A)ﬂﬁ‘L(M)}L27c(¢17%)
:0,

where the ultimate equality follows from an application of Lemma A.13.

We now use (A.113) to prove the mutual involution of the functionals I ,,.
Proposition A.14. For any n,m € N, it holds that
{Iyn, Iym} 2y, =0 on C(T; V). (A.122)

Proof. Fix n,m € N, and let v = %adiag(d)l,%, $a,¢1) € C(Tr; V). Let us first
introduce some notation that will simplify the computations in the sequel. Define and

pr(viN) = pr(d1, ¢2;A) +Pr(¢2. 13 )),  V(1,A) € C®(TL;V) x €, (A.123)
where we recall that p, is defined in (A.112). Note that it is tautological that py, is the

restriction of a complex-valued functional on C*°(Ty)*, which by an abuse of notation
we write as

pL(P1, 93, @2, 01;A) = Prd1, ¢33 A) + (P2, 015 A), 1,01, 92,3 € CF(TL).
(A.124)
Now for v € C*°(Ty;V), we have by the variational derivative formulation of the
Poisson bracket {pr (), pr.(1t)} 2 (vecall (4.79)) and (A.124) that

{pr(N),pr()} 2 (7)

L
=—i / dz((Vipr (W) (Vapr () — (Vapr(N)(Vapr () (é1, b2, ¢, ¢1)(2)
L
L
—1 / dz((Vapr (V) (VipL (1) — (VipL(N)(Vapr () (61, G2, ¢2, ¢1)(2)
=—i / dz((V1pL(N)(VapL(p) — (Vapr (M) (Vipr (i) (41, ¢2)(2)

L
—1 / dz((V1pL(A\)(Vapr(n) — (Vapr(N)(Vipr (1)) (62, 61)(2). (A.125)

—L
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Recalling Remark 4.41 for the variational derivative formulation of the Poisson bracket
{»-} 12 c» We can rewrite the right-hand side of the preceding equality to obtain that

{pr V), pe()} 2y (v) = {BL(N), DL(1)} 12 ¢ (D1, d2) +{PL(A), PL(10)} 12 ¢ (2, 61)-
(A.126)
Given R > 0, for all y € C°°(T; V) with |0} L (T,) < R, for n € {0,1}, we can choose
A, 1 € R arbitrarily large to apply (A.113), yielding that both terms in the right-hand
side of the preceding equality are zero. Hence,

{PLA);pr()} 2 v (7) = 0. (A.127)

Now by the formula (A.120) for pr(A) and the large real A asymptotic expansion
(A.56) for w4, 5;1(A), we see that

ﬁL(¢l,%; N—)\L+ Zf d$¢2 wk; ¢1,(b2 ( ) )\L+ Zlk ¢)1’¢2 7

(A.128)
where the ultimate equality follows from the definition (A.60) for I;.. Taking the varia-
tional derivatives of both sides of the preceding identity, we find that

Vin (61,531 \) ~ “Z Vlfk(éf’h%)7 Vi (61, B2 \) ~ HZ Vijk((f’la(fb).

\F Nk
k=1 k=1
(A.129)
Substituting the asymptotic expansions (A.129) into (A.125), we see that
0={pL(\),pL()} 21 (7)
- L
2 1 bo I b9 [ o2
~ —iK Z /\kﬂj dz (Vili(61,62) Vol (61, 62) — Vale(d1,d2) Vil (1, ¢2)) (2)
k,j=1
—i D S / 4z (Vilk(02,61) Va3 (62:01) = Valu(62,01)Vili(62,00) (2)
k,j=1
g, Iy i},o
o> Io,5} 121, (7) (A.130)

k,j=1 A
where the ultimate equality follows from Remark 4.38 and the definition (A.81) of the
functionals I ,,. By the uniqueness of coefficients of asymptotic expansions, we conclude
that {1y, Iy j} ;2 ,, = 0 on C°°(Tr;V), completing the proof of the proposition. O
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Appendix B. Multilinear algebra

In this appendix, we review some useful facts from multilinear algebra about sym-
metric tensors, which we make use of to prove Theorem 2.8. Throughout this appendix,
V denotes a finite-dimensional complex vector space unless specified otherwise. For con-
creteness, the reader can just take V = C¢, where d is the dimension of V. For more
details and the omitted proofs, we refer the reader to [32] and [12], in particular the
latter for a concise, pedestrian exposition.

Let n € N, and let VX" — V®” be an algebraic n-fold tensor product®® for V. Now
given any n-linear map 7' : V*™ — W, where W is another complex finite-dimensional
vector space, the universal property of the tensor product asserts that there exists a
unique linear map 7 : V™ — W, such that the following diagram commutes

x LT . (B.1)

In particular, given any permutation m € S,,, there is a unique map 7 : V®? — V®»
with the property that

ﬁ<U1®"'®Un>=’Uﬂ(1)®"'®vﬂ(n)7 Yu,...,v, € V. (B.Z)

Using these maps 7, we can define the symmetrization operator Sym, on V®" by

1
Sym,, (u) == o Z 7(u), Yue Ven (B.3)
" reS,

and define what it means for a tensor to be symmetric.

Definition B.1 (Symmetric tensor). We say that u € V®" is symmetric if Sym,, (u) = u.
Equivalently, 7(u) = u for every m € S,,. We let Sym,, (V®"), alternatively @V or
V®:, denote the subspace of V®" consisting of symmetric tensors.

Remark B.2. If {e;, ..., eq} is a basis for V, then {e;, ®---®e;, }? . _ is a basis for
V@ so that dim(V®™) = d". Similarly, {Sym,, (ej, ® -+ ® €, )} 1<jy<-.<jn.<d IS a basis
for V&, so that dim(V®) = (“*"71).

We now claim that any element of V®¢ is uniquely identifiable with an element of
Clz1,...,24]n, the space of homogeneous polynomials of degree n in d variables. Indeed,
fix a basis {e1,...,eq} for V, so that {Sym,,(e;, ® --- ®e;,)}1<ji<..<j.<d is a basis for
V®: . By mapping

28 The reader will recall that the tensor product is only defined up to unique isomorphism.
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Sym,(ej, ®--- @ e;,) > af -2t = a7, (B.4)

where o, is the multi-index defined by
n
aj =Y &;(ji), Vi€ Nz, (B.5)

i=1

where §; is the discrete Dirac mass centered at j, one obtains a linear map from Ver -

Clz1,...,24]n. One can show this map is, in fact, an isomorphism. Consequently, if
u= Y Uy, Syma(e), @ - ®ey,) (B.6)
1<ji<<jn<d
is an element of V®¢ | then u is uniquely identifiable with the element F' € C[zy, ..., Z4],
given by
ay(d,)
F(zg) = Z Ujjuy” (B.7)

1< < <gn<d

where we write o ( ln) to emphasize that a; is intended as a function of j according to
the rule (B.5).

There is a useful bilinear form on Clxzy,...,24], defined as follows: if F,G €
Clz1,...,xq]n are respectively given by
— n Qg — n Qg
Fe= Y (" Jme o= X (" it @9
‘gd‘zn 17"'7 d |gd|:n 1)"'7 d

then we define

(F,Q)= " (ah " | ad) oy, ba, (B.9)

lag|=n

The form (-,-), which is evidently symmetric, has the important property of nonde-
generacy, as the next lemma shows.

Lemma B.3 (Nondegeneracy). The symmetric bilinear form (-,-) : Clay,...,24]n X
Clz1,...,zaln — C is nondegenerate: if (F,G) = 0 for all G € Clx1,...,24]n, then
F=0.

When G is of the form G(z;) = (B121 + -+ + Bawq)” (i.e. an n** power of a linear
form), then the next lemma provides an explicit formula for (F,G).

Lemma B.4. If G(z4) = (Bia1 + -+ + Baxa)", where B, € C4, then for every F €
Clz1,...,2d]n, we have that
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(F,G)=F(B,). (B.10)

We now use Lemma B.4 to prove the existence of a special decomposition for elements
of V®:. We have included a proof as it is a nice argument.

Lemma B.5 (Symmetric rank-1 decomposition). For any u € V®: | there exists an integer
N €N, coefficients {a;}}_, C C, and elements {v;}}_, C V, such that

N
u= Zajv?". (B.11)
j=1

Proof. Let W C V®: denote the set of elements which admit a decomposition of the
form (B.11). Evidently, W is a subspace of V®:. Fix a basis {ey,...,eq} for V. If v =
Bie1 + - -+ + Baeq, then one can check that under the isomorphism given by (B.7), v®"
is uniquely identifiable with the polynomial

(Brxy + - - + Baza)",

i.e. an n'* power of a linear form. Consequently, W is isomorphic to the span of n'"
powers of linear forms in Clx1,...,24]n.

Assume for the sake of a contradiction that W is a proper subspace, so that the
orthogonal complement W+ with respect to the form (-, -) is nontrivial. Then it follows
from the embedding of W C Clzy,...,24], that there exists a nonzero polynomial
F € C[z1,...,24]n, such that (F,G) = 0 for every G € W. Lemma B.4 then implies that
F(B,) =0 for every B, € C 4 which contradicts that F' is a nonzero polynomial. O

Remark B.6. Since Lemma B.5 asserts that a decomposition of the form (B.11) always
exists, one can define the symmetric rank of an element u € V®¢ by the minimal integer
N. Evidently, a tensor of the form v®" has symmetric rank 1. Although we will not need
the notion of symmetric rank in this work, we will refer to the decomposition (B.11) as
a symmetric-rank-1 decomposition.

As an application of the symmetric-rank-1 tensor decomposition, we now show an
approximation result for bosonic Schwartz functions (i.e. elements of Ss(R?)).

Lemma B.7. Let f € Ss(R?). Then given € > 0 and a Schwartz seminorm N, there eist
N € N, elements {fi}N; € S(R), and coefficients {a;}}., C C, such that

N
N(f - Zaif?d> <e. (B.12)

i=1

In other words, finite linear combinations of symmetric-rank-1 tensor products are dense
in Ss(RY).
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A d

Proof. Fix f € S5(R?), € > 0, and seminorm N. Since S5(R?) = @, S(R), there exists

an integer M € N, elements {g;;} 1<i<a C S(R), and coefficients {a;}1<j<a C C, such
1<j<M

that

M d
NI f—- Z a; Sym, <® gij> <e. (B.13)
j=1 i=1

Define the complex vector space
Vi=spanc{g;; : 1 <i<d, 1<j<M}, (B.14)
which is evidently finite-dimensional. For each j € N<jy, consider the symmetric tensor
d
Sym, <® gij> € Ve, (B.15)
i=1

By Lemma B.5, there exists an integer N; € N, elements {fjg}é\;"l C V, coefficients
{ajé}évzjl C C, such that

d N;
Symd <® 9@;‘) = Z ajgf]%d. (Blﬁ)
i=1 =1

Consequently,
M d M N
Zaj Sym, <®gij> = ZZajajgfﬁd, (B.17)
j=1 i=1

j=1¢=1

so upon substitution of this identity into (B.13), we obtain the desired conclusion. 0O

As a corollary of Lemma B.7, we obtain the following decomposition for elements in
L(Sy(RY), Ss(RY)).

Corollary B.8. Let (9 € £(S.(R?),S,(R%)). Then given e > 0 and a Schwartz seminorm
N, there exists N € N, elements {fi, g;}}Y.; C S(R), and coefficients {a;}, C C, such
that

N
N(W” =Y af? ®g?d> <e. (B.18)

i=1
Proof. Fix v(4) € £(S!(R%),S,(R%)), ¢ > 0, and seminorm A. Since

L(S;(RY), Ss(R)) 22 Ss(R)ES,(RY),
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there exists an integer N, elements {f;, 3}, C Ss(R%), and coefficients {a;}Y, C C,
such that

N
N(v(d) Y aifi® §i> <e. (B.19)
i=1

For each ¢ € N<y, Lemma B.7 implies that there exist integers IV; r, IV; 4 € N, elements
{fij}jv;'if7 {gw};\[:f C S(R), and coefficients {aij,f}jv:i'if7 {aij,g}jv:i‘f C C, such that

N-;’f Ni,_q
fi= Z aij 157, gi = Z aijg95". (B.20)
=1 =1

By setting coefficients equal to zero, we may assume without loss of generality that
Nis = N;qg =M €N, for every ¢ € N<y. So by the bilinearity of tensor product, we
obtain the decomposition

N N M
Saifiwg =Y aiaij aigafit©gsl. (B.21)
i=1 i=1j,j/=1

Substitution of this identity into (B.19) and relabeling/re-indexing of the summation
yields the desired conclusion. O

Appendix C. Distribution-valued operators

Following Appendix B of our companion paper [57], we review and develop some
properties of distribution-valued operators (DVOs) (i.e. elements of £L(S(R¥),S'(R¥))),
which are used extensively in this work. Most of these properties are a special case of
a more general theory involving topological tensor products of locally convex spaces for
which we refer the reader to [36,73,82] for further reading.

C.1. Adjoint

In this subsection, we record some properties of the adjoint of a DVO as well as some
properties of the map taking a DVO to its adjoint.

Lemma C.1 (Adjoint map). Let k € N, and let A®) € L(S(RF),S'(R¥)). Then there is
a unique map (A®))* € L(S(RF),S'(R*)) such that

Vi®E g®) e S(RF).
(C.1)

((A®yg®), 7 _ W

S (R*)—S(RF) S'(R*)—S(RF)

Furthermore, the adjoint map
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«: L(S(RF), 8" (R¥)) — L(S(RF),S'(R¥)), AWy (AR (C.2)

is a continuous involution.
Additionally, for B®) ¢ L(S'(RF),S'(R¥)), there exists a unique linear map in
(B®)* € L(S(R¥), S(RF)) such that

(k) (B)Y*g(k)
(u®, (BR)7g >S,(R,€)is(w)

— (B, (k) (k) (k) (k) RE "(RFY. _
(B, g0 o sy VOO ) € SR xS®Y.(©3)
Moreover, the adjoint map

x: L(S'(RF),S'(R¥)) — L(S(R¥), S(R*)) (C.4)

is a continuous involution.
The next lemma is useful for computing the adjoint of the composition of maps.

Lemma C.2. Let A®) € £L(S(R¥),S'(RF)) and B € L(S'(R*),S'(RF)). Then
(B<k>A(k>)* — (A®)Y*(BW)*, (C.5)

Definition C.3 (Self- and skew-adjoint). Given k € N, we say that an operator
A ¢ L(S(RF),S'(R¥)) is self-adjoint if (A®)* = A Similarly, we say that
A®) € L(S(RF),S'(RF)) is skew-adjoint if (AF))* = —AK),

Remark C.4. Note that if A®) € £(S(R*),S’(R¥)) is an operator mapping S(RF) —
L?(RF), then our definition of self-adjoint does not coincide with the usual Hilbert space
definition for densely defined operators, but instead with the definition of a symmetric
operator.

C.2. Trace and partial trace

In this subsection, we generalize the trace of an operator on a separable Hilbert
space to the DVO setting. Viewing the trace as a bilinear map and using the canonical
isomorphisms

LISRY),S'(RY)) = S'(R*Y) and L(S'(RY),S(RY)) = S(R*Y)  (C.6)
given by the Schwartz kernel theorem, we can define the generalized trace of the right-

composition of an operator in £(S(RY),S'(RY)) with an operator in £(S'(RY), S(RY))
through the pairing of their Schwartz kernels. More precisely,
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Tl"l,.u,N(A(N)'Y(N)) = <A(N)7 (’)’(N))t>$/(R2N)_5(R2N) (07)

is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A(N),
which belongs to S’(R2V), with the Schwartz kernel of the transpose of () 2 which
belongs to S(R2Y).

Definition C.5 (Generalized trace). We define
Try,.. v L(SRY),S'(RY)) x L(S'(RY),S(RY)) = C
(N)(N) Y . (N) (A (N)yt (©8)
Try,...~ (A v ) = (AN (V) sr(ev ) — s (2N -

Remark C.6. The Schwartz kernel theorem implies that for A™Y) € £(S(RY), S'(RN)),

Try .~ (A(N)(f ® g)) = <A(N)f7 g>$/(RN)_5(]RN)7 Vf.g€ S(RN)- (C.9)

Remark C.7. The reader can check that if A ¢ L£(S(RY),S'(RY)) and V) ¢
L(S'(RN),S(RN)) are such that AN is a trace-class operator p(™), then our def-
inition of the generalized trace of Ay () coincides with the usual definition of the
trace of p™) as an operator on the Hilbert space L?(RY).

We now record some properties of the generalized trace which are reminiscent of
properties of the usual trace encountered in functional analysis.

Proposition C.8 (Properties of generalized trace). Let AN) € L(S(RY),S'(RY)), and let
7N e £(S"(RN),S(RYN)). The following properties hold:

(i) Try .. N is separately continuous.
(ii) We have the following identity:

Ty n ((A(N))*,V(N)) = Try. N (AN (). (C.10)
(iii) If BN) € £(S'(RN), S (RN)), then Try n satisfies the cyclicity property
Tri,. N ((B<N>A<N>)7<N>) =Try (Auv) (7(N>B<N>)). (C.11)

We now extend the partial trace map to our setting using our bilinear perspective.

Proposition C.9 (Generalized partial trace). Let N € N and let k € {0,...,N —1}. Then
there exists a unique bilinear, separately continuous map

29 (v(N)t is the operator f — Jrw dzyy (@ zn) fzh)-
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Trpsr,..n 0 LSRY),S'RY)) x L(S'(RY),SRY)) — L(S(RF),S'(RY)),  (C.12)

which satisfies

Treyr,. N (A(N)(f(N) ® Q(N))) = / d£k+1;N(A(N)f(N))@kv2k+1;N)9(N) (ﬁikﬂ;N)v

RN-k
(C.13)
for all AN) € L(SRN),S'(RN)), and f™), gN) € S(RYN). That is,
(N (V) & oY) (B p(R)
<Trlc+1,...,N(A (f ey )>¢ e >s'(Rk)—5(R’«)
(C.14)

- (N) £(N) (k) (N) (k)
(AN, 90 @ (0, 60, me) -5, @9) g sy

for all ¢F) () ¢ S(RF¥).

Remark C.10. Our notation Trjy1, . n implies a partial trace over the variables with
indices belonging to the index set {i : k+ 1 < i < N}. To alleviate some notational
complications, we will use the convention that if the index set of the partial trace is
empty, we do not take a partial trace.

C.3. Contractions and the “good mapping property”

Given A0 ¢ L(S(R?),S’(R?)), an integer k& > 4, and a cardinality-i subset
{l1,...,4;} C N<g, we want to define to an operator acting only on the variables asso-
ciated to {¢1,...,¢;}. We have the following result.

Proposition C.11 (k-particle extensions). There exists a unique AEZ ) € L(S(R¥),
S'(R¥)), which satisfies

AEZ,J;)(fl@®fk)(£k):A(l)(f€1 ®®f&)<x@17’xel)( H f@(mé>>
LN \{L1,...,0:}
(C.15)
in the sense of tempered distributions.

An important property of the above k-particle extension is that it preserves self- and
skew-adjointness.

Lemma C.12. Let i € N, let k € N>y, and let AYD € L(S(RF),S"(R?)) be self-adjoint
(r@sp skew-adjoint). Then for any cardinality-i subset {{1,...,¢;} C N<y, we have that

Agz)l AR self-adjoint (resp. skew-adjoint).
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Now let 4,5 € N, let k :== i+ j — 1, and let (a,5) € Ng; x Ng;. The proof of
Proposition 2.3 in [57] requires us to give meaning to the composition

(1) )
A(l,...,i)B(i—&-l,...,i-’,—,@—l,a,i—i—ﬁ,...,k) (C.16)

as an operator in L(S(R¥),S'(R¥)), when A® ¢ L(S(R?),S(RY)) and BY) ¢
L(S(R7),S'(R7)).

Remark C.13. Without further conditions on A®) or BY)| the composition (C.16) may
not be well-defined. Indeed, consider the operator A € £(S(R?),S’(R?)) defined by

Af = bof, Ve S(R?), (C.17)

where Jy denotes the Dirac mass about the origin in R2. Then for f,g € S(R),

/dxz(Af@)(xh332)9®2(33’1,332) = f(0)9(0)f(z1)g(x1)do(21) € '(R) @ S(R). (C.18)
R

It is easy to show that fdp € S'(R) does not coincide with a Schwartz function.

This issue leads us to a property we call the good mapping property. The intuition for
the good mapping property is the basic fact from distribution theory that the convolu-
tion of a distribution of compact support with a Schwartz function is again a Schwartz
function. We recall the definition of the good mapping property here.

Definition 2.2 (Good mapping property). Let £ € N. We say that an operator A(®) ¢
L(S(RY),S'(R*)) has the good mapping property if for any a € N, the continuous
bilinear map

S(RY) x S(RY) — S (R; S, (R))

(f(g),g(é)) — / dry...dve_1dTasy ... dng(é)(f([))(xl, cey Xp)
Re-1

X g2, Tae1, T Tty T0),
may be identified with a continuous bilinear map S(R?) x S(R?) — S(R?).%°

Remark C.14. By tensoring with identity, we see that if AW has the good mapping
property, then AEZ ) has the good mapping property, where 7 is replaced by k and
o€ N§k~

30 Here and throughout this paper, an integral involving a distribution should be understood as a distri-
butional pairing unless specified otherwise.



136 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525

C.4. The subspace Lgmp(S(RF),S'(R¥))

Lastly, we expand more on Ly, (S(R¥),S'(R¥)) as a topological vector subspace of
L(S(R¥), S’(R*¥)) with the following lemma.

Lemma C.15. For k € N, it holds that

(1) Lomp(SRF), S (R¥)) is a dense subspace of L(S(RF),S'(R¥));
(i) The topological dual Lg,(S(R¥),S'(R*¥))* endowed with the strong dual topology
is isomorphic to L(S'(R¥), S(RF)).

Appendix D. Products of distributions and the wave front set

In this appendix, we review some basic facts from microlocal analysis about the wave
front set of a distribution and its application to proving the well-definedness of the
product of two distributions, as used in Section 5.1. We mostly follow the exposition in
Chapter VIII of [35], but refer the reader to Chapter IX, §10 of [67] for a more pedestrian
treatment.

Definition D.1 (Singular support). Let u € D' (R¥). We say that = € R” is a reqular point
of u if and only if there exists an open neighborhood U > z and a function f: U — C
which is C*° on U, such that

(0o = [ F@)oladde, V6 € C2(RY) with supp(¢) U, (D)
Rk

We call the set
R*\ {z € R* : =z is a regular point for u} (D.2)
the singular support of u, denoted by sing supp(u).

Remark D.2. It is evident that singsupp(u) C supp(u). Since the set of regular points is
open (any other point in the neighborhood U above also belongs to the singular support),
it follows that singsupp(u) is a closed subset of supp(u).

The singular support is useful for establishing the well-definedness of a product of
distributions uv via localization, as the next proposition shows.

Proposition D.3. Let u,v € D'(R¥), and suppose that singsupp(u) N singsupp(v) = 0.
Then there is a unique w € D'(R¥) such that the following holds:

(i) If x ¢ singsupp(v) and v = f in a neighborhood of x, where f € C*>(R¥), then
w = fu in a neighborhood of x.
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(i) If © ¢ singsupp(u) and u = g in a neighborhood of x, where g € C=(RF), then
w = gv in a neighborhood of x.

Proof. See Theorem IX.42 in [67]. O

Next, we introduce the wave front set of a distribution. While the singular support
captures the location of the singularities of a distribution, the wave front set also contains
information about the directions of the high frequencies that cause these singularities.

Definition D.4 (Wave front set). Let u € D'(R¥). We say that a point (1, €,) € RE x
(R*\ {0}) is a reqular directed point for u if and only if there exist radii ,,e¢ > 0 and
a function ¢ € C2°(R¥) which is identically one on the open ball B(zy,¢.), such that

]@(Agk)] Sy @+, V(g A) € B, e) x [0,00), YN €Ng.  (D.3)

We define the wave front set of u to be the complement in RF x (R* \ {0}) of the set of
regular directed points:

WE(u) = (R x (R"\ {0})) \ {(z),€,) € R* x (R*\ {0}) :
(z1,€,) is a regular directed point for u}. (D.4)

Remark D.5. In [35], Hormander uses a definition of the wave front set of a distribution u,
which is seemingly different from our Definition D.4. More precisely, for any z;, € R¥ and
¢ € C(RF), such that ¢(z;,) # 0, he defines the set 3(¢u) consisting of all £, € R*\ {0}
having no conic neighborhood U such that

— —N
lpulé,) Sn (1 n |§k|> , V£ €U YNeN, (D.5)
He then defines the set ¥, (u) by

Sa, () = 2(gu), ¢ € C(RF) st p(zy) #0. (D.6)
[

Hoérmander’s definition of the wave front set of u, which we denote by \ﬁ(u), is then
given by

WE(u) = {(z;,§,) € RF x (R*\{0}) : §, € Ty, (u)}. (D.7)

It follows from Lemma D.6 below that \/ﬁ‘(u) = WF(u) (i.e. the two definitions are
equivalent).

We record some properties of the wave front set.
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Lemma D.6. If u € D'(R¥) and g € C2(RF), then WF(gu) C WF(u). Similarly, if
u € §'(R¥) and g € S(R¥), then WF(gu) C WF (u).

Proposition D.7. Let u € D'(R¥).

(a) WF(u) is a closed subset of R* x (R¥\ {0}).
(b) For each z, € R¥, the set

WF,, (u) = {§, € RF\ {0} : (z,€,) € WF(u)} (D.8)

s a cone.

(c) If v € D'(R¥), then
WF(u+v) C WF(u) UWF(v). (D.9)

(d) sing supp(u)‘ = {z, € R* : WF,, (u) # 0}.
(e) If v e D' (R?), then
WF(u®v) C (WF(u) x WF(v)) U ((supp(u) x {0}) x WF(v))
U (WF(u) x (supp(v) x {0})). (D.10)

(f) Ifue S'(RY),v € S'(R7) and w € S(R*7) then
WF((u ® v)w) C WF(u ®v).

Proof. Properties (a) - (c) are quick consequences of the definition of the wave front set.
For (d), see Theorem IX.44 in [67]. For property (e), see Theorem 8.2.9 in [35]. Property
(f) follows from Lemma D.6. O

In our proof of Lemma 5.1, we will need the following result.
Lemma D.8 (Wave front set of 6(x; — x;)). Let k € N, and let i < j € N<y. Then

WE(6(zi —a;5)) = {(21,,€,) € RF x (RF\{0}) sy = 25, & +& =0,
and fz =0 Vle Ngk \ {Z,j}}

Proof. By symmetry, it suffices to consider the case (i,5) = (1,2). Since §(x1 — x2) has
singular support in the hyperplane {x; = 2o} C R¥ it follows from Proposition D.7(d)
that (z;,£,) € WF(6(21 — 22)) implies that z1 = x».

Now suppose that (z;,§,) € R x (R¥\ {0}) and &; + & # 0. We claim that such a

point is a regular directed point for §(z1 — z2) (i.e. it does not belong to the wave front
set). Indeed, let ¢ € C>°(R*¥) be such that ¢(z;) # 0. Then
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F(o(z1 — 22)9) () = / dy, oy, y, e T s el e RE (D)
Rk—1

Since ¢ is Schwartz class, repeated integration by parts in Yo yields
/ ’ / ’ -N
FO@i—a)o)€)| sv (1+lg+&l+16,,) . YNeNo.  (D12)
We consider two cases based on the values of £ and &.

I. If sgn(&2) = sgn(&y), then

&1 + &2f = max{|&1], (&1}, (D.13)

which implies that

(1 + 6+ &l + |§3;kl)_N <w (1 + |§k|)_N. (D.14)

Hence, if € > 0 is sufficiently small so that sgn(£]) = sgn(&5) for all §;€ € B(¢,.¢),
then

SN (1 +)\|§k|) N, Vg; € B({,.¢), A€[0,00).
(D.15)
IT. If sgn(&2) = —sgn(&1), then without loss of generality suppose that [€1| > |&a].
Then for € > 0 sufficiently small, we have that there exists 6 € (0,1) such that

F(8(x1 — w2))(AE,)

L1 Ve € B(¢

!
131

So by the reverse triangle inequality,

e). (D.16)

’ -N -N ’
(1+Ag +&l+ g, ) Sew (1+2g]) . Vg €BE,e) Aeo,).
(D.17)

Now suppose that (gkék) e R* x (R¥\ {0}), &1 4 & = 0, and £, £0 € RF-2, We
claim that such a point is a regular directed point. We consider two cases based on the
magnitude of |¢| relative to [, |-

L If & < €., |, then for £ > 0 sufficiently small,

-N -N
(L+Ag +&l+2g, ) v (1+2g]) . Ve €B(Ee) Ae[o,x).
(D.18)
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IL If [&| > [€,,, |, then for € > 0 sufficiently small, there exists ¢ € (0,1) such that

€. ,
‘§;| >0, V¢, € B, €). (D.19)
1
Hence,
€l 0
€l = =5 + 7 (161 +15]). (D.20)

which implies that

’ -N -N /
(1 ¥ )\|§3;k|) <on (1 ¥ )\|§k|) , V& €B(£,.2), A€[0,00). (D21)
Thus, we have shown that

WEF(S(21 — 22)) C {(21,€,) € R* x (RF\ {0}) : 21 = 20, & +& =0, and €y = 0}.

(D.22)
For the reverse inclusion, we claim that (zy, (—&2,&2,05,)) € R* x (R¥\ {0}) is not a
regular directed point for d(x; — z3). Indeed, this claim follows from observing that for
a bump function ¢ € C°(RF) about z;, we have that for all A € [0, o0),

’I((S(.Tl - x2)g0)<_)‘€2a)‘€2793;k>‘ = / dQQ;kgﬂ(xg,@Q;k). O (D23)
RE—1

We now seek to systematically give meaning to the product of distributions and, in
particular, preserve the property that the Fourier transform maps products to convo-
lution. We accomplish this task with a useful criterion due to Hérmander—one which
we make heavy use of in Section 5—for how to “canonically” define the product of two
distributions. Before stating Héormander’s result, we need a few technical preliminaries.

For a closed cone I' C R* x (R*\ {0}), define the set

Dp(R*) = {u € D'(R¥) : WF(u) C T}. (D.24)

Lemma D.9. u € D'(R¥) belongs to Di(R*) if and only if for every ¢ € CZ(R*) and
every closed cone V C R¥ satisfying

I'N (supp(¢) x V) =0, (D.25)
we have that

sup [¢, [V(ou)(€,)| < oo, VYN eN. (D.26)
§,.EV
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Proof. See Lemma 8.2.1 in [35]. O

It is clear that Dp(R¥) is a subspace of D’(R¥). We say that a sequence {u; 132y in
Dj(R*) and u € Dp(R¥), we say that u; — u in Dp(R¥) as j — oo if u; — u in the
weak-* topology on D'(R*) and for every N € N,

s €N (@) (E,) — (dug)(E,)| =0, (D.27)

as j — oo, for every ¢ € C°(RF) and closed cone V' C R* such that (D.25) holds.

The next lemma shows that C2°(R¥) is sequentially dense in the space Dj(RF).

Lemma D.10. For every u € DR(RF), there exists a sequence u; € C°(RF) such that
u; — u in DR(RF).

Proof. See Theorem 8.2.3 in [35]. O

Lemma D.11. Let m,n € N and let f : R™ — R™ be a C°° map. Define the set of
normals of the map f by

Ny = {(f(&n).n,) ER" x R" : f'(z,,)T, =0}, (D.28)

-n

where f'(x,,)T denotes the transpose of the matriz f'(x,,). Then the pullback distribution
f*u can be defined in one and only one way for all u € D'(R™) with

Ny N WEF(u) =0 (D.29)

so that f*u = uo f, whenu € C*(R™) and for any closed conic subset T C R™x (R™\{0})
satisfying I' N Ny = 0, we have a continuous map f* : Dp(R™) — Dy.p(R™), where

FT = {2 @)™ ) ()i, ) €T} (D.30)
In particular, for every u € D'(R™) satisfying (D.29), we have that
WF(f*u) C f* WF(u). (D.31)
Proof. See Theorem 8.2.4 in [35]. O

We are now prepared to state Hormander’s criterion for the existence of the product
of two distributions.

Proposition D.12 (Hormander’s criterion). Let uy,us € D'(R¥), and suppose that

WF(u1) & WF(u2) = {(z,¢,) € R x (RF\{0}): ¢, = §nt o
(Ek’gj,k) € WF(u;) forj=1,2} (D.32)
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does not contain an element of the form (x,,0). Then the product ujus can be defined as
the pullback of the tensor product u; @ us by the diagonal map d : R¥ — R2*. Moreover,

We refer to this definition of the product uius as the Hérmander product.

Proof. See Theorem 8.2.10 in [35]. O

Sometimes it is easy to make an ansatz for an explicit formula for the product of two
distributions, for example §(z1—2x2)d(x2—x3). The next lemma is useful for verifying that
the ansatz indeed coincides with the product distribution defined by Proposition D.12.

Lemma D.13. Let u,v € D'(R¥). Then there exists at most one distribution w € D'(R¥)
such that for every z, € R¥, there exists ¢ € C°(RF) which is = 1 on B(zy,e), for
some € > 0, and such that for every §k € R¥,

F(gu) - F(dv)(€, — ) € L'(RY), (D.34)
the map

RF 5 C, € > (F(du) * F(dv))(E,) (D.35)

is polynomially bounded, and

F(Pw)(€,) = (2m) 72 /dﬂkf(W)(ﬂk)}"(M)@k = 1,)- (D-36)
R
Proof. We first claim that for any ¢ € C°(R¥),
Fdw)(€,) = 2m) "2 (F(pdur) * F(guz))(€,) = (2m) "2 (F(dur) * F(vouz))(E,),
(D.37)

for all £ p € R* where the integrals defining the convolutions converge absolutely for &,
fixed. Indeed, since 12 is Schwartz and F(¢?w) is analytic,

Fd?u)(€,) = (2m) 2 / dn, F@)(E, —n, ) F(@*w)(n,)
R*
=02 [ F)E, ) (R/ i F(gur)(n,, — 1) F(dua)(i) |,
Rk k

(D.38)

where the integrals are absolutely convergent. Hence, by the Fubini-Tonelli theorem,
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/ dn, F@)(E, —n,) (R/ o], F(un) (1, gpfwua(g;))

R (D.39)

= /dﬂ;f(aﬁuz)(ﬂ;) (R/ dneF(¥)(&, — 0, )F (Pu1)(n,, — ﬂ;)) :

Rk

By the translation invariance of the Lebesgue measure,

/ dn, F0)(E, — 1) F(éun)(n, —,) = / dn, FOO)E, — 1. —n, ) F(dur)(n,)

Rk R*
= (F(y) * F(du1)) (€, — 1)
= 2m)*2F(pdur) (€, — 1)), (D.40)

where the ultimate equality follows from Fourier inversion. Therefore,

(2m) "/ /dﬂ;f(Wz)(Q;) (R/ A F ()&, — n, ) F (ur)(n, — ﬂ;))
R* k

= (F(Your) * F(duz))(§,)- (D.41)

By symmetry, we have also shown that

Fho*w)(€,) = (F(dur) * F(dou2))(§,)- (D.42)

Now suppose that wy,ws € D'(R¥) are two distributions such that there exist ¢y, ¢ €
C°(R¥) so that

F(¢twr) = (F(rur) * Fpruz)) (D.43)
F(p3wz) = (F(pour) * F(pouz)), (D.44)

where the integrals defining the convolutions are absolutely convergent for fixed §, and
there exists N1, No € Ny so that

§jl€lﬂgk<§k>_NlR[ dﬂk ’f(¢1U1)(§k - ﬂk)f(¢1u2)(ﬂk)’ < 0 (D45)
;gﬂgk <§k>_NzR[ dn, ‘f(¢2u1>(§k - ﬂk)]:(d)zuz)(ﬂk)‘ < 00. (D.46)

Then by (D.37),
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Table 1
Notation.

Symbol Definition

Ty OF Ty, (z1,...,zK) or (x4, ..., Titk)

dzy or dz;; y,

N or Ny

N<i or N>i

Sk -
C(R*) or D(RF)
S(RF) or S, (RF)
S(R*; V)

S’ (RF) or S/ (R¥)
D' (R¥)

L(E,F)

dF

VorV,, V.v, V,c

V1,Vi,V3, V3
A

(m(1),...,m(k))

Sym,, (f)

Sym, (A%®), Sym(A)
B:Tr%-’Bi;j

¢® or ¢><k

wrz, Wr2 vy, Wr2 p
As, As,v, As.c

{'7 '}L27 {'7 '}LZ,V’ {'7 .}L2,C
(6om [7]6’34:)

(QsZC,.Aooy {'1 }‘5;)

Wns W, (3hy,92)
(k),t

(k). o, (F),t
W, 7wn,,j ) n,j’
I7L7 I7L7 Iy, n

dxy---dxy or dzy -+ -driyy

natural numbers or natural numbers inclusive of zero
{neN:n<itor{neN:n>i}

symmetric group on k elements

smooth, compactly supported functions on R*

Schwartz space or bosonic Schwartz space on R*: Definition 4.17
Schwartz functions on R* with values in V: (2.51), (4.63)

tempered distributions or bosonic tempered distributions on R
distributions on R*

continuous linear maps between locally convex spaces E and F

the Gateaux derivative of F': Definition 4.3

the real or symplectic L? gradients: Definition 4.33 and Remark 4.34,
Proposition 4.37, Proposition 4.40

variational derivatives: (4.52), (4.77)

conjugation of an operator by a permutation: see (4.29)
symmetrization operator for functions: Definition 4.16
symmetrization operator for operators: Definition 4.20

contraction operators: (2.34) (2.35)

k-fold tensor or cartesian product of ¢ with itself: (4.27) or (4.28)

L? symplectic forms: (4.47), (4.68), (4.80)

see (4.50), (4.70), (4.83)

L? Poisson brackets: (4.51), (4.72), (4.84)

Lie algebra of observable oco-hierarchies: see discussion around Propo-
sition 2.3

Lie-Poisson manifold of density matrix co-hierarchies: (2.29) and dis-
cussion around Proposition 2.5

recursive functions: (1.22), (6.31)

k-particle component of w,: (6.2); partial transposes of w&k):
Lemma 6.5

involutive functionals: (1.23), (2.50), (2.52)

the unsymmetrized operators: (2.36)

the self-adjoint operators: (5.74)

the bosonic, self-adjoint operators: (2.44)

the n-th Hamiltonian functional: (2.45)

generalized trace: Definition C.5

generalized partial trace: Proposition C.9

wave front set of a distribution u: Definition D.4

F(¢ipawr) = (2m) 2 F (o) * F(aoiwr) = (2m) 2 F (¢2) * (F(d1u1) * F(pr1douz))

2m) 2 F(Gaprur) * Fpaprug), (D.47)

where the ultimate equality is justified since F(¢2) is a Schwartz function and the fact
that there exists some N € N so that

¢, €R*

sup (67 [ du |Florn)(&, — 1) F(6r0aus) )| < o,

Rk

(D.48)

which is a consequence of (D.45). Similarly,

F($ipows) = (21) "2 F(dp162u1) * F(prdouz),

(D.49)
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which shows that F(¢?¢3w1) = F(¢pi¢3ws). By a localization argument (see, for in-
stance, Theorem 2.2.1 in [35]), it follows that w; = wy in D'(R¥), completing the proof
of the lemma. 0O

Lastly, we record some basic properties of the product of two distributions, when it
exists.

Proposition D.14 (Properties of product). The following properties hold:

(a) If f € D(R*) and u € D'(RF), then the usual definition of the fu coincides with
Proposition D.12.

(b) If u,v,w € D'(R¥) and the products uv, (wv)w, vw, and u(vw) all exist, then
u(vw) = (uwv)w. Furthermore, if uv exists, then vu also exists and uv = vu.

(c) If u,v € D'(R¥) have disjoint singular supports, then uv exists and is given by the
product distribution guaranteed by Proposition D.S5.

(d) If u,v € D'(RF) and wv ewists, then supp(uv) C supp(u) N supp(v).

Proof. See Theorem 1X.43 in [67]. O
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