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We consider the cubic Gross-Pitaevskii (GP) hierarchy in one 
spatial dimension. We establish the existence of an infinite 
sequence of observables such that the corresponding trace 
functionals, which we call “energies,” commute with respect 
to the weak Lie-Poisson structure defined by the authors in 
[57]. The Hamiltonian equation associated to the third energy 
functional is precisely the GP hierarchy. The equations of 
motion corresponding to the remaining energies generalize the 
well-known nonlinear Schrödinger hierarchy, the third element 
of which is the one-dimensional cubic nonlinear Schrödinger 
equation. This work provides substantial evidence for the GP 
hierarchy as a new integrable system and is a step towards 
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Lieb-Liniger understanding the origins of the integrability of the NLS in 
terms of a scaling limit of a quantum integrable system.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

Integrable partial differential equations (PDE) are a special class of equations which, 
broadly speaking, can be solved explicitly,6 for instance by the inverse scattering trans-
form (IST) discovered by Gardner, Greene, Kruskal and Miura [26] and its subsequent 
reformulation by Lax [44]. In the years since these (and many other) landmark works, 
there has been much activity on determining which equations, and more generally, sys-
tems, are or should be integrable and the mathematical consequences of being integrable 
(e.g. see the survey [14]). Despite the lively, ongoing debate [84] over the defining fea-
tures of integrability, consensus holds that certain equations, such as the Korteweg-de 
Vries (KdV) or one-dimensional cubic nonlinear Schrödinger equation (NLS), should be 
integrable under any reasonable definition of the term. Even with the vast research on 
the implications of an equation’s integrability, such as conserved quantities, solitons, or 
hidden symmetries, it remains unclear why equations which are so physically relevant 
also happen to be integrable [11], and, in particular, how integrability is preserved under 
scaling limits. Mathematical insight into this line of inquiry would certainly deepen our 
understanding of the important models that comprise the extensive catalog of known 
integrable systems.

The present work considers the familiar one-dimensional cubic NLS

i∂tφ + Δφ = 2κ|φ|2φ, φ : R×R → C, κ ∈ {±1}, (1.1)

which was shown by Zakharov and Shabat [85] to be exactly solvable by the IST (see also 
[1,23,83]). Equation (1.1) appears in several distinct physical contexts, but our interest 
is in its significance as an effective equation for a one-dimensional system of interacting 
bosons. More, precisely, the NLS arises from the Lieb-Liniger (LL) model [46], which is 
a well-known exactly solvable model describing N bosons on the line with δ-potential 
interactions, when the coupling constant scales like 1/N so that we are in the mean-field
regime. Our long-term objective is to understand the extent to which it is possible to 
“derive” the integrable structure of the NLS from the underlying Lieb-Liniger model in 
this scaling regime. An important object, at least formally, in the derivation of the NLS 
is the Gross-Pitaevskii (GP) hierarchy, an infinite system of coupled linear equations 
satisfied by the reduced density matrices of the N -body system in the limit as N → ∞. 
The NLS is then obtained from the GP hierarchy by restricting to a special class of 
so-called factorized solutions. As a step towards our aforementioned long-term goal, 
the present work seeks to understand the integrability of the NLS in terms of the GP 
hierarchy, in particular to provide evidence for the GP hierarchy as a new integrable 
system, of which the NLS is then a special case.

6 Originally, the typical method employed to solve such systems was by method of “quadratures,” or, in 
other words, integration.
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The remainder of the scientific content of this introduction consists of five subsections. 
In Section 1.2, we review the derivation of the NLS from quantum many-body systems 
and, in particular, the role of the GP hierarchy in this derivation. In Section 1.3, we 
acquaint the reader with our prior work [57], which considers the derivation of the geo-
metric structure of the NLS from quantum many-body systems and establishes that the 
GP hierarchy is itself a Hamiltonian system. In Section 1.4, we discuss the implications of 
the integrability of the 1D cubic NLS in terms of a hierarchy of commuting Hamiltonian 
flows. In Section 1.5, we give informal statements of the main results of this paper and 
briefly discuss the ideas behind the proofs of these results. Finally, in Section 1.6, we 
close the introduction by returning to our longer-term vision and the further questions 
raised and left unaddressed by the present work.

1.2. From bosons to NLS via GP hierarchy

Having described the motivation behind the present work, we now properly introduce 
the GP hierarchy and its relationship with the NLS by briefly reviewing the derivation 
of the NLS from quantum many-body systems, a well-studied topic in recent years (e.g., 
see the review texts [9,30,52,59,71,72]). We focus here only on the one-dimensional case 
of interest to the present article.

Our starting point is the Lieb-Liniger model for N bosons, which is the many-
body problem on L2

sym(RN ), the space of symmetric L2 functions, described by the 
Schrödinger equation

i∂tΦN = HNΦN , HN =
N∑
j=1

−Δxj
+ 2κ

(N − 1)
∑

1≤j<k≤N

δ(Xj −Xk), (1.2)

where the coupling constant has been taken to be proportional to 1/N so that we are 
in the mean field scaling regime. The value of κ ∈ {±1} determines whether the system 
is repulsive (κ = 1) or attractive (κ = −1). Here, HN may be realized as a self-adjoint 
operator on L2

sym(RN ) by means of the KLMN theorem (see Theorem X.17 of [67]).
The many-body problem (1.2) is a toy model for a quasi-one-dimensional di-

lute Bose gasses [16,22,68,81], and both mathematical [51,74,75] and physical interest 
[17,38,50,61,62,65,66] in (1.2) stems from its remarkable property of being exactly solv-
able. More precisely, Lieb and Liniger used the Bethe ansatz7 in their seminal paper 
[46] to obtain explicit formulae for the eigenfunctions and spectrum of the Hamiltonian 
HN . Analogous to the free Schrödinger equation, one has an explicit distorted Fourier 
transform associated to HN , which by solving an ordinary differential equation in the 
distorted Fourier domain yields a formula for the solution to (1.2).

7 Bethe ansatz refers to a technique in the study of exactly solvable models introduced by Hans Bethe to 
find exact eigenvalues and eigenvectors of the antiferromagnetic Heisenberg spin chain [10]. For more on 
this technique, we refer the reader to the monographs [27] and [43].
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The connection between the LL model and the NLS is via an infinite particle limit. 
More precisely, one considers the reduced density matrices

γ
(k)
N := Trk+1,...,N ( |ΦN 〉 〈ΦN |), k ∈ N (1.3)

where Trk+1,...,N denotes the partial trace over the k + 1, . . . , N coordinates and, by 
convention, γ(k)

N = 0 for k > N . The {γ(k)
N }Nk=1 then solve the BBGKY hierarchy,8

which is a coupled system of linear equations describing the evolution of finitely many 
interacting bosons. In the limit as N → ∞, the sequence {γ(k)

N }k∈N formally converges 
to a solution {γ(k)}k∈N of the cubic Gross-Pitaevskii (GP) hierarchy

i∂tγ
(k) =

[
−Δxk

, γ(k)
]

+ 2κ
k∑

j=1
Trk+1

([
δ(Xj −Xk+1), γ(k+1)

])
, k ∈ N, (1.4)

where we have introduced the notation Δxk
:=

∑k
j=1 Δxj

and [·, ·] denotes the usual com-
mutator bracket. While (1.4) is a linear system, it is coupled, rendering its mathematical 
study nontrivial. The connection with the NLS (1.1) is then as follows:

(γ(k))k∈N , γ(k) := |φ⊗k〉 〈φ⊗k| solves the GP (1.4)

⇐⇒ φ : [0, T ] ×R → C solves the NLS (1.1). (1.5)

Thus, the NLS may be viewed as a special case of the GP hierarchy corresponding to fac-
torized solutions. The above formal discussion has been made rigorous in one dimension 
in the works [2,3,70]. We note that these works follow in the footsteps of a number of 
important contributions to the derivation of NLS-type equations from quantum many-
body systems, including [47–49] in the static case and [18–21,28,29,34,69,76] for general 
dynamics.

1.3. The NLS and GP as Hamiltonian systems

The preceding derivation of the NLS from the many-body problem for N bosons via 
the GP hierarchy concerned the derivation of dynamics: proving solutions of one equa-
tion converge to solutions of another as N → ∞. In recent work [57], the authors used 
the BBGKY and GP hierarchies to rigorously derive the geometric structure underly-
ing the NLS. More precisely, the NLS is a Hamiltonian system, meaning that there is 
an underlying (weak) Poisson manifold (in the sense of Definition 4.24) and choice of 
Hamiltonian, such that one can rewrite the NLS equation as the flow along the associated 
Hamiltonian vector field. We showed in [57] that it is possible to derive this Hamiltonian 
structure from the many-body problem (1.2), which is also a Hamiltonian system. A key 

8 Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
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ingredient in the work [57] is the proof that the GP hierarchy is itself a Hamiltonian 
system. We will not go through the steps of this derivation; the interested reader may 
consult [57, Section 2] for an overview. Instead, we recall here the Hamiltonian structure 
of the NLS and GP hierarchies and the relationship between the two, as the present work 
will build upon this structure.

To introduce the phase space for the NLS, we endow the Schwartz space S(R) with 
the standard weak symplectic structure9 given by

ωL2(φ, ψ) = 2 Im

⎧⎨⎩
∫
R

dxφ(x)ψ(x)

⎫⎬⎭. (1.6)

Consider the real unital10 algebra with respect to point-wise multiplication

AS = {H ∈ C∞(S(R);R) : ∇sH ∈ C∞(S(R);S(R))}. (1.7)

Above (and throughout this paper), the notion of derivative and smoothness is in the 
sense of Gâteaux derivative of a map between locally convex spaces, as discussed in 
Section 4.1 below. Here, ∇s is the symplectic gradient associated to the form ωL2 (see 
Definition 4.33 and Remark 4.34 for definitions). With the symplectic form, we obtain a 
canonical Poisson bracket by defining for F, G ∈ AS ,

{F,G}L2(φ) := ωL2(∇sF (φ),∇sG(φ)), ∀φ ∈ S(R). (1.8)

The solution to the NLS (1.1) is then the integral curve to the Hamiltonian equation of 
motion associated to the energy

INLS(φ) :=
∫
R

dx
(
|∇φ(x)|2 + κ|φ(x)|4

)
. (1.9)

That is, (
d

dt
φ

)
(t) = ∇sINLS(φ(t)). (1.10)

The Hamiltonian structure of the GP hierarchy is more involved than that of NLS. 
In particular, the Poisson structure is not canonically induced by a symplectic form, 
but rather is an example of a Lie-Poisson structure. To define this structure, we must 
first introduce a Lie algebra of “observables” which then by duality leads to a canonical 
(weak) Poisson manifold of “states” on which the GP hierarchy is then a Hamiltonian 
flow.

9 See Section 4.3 for background material on weak symplectic and weak Poisson structures.
10 I.e. the algebra has a multiplicative identity.
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Namely, we define a real topological vector space G∞ by the locally convex direct sum

G∞ :=
∞⊕
k=1

gk,gmp, gk,gmp := {A(k) ∈ Lgmp(Ss(Rk),S ′
s(Rk)) : A(k) = −(A(k))∗ ∀k}.

(1.11)
Elements of G∞, which we call observable ∞-hierarchies, are finite sequences A =
(A(k))k∈N , where each A(k) belongs to a certain subspace of L(Ss(Rk), S ′

s(Rk)), the 
space of continuous linear maps from the k-particle symmetric Schwartz space Ss(Rk), 
equipped with its usual topology, to the k-particle symmetric tempered distribution 
space S ′

s(Rk), equipped with the strong dual topology. Elements of gk,gmp have the 
additional property that they are skew-adjoint as distribution-valued operators, in the 
sense that A(k) = −(A(k))∗.11 The subscript gmp, which stands for good mapping prop-
erty, is too technical to state here in full (see Definition 2.2); but it refers to elements 
of L(Ss(Rk), S ′

s(Rk)) which can be composed in a single coordinate, a property not 
possessed by an arbitrary element of L(Ss(Rk), S ′

s(Rk)). For our purposes, the good 
mapping property allows us to define a Lie bracket [·, ·]

G∞
on G∞. This then gives us 

our Lie algebra (G∞, [·, ·]
G∞

) of observable ∞-hierarchies.
With this Lie algebra of observables, we can define a dual Lie-Poisson manifold of 

states, which consists of three ingredients: an underlying manifold, a unital algebra of 
smooth functionals on the manifold, and a Poisson bracket defined on this algebra. We 
define the real topological vector space

G∗
∞ := {Γ = (γ(k))k∈N ∈

∞∏
k=1

L(S ′
s(Rk),Ss(Rk)) : γ(k) = (γ(k))∗ ∀k} (1.12)

equipped with the product topology. Using the Schwartz kernel theorem (e.g. [82, Theo-
rem 51.6, Corollary]), elements of G∗

∞, which we call ∞-hierarchies of density matrices, 
are infinite sequences of self-adjoint integral operators with Schwartz-class kernels. The 
space G∗

∞ is our manifold, and since G∗
∞ is a locally convex vector space, we can iden-

tify tangent spaces with G∗
∞. We take our algebra A∞ of smooth functionals to be the 

algebra with respect to pointwise product generated by the constant functionals and the 
set

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(A·), A ∈ G∞}, (1.13)

where Tr denotes the duality pairing between elements of G∞ and elements of G∗
∞. 

Finally, we can define a Poisson bracket {·, ·}
G∗

∞
: A∞ ×A∞ → A∞ by the formula

{F,G}
G∗

∞
:= iTr

(
[dF [Γ], dG[Γ]]

G∞
· Γ
)
, Γ ∈ G∗

∞, (1.14)

11 Our usage of the terminology adjoint for distribution-valued operators is nonstandard and was introduced 
in our previous work [57]. We refer the reader to Appendix C.1 for elaboration.
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where dF [Γ], dG[Γ] are the Gâteaux derivatives of F, G, respectively, at the point Γ, 
which we can identify as elements of G∞ thanks to our definition of the algebra A∞.

There is a distinguished element −iWGP = −i(−Δx1 , κδ(X1 − X2), 0, . . .) of G∞, 
such that if we consider the functional

HGP (Γ) := iTr(−iWGP · Γ)

= −Tr1(Δx1γ
(1)) + κTr1,2(δ(X1 − x2)γ(2)), Γ = (γ(k))k∈N ∈ G∗

∞,
(1.15)

which belongs to the algebra A∞ defined in the preceding paragraph, then the GP 
hierarchy equation (1.4) may be rewritten as(

d

dt
Γ
)

(t) = XHGP
(Γ(t)), (1.16)

where XHGP
, the Hamiltonian vector field associated to HGP , is the unique vector field 

on G∗
∞ with the property that

dF [Γ](XHGP
(Γ)) = {F,HGP }(Γ), ∀F ∈ A∞, Γ ∈ G∗

∞. (1.17)

The connection between the GP hierarchy and the NLS is through the map

ι : S(R) → G∗
∞, ι(φ) := ( |φ⊗k〉 〈φ⊗k|)k∈N , (1.18)

which is a Poisson morphism in the sense that

{F ◦ ι, G ◦ ι}L2(φ) = {F,G}
G∗

∞
(ι(φ)), ∀F,G ∈ A∞, φ ∈ S(R). (1.19)

Moreover,

HGP (ι(φ)) = INLS(φ), φ ∈ S(R). (1.20)

1.4. Nonlinear Schrödinger hierarchy

We saw in the last subsection that the NLS and GP hierarchy are both Hamiltonian 
systems. In the finite-dimensional case, a Hamiltonian system may possess additional 
structure known as Liouville integrability. The notion of a Liouville integrable Hamilto-
nian system refers to a finite-dimensional Hamiltonian system where there is a maximal 
(in the sense of degrees of freedom) independent set of Poisson commuting first integrals. 
More precisely, assume for simplicity that the phase space M is an open subset of R2n

endowed with the Poisson bracket

{F,G} =
n∑(

∂yj
F∂xj

G− ∂xj
F∂yj

G
)
. (1.21)
j=1
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Given a smooth Hamiltonian H ∈ C∞(M ; R), the corresponding Hamiltonian vector 
field XH = (∇yH, −∇xH), where ∇x = (∂x1 , . . . , ∂xn

) and ∇y = (∂y1 , . . . , ∂yn
), is said 

to be completely integrable (in the Liouville sense), if there exist n smooth functions 
F1, . . . , Fn ∈ C∞(M ; R) such that {Fi, Fj} = 0 and {Fi, H} = 0 for all 1 ≤ i, j ≤ n and 
such that the differentials d(x,y)F1, . . . , d(x,y)Fn ∈ T ∗

(x,y)R
2n (i.e. the cotangent space) are 

linearly independent on a dense open subset of M . The classical Arnold-Liouville theorem 
(e.g. [4, Section 50]) then asserts that such a Liouville completely integrable system, 
which satisfies some technical conditions, can be solved by a change of coordinates to 
action-angle variables, which allow for explicit integration of the system.

In the infinite-dimensional case, such as for PDE, there is not a universally agreed 
upon definition of integrability, but the notion of Liouville integrability does have an ana-
logue. Regarding the 1D cubic NLS, Liouville integrability is a consequence of the exact 
solvability of the equation by the IST, which was formally shown in the aforementioned 
work [85] and has been mathematically revisited by numerous authors in the years since, 
e.g. [5–8,15,31,33,39–42,78,79,86,87]. For our purposes, we are interested in the fact that 
the Hamiltonian is one element of a countable sequence of functionals in nontrivial12
mutual involution. More precisely, one recursively defines (see Appendix A.2) a sequence 
of operators

wn : S(R) → S(R),
{
w1[φ] := φ

wn+1[φ] := −i∂xwn[φ] + κφ̄
∑n−1

k=1 wk[φ]wn−k[φ].
(1.22)

Each wn generates a functional In : S(R) → C by

In(φ) :=
∫
R

dxφ(x)wn[φ](x), ∀φ ∈ S(R), (1.23)

which is, in fact, real-valued (see Lemma A.5). Then one can verify (see Appendix A.3) 
that

{In, Im}L2(φ) = 0, ∀φ ∈ S(R), ∀n,m ∈ N, (1.24)

where {·, ·}L2 is the L2 Poisson bracket defined in the previous subsection. In particular, 
if φ ∈ C∞([t0, t1]; S(R)) is a classical solution to (1.1), then In(φ) is conserved on the 
lifespan [t0, t1] of φ for every n ∈ N. Furthermore, each of the functionals In has an 
associated equation of motion (

d

dt
φ

)
(t) = ∇sIn(φ(t)). (1.25)

12 By nontrivial, we mean that these functionals are not all Casimirs for the Poisson structure (i.e. they 
Poisson commute with any functional).
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Following the terminology of Faddeev and Takhtajan [23], we call (1.25) the n-th nonlin-
ear Schrödinger equation (nNLS). The n = 1, 2 equations are trivial, the n = 3 equation 
is the NLS (1.1), and the n = 4 equation is the complex mKdV equation

∂tφ = ∂3
xφ− 6κ|φ|2∂xφ, κ ∈ {±1}. (1.26)

To our knowledge, the n-th nonlinear Schrödinger equations do not have specific names 
for n ≥ 5. Together, the family of n-th nonlinear Schrödinger equations constitutes the 
nonlinear Schrödinger hierarchy, as termed by Palais [64]. We remark that existence and 
uniqueness of solutions to the NLS hierarchy in the class C∞(R; S(R)) is known [5,86,87].

1.5. Informal statement of main results

So far, we have discussed the GP hierarchy and its relationship to the NLS via fac-
torized solutions both in terms of dynamics in Section 1.2 and in terms of Hamiltonian 
structure in Section 1.3. We have also seen in Section 1.4 that the NLS is a special 
Hamiltonian system having the property of being integrable, for which there exists an 
infinite sequence of Poisson commuting functionals In, which include the NLS Hamilto-
nian and which generate a hierarchy of commuting flows (i.e. the NLS hierarchy). Given 
the relationship between the NLS and the GP hierarchy, one naturally asks if an anal-
ogous sequence of Poisson commuting functionals Hn also exists for the GP hierarchy. 
The present work provides an affirmative answer to this question, evidencing Liouville 
integrability of the GP hierarchy.

We now informally state the main results of the present article and discuss at a very 
high level the strategy behind their proofs. We defer a mathematically precise statement 
of the results and a more detailed discussion of their proofs to Section 2.2, so as not to 
make the introduction overly technical.

Our first result (Theorem 2.8) shows that the one-dimensional cubic GP hierarchy 
possesses an infinite sequence of functionals {Hn}n∈N containing the Hamiltonian HGP

for the GP hierarchy and belonging to the algebra A∞ introduced in Section 1.3, which 
are in nontrivial involution with respect to the Poisson bracket {·, ·}

G∗
∞

. In fact, the 
functionals Hn take the form Hn(·) = Tr(Wn·), for −iWn ∈ G∗

∞. An immediate conse-
quence of this result is that the functionals Hn are conserved along the flow of the GP 
hierarchy. Additionally, when evaluated on factorized states Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N , we 
have the correspondence Hn(Γ) = In(φ).

Theorem 1.1 (Informal main result I). For every n ∈ N, there exists an observable ∞-
hierarchy −iWn = (−iW(k)

n )k∈N ∈ G∞, such that the associated trace functional Hn

defined by

Hn(Γ) = Tr(Wn · Γ), Γ ∈ G∗
∞ (1.27)
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pairwise Poisson commutes with every Hm:

{Hn,Hm}
G∗

∞
(Γ) = 0, ∀Γ ∈ G∗

∞, m, n ∈ N. (1.28)

Additionally, H3 = HGP , and for every n ∈ N, we have the correspondence

Hn(ι(φ)) = In(φ), ι(φ) = ( |φ⊗k〉 〈φ⊗k|)k∈N . (1.29)

Our second main result (Theorem 2.11) shows that for every n ∈ N, the functional 
Hn defines a Hamiltonian system

(
d

dt
Γ
)

(t) = XHn
(Γ(t)), (1.30)

where XHn
is the Hamiltonian vector field associated to Hn, which we call the n-th GP 

hierarchy, and when restricted to factorized solutions Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N , the n-th 
GP hierarchy reduces to the n-th NLS equation (1.25). This result can be viewed as a 
one-dimensional extension of Theorem 2.10 from our companion work [57], which proves 
a Hamiltonian formulation for the GP hierarchy in all dimensions.

Theorem 1.2 (Informal main result II). For every n ∈ N, the n-th GP hierarchy (1.30)
admits a special class of factorized solutions Γ(t) = ι(φ(t)), where φ is a solution to the 
n-th NLS equation (1.25).

Let us briefly comment on the proofs of our main results, focusing on the proof of 
Theorem 1.1. As commented above, the functionals Hn which we construct are trace 
functionals associated to the family of observable ∞-hierarchies {−iWn}n∈N belonging 
to the Lie algebra G∞ discussed in Section 1.3. Thus, our initial main task is to construct 
the Wn = (W(k)

n )k∈N , which we do incrementally. The bulk of the work consists in 
constructing a family {W̃n}∞n=1, with W̃(k)

n ∈ Lgmp(S(Rk), S ′(Rk)) for every k, n ∈
N, by recursion inspired by the recursive formula (1.22) for the one-particle nonlinear 
operators {wn}n∈N . Once we have the W̃n, we then bosonically symmetrize 1

2 (W̃n +
(W̃n)∗) to obtain Wn. For the construction of the W̃n, an important new observation of 
this work is that the functionals In defined in (1.23) are finite sums of multilinear forms 
whose arguments are restricted to a single function φ ∈ S(R) and its complex conjugate 
φ ∈ S(R):

In(φ) =
N(n)∑
k=1

I(k)
n [φ, . . . , φ︸ ︷︷ ︸

k

;φ, . . . , φ︸ ︷︷ ︸
k

], N(n) ∈ N. (1.31)

Each multilinear form I(k)
n can in turn be written as
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I(k)
n [φ1, . . . , φk;ψ1, . . . , ψk]

=
∫
R

dxψ1(x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x), φ1, ψ1 . . . , φk, ψk ∈ S(R), (1.32)

where the multilinear operators w(k)
n : (S(R))2k−1 → S(R) satisfy a recursion relation

w
(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk]

= (−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk]

+ κ

n−1∑
m=1

∑
�,j≥1;�+j=k

ψ�+1w
(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�]w(j)

n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk],

(1.33)

with base case w(1)
1 [φ1] = φ1 and w(k)

1 ≡ 0 for k ≥ 2. It turns out that (1.33) is the right 
recursion relation to make the connection with the GP hierarchy, leading us to construct 
the W̃n by giving rigorous meaning to the recursion

W̃(k)
n+1 := (−i∂x1)W̃(k)

n + κ
n−1∑
m=1

∑
�,j≥1;�+j=k

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
, (1.34)

with base case W̃1 = (Id1, 0, . . .). This step, carried out in Section 5.1, is quite involved 
and relies heavily on the notion of the wave front set of a distribution to determine when 
two distributions-valued operators can be composed.

To prove the Poisson commutativity of the functionals Hn with respect to the Poisson 
structure of G∗

∞, we show that Poisson commutativity of the Hn is equivalent to Poisson 
commutativity of certain functionals Ib,n defined in (2.52), which are associated to an 
integrable system generalizing the NLS.13 We rewrite the NLS (1.1) as the system{

i∂tφ = −Δφ + 2κφ2φ

i∂tφ = Δφ− 2κφ2
φ

, (1.35)

and relax the requirement that φ denotes the complex conjugate of φ (i.e. φ and φ are 
independent coordinates on S(R)). We then show that the family {Ib,n}n∈N is mutually 
involutive (see Proposition A.14). By also showing that there is a Poisson morphism 
from the phase space of (1.35)14 to the phase space of the GP hierarchy, generalizing the 
Poisson morphism ι from (1.18), we obtain the desired conclusion. This equivalence we 

13 The inspiration for considering this system comes from a remark of Faddeev and Takhtajan [23, Remark 
13, pg. 181].
14 Strictly speaking, the domain of the morphism is a quotient space of the phase space of (1.35) with the 
property that the elements are “self-adjoint”.
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prove, recorded in (2.60) below, is quite interesting in its own right and was not expected 
by the authors at the onset of this project.

Remark 1.3. In [56], four of the co-authors of the present article identified an infinite 
sequence of conserved quantities for the GP hierarchy, which agreed with the In defined 
in (1.23) when evaluated on factorized states. At the time of [56], a Hamiltonian struc-
ture for the GP hierarchy had not been identified, so it was premature to ask if the 
conservation of these quantities was a consequence of their Poisson commuting with the 
GP Hamiltonian, let alone their being in mutual involution, as is the case with the func-
tionals In. The current work also provides a substantial generalization of the previous 
work [56], in that the definition of the functionals Hn in [56] used the quantum de Finetti 
theorems [37,45,77]. Indeed, these functionals are initially defined on factorized states of 
the form in (1.5), and then their domain of definition is extended to statistical averages 
of such factorized states by means of quantum de Finetti. In contrast, we now estab-
lish that these functionals are defined on the entire GP phase space. In particular, we 
construct Hn without any considerations of admissibility15 and without any recourse to 
representation theorems, such as the quantum de Finetti theorems. In fact, admissibility 
plays no role in this paper.

1.6. Longer-term outlook

We close the introduction with an eye towards future work. As we previously com-
mented in Section 1.1, our ultimate goal is to give a mathematical derivation of the 
integrability of the NLS from the exact solvability of the Lieb-Liniger model, comple-
menting (in 1D) our previous rigorous derivation of the Hamiltonian structure of the 
NLS [57]. At present, this goal is out of reach. Instead, the present work is a step to-
wards it by developing a mathematical understanding of the integrable structure of the 
NLS in terms of the GP hierarchy, a quantum object arising as a scaling limit for the 
reduced density matrices of the Lieb-Liniger model. Specifically, our work provides evi-
dence of integrability for the GP hierarchy by showing that there is a family of Poisson 
commuting functionals which encode the nonlinear Schrödinger hierarchy.

Given that the works [2,3,70] mathematically demonstrate that the NLS (1.35) is the 
mean field limit of the LL model (1.2), it is natural to ask if there exists a connection 
between our functionals Hn together with the family of n-th GP hierarchies–and by 
implication the functionals In together with the nonlinear Schrödinger hierarchy–and 
the LL model. Establishing this connection in rigorous mathematical terms seems a 
difficult but worthwhile task. We believe that the core difficulty lies in understanding 
the connection between classical and quantum field theories via the processes of second 
quantization in the sense that the LL model is the second-quantized 1D cubic NLS and 

15 An infinite sequence of trace-class density matrices {γ(k)}k∈N is said to be admissible if γ(k) =
Trk+1(γ(k+1)).
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mean field limit understood as a “semi-classical” limit with parameter � = 1/N . This 
connection figures prominently, although not specifically for the 1D cubic NLS, in the 
work of Fröhlich, Tsai, and Yau [24] and Fröhlich, Knowles, and Pizzo [25] and references 
therein. We also mention the work [80], in which Thacker posits a conjecture related to 
this line of inquiry, and the work [13], in which Davies discusses the issues that arise 
with naive quantization of classical approaches to integrability. We hope that the work 
of our paper together with the derivation of the Hamiltonian formulation of the NLS in 
our companion paper [57] will inspire others to join us in elucidating these fascinating 
connections.
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2. Statement of main results and blueprint of proofs

In this section, we provide an outline and discussion of the main results of this article 
and their proofs. We begin by recalling in Section 2.1 several of the main geometric 
results from [57] which are needed in the current work.

2.1. Review of [57]

As it will be important for the remainder of this section,16 we clarify that S(Rd)
is the Schwartz space with its usual topology, which is a nuclear Fréchet topological 
vector space. S ′(Rd) denotes the dual space of tempered distributions endowed with the 
strong dual topology. A subscript s is used to denote functions/distributions which are 
symmetric with respect to permutation of particle labels. In particular, S(Rd), S ′(Rd)
are locally convex spaces, and there is a well-defined calculus for maps between locally 
convex spaces, in particular a notion of a smooth map. The reader unfamiliar with this 
calculus may consult Section 4.1. Furthermore, we use L, as in L(S ′(Rd), S(Rd)), to 
denote a space of linear maps between locally convex spaces equipped with the topology 
of bounded convergence, which again defines a locally convex space.

A major source of difficulty in [57] is the construction of an infinite-dimensional Lie 
algebra of observable ∞-hierarchies and its dual weak Lie-Poisson manifold of density 
matrix ∞-hierarchies, which together form the geometric foundation of the Hamiltonian 

16 We give a more thorough discussion in Section 4.1 of locally convex spaces and calculus for maps defined 
between such spaces.
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formulation of the GP hierarchy. The analytic difficulties in this definition stem primarily 
from the fact that the GP Hamiltonian HGP = H3 is the trace functional associated 
to a distribution-valued operator (DVO).17 The natural Lie bracket for such operators 
requires composition of two operators in a given particle coordinate. Such a definition is 
not possible in general since the composition of two DVOs may be ill-defined. Overcoming 
these difficulties necessitated the identification of a property for DVOs which we termed 
the good mapping property. To better motivate this property, let us first briefly recall how 
the Lie algebra and Lie-Poisson structures for the GP hierarchy mentioned in Section 1.3
arise as N → ∞ limits.

For each k ∈ N, we set

gk := {A(k) ∈ L(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)},

endowed with the subspace topology of L(Ss(Rk), S ′
s(Rk)). We define a Lie algebra 

(gk, [·, ·]gk
), with Lie bracket defined by

[
A(k), B(k)

]
gk

:= k
[
A(k), B(k)

]
, (2.1)

where the right-hand side denotes the usual commutator bracket appropriately rescaled. 
We restrict to a smaller subspace in our definition of gk compared to that of gk,gmp in 
(1.11) precisely to be able to make sense of the above commutator. For N ∈ N, we then 
define the locally convex direct sum

GN :=
N⊕

k=1

gk, (2.2)

which is the space of observable N -hierarchies.
To define a Lie bracket on GN , we consider the smooth map

εk,N : gk → gN , (2.3)

for N ∈ N and k ∈ N≤N , which embeds a k-particle bosonic observable in the space of 
N -particle bosonic operators so as to have the filtration property

[ε�,N (g�), εj,N (gj)]gN
⊂ εmin{�+j−1,N},N

(
gmin{�+j−1,N}

)
⊂ gN . (2.4)

Using this filtration property and the injectivity of the maps εk,N , we can define a Lie 
bracket on GN by

17 Not to be confused with operator-valued distributions in quantum field theory.
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[A,B](k)
GN

:=
∑

1≤�,j≤N
min{�+j−1,N}=k

ε−1
k,N

([
ε�,N

(
A(�)

)
, εj,N

(
B(j)

)]
gN

)
, k ∈ {1, . . . , N},

(2.5)
so that (GN , [·, ·]

GN
) is a Lie algebra in the sense of Definition 4.43.

To obtain a dual Lie-Poisson manifold of states, we define the real topological vector 
space

G∗
N :=

{
ΓN = (γ(k)

N )Nk=1 ∈
N∏

k=1

L(S ′
s(Rdk),Ss(Rdk)) : (γ(k)

N )∗ = γ
(k)
N

}
, (2.6)

which is the space of density matrix N -hierarchies. Leting AH,N be the algebra with 
respect to point-wise product generated by the functionals in the set

{F ∈ C∞(G∗
N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗

N ;R) : F (·) ≡ C ∈ R},

we can define a Lie-Poisson structure on G∗
N by

{F,G}
G∗

N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]

GN
· ΓN

)
, ∀ΓN ∈ G∗

N , (2.7)

for F, G ∈ AH,N .

Remark 2.1. In [57, Theorem 2.3], we showed that the N -body BBGKY hierarchy is a 
Hamiltonian flow on the weak Poisson manifold (G∗

N , AH,N , {·, ·}
G∗

N
) with Hamiltonian 

functional

HBBGKY,N (ΓN ) := Tr(WBBGKY,N · ΓN ), (2.8)

where −iWBBGKY,N is the observable 2-hierarchy defined by

WBBGKY,N := (−Δx, κVN (X1 −X2), 0, . . .). (2.9)

We now address the N → ∞ (i.e. infinite-particle) limit of the above described con-
structions. Via the natural inclusion map, one has GN ⊂ GM for M ≥ N , leading to the 
limiting algebra

F∞ :=
∞⊕
k=1

gk. (2.10)

By embedding GN into F∞, the Lie bracket [·, ·]
GN

converges pointwise to a much simpler 
Lie bracket: for N0 ∈ N and A = (A(k))k∈N , B = (B(k))k∈N ∈ GN0 , we have that

lim [A,B]
G

= C = (C(k)k∈N , (2.11)

N→∞ N
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where

C(k) :=
∑
�,j≥1

�+j−1=k

Symk

([
A(�), B(j)

]
1

)
, (2.12)

in the topology of F∞. Here, Symk denote the k-particle bosonic symmetrization oper-
ator (see (2.25)) and [·, ·]1 is a certain separately continuous, bilinear map, the precise 
definition of which is given below in (2.24).

There is a problem, though: the topological vector space given in (2.10) does not 
contain the generator −iWGP (recall (1.15)) of the GP Hamiltonian HGP . Indeed, the 
2-particle component κVN (X1−X2) of WBBGKY converges to κδ(X1−X2) as N → ∞, 
but the operator −iκδ(X1 − X2) does not belong to g2 because it fails to map Ss(R2)
to itself. Since we need our Lie algebra G∞ of observable ∞-hierarchies to contain the 
generator of HGP , this necessitates that we consider a larger underlying topological 
vector space which includes distribution-valued operators. As we will see, the definition 
of the bracket [·, ·]1 involves compositions of distribution-valued operators in a single 
coordinate. In general, such composition is not possible, thus motivating our introduction 
of the good mapping property.

Definition 2.2 (Good mapping property). Let � ∈ N. We say that an operator A(�) ∈
L(S(R�), S ′(R�)) has the good mapping property if for any α ∈ N≤�, the continuous 
bilinear map

S(R�) × S(R�) → Sx′
α
(R;S ′

xα
(R))

(f (�), g(�)) �→
∫

R�−1

dx1 . . . dxα−1dxα+1 . . . dx�A
(�)(f (�))(x1, . . . , x�)

× g(�)(x1, . . . , xα−1, x
′
α, xα+1, . . . , x�),

may be identified with a continuous bilinear map S(R�) × S(R�) → S(R2).18

The good mapping property has the following important consequence: let (α, β) ∈
N≤� ×N≤j , and let A(�) ∈ L(S(R�), S ′(R�)) and B(j) ∈ L(S(Rj), S ′(Rj)) have the good 
mapping property. Introducing the notation xi;j := (xi, xi+1, . . . , xj), if k := � + j − 1, 
then the bilinear map

18 Here and throughout this paper, an integral involving a distribution should be understood as a distri-
butional pairing unless specified otherwise.
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S(Rk)2 → S(xα−1,xα+1;�,x
′
�)(R

α−1 ×R�−α ×R�;S ′
xα

(R))

(f (k), g(k)) �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈
B

(j)
(1,...,j)(f

(k)(xα−1, ·, xα+1;�, ·)), (·) ⊗ g(k)(x′
�, ·)

〉
S′(Rj)−S(Rj)

,

β = 1〈
B

(j)
(2,...,β,1,β+1,...,j)(f

(k)(xα−1, ·, xα+1;�, ·)), (·) ⊗ g(k)(x′
�, ·)

〉
S′(Rj)−S(Rj)

,

β �= 1
(2.13)

may be identified with a unique smooth bilinear map

ΦB(j),α,β : S(Rk) × S(Rk) → S(x�,x
′
�)(R

2�) (2.14)

via∫
R

dxαΦB(j),α,β(f (k), g(k))(x�;x′
�)φ(xα)

=

⎧⎪⎨⎪⎩
〈
B

(j)
(1,...,j)(f

(k)(xα−1, ·, xα+1;�, ·)), φ⊗ g(k)(x′
�, ·)

〉
S′(Rj)−S(Rj)

, β = 1〈
B

(j)
(2,...,β,1,β+1,...,j)(f

(k)(xα−1, ·, xα+1;�, ·)), φ⊗ g(k)(x′
�, ·)

〉
S′(Rj)−S(Rj)

, β �= 1,

(2.15)

for any φ ∈ S(R) and (x1;α−1, xα+1;�, x
′
�) ∈ R2�−1. Here, the subscript (2, . . . , β, 1, β +

1, . . . , j) is to be interpreted in the sense of the subscript notation in (2.25) (see also 
Proposition C.11).19 Hence, by the Schwartz kernel theorem isomorphism

L(S(Rk),S ′(Rk)) ∼= S(R2k), (2.16)

we can define the following composition as an element

(A(�) ◦βα B(j)) ∈ L(S(Rk),S ′(Rk)) (2.17)

by〈
(A(�) ◦βα B(j))f (k), g(k)

〉
S′(Rk)−S(Rk)

:=
〈
KA(�) ,Φt

B(j),α,β(f (k), g(k))
〉
S′(R2k)−S(R2k)

,

(2.18)
where KA(�) denotes the Schwartz kernel of A(�) and Φt

B(j),α,β
(f (k), g(k)) denotes the 

transpose of ΦB(j),α,β(f (k), g(k)) defined by

Φt
B(j),α,β(f (k), g(k))(xj ;x′

j) := ΦB(j),α,β(f (k), g(k))(x′
j ;xj), ∀(xj , x

′
j) ∈ R2j . (2.19)

19 So as to avoid a cumbersome consideration of cases in the sequel, we will not distinguish between the 
β = 1 and β 
= 1 cases going forward.
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Note that A(�) ◦βα B(j) coincides with the composition

A
(�)
(1,...,�)B

(j)
(�+1,...,�+β−1,α,�+β,...,k) (2.20)

when the latter is defined. We let Lgmp(S(R�), S ′(R�)) denote the subset of L(S(R�),
S ′(R�)) of elements with the good mapping property, and Lgmp,∗(S(R�), S ′(R�)) denote 
the further subset of elements which are skew-adjoint (see Lemma C.1 and Definition C.3
for the definitions of adjoint and skew-adjoint for a DVO). We established in [57, Lemma 
6.1, Remark 6.3] that the composition

(·) ◦βα (·) : Lgmp,∗(S(R�),S ′(R�)) × Lgmp,∗(S(Rj),S ′(Rj)) → Lgmp,∗(S(Rk),S ′(Rk))
(2.21)

is a separately continuous, bilinear map.
With the composition map (·) ◦βα (·) in hand, we proceed to reviewing the main geo-

metric actors from [57]. We recall that

gk,gmp := {A(k) ∈ Lgmp(Ss(Rk),S ′
s(Rk)) : (A(k))∗ = −A(k)}, (2.22)

where Ss(Rk) is the subspace of S(Rk) consisting of functions invariant under permuta-
tion of coordinates (see Definition 4.17), and

G∞ :=
∞⊕
k=1

gk,gmp (2.23)

endowed with the locally convex topology. We equip G∞ with a Lie bracket given by20

[A,B]
G∞

= C = (C(k))k∈N

C(k) := Symk

⎛⎝ ∑
�,j≥1;�+j−1=k

�∑
α=1

j∑
β=1

(
(A(�) ◦βα B(j)) − (B(j) ◦αβ A(�))

)⎞⎠,
(2.24)

where Symk denotes the bosonic symmetrization operator given by

Symk(A(k)) := 1
k!

∑
π∈Sk

A
(k)
(π(1),...,π(k)), A

(k)
(π(1),...,π(k)) = π ◦A(k) ◦ π−1. (2.25)

Proposition 2.3 ([57, Proposition 2.7]). (G∞, [·, ·]
G∞

) is a Lie algebra.

20 Strictly speaking, a priori it is not the operators A(�) and B(j) that appear in the right-hand side, but 
instead extensions Ã(�) ∈ Lgmp(S(R�), S′(R�)) and B̃(j) ∈ Lgmp(S(Rj), S′(Rj)). The right-hand side is 
independent of the choice of extension, as shown in [57, Remark 6.5], and therefore we will not comment 
on this technical point in the sequel.
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Next, we recall the definition of the weak Lie-Poisson manifold (G∗
∞, A∞, {·, ·}

G∗
∞

), 
which is the phase space underlying the GP hierarchy. We define the real topological 
vector space

g∗k :=
{
γ(k) ∈ L(S ′

s(Rk),Ss(Rk)) : γ(k) = (γ(k))∗
}

(2.26)

and define the topological direct product

G∗
∞ :=

∞∏
k=1

g∗k. (2.27)

Attached to G∗
∞ is the admissible algebra of functionals A∞ defined to be the real algebra 

with respect to point-wise product generated by functionals in the set

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(W·), W ∈ G∞} ∪ {F ∈ C∞(G∗

∞;R) : F (·) ≡ C ∈ R}.
(2.28)

Most importantly, our choice of A∞ contains the trace functionals associated to the 
observable ∞-hierarchies {−iWn}∞n=1. We can then define the Poisson bracket of func-
tionals F, G ∈ A∞ by

{F,G}
G∗

∞
(Γ) = iTr

(
[dF [Γ], dG[Γ]]

G∞
· Γ
)
, ∀Γ ∈ G∗

∞. (2.29)

In the right-hand side of (2.29), we identify the Gâteaux derivatives dF [Γ] and dG[Γ], 
which are a priori continuous linear functionals, as elements of G∞. This identification 
is possible thanks to the definition of A∞ and the next lemma, which characterizes the 
dual of G∗

∞.

Lemma 2.4 ([57, Lemma 6.8]). The topological dual of G∗
∞, denoted by (G∗

∞)∗ and en-
dowed with the strong dual topology, is isomorphic to

G̃∞ := {A ∈
∞⊕
k=1

L(Ss(Rk),S ′
s(Rk)) : (A(k))∗ = −A(k)}, (2.30)

equipped with the subspace topology induced by 
⊕∞

k=1 L(Ss(Rk), S ′
s(Rk)), via the canon-

ical bilinear form

iTr(A · Γ) = i

∞∑
k=1

Tr1,...,k(A(k)γ(k)), ∀Γ = (γ(k))k∈N ∈ G∗
∞, A = (A(k))k∈N ∈ G̃∞.

(2.31)

In [57], classical results on the existence of a Lie-Poisson manifold associated to a Lie 
algebra were unavailable to us due to functional analytic difficulties, such as the fact that 
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G∞ � G̃∞. Nevertheless, we verified directly that our choices for G∗
∞, A∞, and {·, ·}

G∗
∞

satisfy the weak Poisson axioms of Definition 4.24, thereby establishing the following 
result.

Proposition 2.5 ([57, Proposition 2.8, Lemma 6.15]). (G∗
∞, A∞, {·, ·}

G∗
∞

) is a weak Pois-
son manifold. Furthermore, for any F ∈ A∞, the Hamiltonian vector field XF is given 
by the formula

XF (Γ)(�) =
∞∑
j=1

j Tr�+1,...,�+j−1

([
�∑

α=1
dH[Γ](j)(α,�+1,...,�+j−1), γ

(�+j−1)

])
,

� ∈ N, Γ ∈ G∗
∞, (2.32)

where the extension dH[Γ](j)(α,�+1,...,�+j−1) is defined via Proposition C.11.

2.2. Statement of main results

Having reviewed the results from [57] presently germane, we are now prepared to 
state the main results of the current work. We previously introduced the GP hierarchy 
in (1.4), which we recall now. We say that a sequence of time-dependent kernels (γ(k))k∈N
of k-particle density matrices is a solution to the GP hierarchy if

i∂tγ
(k) = −

[
Δxk

, γ(k)
]

+ 2κBk+1(γ(k+1)), k ∈ N, (2.33)

with κ ∈ {±1}, and

Bk+1(γ(k+1)) =
k∑

j=1

(
B+

j;k+1 −B−
j;k+1

)
(γ(k+1)), (2.34)

where for every (xk, x
′
k) ∈ R2k,

B+
j;k+1(γ

(k+1))(t, xk;x′
k) := γ(k+1)(t, xk, xj ;x′

k, xj),

B−
j;k+1(γ

(k+1))(t, xk;x′
k) := γ(k+1)(t, xk, x

′
j ;x′

k, x
′
j).

(2.35)

When κ = 1, we say that the hierarchy is defocussing and for κ = −1, we say that the 
hierarchy is focusing (in analogy with the defocussing and focusing NLS, respectively).

To address Theorem 1.1, we must first establish the existence of an infinite sequence 
of observable ∞-hierarchies {−iWn}n∈N ∈ G∞ by a recursion argument inspired by 
that for the operators wn in (1.22). Due to analytic difficulties, once again stemming 
primarily from the need to consider the composition of DVOs, we proceed in three steps.
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The first step consists of constructing an element

W̃n ∈
∞⊕
k=1

L(S(Rk),S ′(Rk))

by the recursive formula

W̃1 := E1 = (Id1, 0, . . .)

W̃(k)
n+1 := (−i∂x1)W̃(k)

n + κ

n−1∑
m=1

∑
�,j≥1;�+j=k

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
, ∀k ∈ N,

(2.36)

Note the structural similarity between this recursion and the one for the operators wn

stated in (1.22). While the DVO W̃(�)
m ⊗W̃(j)

n−m is well-defined by the universal property 
of the tensor product, the composition

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(2.37)

is a priori purely formal, since evaluation on a Schwartz function leads to products of 
distributions, in particular products of δ functions and their higher-order derivatives. 
Thus, the challenge is to give meaning to this composition. The key property which 
allow us to make sense of the composition is that if we formally expand the recursion, 
we will only find products such as δ(x1 − x2)δ(x2 − x3), which is well-defined as the 
Lebesgue measure on the hyperplane {xk ∈ Rk : x1 = x2 = x3}. To systematically 
handle the products of distributions, we use the wave front set and a useful criterion 
of Hörmander for the multiplication of distributions (see Proposition D.12 and more 
generally, Appendix D).

A priori, Hörmander’s criterion only yields that the product of two tempered distri-
butions is a distribution, not necessarily tempered, which is problematic since we work 
exclusively with tempered distributions. Moreover, we wish any definition of the compo-
sition (2.37) to satisfy the property〈

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (�) ⊗ f (j)), g(�) ⊗ g(j)

〉
S′(Rk)−S(Rk)

=
∫
R

dx ΦW̃(�)
m

(f (�), g(�))(x, x)ΦW̃(j)
n−m

(f (j), g(j))(x, x),
(2.38)

where

ΦW̃(�)
m

: S(R�)2 → S(R2), ΦW̃(j)
n−m

: S(Rj)2 → S(R2) (2.39)

are the necessarily unique maps identifiable with
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S(R�)2 → Sx′(R;S ′
x(R)) (f (�), g(�)) �→

〈
W̃(�)

m f (�), (·) ⊗ g(�)(x′, ·)
〉
S′(R�)−S(R�)

,

S(Rj)2 → Sx′(R;S ′
x(R)) (f (j), g(j)) �→

〈
W̃(j)

n−mf (j), (·) ⊗ g(j)(x′, ·)
〉
S′(Rj)−S(Rj)

(2.40)

via ∫
R

dxΦW̃(�)
m

(f (�), g(�))(x;x′)φ(x) =
〈
W̃(�)

m f (�), φ⊗ g(�)(x′, ·)
〉
S′(R�)−S(R�)

,

∫
R

dxΦW̃(j)
n−m

(f (j), g(j))(x;x′)φ(x) =
〈
W̃(j)

n−mf (j), φ⊗ g(j)(x′, ·)
〉
S′(Rj)−S(Rj)

,

(2.41)

for any φ ∈ S(R).
We ensure that this is achieved thanks once more to the good mapping property of 

Definition 2.2. Indeed, proceeding inductively and exploiting the recursion formula and 
the induction hypothesis that

W̃1, . . . ,W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

together with some Fourier analysis, as described in the proof of Lemma 5.1, we show 
that the composition (2.37) is the unique distribution in D′(Rk) satisfying (2.38), which 
can then be shown to be tempered. Moreover, by further appealing to the good map-
ping property and the universal property of the tensor product, we can show that the 
composition (2.37) indeed belongs to Lgmp(S(Rk), S ′(Rk)). The preceding discussion is 
summarized by the following proposition.

Proposition 2.6. For each n ∈ N, there exists an element

W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

defined according to the recursive formula (2.36), where the composition (2.37) is well-
defined in the sense of Proposition D.12.

Since we are interested in the action of the elements W̃n on density matrices, which 
are self-adjoint, the second step in the construction is to make each W̃n self-adjoint 
in the sense of Definition C.3. By the involution property of the adjoint operation (see 
Lemma C.1), the DVO

Wn,sa := 1(W̃n + W̃∗
n

)
(2.42)
2
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is a self-adjoint element of L(S(Rk), S ′(Rk)). Since we want to preserve the good mapping 
property throughout each step of the construction, the challenge is to show that W̃∗

n

also has the good mapping property. Naively taking the adjoint of the recursive formula 
(2.36), we should formally have that

W̃(k),∗
n+1 “ = ” W̃(k),∗

n (−i∂x1)+κ

n−1∑
m=1

∑
�,j≥1;�+j=k

(
W̃(�),∗

m ⊗ W̃(j),∗
n−m

)
δ(X1−X�+1). (2.43)

While the expression on the right-hand side is, a priori, meaningless,21 by inducting on 
the statement that W̃∗

1, . . . , W̃∗
n−1 having the good mapping property and exploiting 

duality, the recursion for W̃n, and the good mapping property for W̃n, we are able to 
prove that the W̃∗

n have the good mapping property, as desired.
The third, final, and easiest step of the construction is to symmetrize the Wn,sa, 

so that we obtain an ∞-hierarchy which belongs to G∞. The motivation is that we 
always restrict to permutation-invariant test functions, reflecting the bosonic nature of 
the underlying physics. To obtain a formula for Wn from Wn,sa is straightforward. We 
record this definition in the following proposition:

Proposition 2.7. For each n ∈ N,

−iWn := −iSym(Wn,sa) = − i

2

(
Sym

(
W̃n

)
+ Sym

(
W̃∗

n

))
∈ G∞, (2.44)

where Sym is a bosonic symmetrization operator, the definition of which is given in 
Definition 4.20.

Having constructed the ∞-hierarchies {−iWn}∞n=1, we define trace functionals Hn ∈
A∞ by

Hn(Γ) := Tr(Wn · Γ), Γ ∈ G∗
∞. (2.45)

Since the functionals In are generated by the operators wn, much in the same manner 
as the trace functionals Hn are generated by the Wn, our next task is to relate Wn to 
the one-particle nonlinear operators wn defined in (1.22). Doing so necessitates under-
standing the action of the k-particle components W̃(k)

n and W̃(k),∗
n on pure tensors of 

the form

|φ1 ⊗ · · · ⊗ φk〉 〈ψ1 ⊗ · · · ⊗ ψk| , φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R). (2.46)

To make this connection precise for the arguments in Section 8, our strategy is to replace 
the nonlinear operator wn with a multilinear operator by generalizing the recursion 

21 Among other issues, we note that for f(k) ∈ S(Rk), the tempered distribution δ(x1 − x�+1)f(k) does 
not belong to the domain of W̃(�),∗

m ⊗ W̃(j),∗
n−m.
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(1.22). See Section 6.1 for more details. As most of the results in Section 6 are of a 
technical nature, and perhaps not so enlightening at this stage, we mention only the 
following result, which connects Hn to the functionals In and can be obtained as an easy 
corollary of Proposition 7.2:

Hn(Γ) = In(φ), ∀Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N , φ ∈ S(R). (2.47)

Next, we turn to establishing the involution statement of Theorem 1.1, which we 
record in the following theorem:

Theorem 2.8 (Involution theorem). Let n, m ∈ N. Then

{Hn,Hm}
G∗

∞
≡ 0 on G∗

∞. (2.48)

To prove Theorem 2.8, we proceed on both the one-particle and infinite-particle fronts. 
We prove that there is an equivalence between the involution of the functionals Hn

and the involution of certain real-valued functionals Ib,n, defined in (2.52) below, on a 
weak Poisson manifold of mixed states. We find this equivalence, explicitly stated in 
Theorem 2.10 below, quite interesting its own right. We now provide some details of the 
proof of this equivalence.

On the one-particle front, we relax (1.1) to a system{
i∂tφ1 = −Δφ1 + 2κφ2

1φ2,

i∂tφ2 = Δφ2 − 2κφ2
2φ1

, (2.49)

where φ1, φ2 : R ×R → C. We study (2.49) as an integrable system on a complex weak 
Poisson manifold (S(R2), AS,C, {·, ·}L2,C), see Proposition 4.40 for the precise definition 
of this manifold, by revisiting in detail the treatment of the NLS (1.1) in [23]. Specifically, 
we show that there are functionals

Ĩn(φ1, φ2) :=
∫
R

dxφ2(x)wn,(φ1,φ2)(x), ∀(φ1, φ2) ∈ S(R)2, n ∈ N, (2.50)

where wn,(φ1,φ2)(x) satisfies a similar recursion formula to the wn, see (A.47), such 
that Ĩ3 is the Hamiltonian for NLS system (2.49), and such that the Ĩn commute on 
(S(R2), AS,C, {·, ·}L2,C).

Since we are ultimately interested in real, not complex, weak Poisson manifolds, 
we pass to another weak Poisson manifold of mixed states,22 (S(R; V), AS,V , {·, ·}L2,V), 
where the space S(R; V) consists of Schwartz functions γ taking values in the space V of 
self-adjoint, anti-diagonal 4 × 4 complex matrices:

22 Note that “mixed states” here is used in a restricted sense corresponding to non-orthogonal rank-one 
projectors.
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γ = 1
2adiag(φ1, φ2, φ2, φ1) = 1

2

⎛⎜⎝
0 0 0 φ1
0 0 φ2 0
0 φ2 0 0
φ1 0 0 0

⎞⎟⎠ , φ1, φ2 ∈ S(R). (2.51)

We refer to (4.68), (4.70), and Proposition 4.37 for the precise definition and properties 
of this weak Poisson manifold.

We use the Ĩn to define real-valued functionals Ib,n ∈ AS,V on the manifold 
(S(R; V), AS,V , {·, ·}L2,V) via the formula

Ib,n(γ) := 1
2
(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
, (2.52)

and we show in Proposition A.14 that the family {Ib,n}n∈N is in mutual involution with 
respect to the Poisson bracket {·, ·}L2,V . As we do not feel the results described in this 
paragraph are the primary contribution of this work, but nevertheless believe they may 
be of independent interest to the community, we have placed them in Appendix A and 
not the main body of the paper.

On the infinite-particle front, we first demonstrate that there is a Poisson morphism

ιm : (S(R;V),AS,V , {·, ·}L2,V) → (G∗
∞,A∞, {·, ·}

G∗
∞

)

ιm(γ) := 1
2
(
|φ⊗k

1 〉 〈φ⊗k
2 | + |φ⊗k

2 〉 〈φ⊗k
1 |

)
k∈N , γ = 1

2adiag(φ1, φ2, φ2, φ1).
(2.53)

The subscript m signifies that ιm produces a mixed state element of G∗
∞.

Theorem 2.9. The map ιm is a Poisson morphism of (S(R; V), AS,V , {·, ·}L2,V) into 
(G∗

∞, A∞, {·, ·}
G∗

∞
); i.e., it is a smooth map with the property that

ι∗m{·, ·}G∗
∞

= {ι∗m·, ι∗m·}L2,V , (2.54)

where ι∗m denotes the pullback of ιm.

Theorem 2.9 is a generalization of [57, Theorem 2.12] in our companion paper and, 
in fact, recovers this previous theorem since Proposition 4.37 demonstrates that there is 
also a Poisson morphism

ιpm : (S(R),AS , {·, ·}L2) → (S(R;V),AS,V , {·, ·}L2,V), φ �→ 1
2adiag(φ, φ, φ, φ),

(2.55)

and the composition of Poisson morphisms is again a Poisson morphism.
The motivation for Theorem 2.9 is the following. Since

Ib,n(γ) = Hn(ιm(γ)), ∀γ ∈ S(R;V) (2.56)
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by Proposition 7.2, and since {Ib,n, Ib,m}L2,V ≡ 0 on S(R; V), for any n, m ∈ N, by 
Proposition A.14, Theorem 2.9 implies that

0 = {Hn,Hm}
G∗

∞
(ιm(γ))

= 1
2

∞∑
k=1

iTr1,...,k
(
[−iWn,−iWm](k)

G∞

(
|φ⊗k

1 〉 〈φ⊗k
2 | + |φ⊗k

2 〉 〈φ⊗k
1 |

))
. (2.57)

Note that only finitely many terms in the above summation are nonzero. Next, we use a 
scaling argument to show that (2.57) implies that each of the summands in the right-hand 
side of (2.57) are identically zero:

i

2 Tr1,...,k
(
[−iWn,−iWm](k)

G∞

(
|φ⊗k

1 〉 〈φ⊗k
2 | + |φ⊗k

2 〉 〈φ⊗k
1 |

))
= 0,

∀φ1, φ2 ∈ S(R), k ∈ N. (2.58)

The intuition is that if a polynomial is identically zero then all of its coefficients are zero. 
By unpacking the definition of the Poisson bracket {Hn,Hm}

G∗
∞

, (2.58) yields

{Hn,Hm}
G∗

∞
(Γ) = 0, ∀Γ = 1

2

(
|φ⊗k

k,1〉 〈φ⊗k
k,2| + |φ⊗k

k,2〉 〈φ⊗k
k,1|

)
k∈N

, (2.59)

where φk,1, φk,2 ∈ S(R) for every k ∈ N. By then using an approximation argument from 
Appendix B involving symmetric-rank-1 approximations (see Corollary B.8) together 
with the continuity of {Hn,Hm}

G∗
∞

, we obtain from (2.59) that Poisson commutativ-
ity of the Ib,n implies the Poisson commutativity of Hn. The reverse implication is a 
straightforward consequence of Theorem 2.9. Summarizing the preceding discussion, we 
have the following equivalence result:

Theorem 2.10 (Poisson commutativity equivalence). For any n, m ∈ N,

{Ib,n, Ib,m}L2,V(γ) = 0, ∀γ ∈ S(R;V), (2.60)

if and only if

{Hn,Hm}
G∗

∞
(Γ) = 0, ∀Γ ∈ G∗

∞. (2.61)

In light of Proposition A.14, which asserts the validity of (2.60), we then obtain 
Theorem 2.8 from Theorem 2.10 (cf. Theorem 1.1).

We now address Theorem 1.2. For each n ∈ N, we define the n-th GP hierarchy (nGP)
to be the Hamiltonian equation of motion generated by the functional Hn with respect 
to the Poisson structure on G∗

∞: (
d Γ

)
= XHn

(Γ), (2.62)

dt
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where XHn
is the unique Hamiltonian vector field defined by Hn. See (P3) of Defini-

tion 4.24 for the definition of the Hamiltonian vector field. We generalize the fact that 
solutions to the NLS generate a special class of factorized solutions to the GP hierarchy 
by proving that the same correspondence is true for the (nNLS) and (nGP). Thus, we 
are led to our final main theorem (cf. Theorem 1.2).

Theorem 2.11 (Connection between (nGP) and (nNLS)). Let n ∈ N. Let I ⊂ R be a 
compact interval and let φ ∈ C∞(I; S(R)) be a solution to the (nNLS) with lifespan I. 
If we define

Γ ∈ C∞(I;G∗
∞), Γ :=

(
|φ⊗k〉 〈φ⊗k|

)
k∈N , (2.63)

then Γ is a solution to the (nGP).

Remark 2.12. In [57], we defined the Gross-Pitaevskii Hamiltonian functional HGP by

HGP (Γ) := Tr1
(
−Δx1γ

(1)
)

+ κTr1,2
(
δ(X1 −X2)γ(2)

)
, ∀Γ = (γ(k))k∈N ∈ G∗

∞.

(2.64)
In particular, HGP = H3, and in the one-dimensional case, we recover Theorem 2.10 
from [57], which asserts that the GP hierarchy (2.33) is the Hamiltonian equation of 
motion on (G∗

∞, A∞, {·, ·}
G∗

∞
) induced by HGP .

Remark 2.13. Theorem 2.11 does not assert that the factorized solution ( |φ⊗k〉 〈φ⊗k|)k∈N
is the unique solution to the n-th GP hierarchy starting from factorized initial data, only 
that it is a particular solution. More generally, Theorem 2.11 makes no assertion about 
the uniqueness of solutions to the (nGP) in the class C∞(I; G∗

∞). While the (nNLS) are 
known to be globally well-posed in the Schwartz class by the work of Beals and Coif-
man [5] and Zhou [86], unconditional uniqueness of the n-th GP hierarchy in the class 
C∞(I; G∗

∞), for some compact interval I, is an open problem, the resolution of which we 
do not address in this work. We also do not address the existence of solutions to the n-th 
GP hierarchy in C∞(I; G∗

∞) for general initial data in G∗
∞. Of course, we have existence 

of factorized solutions by the aforementioned existence result for the n-th NLS equation. 
More generally, we have existence of superpositions of factorized solutions of the form

γ(k)(t) =
∫

S(R)

|φ(t)⊗k〉 〈φ(t)⊗k| dμ0(φ), k ∈ N, (2.65)

where μ0 is a given finite Borel measure on S(R) and for each φ ∈ supp(μ0), φ(t) is the 
solution to the n-th NLS equation with initial datum φ.

To prove Theorem 2.11, we need to show that the n-th GP Hamiltonian vector field 
XHn

can be written as
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XHn
(Γ)(k)

=
k∑

α=1

(
|φ⊗(α−1) ⊗∇sIn(φ) ⊗ φ(k−α)〉 〈φ⊗k| + |φ⊗k〉 〈φ⊗(α−1) ⊗∇sIn(φ) ⊗ φ(k−α)|

)
,

(2.66)

for Γ as in the statement of Theorem 2.11. We remind the reader that ∇sIn denotes the 
symplectic gradient of In with respect to the form ωL2 , see Definition 4.33. To establish 
the identity (2.66), we use a formula from Section 6.2 for ∇sIn, which is in terms of 
the Gâteaux derivatives of the nonlinear operators wn. Combining this formula with the 
computation of XHn

(Γ) for factorized Γ (see Lemma 8.2), which extensively uses the 
good mapping property of the generators of the Hn (i.e. −iWn), we obtain (2.66) and 
hence the desired conclusion.

2.3. Organization of the paper

We close Section 2 by commenting on the organization of the paper. In Section 4, we 
review the notation and background material used throughout this paper. Section 4.1
briefly reviews the Gâteaux derivative and calculus in the setting of locally convex spaces, 
as well as smooth manifolds modeled on locally convex spaces. Section 4.2 introduces the 
relevant spaces of bosonic test functions and distributions, symmetrization and contrac-
tion operators, and tensor products. Section 4.3 is a crash course on weak symplectic and 
Poisson manifolds in addition to discussing several important examples of such objects 
which appear frequently in this work. Lastly, Section 4.4 quickly reviews the definition 
of a Lie algebra as well as the classical Lie-Poisson construction. As this subject is thor-
oughly treated in Section 4.2 of our companion paper [57], we have omitted proofs and 
instead refer the reader to that work for more details.

In Section 5, we construct our observable ∞-hierarchies −iWn, thereby proving 
Proposition 2.7. The section is divided into three subsections corresponding to each 
stage of the construction: the preliminary version, followed by the self-adjoint version, 
followed by the final bosonic, self-adjoint version.

Section 6 is devoted to analyzing the correspondence between the wn and the Wn and 
the consequences of this correspondence. Section 6.1 contains the “multilinearization” of 
the wn. Section 6.2 contains the proof of a formula for the symplectic gradients of the In. 
Section 6.3 connects the multilinearizations of the wn from Section 6.1 with the partial 
traces of the Wn.

In Section 7, we prove our involution result, Theorem 2.8, in addition to the main 
auxiliary results involved in the proof of this theorem, which might be of independent 
interest. This section is broken down into four subsections in order to make the pre-
sentation more modular. Section 7.1 contains the proof of the Poisson morphism result, 
Theorem 2.9. Section 7.2 connects the infinite-particle functionals Hn to the one-particle 
functions Ib,n via the Poisson morphism of Theorem 2.9 and the correspondence results 
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of Section 6.3. Section 7.3 contains the proofs of the Poisson commutativity equivalence 
result, Theorem 2.10, and the involution result, Theorem 2.8. Lastly, Section 7.4 contains 
the proof of Proposition 7.3, which asserts that there is at least one functional which 
does not Poisson commute with a given Hn.

In the last section, Section 8, of the main body of the paper, we prove our n-th GP/n-
th NLS correspondence result, Theorem 2.11. Section 8.1 is devoted to the computation 
of the Hamiltonian vector fields of the Hn evaluated on factorized states, and Section 8.2
is devoted to the proof of Theorem 2.11. To close the section, we compute in Section 8.3
the fourth GP hierarchy, which corresponds to the complex mKdV equation.

We have also included several appendices to make this work as self-contained as pos-
sible. Appendix A revisits the treatment in Faddeev and Takhtajan’s monograph [23]
of the involution of the functionals In in the more general setting of the system (2.49). 
We were unable to find a reference covering this generalization. Therefore, we provide a 
fairly thorough presentation at the expense of a lengthy appendix. Appendix B contains 
a quick review of some facts from multilinear algebra on symmetric tensors, which we use 
to establish approximation results for bosonic Schwartz functions and density matrices. 
Appendix C is devoted to technical facts about distribution-valued operators and topo-
logical tensor products, which justify the manipulations used extensively in this paper. 
Furthermore, this appendix includes an elaboration on the good mapping property, in 
particular, some technical consequences of it which are used in the body of the paper. 
Appendix C is also included in [57]; however, we include it here, with most of the proofs 
omitted, for convenient referencing. Appendix D contains technical material on products 
of distributions, specifically on when the product of two distributions can be rigorously 
defined.

3. Notation

3.1. Index of notation

We include Table 1, located at the end of the manuscript, as a guide for the frequently 
used symbols in this work. In this table, we either provide a definition of the notation 
or a reference for where the symbol is defined.

4. Preliminaries

4.1. Calculus on locally convex spaces

We begin by recalling some definitions related to calculus on locally convex spaces, 
which we make use of in the sequel. For further background material, we refer the reader 
to the lecture notes of Milnor [58].
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Definition 4.1 (Locally convex space). A topological vector space (tvs) X over a scalar 
field K is said to be locally convex if every neighborhood U � 0 contains a neighborhood 
U ′ � 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type 
result.

Proposition 4.2 (Hahn-Banach). If X is locally convex, then given two distinct vectors 
x, y ∈ X, there exists a continuous K-linear map � : X → K with �(x) �= �(y).

Definition 4.3 (Gâteaux derivative). Let X and Y be locally convex K-tvs, let X0 ⊂ X

and Y0 ⊂ Y be open sets, and let f : X0 → Y0 be a continuous map. Given a point 
x ∈ X0 and a direction v ∈ X, we define the directional derivative or Gâteaux derivative
of f at x in the direction v to be the vector

f ′(x; v) := f ′
x(v) := lim

t→0

f(x + tv) − f(x)
t

, (4.1)

if this limit exists. We call the map f ′
x : X → Y the derivative of f at the point x0. We 

use the notation df [x](v) := f ′(x; v).
The map f : X0 → Y0 is C2 Gâteaux if f is a C1 Gâteaux map and for each v1 ∈ X

fixed, the map

X0 → Y, x �→ f ′(x; v1) (4.2)

is C1 with Gâteaux derivative

lim
t→0

f ′(x + tv2; v1) − f ′(x; v1)
t

(4.3)

depending continuously on (x; v1, v2) ∈ X0×X×X equipped with the product topology. 
If this limit exists, we call it the second Gâteaux derivative of f at x in the directions 
v1, v2 and denote it by f ′′(x; v1, v2). We inductively define Cr maps X0 → Y0. If a map 
is Cr for every r ∈ N, then we say that f is a C∞ map or alternatively, a smooth map.

Proposition 4.4 (Symmetry and r-linearity of f (r)
x0 ). If for r ∈ N, the map f is Cr, then 

for each fixed x0 ∈ X0, the map

X × · · · ×X︸ ︷︷ ︸
r

→ Y, (v1, . . . , vr) �→ f (r)(x0; v1, . . . , vr) (4.4)

is r-linear and symmetric, i.e. for any permutation π ∈ Sr,

f (r)(x0; vπ(1), . . . , vπ(r)) = f (r)(x0; v1, . . . , vr). (4.5)
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Proposition 4.5 (Composition). If f : X0 → Y0 and g : Y0 → Z0 are Cr maps, then 
g ◦ f : X0 → Z0 is Cr and the derivative of (g ◦ f) at the point x ∈ X0 is the map 
g′f(x) ◦ f ′

x : X → Z.

We now use the calculus reviewed above to introduce the basics of smooth manifolds 
modeled on locally convex topological vector spaces. Much of the theory parallels the 
finite-dimensional setting, where the model space Rd is now replaced by an arbitrary, 
possibly infinite-dimensional locally convex tvs.

Definition 4.6 (Smooth manifold). A smooth manifold modeled on a locally convex space 
V consists of a regular, Hausdorff topological space M together with a collection of 
homeomorphisms ϕα : Vα → Mα satisfying the following properties:

(M1) Vα ⊂ V is open.
(M2) Mα ⊂ M is open and 

⋃
α Mα = M .

(M3) ϕ−1
β ◦ϕα : ϕ−1

α (Mα∩Mβ) → ϕ−1
β (Mα∩Mβ) is a smooth map between open subsets 

of V . We refer to the maps ϕα as local coordinate systems on M and the maps 
ϕ−1
α as coordinate charts.

Remark 4.7. We will sometimes say that the manifold M is a Fréchet manifold if the 
locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we 
can define the notion of a smooth map between manifolds.

Definition 4.8 (Smooth map). If M1 and M2 are smooth manifolds modeled on locally 
convex spaces V1 and V2, respectively, then a continuous function f : M1 → M2 is smooth
if the composition

ϕ−1
β,2 ◦ f ◦ ϕα,1 : ϕ−1

α,1
(
M1,α ∩ f−1(M2,β)

)
→ V2,β (4.6)

is smooth whenever f(M1,α) ∩ M2,β �= ∅. We say that f is a diffeomorphism if it is 
bijective and both f and f−1 are smooth.

Definition 4.9 (Submanifold). A subset N of a smooth locally convex manifold M is a 
submanifold if for each m ∈ N , there exists a chart (Mα, ϕ−1

α ) about the point m, such 
that ϕ−1

α (Mα ∩ N) = ϕ−1
α (Mα) ∩ W , where W is a closed subspace of the space V on 

which M is modeled.

Remark 4.10. The submanifold N is smooth locally convex manifold modeled on W . 
Indeed, the reader may check that the maps ϕα|Vα∩W : Vα ∩W → Mα ∩N are homeo-
morphisms which satisfy properties (M1) - (M3).
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In this article, we use the kinematic definition of tangent vectors (i.e. equivalence 
classes of smooth curves), as opposed to the operational definition (i.e. derivations). 
These two definitions are equivalent in the finite-dimensional setting but are generally 
inequivalent in the infinite-dimensional setting.

Definition 4.11 (Tangent space). Let ϕα : Vα → Mα be a local coordinate system on M
with x0 ∈ Mα. Let p1, p2 : I → M be smooth maps on an open interval I ⊂ R with 
pi(0) = x0 for i = 1, 2. We say that p1 ∼ p2 if and only if

d

dt

(
ϕ−1
α ◦ p1

)
|t=0 = d

dt

(
ϕ−1
α ◦ p2

)
|t=0. (4.7)

The reader may verify that ∼ defines an equivalence relation on smooth curves p : I → M

with p(0) = x0. The set of all such equivalence classes is called the tangent space at x0, 
denoted by Tx0M .

Definition 4.12 (Tangent bundle). We define the tangent bundle TM as a set by∐
x∈M

TxM.

We define a smooth locally convex structure on TM modeled on V × V by the local 
coordinate systems

ψα : Vα × V → TMα ⊂ TM, (4.8)

where ψα(u, v) is defined to be the equivalence class containing the smooth curve t �→
ϕα(u + tv) through the point ϕα(u) ∈ M . The reader may verify that ψα maps {u} × V

isomorphically onto the tangent space Tϕα(u)M .

Definition 4.13 (Derivative). Let M1 and M2 be smooth locally convex manifolds. A 
smooth map f : M1 → M2 induces a continuous map

f ′
x : TxM1 → Tf(x)M2, [p1] �→ [f ◦ p1] (4.9)

called the derivative of f at x. Together, the maps f ′
x induce a smooth map

f∗ : TM1 → TM2, (x, v) �→ (f(x), f ′
x(v)) (4.10)

which maps TxM1 linearly into Tf(x)M2.

Definition 4.14 (Smooth vector field). A smooth vector field on M is a smooth map 
X : M → TM such that X(x) ∈ TxM . We denote the vector space of smooth vector 
fields on M by X(M).
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4.2. Bosonic functions, operators, and tensor products

We now review the main spaces of test functions and distributions and some basic 
facts about tensor products used extensively in the body of the paper.

We denote the pairing of a tempered distribution u ∈ S ′(Rk) with a Schwartz function 
f ∈ S(Rk) by

〈u, f〉S′(Rk)−S(Rk). (4.11)

For 1 ≤ p ≤ ∞, we use the notation Lp(Rk) to denote Banach space of p-integrable 
functions with norm ‖ · ‖Lp(Rk). In particular, when p = 2, we denote the L2 inner 
product by

〈f |g〉 :=
∫
Rk

dxkf(xk)g(xk). (4.12)

Note that we use the physicist’s convention that the inner product is complex linear in 
the second entry. Similarly, for u ∈ S ′(Rk) and f ∈ S(Rk), we use the notation 〈u|f〉
and 〈f |u〉 to denote

〈u|f〉 := 〈u, f̄〉S′(Rk)−S(Rk) and 〈f |u〉 := 〈u|f〉. (4.13)

Alternatively, the right-hand side of the first definition may be taken as the definition of 
the tempered distribution ū. Throughout the paper, we will use an integral to represent 
the pairing of a distribution and a test function.

We denote the symmetric group on k letters by Sk. For a permutation π ∈ Sk, we 
define the map π : Rk → Rk by

π(xk) := (xπ(1), . . . , xπ(k)). (4.14)

For a complex-valued, measurable function f : Rk → C, we define the permuted function

(πf)(xk) := (f ◦ π)(xk) = f(xπ(1), . . . , xπ(k)), ∀xk ∈ Rk. (4.15)

Definition 4.15. We say that a measurable function f : Rk → C is symmetric or bosonic
if

π(f) = f, ∀π ∈ Sk. (4.16)

Definition 4.16. We define the symmetrization operator Symk on the space of measurable 
complex-valued functions by

Symk(f)(xk) := 1
k!

∑
π(f)(xk), ∀xk ∈ Rk. (4.17)
π∈Sk
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By duality and continuity of the symmetrizing operation, we can extend the symmetriza-
tion operator to S ′(Rk).

Definition 4.17 (Bosonic test functions/distributions). For k ∈ N, let Ss(Rk) denote 
the subspace of S(Rk) consisting of Schwartz functions which are bosonic. We say that 
a tempered distribution u ∈ S ′(Rk) is symmetric or bosonic if for every permutation 
π ∈ Sk,

〈u, g ◦ π−1〉S′(Rk)−S(Rk) = 〈u, g〉S′(Rk)−S(Rk), (4.18)

for all g ∈ S(Rk). We denote the subspace of such tempered distributions by S ′
s(Rk).

Remark 4.18. It is straightforward to check that Symk is a continuous operator S(Rk) →
Ss(Rk) and S ′(Rk) → S ′

s(Rk). Furthermore, a tempered distribution u is bosonic if and 
only if u = Symk(u).

Lemma 4.19. We have the identification

S ′
s(Rk) ∼= (Ss(Rk))∗, (4.19)

where (Ss(Rk))∗ denotes the topological dual of Ss(Rk).

Given two locally convex spaces E and F , we denote the space of continuous linear 
maps E → F by L(E, F ). We topologize L(E, F ) with the topology of bounded conver-
gence. For our purposes, we will typically have E, F ∈ {S(Rk), Ss(Rk), S ′(Rk), S ′

s(Rk)}. 
In the case that E = S(Rk) and F = S ′(Rk), the bounded topology is generated by the 
seminorms

‖A‖R := sup
f,g∈R

|〈Af, g〉S′(Rk)−S(Rk)|, ∀A ∈ L(S(Rk),S ′(Rk)), (4.20)

where R ranges over the bounded subsets of S(Rk). An identical statement holds with all 
spaces replaced by their symmetric counterparts. We topologize S ′(Rk) with the strong 
dual topology, which is the locally convex topology generated by the seminorms of the 
form

‖f‖B := sup
ϕ∈B

∣∣∣〈f, ϕ〉S′(Rk)−S(Rk)

∣∣∣ , (4.21)

where B ranges over the family of all bounded subsets of S(Rk). Note that since S(Rk)
is a Montel space, bounded subsets are precompact. An identical statement holds with 
all spaces replaced by their symmetric counterparts.
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Given two locally convex spaces E and F over a field K, we denote an23 algebraic 
tensor product of E and F consisting of finite linear combinations

n∑
j=1

λjej ⊗ fj , ej ∈ E, fj ∈ F, λj ∈ K (4.22)

by E ⊗ F . We note that since the spaces we deal with in this paper are nuclear, 
the topologies of the injective and projective tensor products coincide. Hence, we can 
unambiguously write E⊗̂F to denote the completion of E⊗F under either of the afore-
mentioned topologies. Given locally convex spaces Ej and Fj for j = 1, 2 and linear maps 
T : E1 → E2 and S : F1 → F2, and a tensor product

B : E1 × E2 → E1 ⊗E2, (4.23)

the notation T ⊗ S denotes the unique linear map T ⊗ S : E1 ⊗F1 → E2 ×F2 such that

(T ⊗ S) ◦B = T × S. (4.24)

Note that the existence of such a unique map is guaranteed by the universal property of 
the tensor product.

When E and F are subspaces of measurable functions on Rm and Rn respectively, 
and e ∈ E and f ∈ F , we let e ⊗ f denote the realization of the tensor product given by

e⊗ f : Rm ×Rn → C, (e⊗ f)(xm;x′
n) := e(xm)f(x′

n), ∀(xm, x′
n) ∈ Rm ×Rn,

(4.25)
which induces a bilinear map E × F → E ⊗ F . Similarly, if E′ and F ′ are the duals of 
spaces of test functions E and F (e.g. E′ = D′(Rm) and F ′ = D′(Rn)), we let u ⊗ v

denote the unique distribution satisfying

(u⊗ v)(e⊗ f) = u(e) · v(f). (4.26)

Finally, if φ : Rm → C is a measurable function, we use the notation φ⊗k, for k ∈ N, to 
denote the measurable function φ⊗k : Rmk → C defined by

φ⊗k(xm,1, . . . , xm,k) :=
k∏

�=1

φ(xm;�), (4.27)

and we use the notation φ×k to denote the measurable function φ×k : Rm → Ck

φ×k(xm) := (φ(xm), . . . , φ(xm)). (4.28)

23 The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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For A(k) ∈ L(Ss(Rk), S ′
s(Rk)) and π ∈ Sk, we define

A
(k)
(π(1),...,π(k)) := π ◦A(k) ◦ π−1. (4.29)

In particular, A(k)
(1,...,k) = A(k).

Definition 4.20. Given A(k) ∈ L(S(Rk), S ′(Rk)), we define its bosonic symmetrization
Symk(A(k)) by

Symk(A(k)) := 1
k!

∑
π∈Sk

A
(k)
(π(1),...,π(k)). (4.30)

For A = (A(k))k∈N ∈
⊕∞

k=1 L(S(Rk), S ′(Rk)), we define

Sym(A) :=
(
Symk(A(k))

)
k∈N

. (4.31)

Definition 4.21 (Bosonic operators). Let k ∈ N. We say that an operator A(k) : S(Rk) →
S ′(Rk) is bosonic or permutation invariant if A(k) maps Ss(Rk) into S ′

s(Rk).

The analogue of Remark 4.18 holds for the symmetrization of operators: bosonically 
symmetrized operators are indeed maps from bosonic Schwartz functions to bosonic 
tempered distributions.

Lemma 4.22. Let k ∈ N. If A(k) ∈ L(S(Rk), S ′(Rk)), then

Symk(A(k)) ∈ L(Ss(Rk),S ′
s(Rk)). (4.32)

Furthermore, if A(k) ∈ Lgmp(S(Rk), S ′(Rk)), then

Symk(A(k)) ∈ Lgmp(Ss(Rk),S ′
s(Rk)). (4.33)

The following technical lemma is frequently used implicitly in the sequel. For defini-
tions and discussion of the generalized trace, see Definition C.5.

Lemma 4.23. Let k ∈ N, and let γ(k) ∈ L(S ′
s(Rk), Ss(Rk)) and A(k) ∈ L(S(Rk), S ′(Rk)). 

Then for any permutation τ ∈ Sk, we have that

Tr1,...,k
(
A

(k)
(τ(1),...,τ(k))γ

(k)
)

= Tr1,...,k
(
A(k)γ(k)

)
. (4.34)

4.3. Weak Poisson structures and Hamiltonian systems

We recall the definition of a weak Poisson structure due to Neeb et al. [60] generalized 
to allow for complex-valued functionals. The presentation closely follows that of Section 
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4.1 in our companion paper [57]. In what follows below, M is a smooth manifold modeled 
on a locally convex space.

Definition 4.24 (Weak Poisson manifold). A weak Poisson structure on M is a pair con-
sisting of a unital sub-algebra A ⊂ C∞(M ; C) and a bilinear map {·, ·} : A × A → A
satisfying the following properties:

(P1) The bilinear map {·, ·}, is a Lie bracket24 and satisfies the Leibniz rule

{F,GH} = {F,G}H + G{F,H}, ∀F,G,H ∈ A. (4.35)

We call {·, ·} a Poisson bracket.
(P2) For every m ∈ M and v ∈ TmM satisfying dF [m](v) = 0 for all F ∈ A, we have 

that v = 0.
(P3) For every H ∈ A, there exists a smooth vector field XH on M satisfying

XHF = {F,H}, ∀F ∈ A, (4.36)

where in the left-hand side of the identity, we regard XH as a derivation. We call 
XH the Hamiltonian vector field associated to H.

If properties (P1) - (P3) are satisfied, then we call the triple (M, A, {·, ·}) a weak Poisson 
manifold.

We now record some observations from [60] about the definition of a weak Poisson 
structure.

Remark 4.25. (P2) implies that the Hamiltonian vector field XH associated to a given 
H ∈ A is uniquely determined by the relation

{F,H}(m) = (XHF )(m) = dF [m](XH(m)), ∀F ∈ A. (4.37)

Indeed, if XH,1 and XH,2 are two smooth vector fields satisfying the preceding relation, 
then the smooth vector field X̃H := XH,1 −XH,2 satisfies

dF [m](X̃H(m)) = 0, ∀F ∈ A, (4.38)

for all m ∈ M , which by (P2) implies that X̃H ≡ 0.

24 See Definition 4.43 for details.
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Remark 4.26. For all F, G, H ∈ A, we have by the Jacobi identity that

[XF , XG]H = {{H,G}, F} − {{H,F}, G}
= {H, {G,F}}
= X{G,F}H, (4.39)

where [XF , XG] denotes the commutator of the vector fields XF , XG regarded as deriva-
tions. Hence, by Remark 4.25, [XF , XG] = X{G,F} for F, G ∈ A. Additionally, the Leibniz 
rule for {·, ·} implies the identity

XFG = FXG + GXF , ∀F,G ∈ A. (4.40)

There is also a notion of a weak symplectic manifold, which we have generalized to 
allow for complex-valued symplectic forms. The modifier “weak” here refers to the fact 
that for locally convex spaces, not every continuous functional is necessarily represented 
by the symplectic form.

Definition 4.27 (Weak symplectic manifold). Let M be a smooth locally convex manifold, 
and let X (M) denote the space of smooth vector fields on M . A weak symplectic manifold
is a pair (M, ω) consisting of a smooth manifold M and a closed non-degenerate 2-form 
ω : TM × TM → C.

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector 
fields on M by

ham(M,ω) := {X ∈ X (M) : ∃H ∈ C∞(M ;C) s.t. ω(X, ·) = dH}. (4.41)

With this definition in hand, we see that weak symplectic manifolds canonically lead 
to weak Poisson manifolds.

Remark 4.28 (Weak symplectic ⇒ weak Poisson). Let (M, ω) be a weak symplectic man-
ifold. Let

A := {H ∈ C∞(M ;C) : ∃XH ∈ X (M) s.t. ω(XH , ·) = dH}, (4.42)

and let

{·, ·} : A×A → A, {F,G} := ω(XF , XG) = dF [XG] = XGF. (4.43)

The formula (4.43) defines a Poisson bracket satisfying properties (P1) and (P3). If we 
additionally have that for each v ∈ TmM ,

(ω(X(m), v) = 0, ∀X ∈ ham(M,ω)) =⇒ v = 0, (4.44)
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then property (P2) is also satisfied. Consequently, the triple (M, A, {·, ·}) is a weak 
Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Poisson 
structures. This leads to the notion of a Poisson map, alternatively Poisson morphism.

Definition 4.29 (Poisson map). Let (Mj , Aj , {·, ·}j), for j = 1, 2, be weak Poisson man-
ifolds. We say that a smooth map ϕ : M1 → M2 is a Poisson map, or morphism of 
Poisson manifolds, if ϕ∗A2 ⊂ A1 and

ϕ∗{F,G}2 = {ϕ∗F,ϕ∗G}1, ∀F,G ∈ A2, (4.45)

where ϕ∗ denotes the pullback of ϕ.

Remark 4.30. In [60], the authors define a Poisson morphism

ϕ : (M1,A1, {·, ·}1) → (M2,A2, {·, ·}2)

with the requirement that ϕ∗A2 = A1. We relax this requirement in our Definition 4.29.

We need several examples of weak Poisson/symplectic manifolds in this work. An 
example we discussed at length in [57] is the Schwartz space S(Rk), as well as its bosonic 
counterpart Ss(Rk). We collect the main conclusions and refer the reader to [57] for 
proofs.

We equip the space S(Rk) with a real pre-Hilbert inner product by defining

〈f |g〉Re := 2 Re

⎧⎨⎩
∫
Rk

dxkf(xk)g(xk)

⎫⎬⎭, ∀f, g ∈ S(Rk). (4.46)

The operator J : S(Rk) → S(Rk) defined by J(f) := if defines an almost complex 
structure on (S(Rk), 〈·|·〉Re), leading to the standard L2 symplectic form

ωL2(f, g) := 〈Jf |g〉Re = 2 Im

⎧⎨⎩
∫
Rk

dxkf(xk)g(xk)

⎫⎬⎭, ∀f, g ∈ S(Rk). (4.47)

With these definitions in hand, we record the following well-known fact.

Proposition 4.31. (S(Rk), ωL2) is a weak symplectic manifold.

Now given a functional F ∈ C∞(S(Rk); R), the Gâteaux derivative of F at the point 
f ∈ S(Rk), denoted by dF [f ], defines an element of S ′(Rk). We consider the case when 
dF [f ] can be identified with a Schwartz function via the inner product 〈·|·〉Re.
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Lemma 4.32 (Uniqueness). Let F ∈ C∞(S(Rk); R) and f ∈ S(Rk). Suppose that there 
exist g1, g2 ∈ S(Rk) such that

〈g1|δf〉Re = dF [f ](δf) = 〈g2|δf〉Re , ∀δf ∈ S(Rk). (4.48)

Then g1 = g2.

Letting A be the algebra defined in (4.42) and F ∈ A, we see from Remark 4.25 and 
Remark 4.28 that XF (f) is the unique element, hereafter denoted by ∇sF (f), satisfying

dF [f ](δf) = ωL2(∇sF (f), δf), ∀δf ∈ S(Rk).

Consequently, we can define the real and symplectic gradients of functionals.

Definition 4.33 (Real/Symplectic L2 gradient). We define the real and symplectic L2

gradient of F ∈ C∞(S(Rk); R) at the point f ∈ S(Rk), denoted by ∇F (f) and ∇sF (f), 
respectively, to be the unique elements of S(Rk) (if they exist) such that

dF [f ](δf) = 〈∇F (f)|δf〉Re = ωL2(∇sF (f), δf), ∀δf ∈ S(Rk). (4.49)

We say that F has a real, or respectively symplectic, L2 gradient if ∇F : S(Rk) → S(Rk), 
respectively ∇sF : S(Rk) → S(Rk), is a smooth map.

Remark 4.34. Recalling that

ωL2(f, g) = 〈Jf |g〉Re ,

we see that ∇sF (f) = −i∇F (f).

Remark 4.28 implies that the symplectic form ωL2 canonically induces a Poisson 
structure on S(Rk), a fact we record in the next proposition.

Proposition 4.35. Define a subset AS ⊂ C∞(S(Rk); R) by

AS := {H ∈ C∞(S(Rk);R) : ∇sH ∈ C∞(S(Rk);S(Rk))}, (4.50)

and define a bracket {·, ·}L2 by

{F,G}L2 := ωL2(∇sF,∇sG), ∀F,G ∈ AS . (4.51)

Then (S(Rk), AS , {·, ·}L2) is a weak Poisson manifold.
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Remark 4.36 (Variational derivatives). For functionals F, G ∈ C∞(S(Rk); R) having a 
special form discussed below, there is a computationally more convenient way to express 
their symplectic gradients and Poisson bracket in terms of variational derivatives. Given 
a smooth functional F̃ : S(Rk)2 → C, we define the variational derivatives ∇1F̃ and 
∇2̄F̃ by the property25

dF̃ [φ1, φ2](δφ1, δφ2)

=
∫
Rk

dxk

(
∇1F̃ (φ1, φ2)δφ1 + ∇2̄F̃ (φ1, φ2)δφ2

)
(xk), ∀(φ1, φ2), (δφ1, δφ2) ∈ S(Rk)2.

(4.52)

The reader can verify that the variational derivatives, if they exist, are unique.
Let F, G ∈ C∞(S(Rk); R). Suppose that

F (φ) = F̃ (φ, φ), F̃ ∈ C∞(S(Rk)2;C), (4.53)

where F̃ satisfies the conditions

F̃ (φ1, φ2) = F̃ (φ2, φ1), ∇1F̃ , ∇2̄F̃ ∈ C∞(S(Rk)2;S(Rk)), (4.54)

and similarly for G and G̃. Then we claim that F, G ∈ AS and their Poisson bracket 
{F,G}L2 may be rewritten as

{F,G}L2(φ) = −i

∫
R

dx
(
∇1F̃ (φ, φ)∇2̄G̃(φ, φ) −∇2̄F̃ (φ, φ)∇1G̃(φ, φ)

)
(x). (4.55)

Indeed, observe that

dF̃ [φ1, φ2](δφ1, δφ2) = lim
ε→0

F̃ (φ1 + εδφ1, φ2 + εδφ2) − F̃ (φ1, φ2)
ε

= lim
ε→0

F̃ (φ2 + εδφ2, φ1 + εδφ1) − F̃ (φ2, φ1)
ε

= dF̃ [φ2, φ1](δφ2, δφ1)

=
∫
Rk

dxk

(
∇1F̃ (φ2, φ1)δφ2 + ∇2̄F̃ (φ2, φ1)δφ1

)
(xk),

(4.56)

25 Our notation for variational derivatives is nonstandard. In the calculus of variations literature, one 
typically finds δf

δφ1
and δf

δφ2
instead of ∇1f(φ1, φ2) and ∇2̄(φ1, φ2), respectively. We prefer our notation as 

it emphasizes the nature of the variational derivatives as vector fields. The motivations for the seemingly 
odd use of the subscript 2̄, as opposed to just 2, will become clear later in this subsection.
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where the ultimate equality follows by definition of the variational derivatives. Since

dF̃ [φ1, φ2](δφ1, δφ2) =
∫
Rk

dxk

(
∇1F̃ (φ1, φ2)δφ1 + ∇2̄F̃ (φ1, φ2)δφ2

)
(xk), (4.57)

we conclude by uniqueness of variational derivatives that

∇1F̃ (φ1, φ2) = ∇2̄F̃ (φ2, φ1), ∇2̄F̃ (φ1, φ2) = ∇1F̃ (φ2, φ1). (4.58)

Now recalling the definition of the symplectic gradient, we have that

ωL2(∇sF (φ), ψ) = dF [φ](ψ)

= dF̃ [φ, φ](ψ,ψ)

=
∫
Rk

dxk

(
∇1F̃ (φ, φ)ψ + ∇2̄F̃ (φ, φ)ψ

)
(xk)

= 2 Re

⎧⎨⎩
∫
Rk

dxk∇1F̃ (φ, φ)(xk)ψ(xk)

⎫⎬⎭, (4.59)

where the ultimate equality follows from the relations (4.58). By uniqueness of the sym-
plectic gradient, we conclude that

∇sF (φ) = −i∇1F̃ (φ, φ) = −i∇2̄F̃ (φ, φ) = 1
2

(
i∇1F̃ (φ, φ) − i∇2̄F̃ (φ, φ)

)
. (4.60)

Since the right-hand side of the preceding identity defines an element of C∞(S(Rk);
S(Rk)), we obtain that F ∈ AS . Now we can rewrite the Poisson bracket as

ωL2(∇sF (φ),∇sG(φ)) = 2 Im

⎧⎨⎩
∫
Rk

dxk

(
i∇1F̃ (φ, φ)i∇1G̃(φ, φ)

)
(xk)

⎫⎬⎭
= −i

∫
Rk

dxk

(
∇1F̃ (φ, φ)∇1G̃(φ, φ) −∇1F̃ (φ, φ)∇1G̃(φ, φ)

)
(xk)

= −i

∫
Rk

dxk

(
∇1F̃ (φ, φ)∇2̄G̃(φ, φ) −∇2̄F̃ (φ, φ)∇1G̃(φ, φ)

)
(xk),

(4.61)

where the ultimate equality follows from the relations (4.58).
In the sequel, all of the functionals we consider will satisfy the requirements (4.54). 

Consequently, we will pass between the variational derivative formulation (4.55) and the 
symplectic gradient formulation of the Poisson bracket without comment.
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To motivate our next extension of the weak Poisson manifold (S(Rk), AS , {·, ·}L2), we 
observe that we can identify a one-particle wave function φ with the pure state

|φ〉 〈φ| .

We can define a real topological vector space of pure states by considering the space of 
Schwartz functions taking values in the space of self-adjoint, anti-diagonal 2 ×2 complex 
matrices: (

0 φ
φ 0

)
. (4.62)

The natural generalization of a pure state is a mixed state,

1
2( |φ1〉 〈φ2| + |φ2〉 〈φ1|),

and we can define a real topological vector space of mixed states as follows: let V denote 
the real vector space of self-adjoint, anti-diagonal 4 × 4 matrices of the form

1
2adiag(a, b, b, a), a, b ∈ C. (4.63)

We let S(Rk; V) denote the space of Schwartz functions taking values in the space V. 
Elements of S(Rk; V) have the form

γ(xk) = 1
2adiag(φ1(xk), φ2(xk), φ2(xk), φ1(xk)), ∀xk ∈ Rk, φ1, φ2 ∈ S(Rk).

(4.64)
We can define a real pre-Hilbert inner product on S(Rk; V) by

〈γ1|γ2〉Re,V := 2
∫
Rk

dxk trC2⊗C2(γ1(xk)γ2,swap(xk)), ∀γ1, γ2 ∈ S(Rk;V), (4.65)

where trC2⊗C2 denotes the 4 × 4 matrix trace and

γ2,swap = 1
2adiag(φ2, φ1, φ1, φ2), γ2 = 1

2adiag(φ1, φ2, φ2, φ1). (4.66)

The matrix left-multiplication operator

J : S(Rk;V) → S(Rk;V), J = diag(i,−i, i,−i) (4.67)

defines an almost complex structure. We can then define a symplectic form ωL2,V by

ωL2,V(γ1, γ2) := 〈Jγ1|γ2,swap〉 . (4.68)
Re,V
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Analogous to Proposition 4.35, we have that (S(Rk; V), ωL2,V) is a weak symplectic 
manifold. Moreover, the obvious map

ιpm : S(Rk) → S(Rk;V), φ �→ 1
2adiag(φ, φ, φ, φ) (4.69)

is a symplectomorphism. Additionally, if we denote the symplectic gradient with respect 
to the form ωL2,V by ∇s,V , then one can show that if we define

AS,V := {F ∈ C∞(S(Rk;V);R) : ∇s,VF ∈ C∞(S(Rk;V),S(Rk;V))}, (4.70)

and let {·, ·}L2,V be the Poisson bracket canonically induced by the form ωL2,V , then the 
triple

(S(Rk;V),AS,V , {·, ·}L2,V) (4.71)

is a weak Poisson manifold. We summarize the preceding discussion with the following 
proposition.

Proposition 4.37. (S(Rk; V), ωL2,V) is a weak symplectic manifold, and (S(Rk; V), AS,V ,

{·, ·}L2,V) is a weak Poisson manifold, where

{F,G}L2,V(γ) := ωL2,V(∇s,VF (γ),∇s,VG(γ)). (4.72)

Furthermore, the map ιpm is a symplectomorphism; i.e., it is a smooth map such that

ι∗pmωL2,V = ωL2 , (4.73)

where ι∗pm denotes the pullback of ιpm, so that

ιpm : (S(Rk),AS , {·, ·}L2) → (S(Rk;V),AS,V , {·, ·}L2,V) (4.74)

is a Poisson morphism.

Remark 4.38. Remark 4.36 carries over to the setting of S(Rk; V). More precisely, suppose 
F ∈ C∞(S(Rk; V); R) is such that

F (γ) = F̃ (φ1, φ2, φ2, φ1), γ = 1
2adiag(φ1, φ2, φ2, φ1) ∈ S(Rk;V), (4.75)

where F̃ ∈ C∞(S(Rk)4; C), is such that

∇1F̃ , ∇2̄F̃ , ∇2F̃ , ∇1̄F̃ ∈ C∞(S(Rk)4;S(Rk)), (4.76)

where the four variational derivatives are uniquely defined by
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dF̃ [φ1, φ2̄, φ2, φ1̄](δφ1, δφ2̄, δφ2, δφ1̄)

=
∫
Rk

dxk

((
∇1F̃ δφ1 + ∇2̄F̃ δφ2̄ + ∇2F̃ δφ2 + ∇1̄F̃ δφ1̄

)
(φ1, φ2̄, φ2, φ1̄)

)
(xk),

(4.77)

and F̃ has the involution property

F̃ (φ1, φ2̄, φ2, φ1̄) = F̃ (φ1̄, φ2, φ2̄, φ1). (4.78)

Then F ∈ AS,V . Additionally, if F, G are two such functionals, then their Poisson bracket 
may be rewritten as

{F,G}L2,V(γ) = −i

∫
Rk

dxk

(
∇1F̃ (γ)∇2̄G̃(γ) −∇2̄F̃ (γ)∇1G̃(γ

)
(xk)

− i

∫
Rk

dxk

(
∇2F̃ (γ)∇1̄G̃(γ) −∇1̄F̃ (γ)∇2G̃(γ)

)
(xk),

(4.79)

where we identify γ with the 4-tuple (φ1, φ2, φ2, φ1) for the sake of more compact nota-
tion.

In the sequel, all the functionals on S(Rk; V) we consider satisfy the conditions of the 
remark. Consequently, we will pass between the variational derivative and symplectic 
gradient formulations for the Poisson bracket without comment.

Lastly, we make heavy use of a “complexified” version of the weak symplectic man-
ifold (S(Rk), ωL2). More precisely, consider the cartesian product S(Rk)2 and define a 
complex-valued map

ωL2,C(f2, g2) :=
∫
Rk

dxk trC2(JCf2g2)(xk), (4.80)

where

f2 =
(

0 f1
f2 0

)
, g2 =

(
0 g1
g2 0

)
∈ S(Rk)2, (4.81)

trC2 denotes the 2 × 2 matrix trace, and JC is the left-matrix multiplication operator 
diag(i, −i). Here, we identify a Schwartz function taking values in the space of anti-
diagonal 2 × 2 matrices with an element of S(Rk)2 in the obvious manner.

Remark 4.39. Note that if f2 = adiag(f, f) and g2 = adiag(g, g), for f, g ∈ S(Rk), then

ωL2,C(f2, g2) = i

∫
dxk

(
fg − fg

)
(xk) = 2 Im

⎧⎨⎩
∫

dxkf(xk)g(xk)

⎫⎬⎭ = ωL2(f, g). (4.82)

Rk Rk
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Proposition 4.40. Define a subset AS,C ⊂ C∞(S(Rk)2; C) by

AS,C :=
{
H ∈ C∞(S(Rk);C) : ∇s,CH ∈ C∞(S(R)2;S(R)2)

}
, (4.83)

and define a bracket {·, ·}L2,C by

{F,G}L2,C := ωL2,C(∇s,CF,∇s,CG). (4.84)

Then (S(Rk)2, AS,C, {·, ·}L2,C) is a weak Poisson manifold.

Remark 4.41. As before, if F, G ∈ C∞(S(Rk)2; C) satisfy the condition (4.54), then 
F, G ∈ AS,C and

{F,G}L2,C(φ1, φ2)

= −i

∫
Rk

dxk

(
∇1F (φ1, φ2)∇2̄G(φ1, φ2) −∇2̄F (φ1, φ2)∇1G(φ1, φ2)

)
(xk).

(4.85)

Remark 4.42. All the Schwartz space examples given in this subsection have their 2L-
periodic analogues, where S(Rk) is replaced by C∞(Tk

L). We will need the periodic 
examples in Appendix A.

4.4. Some Lie algebra facts

We close Section 4 by collecting some facts about Lie algebras for easy referencing. 
Following our presentation in [57, Section 4.2], we outline a canonical construction of a 
Poisson structure on the dual of a Lie algebra, which is known as a Lie-Poisson structure
following the terminology of Marsden and Weinstein [53]. We refer the reader to [54,55]
for a more thorough discussion.

Definition 4.43 (Lie algebra). A Lie algebra is a locally convex space g over the field 
F ∈ {R, C} together with a separately continuous binary operation [·, ·] : g × g → g

called the Lie bracket, which satisfies the following properties:

(L1) [·, ·] is bilinear.
(L2) [x, x] = 0 for all x ∈ g.
(L3) [·, ·] satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (4.86)

for all x, y, z ∈ g.
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Remark 4.44. Usually (see, for instance, [63]), a Lie bracket is required to be continuous, 
as opposed to separately continuous. We drop this requirement in this work, due to 
functional analytic difficulties stemming from the separate continuity of the distributional 
pairing.

Definition 4.45 (Nondegenerate pairings). Let V and W be topological vector spaces over 
the field F , and let

〈·|·〉 : V ×W → F

be a bilinear pairing between V and W . We say that the pairing is V -nondegenerate
(resp., W -nondegenerate) if the map V → W ∗, x �→ 〈x|·〉 (resp., W → V ∗, y �→ 〈·|y〉) is 
an isomorphism. If the pairing is both V - and W -nondegenerate, then we say that the 
pairing is nondegenerate.

Definition 4.46 (dual space g∗). Let (g, [·, ·]) be a Lie algebra. We say that a topological 
vector space g∗ is a dual space to g if there exists a pairing 〈·|·〉

g−g∗ : g × g∗ → F which 
is nondegenerate.

Example 4.47. If g is a reflexive Fréchet space, for instance the Schwartz space S(Rd), 
then taking g∗ to be the topological dual of g equipped with the strong dual topology, 
the standard duality pairing

g× g∗ → F : 〈x|ϕ〉
g−g∗ = ϕ(x)

is nondegenerate.

Lemma 4.48 (Existence of functional derivatives). Let g be a Lie algebra, and let g∗ be 
dual to g with respect to the nondegenerate pairing 〈·|·〉

g−g∗ . For any functional F ∈
C1(g∗; F), there exists a unique element δFδμ ∈ g such that〈

δF

δμ

∣∣∣∣δμ〉
g−g∗

= dF [μ](δμ), μ, δμ ∈ g∗. (4.87)

Proposition 4.49 (Lie-Poisson structure). Let (g, [·, ·]
g
) be a Lie algebra, such that the Lie 

bracket is continuous, and let g∗ be dual to g with respect to the nondegenerate pairing 
〈·|·〉

g−g∗ . Define the Lie-Poisson bracket

{·, ·} : C∞(g∗;F) × C∞(g∗;F) → C∞(g∗;F) (4.88)

by

{F,G}(μ) :=
〈[

δF

δμ
,
δG

δμ

]
g

∣∣∣∣∣μ
〉

g−g∗

, μ ∈ g∗. (4.89)

Then (C∞(g∗; F), {·, ·}) is a Lie algebra.
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5. The construction: defining the Wn

We now define the operators Wn giving rise to the Hamiltonian functionals Hn. As 
detailed in Section 2, in order to construct the operators Wn, we proceed incrementally.

5.1. Step 1: preliminary definition of operators

Let

W̃1 = (W̃(k)
1 )k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)), W̃1 := E1, (5.1)

where we recall that

Ej = (E(k)
j )k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)), E(k)
j := Idk δjk, (5.2)

where Idk is the identity operator in L(S(Rk), S ′(Rk)) and δjk is the Kronecker delta 
function. We regard Ej as the jth coordinate element of 

⊕∞
k=1 L(S(Rk), S ′(Rk)). It is 

clear that these operators satisfy the good mapping property.
We would like to recursively define

W̃n+1 = (W̃(k)
n+1)k∈N ∈

∞⊕
k=1

Lgmp(S(Rk),S ′(Rk)) (5.3)

by the formula

W̃(k)
n+1 := −i∂x1W̃(k)

n + κ

n−1∑
m=1

∑
�,j≥1;�+j=k

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
, k ∈ N,

(5.4)
where we regard the multiplier operator −i∂x1 as a k-particle operator by tensoring 
with the identity in the X2, . . . , Xk coordinates. Similarly, we regard the multiplica-
tion δ(X1 − X�+1) as k-particle operator simply by tensoring with the identity in the 
X2, . . . , X�, X�+2, . . . , Xk coordinates.

Our aim is then two-fold. First, we need to make sense of the definition (5.4). At 
first glance, the right-hand side of (5.4) is purely formal, since for n ≥ 4, the sum 
will contain products of δ functions. However, as we will prove in the next lemma, the 
operators in (5.4) are well-defined elements of Lgmp(S(Rk), S ′(Rk)). Intuitively, this is 
because the products in (5.4) never contain delta functions with identical arguments, 
such as δ2(X1 −X2). Subsequently, we will show that all but finitely many terms in the 
recursion are non-zero, which justifies our use of the direct sum notation. Thus, we are 
led to Proposition 2.6, the statement of which we recall below.
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Proposition 2.6. For each n ∈ N, there exists an element

W̃n ∈
∞⊕
k=1

Lgmp(S(Rk),S ′(Rk))

defined according to the recursive formula (2.36), where the composition (2.37) is well-
defined in the sense of Proposition D.12.

We begin the proof of Proposition 2.6 with establishing the recursion (5.4).

Lemma 5.1 (Rigorous recursion). For every k, n ∈ N, the distribution-valued operator 
W̃(k)

n is an element of Lgmp(S(Rk), S ′(Rk)) and satisfies the following:

(R1) There exists a finite subset A(k)
n ⊂ Nk

0 of multi-indices such that

W̃(k)
n f (k) =

∑
αk∈A(k)

n

uαk,n∂
αk
xk

f (k), ∀f (k) ∈ S(Rk), (5.5)

where uαk,n ∈ S ′(Rk).
(R2) For every αk ∈ A(k)

n , either

Case 1: WF(uαk,n) = ∅, or
Case 2: WF(uαk,n) �= ∅ and satisfies the non-vanishing pair property:

(xk, ξk) ∈ WF(uαk,n)

=⇒ ∃�, j ∈ N≤k s.t. � < j and both ξ� �= 0 and ξj �= 0. (5.6)

Remark 5.2. In other words, (R1) means that W̃(k)
n can be written as a linear combina-

tion of terms, where each term consists of a differential operator left-composed with a 
distributional multiplication operator. The motivation for the non-vanishing pair prop-
erty is to exploit the fact that the products of delta functions in (5.4) do not have the 
same arguments.

Proof of Lemma 5.1. We prove the assertion by strong induction on n ≥ 1. The base 
case, namely that the claims hold for n = 1, is clear. Next, let n ≥ 1 and suppose that 
for every k ∈ N, we have that

W̃(k)
1 , . . . ,W̃(k)

n ∈ Lgmp(S(Rk),S ′(Rk)) (5.7)

are defined according to (5.1) and (5.4) and satisfy the properties (R1) and (R2). 
We will show that for any k ∈ N, the observable W̃(k)

n+1 is a well-defined element of 
Lgmp(S(Rk), S ′(Rk)) and satisfies the properties (R1) and (R2). We organize our argu-
ment into several steps:
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Step I: We first prove (R1). If A(k)
n ⊂ Nk

0 is a finite subset of multi-indices such that

W̃(k)
n f (k) =

∑
αk∈A(k)

n

uαk,n∂
αk
xk

f (k), ∀f (k) ∈ S(Rk), (5.8)

where uαk,n ∈ S ′(Rk), then by the product rule,

(−i∂x1)W̃(k)
n f (k) =

∑
αk∈A(k)

n

(
(−i∂x1uαk,n)∂αk

xk
f (k) − iuαk,n∂x1∂

αk
xk

f (k)
)
, ∀f (k) ∈ S(Rk).

(5.9)
Let A(�)

m and A(j)
n−m be finite subsets of N�

0 and Nj
0 , respectively, such that

W̃(�)
m f (�) =

∑
α�∈A(�)

m

uα�,m∂α�
x�
f (�), ∀f (�) ∈ S(R�) (5.10)

W̃(j)
n−mf (j) =

∑
αj∈A(j)

n−m

uαj ,n−m∂
αj
xj
f (j), ∀f (j) ∈ S(Rj), (5.11)

where uα�,m ∈ S ′(R�) and uαj ,n−m ∈ S ′(Rj). Define the set

A(k)
n,m := A(�)

m × A(j)
n−m ⊆ N�

0 ×Nj
0 (5.12)

so that(
W̃(�)

m ⊗ W̃(j)
n−m

)
f (k)

=
∑

(α�,αj)∈A(k)
n,m

(
uα�,m ⊗ uαj ,n−m

)(
∂α�
x�

⊗ ∂
αj
xj

)
f (k), ∀f (k) ∈ S(Rk).

(5.13)

Hence, to prove the claim, it suffices to show that

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(5.14)

is well-defined in L(S(Rk), S ′(Rk)), and that for all f (k) ∈ S(Rk), (5.14) admits the 
representation (

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

))
f (k)

=
∑

(α�,αj)∈A(k)
n,m

δ(x1 − x�+1)
(
uα�,m ⊗ uαj ,n−m

)(
∂α�
x�

⊗ ∂
αj
xj

)
f (k), (5.15)

where δ(x1 − x�+1)(uα�,m ⊗ uαj ,n−m) is well-defined in S ′(Rk). We will do this in two 
steps:
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• First, we will show that (5.14) admits the representation (5.15) for all f (k) ∈ S(Rk), 
and that δ(x1 − x�+1)(uα�,m ⊗ uαj ,n−m) ∈ D′(Rk) in the Hörmander product sense 
of Proposition D.12.

• Second, we will show that the products are, in fact, tempered distributions.

To show that the product of distributions

δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (k)) (5.16)

is well-defined in D′(Rk) for every f (k) ∈ S(Rk), it suffices by Hörmander’s criterion 
(Proposition D.12) to show that

(xk, ξk) ∈ WF(δ(x1 − x�+1)) =⇒ (xk,−ξ
k
) /∈ WF

((
W̃(�)

m ⊗ W̃(j)
n−m

)
f (k)

)
. (5.17)

By Lemma D.8, which computes the wave front set of δ(x1 − x�+1), we need to show 
that if ξ1 �= 0, then

((x1, x2;�, x1, x�+2;k), (ξ1, 02;�,−ξ1, 0�+2;k)) /∈ WF
((

W̃(�)
m ⊗ W̃(j)

n−m

)
f (k)

)
. (5.18)

Since for any (α�, αj) ∈ A(k)
n,m and for any g(k) ∈ S(Rk), we have the inclusion

WF
((

uα�,m ⊗ uαj ,n−m

)
g(k)

)
⊂ WF

(
uα�,m ⊗ uαj ,n−m

)
, (5.19)

by Proposition D.7(f), it follows from Proposition D.7(c) and (5.13) that

WF
((

W̃(�)
m ⊗ W̃(j)

n−m

)
f (k)

)
⊂

⋃
(α�,αj)∈A(k)

n,m

WF
(
uα�,m ⊗ uαj ,n−m

)
, ∀f (k) ∈ S(Rk).

(5.20)
Now by Proposition D.7(e), we have that

WF
(
uα�,m ⊗ uαj ,n−m

)
⊂
(
WF

(
uα�,m

)
× WF

(
uαj ,n−m

))
∪
(
supp

(
uα�,m

)
× {0�}

)
× WF

(
uαj ,n−m

)
∪ WF

(
uα�,m

)
×
(
supp

(
uαj ,n−m

)
× {0j}

)
.

(5.21)

Note that we abuse notation with the cartesian products on the right-hand side of 
the preceding inclusion in the following sense: we denote an element of WF(uα�,m) ×
WF(uαj ,n−m) by

(x�, x�+1;k, ξ , ξ ), (5.22)

� �+1;k
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where

(x�, ξ�) ∈ WF(uα�,m), (x�+1;k, ξ�+1;k) ∈ WF(uαj ,n−m)

and similarly for elements of (supp(uα�,m) × {0�}) × WF(uαj ,n−m) and WF(uα�,m) ×
(supp(uαj ,n−m) × {0j}). We now consider three cases based on the values of the sets 
WF(uα�,m) and WF(uαj ,n−m).

(i) Suppose that WF
(
uα�,m

)
and WF

(
uαj ,n−m

)
are both empty. Then it follows read-

ily from (5.21) that

WF
(
uα�,m ⊗ uαj ,n−m

)
= ∅, (5.23)

and so (5.18) is satisfied.
(ii) Without loss of generality, suppose that WF

(
uαj ,n−m

)
= ∅ and that WF

(
uα�,m

)
�=

∅ and satisfies the non-vanishing pair property. Then by (5.21), we have

WF
(
uα�,m ⊗ uαj ,n−m

)
⊂ WF

(
uα�,m

)
×
(
supp

(
uαj ,n−m

)
× {0j}

)
. (5.24)

Observe that the set on the right-hand side does not contain an element of the form

((x1, x2;�, x1, x�+2;k), (ξ1, 02;�,−ξ1, 0�+2;k)), ξ1 �= 0, (5.25)

since WF(uα�,m) is nonempty and satisfies the non-vanishing pair property.
(iii) Suppose that both WF

(
uα�,m

)
and WF

(
uαj ,n−m

)
are both nonempty and satisfy 

the non-vanishing pair property. Then if (xk, ξk) ∈ WF
(
uα�,m ⊗ uαj ,n−m

)
, one of 

three sub-cases must occur:

1. ξ
�
= 0 and there exists l1, l2 ∈ {� + 1, . . . , � + j} such that ξl1 �= 0 and ξl2 �= 0.

2. ξ
�+1;k = 0 and there exists l1, l2 ∈ {1, . . . , �} such that ξl1 �= 0 and ξl2 �= 0.

3. ξ
�
�= 0, ξ

�+1;k �= 0, and there exist l1, l2 ∈ {1, . . . , �} and l3, l4 ∈ {� + 1, . . . , k}
such that ξl1 �= 0, ξl2 �= 0, ξl3 �= 0 and ξl4 �= 0.

Any of these three sub-cases guarantees (5.18).

To summarize, we have shown that

((x1, x2;�, x1, x�+2;k), (ξ1, 02;�,−ξ1, 0�+2;k)) /∈
⋃

(α�,αj)∈A(k)
n,m

WF
(
uα�,m ⊗ uαj ,n−m

)
,

(5.26)
and therefore
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δ(x1 − x2)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (k)) (5.27)

is defined in D′(Rk) according to Proposition D.12, proving the first claim.
We now show that this Hörmander product is tempered:

δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (k)) ∈ S ′(Rk), ∀f (k) ∈ S ′(Rk). (5.28)

Since by the inductive hypothesis, W̃(�)
m and W̃(j)

n−m satisfy the good mapping property 
of Definition 2.2 (and we refer to Appendix C.3 for more details on the good mapping 
property), there exist unique continuous bilinear maps

ΦW̃(�)
m ,α

: S(R�)2 → S(xα,x′
α)(R2), ΦW̃(j)

n−m,β
: S(Rj)2 → S(xβ ,x′

β)(R2),

α ∈ N≤�, β ∈ N≤j (5.29)

identifiable with the maps

S(R�)2 → Sx′
α
(R;S ′

xα
(R)), (f (�), g(�)) �→

〈
W̃(�)

m f (�), (·) ⊗α g(�)(·, x′
α, ·)

〉
S′(R�)−S(R�)

,

S(Rj)2 → Sx′
β
(R;S ′

xβ
(R)), (f (j), g(j)) �→

〈
W̃(j)

m f (j), (·) ⊗β g(j)(·, x′
β , ·)

〉
S′(Rj)−S(Rj)

,

(5.30)

via∫
R

dxαΦW̃(�)
m ,α

(f (�), g(�))(xα;x′
α)φ(xα) =

〈
W̃(�)

n f (�), φ⊗α g(�)(·, x′
α, ·)

〉
S′(R�)−S(R�)

,

∫
R

dxβΦW̃(j)
n−m,β

(f (j), g(j))(xβ ;x′
β)φ(xβ) =

〈
W̃(j)

n−mf (j), φ⊗β g(j)(·, x′
β , ·)

〉
S′(Rj)−S(Rj)

,

(5.31)

for φ ∈ S(R), respectively. Above, the notation (·) ⊗α g(�)(·, x′
α, ·) and (·) ⊗β g(j)(·, x′

β , ·)
is defined by(
φ⊗α g(�)(·, x′

α, ·)
)
(y

α
) := φ(yα)g(�)(y1;α−1, x

′
α, yα+1;�), ∀y

�
∈ R�(

φ⊗β g(j)(·, x′
β , ·)

)
(y

β
) := φ(yβ)g(j)(y1;β−1, x

′
β , yβ+1;j), ∀y

j
∈ Rj

, ∀φ ∈ S(R).

(5.32)

Now given f (k), g(k) ∈ S(Rk), we see that

(x�, x
′
�) �→ Φ˜ (j) (f (k)(x�, ·), g(k)(x′

�, ·)) ∈ S(x ,x′ )(R2�;S(y1,y′ )(R2)). (5.33)
Wn−m,1 � � 1
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Thus, we can define a map ΨW̃(j)
n−m,1 : S(Rk)2 → S(R2(�+1))

ΨW̃(j)
n−m,1(f

(k), g(k))(x�+1;x′
�+1)

:= ΦW̃(j)
n−m,1(f

(k)(x�, ·), g(k)(x′
�, ·))(x�+1;x′

�+1), ∀(x�+1, x
′
�+1) ∈ R2(�+1),

(5.34)

which is bilinear and continuous. Now since ΦW̃(�)
m ,1 : S(R�)2 → S(R2) is bilinear 

and continuous, the universal property of the tensor product and the identification of 
S(R2�) ∼= S(R�)⊗̂S(R�) implies that there exists a unique continuous linear map

Φ̄W̃(�)
m ,1 : S(R2�) → S(R2), (5.35)

with the property that

ΦW̃(�)
m ,1(f

(�), g(�)) = Φ̄W̃(�)
m ,1(f

(�) ⊗ g(�)), ∀f (�), g(�) ∈ S(R�). (5.36)

Hence, the function

Φ̄W̃(�)
m,1,1

(
ΨW̃(j)

n−m,1(f
(k), g(k))(·, x�+1; ·, x′

�+1)
)
(x1;x′

1), ∀(x1, x�+1, x
′
1, x

′
�+1) ∈ R4

defines an element of S(R4), and moreover,

S(Rk)2 → S(R4),

(f (k), g(k)) �→ Φ̄W̃(�)
m,1,1

(
ΨW̃(j)

n−m,1(f
(k), g(k))(·, x�+1; ·, x′

�+1)
)
(x1;x′

1),

∀(x1, x�+1, x
′
1, x

′
�+1) ∈ R4

(5.37)

is a continuous bilinear map. Thus, we may define a functional uf(k) on S(Rk) by

〈uf(k) , g(k)〉S′(Rk)−S(Rk)

:=
∫
R2

dx1dx�+1δ(x1 − x�+1)Φ̄W̃(�)
m ,1

(
ΨW̃(j)

n−m,1(f
(k), g(k))(·, x�+1; ·, x�+1)

)
(x1;x1),

∀g(k) ∈ S(Rk).
(5.38)

This functional uf(k) is evidently linear, and it follows from the continuity of Φ̄W̃(�)
m ,1 and 

ΨW̃(j)
n−m,1 that it is continuous S(Rk) → C, hence a tempered distribution. Furthermore, 

we claim that the map

S(Rk) → S ′(Rk), f (k) �→ 〈uf(k) , ·〉S′(Rk)−S(Rk) (5.39)
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satisfies the good mapping property. Indeed, replacing f (k), g(k) with πf (k), πg(k), for 
any π ∈ Sk, it suffices to verify this assertion for the case α = 1 in Definition 2.2. 
Additionally, it suffices by the universal property of the tensor product and the Schwartz 
kernel theorem isomorphism S(Rk) ∼= S(R�)⊗̂S(Rj) to show that there is a (necessarily 
unique) continuous, multilinear map

Φu :
(
S(R�) × S(Rj)

)2 → S(R2),

such that for f (�), g(�) ∈ S(R�) and f (j), g(j) ∈ S(Rj),∫
R

dxΦu(f (�), f (j), g(�), g(j))(x;x′)φ(x)

= 〈uf(�)⊗f(j) , φ⊗ (g(�) ⊗ g(j))(x′, ·)〉S′(Rk)−S(Rk), ∀φ ∈ S(R), x′ ∈ R.

(5.40)

Now for any φ ∈ S(R), the bilinearity of ΦW̃(j)
n−m,1 implies

ΦW̃(j)
n−m,1

(
(f (�) ⊗ f (j))(x�, ·), (φ⊗ (g(�) ⊗ g(j))(x′, ·))(x′

�, ·)
)
(x�+1;x′

�+1)

= f (�)(x�)φ(x′
1)g(�)(x′, x′

2;�)ΦW̃(j)
n−m,1

(
f (j), g(j)

)
(x�+1;x′

�+1),

∀(x�+1, x
′
�+1, x

′) ∈ R2�+3.

(5.41)

Hence,

ΨW̃(j)
n−m,1

(
f (�) ⊗ f (j), φ⊗ (g(�) ⊗ g(j))(x′, ·)

)
(x�+1;x′

�+1)

= f (�)(x�)φ(x′
1)g(�)(x′, x′

2;�)ΦW̃(j)
n−m,1(f

(j), g(j))(x�+1;x′
�+1), ∀(x�+1, x

′
�+1) ∈ R2(�+1).

(5.42)

For x′ ∈ R and φ ∈ S(R), define the function g̃(�)
x′,φ ∈ S(R�) by

g̃
(�)
x′,φ(x′

�) := φ(x′
1)g(�)(x′, x′

2;�), ∀x′
� ∈ R�, (5.43)

so that we can write

ΨW̃(j)
n−m,1

(
f (�) ⊗ f (j), φ⊗ (g(�) ⊗ g(j))(x′, ·)

)
(x�+1;x′

�+1)

= (f (�) ⊗ g̃
(�)
x′,φ)(x�;x′

�)ΦW̃(j)
n−m,1(f

(j), g(j))(x�+1;x′
�+1), ∀(x�+1, x

′
�+1) ∈ R2(�+1).

(5.44)

Therefore, using identity (5.44) and the linearity of the map Φ̄˜ (�) , we see that
Wm ,1
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Φ̄W̃(�)
m ,1

(
ΨW̃(j)

n−m,1

(
f (�) ⊗ f (j), φ⊗ (g(�) ⊗ g(j))(x′, ·)

)
(·, x�+1; ·, x′

�+1)
)
(x1;x′

1)

= ΦW̃(j)
n−m,1(f

(j), g(j))(x�+1;x′
�+1)Φ̄W̃(�)

m ,1

(
f (�) ⊗ g̃

(�)
x′,φ

)
(x1;x′

1)

= ΦW̃(j)
n−m,1(f

(j), g(j))(x�+1;x′
�+1)ΦW̃(�)

m ,1(f
(�), g̃

(�)
x′,φ)(x1;x′

1), (5.45)

where the ultimate equality follows from the property (5.36). Recalling the definition 
(5.38) for uf(k) , we obtain that〈

uf(�)⊗f(j) , φ⊗ (g(�) ⊗ g(j))(x′, ·)
〉
S′(Rk)−S(Rk)

=
∫
R2

dx1dx�+1δ(x1 − x�+1)Φ̄W̃(�)
m ,1

×
(
ΨW̃(j)

n−m,1

(
f (�) ⊗ f (j), φ⊗ (g(�) ⊗ g(j))(x′, ·)

)
(·, x�+1; ·, x�+1)

)
(x1;x1)

=
∫
R2

dx1dx�+1δ(x1 − x�+1)ΦW̃(j)
n−m,1(f

(j), g(j))(x�+1;x�+1)ΦW̃(�)
m ,1(f

(�), g̃
(�)
x′,φ)(x1;x1)

=
∫
R

dxΦW̃(j)
n−m,1(f

(j), g(j))(x;x)ΦW̃(�)
m ,1(f

(�), g̃
(�)
x′,φ)(x;x)

=
〈
W̃(�)

m f (�),ΦW̃(j)
n−m,1(f

(j), g(j))|y=y′ g̃
(�)
x′,φ

〉
S′(R�)−S(R�)

,

where ΦW̃(j)
n−m,1(f

(j), g(j))|y=y′ denotes the restriction to the hyperplane {(y, y′) : y =
y′} ⊂ R2 and the ultimate equality follows from the definition of ΦW̃(�)

m ,1 in (5.29). 
Unpacking the definition of g̃(�)

x′,φ from (5.43) and applying the definition of ΦW̃(�)
m ,1 once 

more, we conclude that〈
W̃(�)

m f (�),ΦW̃(j)
n−m,1(f

(j), g(j))|y=y′ g̃
(�)
x′,φ

〉
S′(R�)−S(R�)

=
〈
W̃(�)

m f (�), (φΦW̃(j)
n−m,1(f

(j), g(j))|y=y′) ⊗ g(�)(x′, ·)
〉
S′(R�)−S(R�)

=
∫
R

dxΦW̃(�)
m ,1(f

(�), g(�))(x;x′)φ(x)ΦW̃(j)
n−m,1(f

(j), g(j))(x;x). (5.46)

Therefore, the desired map Φu is given by

Φu(f (�), f (j), g(�), g(j))(x;x′) := ΦW̃(�)
m ,1(f

(�), g(�))(x;x′)ΦW̃(j)
n−m,1(f

(j), g(j))(x;x),
(5.47)

which is evidently multilinear and continuous (S(R�) × S(Rj))2 → S(R2) being the 
composition maps. Thus, the proof that f (k) �→ uf(k) has the good mapping property is 
complete.
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Lastly, we claim that uf(k) coincides with the Hörmander product

δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (k))

defined above via Proposition D.12. To prove the claim, we rely on the uniqueness cri-
terion for the product. We set

g(k) := g(1) ⊗ g(�−1) ⊗ g̃(1) ⊗ g(j−1), φ(k) := φ(1) ⊗ φ(�−1) ⊗ φ̃(1) ⊗ φ(j−1) (5.48)

for g(1), ̃g(1), φ(1), φ̃(1) ∈ S(R), g(�−1), φ(�−1) ∈ S(Ri−1), and g(j−1), φ(j−1) ∈ S(Rj−1). 
By density of linear combinations of tensor products, it suffices to show that

〈F(g(k)2uf(k)), φ(k)〉S′(Rk)−S(Rk)

= 〈F(g(k)δ(x1 − x�+1)) ∗ F(g(k)(W̃(�)
m ⊗ W̃(j)

n−m)(f (k))), φ(k)〉S′(Rk)−S(Rk),

(5.49)

since pointwise equality then follows from the localization lemma (see Chapter 2, §2 
of [35]) together with the continuity of the Fourier transforms involved. This is then 
an exercise, the details of which we leave to the reader, relying on the good mapping 
property and the distributional Plancherel theorem.

Step II: The property (R2) is readily established by the arguments in the previous step 
and the fact that A(k)

n,m defined in (5.12) has finite cardinality, it then follows from another 
application of Proposition D.7(c) that either

WF
(
W̃(k)

n+1f
(k)
)

= ∅

or

WF
(
W̃(k)

n+1f
(k)
)
�= ∅ and satisfies the non-vanishing pair property.

Step III: Next, we show that the map f (k) �→ W̃(k)
n+1f

(k) satisfies the good mapping 
property for every k ∈ N. Since differentiation is a continuous endomorphism of S ′(Rk), 
it is immediate from the induction hypothesis that

−i∂x1W̃(k)
n ∈ Lgmp(S(Rk),S ′(Rk)). (5.50)

Since Lgmp(S(Rk), S ′(Rk)) is a vector space, it remains to show that

f (k) �→ δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (k)) (5.51)

satisfies the good mapping property for every �, j ∈ N with � + j = k and m ∈ N≤n−1. 
But this follows from Step II, where we showed that uf(k) defined in (5.38) coincides with 
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the Hörmander product in the right-hand side of (5.51) and that the DVO f (k) �→ uf(k)

defined in (5.38) has the good mapping property.

Step IV: Finally, we show that

W̃(k)
n : S(Rk) → S ′(Rk)

is a continuous map. As argued before, it suffices to show that the map

(f (�), f (j)) �→ δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (�) ⊗ f (j)) (5.52)

is a continuous bilinear map S(R�) ×S(Rj) → S ′(Rk). Bilinearity is obvious. For conti-
nuity, suppose that (f (�)

r , f (j)
r ) → 0 ∈ S(R�) × S(Rj) as r → ∞. We need to show that 

for any bounded subset R of S(Rk),

lim
r→∞

sup
g(k)∈R

∣∣∣〈δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
(f (�)

r ⊗ f (j)
r ), g(k)〉S′(Rk)−S(Rk)

∣∣∣ = 0. (5.53)

But this follows from our analysis proving the good mapping property of the map f (k) �→
uf(k) in Step II. �

We now turn to showing that only finitely many components of W̃n are nonzero for 
a given n ∈ N. This property justifies our use of the direct sum notation.

Lemma 5.3. For all n ∈ N, we have

W̃(k)
2n = 0 ∈ L(S(Rk),S ′(Rk)) k ∈ N≥n+1, (5.54)

and

W̃(k)
2n+1 = 0 ∈ L(S(Rk),S ′(Rk)), k ∈ N≥n+2. (5.55)

Proof. We prove the lemma by strong induction on n. We first establish the base case 
n = 1. It follows from the recursion (5.4) that

W̃2 = −i∂x1E1. (5.56)

Since E(k)
1 = 0 for k ≥ 2, it follows that W̃(k)

2 = 0 for k ≥ 2. To see that W̃(k)
3 = 0 for 

k ≥ 3, observe that

(−i∂x1)W̃
(k)
2 = 0 ∈ L(S(Rk),S ′(Rk)), (5.57)

since W̃(k)
2 = 0. If k ≥ 3 and �, j ∈ N satisfy � + j = k, then max{�, j} ≥ 2. Since 

W̃(m)
1 = 0 for m ≥ 2, we obtain that
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W̃(�)
1 ⊗ W̃(j)

1 = 0 ∈ L(S(Rk),S ′(Rk)), (5.58)

which implies that δ(X1 −X�+1)
(
W̃(�)

1 ⊗ W̃(j)
1

)
= 0.

We now proceed to the inductive step. Let n ∈ N≥2 and suppose that for all integers 
m ∈ N≤n,

W̃(k)
2m = 0 ∈ L(S(Rk),S ′(Rk)), ∀k ∈ N≥m+1 (5.59)

W̃(k)
2m+1 = 0 ∈ L(S(Rk),S ′(Rk)), ∀k ∈ N≥m+2. (5.60)

We now need to show that these identities hold with m = n +1. We first handle the case 
of even indices. Specifically, we show that

W̃(k)
2(n+1) = 0 ∈ L(S(Rk),S ′(Rk)), k ∈ N≥n+2.

Observe that if k ≥ n +2, then by the induction hypothesis, W̃(k)
2(n+1)−1 = 0 and therefore

−i∂x1W̃
(k)
2(n+1)−1 = 0 ∈ L(S(Rk),S ′(Rk)). (5.61)

We now consider the Hörmander product terms

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
2n+1−m

)
, � + j = k (5.62)

arising in the recursion relation (5.4) for W̃(k)
2(n+1). By symmetry, it suffices to consider 

the following case: if m is odd (i.e. m = 2r+ 1 for some r ∈ N0) then 2n + 1 −m is even 
(i.e. 2n + 1 −m = 2r′ for some r′ ∈ N), and we can write n = r + r′. By the induction 
hypothesis

W̃(�)
m = 0, ∀� ∈ N≥r+2 (5.63)

W̃(j)
2n+1−m = 0, ∀j ∈ N≥r′+1. (5.64)

If k ≥ n + 2 = r + r′ + 2, then either � ≥ r + 2 or j ≥ r′ + 1, since if both � ≤ r + 1 and 
j ≤ r′, then

k = � + j ≤ r + r′ + 1. (5.65)

Thus,

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
2n+1−m

)
= 0 ∈ L(S(Rk),S ′(Rk)), (5.66)

and so it follows from the recursion relation (5.4) that W̃(k)
2(n+1) = 0 ∈ L(S(Rk), S ′(Rk))

for k ≥ n + 2.
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We next handle the case of odd indices, namely we show that

W̃(k)
2(n+1)+1 = 0 ∈ L(S(Rk),S ′(Rk)), k ≥ n + 3. (5.67)

As before, observe that if k ≥ n + 3, then

(−i∂x1)W̃
(k)
2(n+1) = 0 ∈ L(S(Rk),S ′(Rk)) (5.68)

by the result of the preceding paragraph. Now consider the Hörmander product terms

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
2n+2−m

)
(5.69)

in the recursion relation (5.4) for W̃(k)
2(n+1)+1. We consider two cases:

C1. Suppose m is odd (i.e. m = 2r + 1 for some r ∈ N0). Then 2n + 2 −m is odd (i.e. 
2n +2 −m = 2r′+1 for some r′ ∈ N0), and we can write 2(n +1) +1 = 2(r+r′+1) +1. 
If k ≥ (r + r′ + 1) + 2, then either � ≥ r + 2 or j ≥ r′ + 2, since if both � ≤ r + 1
and j ≤ r′ + 1, we have that

k = � + j ≤ (r + r′ + 1) + 1. (5.70)

Hence applying the induction hypothesis to obtain W̃(�)
m = 0 or W̃(j)

2n+2−m = 0, 
respectively, we conclude that

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
2n+2−m

)
= 0 ∈ L(S(Rk),S ′(Rk)). (5.71)

C2. Suppose m is even (i.e. m = 2r for some r ∈ N). Then 2n + 2 − m is even (i.e. 
2n +2 −m = 2r′ for some r′ ∈ N), and we can write 2n +2 = 2(r+ r′). Once again, 
if k ≥ r + r′ + 1, then either � ≥ r + 1 or j ≥ r′ + 1, since if � ≤ r and j ≤ r′, then

k = � + j ≤ r + r′. (5.72)

Hence, we obtain again that

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
2n+2−m

)
= 0 ∈ L(S(Rk),S ′(Rk)), (5.73)

by the induction hypothesis.

In now follows from the recursion relation (5.4) that W̃(k)
2(n+1)+1 = 0 ∈ L(S(Rk), S ′(Rk))

for k ≥ n + 3, completing the proof of the inductive step. �
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5.2. Step 2: defining self-adjoint operators

Our goal is now to define the self-adjoint elements Wn,sa, proving the following:

Proposition 5.4. For each n ∈ N, there exists an element

Wn,sa ∈
∞⊕
k=1

Lgmp,∗(S(Rk),S ′(Rk)),

given by

Wn,sa := 1
2

(
W̃n + W̃∗

n

)
. (5.74)

Remark 5.5. Recall that

(W̃∗
n)(k) := W̃(k),∗

n ,

is the adjoint operator defined in Lemma C.1.

It follows readily from Lemma C.1 that

Wn,sa ∈
∞⊕
k=1

L(S(Rk),S ′(Rk))

and is self-adjoint. Thus, in order to prove Proposition 5.4, we only need to verify each 
Wn,sa satisfies the good mapping property, for which it suffices by linearity and the fact 
that each W̃(k)

n ∈ Lgmp(S(Rk), S ′(Rk)) to prove that

W̃(k),∗
n ∈ Lgmp(S(Rk),S ′(Rk)), ∀k ∈ N. (5.75)

Using the recursion (5.4), the linearity of the adjoint operation, and the fact that(
−i∂x1W̃(k)

n

)∗
= W̃(k),∗

n (−i∂x1) ∈ Lgmp(S(Rk),S ′(Rk)) (5.76)

by Lemma C.2, we just need to show that(
δ(X1 −X�+1)

(
W̃(�)

m ⊗ W̃(j)
n−m

))∗
∈ Lgmp(S(Rk),S ′(Rk)) (5.77)

for any m ∈ N≤n−1 and �, j ∈ N satisfying � + j = k. We prove this assertion by another 
induction argument.

Lemma 5.6. Let n ∈ N≥2, and suppose that W̃∗
1, . . . , W̃∗

n−1∈
⊕∞

k=1 Lgmp(S(Rk), S ′(Rk)). 
Then (5.77) holds.
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Proof. Let k ∈ N. Given f (k) ∈ S(Rk), we define the tempered distribution vf(k) by

g(k) �→
〈
f (k)

∣∣∣δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)
g(k)

〉
, (5.78)

where the composition δ(X1 −X�+1)(W̃(�)
m ⊗ W̃(j)

n−m) is well-defined by Lemma 5.1. It 
is easy to check that the map

S(Rk) → S ′(Rk), f (k) �→ vf(k) (5.79)

is a continuous linear map, so it remains for us to verify the good mapping property. As 
in the proof of Lemma 5.1, it suffices to show that for any α ∈ N≤k, the map

(S(R�) × S(Rj))2 → Sx′
α
(R;S ′

xα
(R))

(f (�), f (j), g(�), g(j)) �→
〈
vf(�)⊗f(j)

∣∣∣(·) ⊗α (g(�) ⊗ g(j))(·, x′
α, ·)

〉
, x′

α ∈ R,
(5.80)

may be identified with a (necessarily unique) continuous map (S(R�) ×S(Rj))2 → S(R2), 
which is antilinear in the f (�), f (j) variables and linear in the g(�), g(j) variables. The 
reader will recall that the notation ⊗α is defined in (5.32). To simplify the presentation, 
we will assume α ≤ �. The case � < α ≤ k follows mutatis mutandis. Moreover, by 
replacing f (�), g(�) with πf (�), πg(�), for π ∈ S�, we may assume that α = 1. For any 
φ ∈ S(R), we have by the distributional Fubini-Tonelli theorem that,〈〈

vf(�)⊗f(j)

∣∣∣(·) ⊗ (g(�) ⊗ g(j))(x′
1, ·)

〉
, φ
〉
S′(R)−S(R)

=
〈
vf(�)⊗f(j)

∣∣∣φ⊗ (g(�) ⊗ g(j))(x′
1, ·)

〉
=
〈
f (�) ⊗ f (j)

∣∣∣δ(x1 − x�+1)
(
W̃(�)

m ⊗ W̃(j)
n−m

)(
φ⊗ g(�)(x′

1, ·) ⊗ g(j)
)〉

=
〈
δ(x1 − x�+1)

(
W̃(�)

m ⊗ W̃(j)
n−m

)(
φ⊗ g(�)(x′

1, ·) ⊗ g(j)
)
, f (�) ⊗ f (j)

〉
S′(Rk)−S(Rk)

.

(5.81)

Using the identifications of (5.31) and the action of the DVO δ(X1−X�+1)(W̃(�)
m ⊗W̃(j)

n−m)
given by (5.38) in Step II of the proof of Lemma 5.1, we find that

(5.81) =
∫
R

dx1ΦW̃(j)
n−m,1(g

(j), f (j))(x1;x1)ΦW̃(�)
m ,1(φ⊗ g(�)(x′

1, ·), f (�))(x1;x1)

=
〈
f (�)ΦW(j)

n−m,1(g(j), f (j))|y=y′

∣∣∣W̃(�)
m

(
φ⊗ g(�)(x′

1, ·)
)〉

=
〈
W̃(�),∗

m

(
f (�)ΦW(j)

n−m,1(g(j), f (j))|y=y′

)∣∣∣φ⊗ g(�)(x′
1, ·)

〉
, (5.82)
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where the ultimate equality follows from the definition of the adjoint of a DVO, see 
Lemma C.1. As before, the notation |y=y′ denotes restriction to the hyperplane {(y, y′) :
y = y′} ⊂ R2. By the induction hypothesis, W̃(�),∗

m possesses the good mapping property. 
Therefore, for any α ∈ N≤�, we can uniquely identify the map

S(R�)2 → Sx′
α
(R;S ′

xα
(R)), (f̃ (�), g̃(�)) �→

〈
W̃(�),∗

m f̃ (�), (·) ⊗α g̃(�)(·, x′
α, ·)

〉
S′(R�)−S(R�)

(5.83)
with a continuous bilinear map

ΦW̃(�),∗
m ,α

: S(R�)2 → S(xα,x′
α)(R2)∫

R

dxαΦW̃(�),∗
m ,α

(f̃ (�), g̃(�))(xα;x′
α)φ(xα) =

〈
W̃(�),∗

m f̃ (�), φ⊗α g̃(�)(·, x′
α, ·)

〉
S′(R�)−S(R�)

,

φ ∈ S(R).
(5.84)

Hence,

(5.82) =
〈
W̃(�),∗

m

(
f (�)ΦW(j)

n−m,1(g(j), f (j))|y=y′

)
, φ⊗ g(�)(x′

1, ·)
〉
S′(R�)−S(R�)

=
∫
R

dx1ΦW̃(�),∗
m ,1(f (�)ΦW(j)

n−m,1(g(j), f (j))|y=y′ , g(�))(x1;x′
1)φ(x1)

=
∫
R

dx1ΦW̃(�),∗
m ,1(f (�)ΦW(j)

n−m,1(g(j), f (j))|y=y′ , g(�))(x1;x′
1)φ(x1). (5.85)

Defining the map

(f (�), f (j), g(�), g(j)) �→ ΦW̃(�),∗
m ,1(f (�)ΦW(j)

n−m
(g(j), f (j))|y=y′ , g(�)) (5.86)

yields the desired conclusion, being the composition of continuous maps, antilinear in 
the f (�), f (j) variables, and linear in the g(�), g(j) variables. �

Since the base case W̃(k),∗
1 ∈ Lgmp(S(Rk), S ′(Rk)) for every k ∈ N is trivial, the 

lemma and the remarks preceding it imply the Proposition 5.4.

5.3. Step 3: bosonic symmetrization

We now modify the definition of the operators Wn,sa from the previous subsection in 
order to obtain a bosonic operator which generates the same trace functional as Wn,sa

when evaluated on elements of G∗
∞. As an immediate consequence of Lemma 4.22, we 
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obtain Proposition 2.7, completing the main objective of Section 5. We conclude this 
subsection by explicitly computing W3 and W4.

Example 5.7 (Computation of W3). From the recursion (5.4), we have that

W̃(k)
3 = (−i∂x1)W̃

(k)
2 + κ

∑
�+j=k

δ(X1 −X�+1)
(
W̃(�)

1 ⊗ W̃(j)
1

)

=

⎧⎪⎪⎨⎪⎪⎩
(−i∂x1)2, k = 1
κδ(X1 −X2)Id2 = κδ(X1 −X2), k = 2
0k, k ≥ 3.

(5.87)

Since the components W̃(k)
3 are already self-adjoint and bosonic, it follows that

W3 = W̃3 =
(
(−i∂x1)2, κδ(X1 −X2), 03, . . .

)
. (5.88)

Example 5.8 (Computation of W4). Similarly, from the recursion (5.4), we have that

W̃(k)
4 = (−i∂x1)W̃

(k)
3 + κ

2∑
m=1

∑
�+j=k

δ(X1 −X�+1)
(
W̃(�)

m ⊗ W̃(j)
3−m

)
. (5.89)

If k = 1, then

W̃(1)
4 = (−i∂x1)W̃

(1)
3 = (−i∂x1)3 = W(1)

4 , (5.90)

since (−i∂x1)3 is self-adjoint and bosonic. If k = 2, then

W̃(2)
4 = (−i∂x1)W̃

(2)
3 + κδ(X1 −X2)

(
W̃(1)

1 ⊗ W̃(1)
2

)
+ κδ(X1 −X2)

(
W̃(1)

2 ⊗ W̃(1)
1

)
= κ((−i∂x1)δ(X1 −X2) + δ(X1 −X2)(Id1 ⊗ (−i∂x)) + δ(X1 −X2)((−i∂x) ⊗ Id1))

= −iκ(∂x1δ(X1 −X2) + δ(X1 −X2)(∂x1 + ∂x2)). (5.91)

The term −iδ(X1 −X2)(∂x1 + ∂x2) is evidently bosonic, and it is self-adjoint since

[∂x1 + ∂x2 , δ(X1 −X2)] = 0.

For the term −i∂x1δ(X1−X2), Lemma C.2 implies that the adjoint is given by −iδ(X1−
X2)∂x1 , and therefore

κ

2 Sym2((−i∂x1)δ(X1 −X2) + δ(X1 −X2)(−i∂x1))

= κ

4 ((−i∂x1 − i∂x2)δ(X1 −X2) + δ(X1 −X2)(−i∂x1 − i∂x2))

= κ

2 (−i∂x1 − i∂x2)δ(X1 −X2), (5.92)
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where we use that δ is an even distribution and again that [∂x1 + ∂x2 , δ(X1 −X2)] = 0. 
We conclude that

W(2)
4 = 3κ

2 (−i∂x1 − i∂x2)δ(X1 −X2). (5.93)

Finally, it is evident that W(k)
4 = 0k for k ≥ 3.

6. The correspondence: Wn and wn

6.1. Multilinear forms wn

In this subsection, we analyze the structure of the nonlinear operators wn as sums of 
restricted multilinear forms. For each k ∈ N, we define a (2k − 1)-C-linear operator

w(k)
n : S(R)k×S(R)k−1→S(R), (φ1, . . . , φk;ψ2, . . . , ψk) �→ w(k)

n [φ1, . . . , φk;ψ2, . . . , ψk],
(6.1)

recursively by

w
(k)
1 [φ1, . . . , φk;ψ2, . . . , ψk] := φ1δk1,

w
(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk]

= (−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk]

+ κ

n−1∑
m=1

∑
�,j≥1;�+j=k

ψ�+1w
(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�]w(j)

n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk],

(6.2)

where δk1 denotes the usual Kronecker delta. The next lemma establishes several impor-
tant structural properties of the wn, including that w(k)

n is identically zero for all but 
finitely many k ∈ N.

Lemma 6.1 (Properties of w(k)
n ). The following properties hold:

• For each odd n ∈ N, w(k)
n ≡ 0 for k > n+1

2 and for k ≤ n+1
2 we have

w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk]

=
∑

(αk,α
′
k−1)∈N

2k−1
0

|αk|+|α′
k−1|=n−1−2(k−1)

an,(αk,α
′
k−1)(

k∏
r=1

∂αr
x φr)(

k∏
r=2

∂
α′

r
x ψr), (6.3)

where an,(α ,α′ ) ∈ R.

k k−1
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• For each even n ∈ N, w(k)
n ≡ 0 for k > n

2 and for k ≤ n
2 we have

w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk]

= i
∑

(αk,α
′
k−1)∈N

2k−1
0

|αk|+|α′
k−1|=n−1−2(k−1)

an,(αk,α
′
k−1)(

k∏
r=1

∂αr
x φr)(

k∏
r=2

∂
α′

r
x ψr), (6.4)

where an,(αk,α
′
k−1) ∈ R.

Proof. We prove the lemma by strong induction on n. We begin with the base case n = 1. 
That (6.3) holds for n = 1 is tautological. For the induction step, suppose that there 
exists some n ∈ N such that either (6.3) or (6.4) holds for every odd or even j ∈ N≤n, 
respectively. We consider two cases based on whether n is even or odd.

Consider the even index case. We first show that w(k)
n ≡ 0 for k > n

2 . Since n − 1 is 
odd, the induction hypothesis implies that

(−i∂x)w(k)
n−1 ≡ 0, k >

n

2 . (6.5)

Now suppose that �, j ∈ N are such that � + j = k and

w(�)
m ⊗ w

(j)
n−1−m �≡ 0, (6.6)

where 1 ≤ m ≤ n − 2. By symmetry, it suffices to consider when m is odd and n − 1 −m

is even. By the induction hypothesis,

w(�)
m ≡ 0, � >

m + 1
2 and w

(j)
n−1−m ≡ 0, j >

n− 1 −m

2 . (6.7)

Consequently, we must have that

k = � + j ≤ m + 1
2 + n− 1 −m

2 = n

2 . (6.8)

It then follows from the recursion (6.2) that w(k)
n ≡ 0 for k > n

2 .
Next we establish the asserted expansion formula. By the induction hypothesis,

w
(k)
n−1[φ1, . . . , φk;ψ2, . . . , ψk]

=
∑

(αk,α
′
k−1)∈N

2k−1
0

|αk|+|α′
k−1|=n−2−2(k−1)

an−1,(αk,α
′
k−1)(

k∏
r=1

∂αr
x φr)(

k∏
r=2

∂
α′

r
x ψr), (6.9)

where the coefficients an−1,(αk,α
′
k−1) are real. Hence by the Leibniz rule, we can define 

real coefficients bn,(α ,α ) such that

k k−1
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−i∂xw
(k)
n−1[φ1, . . . , φk;ψ2, . . . , ψk]

= i
∑

(αk,α
′
k−1)∈N

2k−1
0

|αk|+|α′
k−1|=n−1−2(k−1)

bn,(αk,αk−1)(
k∏

r=1
∂αr
x φr)(

k∏
r=2

∂
α′

r
x ψr). (6.10)

Similarly, for m ∈ N≤n−2 and �, j ∈ N, the induction hypothesis implies that

w(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
(α�,α

′
�−1)∈N

2�−1
0

|α�|+|α′
�−1|=m−1−2(�−1)

am,(α�,α
′
�−1)(

�∏
r=1

∂αr
x φr)(

�∏
r=2

∂
α′

r
x ψr), m odd,

i
∑

(α�,α
′
�−1)∈N

2�−1
0

|α�|+|α′
�−1|=m−1−2(�−1)

am,(α�,α
′
�−1)(

�∏
r=1

∂αr
x φr)(

�∏
r=2

∂
α′

r
x ψr), m even

(6.11)

and

w
(j)
n−1−m[φ�+1,...,φk

;ψ�+2, . . . , ψk]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
∑

(αj ,α
′
j−1)∈N

2j−1
0

|αj |+|α′
j−1|=n−2−m−2(j−1)

an−1−m,(αj ,α
′
j−1)(

k∏
r=�+1

∂αr
x φr)(

k∏
r=�+2

∂
α′

r
x ψr), m odd

∑
(αj ,α

′
j−1)∈N

2j−1
0

|αj |+|α′
j−1|=n−2−m−2(j−1)

an−1−m,(αj ,α
′
j−1)(

k∏
r=�+1

∂αr
x φr)(

k∏
r=�+2

∂
α′

r
x ψr), m even

,

(6.12)

where an−1−m,(α�,α
′
�−1), an−1−m,(αj ,α

′
j−1) ∈ R. For � + j = k and (α�, α

′
�−1), (αj , α

′
j−1)

as in the summations above, the multi-index

(α�, αj , α
′
�−1, α

′
j−1) ∈ N2k−2

0

satisfies

|(α�, αj)| + |(α′
�−1, α

′
j−1)| = m− 1 − 2(�− 1) + n− 2 −m− 2(j − 1)

= n− 1 − 2(k − 1). (6.13)

Consequently, we can define real coefficients cn,(α ,α′ ) such that

k k−1
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n−1∑
m=1

ψ�+1w
(�)
m [φ1, . . . , φ�;ψ2, . . . , ψj ]w(j)

n−1−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk]

= i
∑

(αk,α
′
k−1)∈N

2k−1
0

|αk|+|α′
k−1|=n−1−2(k−1)

cn,(αk,α
′
k−1)(

k∏
r=1

∂αr
x φr)(

k∏
r=2

∂
α′

r
x ψr).

(6.14)

Defining

an,(αk,α
′
k−1) := bn,(αk,α

′
k−1) + cn,(αk,α

′
k−1), (6.15)

and summing (6.10) and (6.14) shows that (6.4) holds.
Next, consider the odd index case. To establish that w(k)

n ≡ 0 for k > n+1
2 , we have 

by our previous discussion in the even case, that

−i∂xw
(k)
n−1 = 0, k >

n− 1
2 . (6.16)

Suppose that �, j ∈ N are such that � + j = k and

w(�)
m ⊗ w

(j)
n−1−m �≡ 0, (6.17)

where 1 ≤ m ≤ n − 2. If m is odd, then n − 1 − m is odd, and so by the induction 
hypothesis,

w(�)
m ≡ 0, � >

m + 1
2 and w

(j)
n−1−m ≡ 0, j >

n−m

2 . (6.18)

Consequently, we must have that

k = � + j ≤ m + 1
2 + n−m

2 = n + 1
2 . (6.19)

Similarly, if m is even, then n − 1 −m is even, and so by the induction hypothesis

w(�)
m ≡ 0, � >

m

2 and w
(j)
n−1−m ≡ 0, j >

n−m− 1
2 . (6.20)

Consequently, we must have that

k = � + j ≤ m

2 + n−m− 1
2 = n− 1

2 . (6.21)

It now follows from the recursion (6.2) that w(k)
n ≡ 0 for k > n+1

2 . Repeating the proof 
mutatis mutandis from the n even case, we see that w(k)

n has the representation (6.3). 
Thus, the proof of the induction step is complete. �
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We establish now some notation we will use here and in the sequel. For k, n ∈ N, we 
define densities

P (k)
n [φ1, . . . , φk;ψ1, . . . , ψk] := ψ1w

(k)
n [φ1, . . . , φk;ψ2, . . . , ψk] ∈ S(R), (6.22)

and we define

I(k)
n [φ1, . . . , φk;ψ1, . . . , ψk] :=

∫
R

dxP (k)
n [φ1, . . . , φk;ψ1, . . . , ψk](x). (6.23)

It is clear from Lemma 6.1, that P (k)
n : S(R)2k → S(R) is a 2k-C-linear, continuous map, 

and thus I(k)
n : S(R)2k → C is a 2k-C-linear, continuous map. For k ∈ N, we recall the 

notation φ×k from (4.28) to denote the measurable function φ×k : Rm → Ck

φ×k(xm) := (φ(xm), . . . , φ(xm)), (6.24)

and similarly for ψ×k.

Remark 6.2. It is clear from the recursion (6.2) that

In(φ) =
∞∑
k=1

I(k)
n [φ×k;φ×k], ∀φ ∈ S(R), (6.25)

where In is as defined in (1.23).

Remark 6.2 and the structure result Lemma 6.1 allow us to give a proof of the seem-
ingly obvious fact that the functionals In are not constant on S(R). We obtain this fact 
as a consequence of a more general lemma. Note that since In(0) = 0, the nonconstancy 
of In is equivalent to In �≡ 0.

Lemma 6.3. Let n ∈ N, and let c = {ck}k∈N ⊂ C such that c1 �= 0. Define the map

In,c : S(R) → C, In,c(φ) :=
∞∑
k=1

ckI
(k)
n [φ×k;φ×k], ∀φ ∈ S(R). (6.26)

Then In,c �≡ 0.

Proof. Assume the contrary. Then for any λ ∈ C, we find from the 2k-complex linearity 
of the functionals I(k)

n that

0 = In,c(λφ) =
∞∑
k=1

ckI
(k)
n [(λφ)×k; (λφ)

×k
] =

∞∑
k=1

ck|λ|2kI(k)
n [φ×k;φ×k], ∀φ ∈ S(R).

(6.27)
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Now fix φ ∈ S(R) and define a function

ρφ,c : C → C, ρφ,c(λ) :=
∞∑
k=1

ck|λ|2kI(k)
n [φ×k;φ×k], (6.28)

which is well-defined and smooth since I(k)
n ≡ 0 for all but finitely many indices k. Now 

observe that

0 = (∂λ∂λρφ,c)(0) = c1I
(1)
n [φ;φ] = c1

∫
R

dx φ(x)(−i∂x)n−1φ(x). (6.29)

Choosing φ ∈ S(R) to be a function whose Fourier transform φ̂ satisfies 0 ≤ φ̂ ≤ 1,

φ̂(ξ) =
{

1, 2 ≤ ξ ≤ 3
0, ξ ≤ 1, ξ ≥ 4

, (6.30)

we obtain a contradiction from Plancherel’s theorem, since c1 �= 0 by assumption. �
6.2. Variational derivatives

In this subsection, we show that the functionals In satisfy the conditions of Re-
mark 4.36 and explicitly compute their symplectic gradients. To this end, we record 
here a recursive formula for the functions wn,(ψ1,ψ2), which generalizes the recursive 
formula (1.22) for wn, given by

w1,(ψ1,ψ2)(x) = ψ1(x)

wn+1,(ψ1,ψ2)(x) = −i∂xwn,(ψ1,ψ2)(x) + κψ2(x)
n−1∑
m=1

wm,(ψ1,ψ2)(x)wn−m,(ψ1,ψ2)(x)
,

(6.31)

and we refer to (A.54) for more details. We define Ĩn : S(R)2 → C by

Ĩn(ψ1, ψ2) :=
∫
R

dxψ2(x)wn,(ψ1,ψ2)(x), ∀(ψ1, ψ2) ∈ S(R)2. (6.32)

Remark 6.4. By comparing the recursion (6.31) to the recursion (6.2), we see that

wn,(ψ1,ψ2) =
∞∑
k=1

w(k)
n [ψ×k

1 ;ψ×(k−1)
2 ] (6.33)

and consequently
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Ĩn(ψ1, ψ2) =
∞∑
k=1

I(k)
n [ψ×k

1 ;ψ×k
2 ]. (6.34)

We now use the multilinear w(k)
n introduced in the previous subsection in order to 

compute the variational derivatives, defined in (4.52), of the functions Ĩn. We first dis-
pense with a technical lemma asserting the existence of a partial transpose for the w(k)

n

in C∞(S(R)2k−1; S(R)). The proof follows from the structural formula of Lemma 6.1
and integration by parts; we leave the details to the reader.

Lemma 6.5. Let n, k ∈ N. Then for 1 ≤ j ≤ k, there exists a unique partial transpose 
w

(k),t
n,j ∈ C∞(S(R)2k−1; S(R)), such that for every δφ ∈ S(R) and φ1, . . . , φk, ψ2, . . . ψk ∈

S(R) we have∫
R

dxδφ(x)w(k),t
n,j [φ1, . . . , φk;ψ2, . . . , ψk](x)

=
∫
R

dxφj(x)w(k)
n [φ1, . . . , φj−1, δφ, φj+1, . . . , φk;ψ2, . . . , ψk](x).

(6.35)

Similarly, for 2 ≤ j ≤ k, there exists a unique partial transpose w(k),t
n,j′ ∈ C∞(S(R)2k−1;

S(R)), such that for every δψ ∈ S(R) and φ1, . . . , φk, ψ2, . . . ψk ∈ S(R) we have∫
R

dxδψ(x)w(k),t
n,j′ [φ1, . . . , φk;ψ2, . . . , ψk](x)

=
∫
R

dxψj(x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψj−1, δψ, ψj+1, . . . , ψk](x).

(6.36)

For convenience of notation, we define w(k),t
n,1′ ∈ C∞(S(R)2k−1; S(R)) by

w
(k),t
n,1′ [φ1, . . . , φk;ψ2, . . . , ψk] := w(k)

n [φ1, . . . , φk;ψ2, . . . , ψk]. (6.37)

We may now proceed to establish formulae for the variational derivatives of the Ĩn.

Lemma 6.6. For n ∈ N, we have that

∇1Ĩn(φ, ψ) =
∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)], (6.38)

∇2̄Ĩn(φ, ψ) =
∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;ψ×(k−1)] (6.39)

for every (φ, ψ) ∈ S(R)2. In particular,
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∇sIn(φ) = −i

∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), φ, φ×(k−j);φ×(k−1)]

= −i

∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;φ×(k−1)]

= − i

2

∞∑
k=1

k∑
j=1

(
w

(k),t
n,j [φ×(j−1), φ, φ×(k−j);φ×(k−1)] + w

(k),t
n,j′ [φ×k;φ×(k−1)]

)
.

(6.40)

Proof. Fix a point (φ, ψ) ∈ S(R)2. Unpacking the definition of Ĩn and using the chain 
rule for the Gâteaux derivative, we obtain that

dĨn[φ, ψ](δφ, δψ) =
∞∑
k=1

k∑
j=1

(∫
R

dxP (k)
n [φ×(j−1), δφ, φ×(k−j);ψ×k](x)

+
∫
R

dxP (k)
n [φ×k;ψ×(j−1), δψ, ψ×(k−j)](x)

)
.

(6.41)

Since

P (k)
n [φ×(j−1), δφ, φ×(k−j);ψ×k] = ψw(k)

n [φ×(j−1), δφ, φ×(k−j);ψ×(k−1)] (6.42)

and

P (k)
n [φ×k;ψ×(j−1), δψ, ψ×(k−j)] =

{
δψw

(k)
n [φ×k;ψ×(k−1)], j = 1

ψw
(k)
n [φ×k;ψ×(j−2), δψ, ψ×(k−j)], 2 ≤ j ≤ k

,

(6.43)
upon application of Lemma 6.5, we see that∫

R

dxP (k)
n [φ×(j−1), δφ, φ×(k−j);ψ×k](x)

=
∫
R

dxδφ(x)w(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

(6.44)

and∫
R

dxP (k)
n [φ×k;ψ×(j−1), δψ, ψ×(k−j)](x) =

∫
R

dxδψ(x)w(k),t
n,j′ [φ×k;ψ×(k−1)](x). (6.45)

Substituting (6.44) and (6.45) into (6.41), we arrive at the identity
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dĨn[φ, ψ](δφ, δψ) =
∞∑
k=1

k∑
j=1

(∫
R

dxδφ(x)w(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

+
∫
R

dxδψ(x)w(k),t
n,j′ [φ×k;ψ×(k−1)](x)

)
.

(6.46)

Using that there are only finitely many indices k yielding a nonzero contribution by 
Lemma 6.1, we can move the summations inside the integral to conclude that

dĨn[φ, ψ](δφ, δψ) =
∫
R

dxδφ(x)

⎛⎝ ∞∑
k=1

k∑
j=1

w
(k),t
n,j [φ×(j−1), ψ, φ×(k−j);ψ×(k−1)](x)

⎞⎠
+
∫
R

dxδψ(x)

⎛⎝ ∞∑
k=1

k∑
j=1

w
(k),t
n,j′ [φ×k;ψ×(k−1)](x)

⎞⎠,

(6.47)

which yields the desired formula for the variational derivatives in light of (4.52).
To see the second assertion for the symplectic gradient ∇sIn(φ), we recall that from 

the fact that In(φ) = Ĩn(φ, φ), Remark 4.36, and (4.60) that we have the identity

∇sIn(φ) = −i∇1Ĩn(φ, φ) = −i∇2̄Ĩn(φ, φ).

Substituting the identities for ∇1Ĩn(φ, φ), ∇2̄Ĩn(φ, φ) into the right-hand side of the 
previous equality completes the proof. �
6.3. Partial trace connection of Wn to wn

We next connect the linear DVOs W̃(k)
n constructed in Section 5 to the multilinear 

Schwartz-valued operators w(k)
n constructed in Section 6.1. We note that since the def-

inition of the Wn is fairly straightforward given the definition of W̃n, it will suffice to 
establish these connections for the latter operators.

It will be important to remember the following consequence of the fact that W̃(k)
n

satisfies the good mapping property: the generalized partial trace

Tr2,...,k

(
W̃(k)

n |
k⊗

�=1

φ�〉 〈
k⊗

�=1

ψ�|
)
, (6.48)

which is a priori the element of L(S(R), S ′(R)) given by the property

〈
Tr2,...,k

(
W̃(k)

n |
k⊗

φ�〉 〈
k⊗

ψ�|
)
φ, ψ

〉
′
�=1 �=1 S (R)−S(R)
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=
〈

W̃(k)
n

k⊗
�=1

φ�, ψ ⊗
〈

k⊗
�=1

ψ�, φ

〉
S′
x1

(R)−Sx1 (R)

〉
S′(Rk)−S(Rk)

= 〈ψ1|φ〉
〈

W̃(k)
n

k⊗
�=1

φ�, ψ ⊗
k⊗

�=2

ψ�

〉
S′(Rk)−S(Rk)

, (6.49)

for every φ, ψ ∈ S(R), is in fact uniquely identifiable with the element in S(R2) which 
we denote by

ΦW̃(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)

via

〈
Tr2,...,k

(
W̃(k)

n |
k⊗

�=1

φ�〉 〈
k⊗

�=1

ψ�|
)
f, g

〉
S′(R)−S(R)

=
∫
R2

dxdx′ΦW̃(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)f(x′)g(x).
(6.50)

Moreover, the map

S(R)2k → S(R2), (φ1, . . . , φk, ψ1, . . . , ψk) �→ ΦW̃(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk) (6.51)

is continuous. The objective of the next lemma is to obtain a formula for ΦW̃(k)
n

in terms 
of w(k)

n .

Lemma 6.7. Let k, n ∈ N. Then the following properties hold:

• For any π ∈ Sk with π(1) = 1, we have that for all (x, x′) ∈ R2,

ΦW̃(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k)
n [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(k)](x),

(6.52)

and

ΦW̃(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ (x′)w(k),t[φ , ψ , . . . , ψ ;φ , . . . , φ ](x).
(6.53)
1 n,1 1 π(2) π(k) π(2) π(k)
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• For any π ∈ Sk with π(1) �= 1, we have that for all (x, x′) ∈ R2,

ΦW̃(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k),t
n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . ,

ψπ(k)](x),
(6.54)

and

ΦW̃(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k),t
n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x),

(6.55)

Proof. We will begin by establishing the first claim for the identity permutation, that 
is, for each k ∈ N and for any φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have that

ΦW̃(k)
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x), ∀(x, x′) ∈ R2.

(6.56)

By Lemma 5.3, it suffices to prove (6.56) by induction on

{(k, n) ∈ N2 : k ≤ n}. (6.57)

We begin with the base case, (k, n) = (1, 1). Since W̃(1)
1 = Id1 ∈ L(S(R), S ′(R)), we 

have the Schwartz kernel identity(
W̃(1)

1 |φ1〉 〈ψ1|
)
(x1;x′

1) = φ1(x1)ψ1(x′
1) = ψ1(x′

1)w
(1)
1 [φ1](x1), ∀(x1, x

′
1) ∈ R2,

(6.58)
which proves (6.56) for the base case.

For the induction step, suppose that there is some n ∈ N such that for all integers 
j ∈ N≤n the following assertion holds: for all integers k ∈ N≤j and for all functions 
φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have that

ΦW̃(k)
j

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k)
j [φ1, . . . , φk;ψ2, . . . , ψk](x), ∀(x, x′) ∈ R2. (6.59)

We now prove (6.59) with j = n + 1. By the recursion relation (5.4) and the bilinearity 
of the generalized trace, we have that
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Tr2,...,k

(
W̃(k)

n+1 |
k⊗

�=1

φ�〉 〈
k⊗

�=1

ψ�|
)

= Tr2,...,k

(
(−i∂x1)W̃(k)

n |
k⊗

r=1
φr〉 〈

k⊗
r=1

ψr|
)

+ κ
n−1∑
m=1

∑
�+j=k

Tr2,...,k

(
δ(X1 −X�+1)

(
W̃(�)

m ⊗ W̃(j)
n−m

)
|

k⊗
r=1

φr〉 〈
k⊗

r=1
ψr|

)

=: Term1,k + Term2,k. (6.60)

We first analyze Term1,k. Since (−i∂x1)W̃
(k)
n ∈ L(S(Rk), S ′(Rk)), it follows from the 

definition of the generalized partial trace that

Term1,k = (−i∂x) Tr2,...,k

(
W̃(k)

n |
k⊗

r=1
φr〉 〈

k⊗
r=1

ψr|
)
. (6.61)

It follows from the induction hypothesis that

(−i∂x) Tr2,...,k

(
W̃(k)

n |
k⊗

r=1
φr〉 〈

k⊗
r=1

ψr|
)

(x;x′)

=
(
(−i∂x)ΦW̃(k)

n
(φ1, . . . , φk;ψ1, . . . , ψk)

)
(x;x′)

= ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x) (6.62)

with equality in the sense of tempered distributions on R2. Substituting (6.62) into 
(6.61), we obtain that

Term1,k = ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x). (6.63)

We next analyze Term2,k. By the computed action of the Hörmander product δ(X1−
X�+1)

(
W̃(�)

m ⊗ W̃(j)
n−m

)
given by (5.38) and the definition of ΦW̃(�)

m
and ΦW̃(j)

n−m
we have 

that

Tr2,...,k

(
δ(X1 −X�+1)

(
W̃(�)

m ⊗ W̃(j)
n−m

)
|

k⊗
r=1

φr〉 〈
k⊗

r=1
ψr|

)
(x;x′)

= ΦW̃(�)
m

(φ1, . . . , φ�;ψ1, . . . , ψ�)(x;x′)ΦW̃(j)
n−m

(φ�+1, . . . , φk;ψ�+1, . . . , ψk)(x;x)

(6.64)

in the sense of tempered distributions. Using the induction hypothesis for W̃(�)
m and 

W̃(j)
n−m, respectively, we also have that
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ΦW̃(�)
m

(φ1, . . . , φ�;ψ1, . . . , ψ�)(x;x′)

= ψ1(x′)w(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�](x), ∀(x, x′) ∈ R2

(6.65)

and

ΦW̃(j)
n−m

(φ�+1, . . . , φk;ψ�+1, . . . , ψk](x;x′)

= ψ�+1(x′)w(j)
n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk](x), ∀(x, x′) ∈ R2.

(6.66)

Substituting the two preceding expressions into (6.64), we find that

(6.64)=ψ1(x′)ψ�+1(x)w(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�](x)w(j)

n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk](x).
(6.67)

Hence,

Term2,k(x;x′) (6.68)

= κ
n−1∑
m=1

∑
�+j=k

ψ1(x′)ψ�+1(x)w(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�](x)

× w
(j)
n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk](x).

Combining our identities for Term1,k and Term2,k, we obtain that

(Term1,k + Term2,k)(x;x′)

= ψ1(x′)(−i∂x)w(k)
n [φ1, . . . , φk;ψ2, . . . , ψk](x)

+ κ

n−1∑
m=1

∑
�+j=k

ψ1(x′)ψ�+1(x)w(�)
m [φ1, . . . , φ�;ψ2, . . . , ψ�](x)

× w
(j)
n−m[φ�+1, . . . , φk;ψ�+2, . . . , ψk](x),

with equality in S ′(R2). Now applying the recursive relation (6.2) for w(k)
n+1[φ1, . . . , φk;

ψ2, . . . , ψk], we find that

(Term1,k + Term2,k)(x;x′) = ψ1(x′)w(k)
n+1[φ1, . . . , φk;ψ2, . . . , ψk](x), (6.69)

which completes the proof of the induction step for showing (6.56).
We now use (6.56) to prove the adjoint assertion of the lemma. For f, g ∈ S(R), we 

have by definition of the generalized partial trace (see Proposition C.9) that
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〈
Tr2,...,k

(
W̃(k),∗

n |
k⊗

r=1
φr〉 〈

k⊗
r=1

ψr|
)
f, g

〉
S′(R)−S(R)

= 〈ψ1|f〉
〈

W̃(k),∗
n

k⊗
r=1

φr, g ⊗
k⊗

r=2
ψr

〉
S′(Rk)−S(Rk)

.

(6.70)

By Lemma C.1,

〈
W̃(k),∗

n

k⊗
r=1

φr, g ⊗
k⊗

r=2
ψr

〉
S′(Rk)−S(Rk)

=
〈

W̃(k)
n (g ⊗

k⊗
r=2

ψr),
k⊗

r=1
φr

〉
S′(Rk)−S(Rk)

.

(6.71)
We can rewrite

〈ψ1|f〉
〈

W̃(k)
n (g ⊗

k⊗
r=2

ψr),
k⊗

r=1
φr

〉
S′(Rk)−S(Rk)

=
〈

Tr2,...,k

(
W̃(k)

n |g ⊗
k⊗

r=2
ψr〉 〈f ⊗

k⊗
r=2

φr|
)
ψ1, φ1

〉
S′(R)−S(R)

.

(6.72)

Now applying (6.56) to this expression, we obtain that the right-hand side of (6.72)
equals ∫

R2

dxdx′ΦW̃(k)
n

(g, ψ2, . . . , ψk; f, φ2, . . . , φk)(x;x′)ψ1(x′)φ1(x)

=
∫
R2

dxdx′f(x′)w(k)
n [g, ψ2, . . . , ψk;φ2, . . . , φk](x)ψ1(x′)φ1(x)

=
∫
R2

dxdx′f(x′)w(k)
n [g, ψ2, . . . , ψk;φ2, . . . , φk](x)ψ1(x′)φ1(x). (6.73)

Next, using the Fubini-Tonelli theorem and applying Lemma 6.5 in the x-integration, we 
find that

(6.73) = 〈ψ1|f〉
∫
R

dxw
(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x)g(x)

= 〈ψ1|f〉
∫
R

dxw
(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x)g(x). (6.74)

Since f, g ∈ S(R) were arbitrary, going back to the left-hand side of (6.70) and using the 
uniqueness and properties of Φ (k),∗ , we conclude the pointwise in R2 identity
Wn
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ΦW(k),∗
n

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′) = ψ1(x′)w(k),t
n,1 [φ1, ψ2, . . . , ψk;φ2, . . . , φk](x).

(6.75)
We next need to generalize (6.56) and (6.75) to arbitrary permutations π ∈ Sk. By 

definition of the notation

W̃(k)
n,(π(1),...,π(k)) := π ◦ W̃(k)

n ◦ π−1,

we have that for any φ1, . . . , φk ∈ S(R),

W̃(k)
n,(π(1),...,π(k))(

k⊗
r=1

φr) = π ◦ W̃(k)
n ((

k⊗
r=1

φr) ◦ π−1), (6.76)

where the reader will recall from (4.14) and (4.15) how a permutation acts on vectors 
and functions, respectively. Setting f (k) :=

⊗k
r=1 φr, we have by definition that

(f (k) ◦ π−1)(xk) = f (k)(xπ−1(1), . . . , xπ−1(k)) =
k∏

r=1
φr(xπ−1(r)). (6.77)

Making the change of variable r′ = π−1(r), we see that

k∏
r=1

φr(xπ−1(r)) =
k∏

r′=1
φπ(r′)(xr′) = (

k⊗
r=1

φπ(r))(xk). (6.78)

Therefore,

Tr2,...,k
(
W̃(k)

n,(π(1),...,π(k)) |⊗
k
�=1φ�〉 〈⊗k

�=1ψ�|
)

= Tr2,...,k

((
π ◦ W̃(k)

n

)
|

k⊗
�=1

φπ(�)〉 〈
k⊗

�=1

ψ�|
)

(6.79)

as elements of Lgmp(S(R), S ′(R)). Next, it follows from the characterizing property of the 
generalized partial trace and the fact that we define a permutation to act on tempered 
distribution by duality that〈

Tr2,...,k

((
π ◦ W̃(k)

n

)
|

k⊗
�=1

φπ(�)〉 〈
k⊗

�=1

ψ�|
)
f, g

〉
S′(R)−S(R)

= 〈ψ1|f〉
〈

W̃(k)
n

k⊗
�=1

φπ(�), (g ⊗
k⊗

�=2

ψ�) ◦ π−1

〉
S′(Rk)−S(Rk)

. (6.80)

Repeating the computation which yielded (6.78), we find that
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(g ⊗
k⊗

�=2

ψ�) ◦ π−1 = (
π−1(1)−1⊗

�=1

ψπ(�)) ⊗ g ⊗ (
k⊗

�=π−1(1)+1

ψπ(�)), (6.81)

where per our notation convention, the tensor product on the right-hand side is to be 
interpreted as g ⊗

⊗k
�=2 ψπ(�) if π(1) = 1. Thus,

(6.80) = 〈ψ1|f〉
〈

W̃(k)
n

k⊗
�=1

φπ(�), (
π−1(1)−1⊗

�=1

ψπ(�)) ⊗ g ⊗ (
k⊗

�=π−1(1)+1

ψπ(�))
〉

S′(Rk)−S(Rk)

=
〈

Tr2,...,k

⎛⎝W̃(k)
n |

k⊗
�=1

φπ(�)〉 〈ψ1 ⊗ (
π−1(1)−1⊗

�=2

ψπ(�))⊗

g ⊗ (
k⊗

�=π−1(1)+1

ψπ(�)|

⎞⎠ f, ψπ(1)

〉
S′(R)−S(R)

.

By definition of ΦW̃(k)
n

, this last expression equals

∫
R2

dxdx
′Φ

W̃
(k)
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x; x′)

×f(x′)ψπ(1)(x).

Applying the result we have just established for the identity permutation, recorded in 
(6.56), and using the Fubini-Tonelli theorem and Lemma 6.5, we obtain∫
R2

dxdx′ψ1(x′)w(k)
n [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x)

× f(x′)ψπ(1)(x)

=
∫
R2

dxdx′w
(k),t
n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . ,

ψπ(k)](x)ψ1(x′)g(x)f(x′).

Since f, g ∈ S(R) were arbitrary, we conclude that

ΦW(k)
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k),t
n,π−1(1)′ [φπ(1), . . . , φπ(k);ψπ(2), . . . , ψπ(π−1(1)−1), ψπ(1), ψπ(π−1(1)+1), . . . ,

ψπ(k)](x), (x, x′) ∈ R2.

(6.82)
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For the assertions about the adjoint, consider the expression

∫
R2

dxdx′ΦW̃(k),∗
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x;x′)

×f(x′)ψπ(1)(x). (6.83)

By (6.75), we have

ΦW̃(k),∗
n

(φπ(1), . . . , φπ(k);ψ1, ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k))(x;x′)

= ψ1(x′)w(k),t
n,1 [φπ(1), ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x).

(6.84)

By the characterizing property of w(k),t
n,1 from Lemma 6.5, followed by a second application 

of Lemma 6.5, we have that

∫
R

dx ψπ(1)(x)w(k),t
n,1 [φπ(1), ψπ(2), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

=
∫
R

dx φπ(1)(x)w(j)
n [ψπ(1), . . . , ψπ(π−1(1)−1), g, ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

=
∫
R

dx g(x)w(k),t
n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x).

(6.85)

By substituting (6.84) into (6.83), then using Fubini-Tonelli theorem and the preceding 
identity, we conclude that

ΦW(k),∗
n,(π(1),...,π(k))

(φ1, . . . , φk;ψ1, . . . , ψk)(x;x′)

= ψ1(x′)w(k),t
n,π−1(1)[ψπ(1), . . . , ψπ(π−1(1)−1), φπ(1), ψπ(π−1(1)+1), . . . , ψπ(k);φπ(2), . . . , φπ(k)](x)

(6.86)

point-wise in R2, which establishes the final claim and completes the proof. �
By taking the (1-particle) trace of the DVOs

Tr2,...,k

(
W̃(k)

n,(π(1),...,π(k)) |
k⊗

�=1

φ�〉 〈
k⊗

�=1

ψ�|
)
, Tr2,...,k

(
W̃(k),∗

n,(π(1),...,π(k)) |
k⊗

�=1

φ�〉 〈
k⊗

�=1

ψ�|
)

and using the definition (6.23) of I(k)
n , we obtain the following corollary of Lemma 6.7:



D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525 83
Corollary 6.8. Let k, n ∈ N. Then for any permutation π ∈ Sk and any functions 
φ1, . . . , φk, ψ1, . . . , ψk ∈ S(R), we have the identities

Tr1,...,k
(
W̃(k)

n,(π(1),...,π(k)) |⊗
k
�=1φ�〉 〈⊗k

�=1ψ�|
)

= I(k)
n [φπ(1), . . . , φπ(k);ψπ(1), . . . , ψπ(k)],

(6.87)

Tr1,...,k
(
W̃(k),∗

n,(π(1),...,π(k)) |⊗
k
�=1φ�〉 〈⊗k

�=1ψ�|
)

= I
(k)
n [ψπ(1), . . . , ψπ(k);φπ(1), . . . , φπ(k)].

(6.88)

7. The involution: Hn and Ib,n

In this section, we prove Theorem 2.8. We recall the definition of the trace functionals

Hn(Γ) := Tr(Wn · Γ), ∀Γ ∈ G∗
∞. (7.1)

The statement of the theorem is then the following:

Theorem 2.8 (Involution theorem). Let n, m ∈ N. Then

{Hn,Hm}
G∗

∞
≡ 0 on G∗

∞. (2.48)

As discussed in the introduction, we prove Theorem 2.8 by showing that the Poisson 
commutativity of the functionals Hn on the weak Poisson manifold (G∗

∞, A∞, {·, ·}
G∗

∞
)

is equivalent to the Poisson commutativity of the functionals Ib,n on the weak Poisson 
manifold (S(R; V), AS,V , {·, ·}L2,V). See (4.68), (4.70), and Proposition 4.37 for definition 
and properties of this manifold. Since the Poisson commutativity of the Ib,n is established 
in Proposition A.14, this equivalence will complete the proof of Theorem 2.8.

Establishing this equivalence relies on the detailed correspondence between the ob-
servable ∞-hierarchies −iWn and the multilinear forms wn which we have obtained in 
Section 6, the reduction to symmetric-rank-1 tensors described in Appendix B, and the 
demonstration of a Poisson morphism

ιm : (S(R;V),AS,V , {·, ·}L2,V) → (G∗
∞,A∞, {·, ·}

G∗
∞

).

We establish the existence of this Poisson morphism in the next subsection.

7.1. The mixed state Poisson morphism

Analogous to Theorem 2.12 from our companion paper [57], which shows that there 
is a Poisson morphism between (S(R), AS , {·, ·}L2) and (G∗

∞, A∞, {·, ·}
G∗

∞
) given by

ι(φ) := ( |φ⊗k〉 〈φ⊗k|)k∈N , ∀φ ∈ S(R) (7.2)
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Theorem 2.9 stated below demonstrates that we have a Poisson morphism ιm between 
the weak Poisson manifolds (S(R; V), AS,V , {·, ·}L2,V) and (G∗

∞, A∞, {·, ·}
G∗

∞
) given by

ιm(γ) := 1
2( |φ⊗k

1 〉 〈φ⊗k
2 | + |φ⊗k

2 〉 〈φ⊗k
1 |)k∈N , ∀γ = 1

2adiag(φ1, φ2, φ2, φ1) ∈ S(R;V).
(7.3)

Theorem 2.9. The map ιm is a Poisson morphism of (S(R; V), AS,V , {·, ·}L2,V) into 
(G∗

∞, A∞, {·, ·}
G∗

∞
); i.e., it is a smooth map with the property that

ι∗m{·, ·}G∗
∞

= {ι∗m·, ι∗m·}L2,V , (2.54)

where ι∗m denotes the pullback of ιm.

Before proceeding with the proof of Theorem 2.9, we first record the Gâteaux deriva-
tive of the map ιm, which is used in the proof of the theorem. The computation is an 
easy exercise relying on multilinearity which we leave to the reader.

Lemma 7.1 (Derivative of ιm). The Gâteaux derivative of the map ιm is given by

dιm[γ](δγ)(k)

= 1
2

k∑
α=1

(
|φ⊗(α−1)

1 ⊗ δφ1 ⊗ φ⊗k−α
1 〉 〈φ⊗k

2 | + |φ⊗k
2 〉 〈φ⊗(α−1)

1 ⊗ δφ1 ⊗ φ
⊗(k−α)
1 |

+ |φ⊗k
1 〉 〈φ⊗(α−1)

2 ⊗ δφ2 ⊗ φ
⊗(k−α)
2 | + |φ⊗(α−1)

2 ⊗ δφ2 ⊗ φ
⊗(k−α)
2 〉 〈φ⊗k

1 |
)
,

(7.4)

for every k ∈ N, where

γ = 1
2adiag(φ1, φ2, φ2, φ1), δγ = 1

2adiag(δφ1, δφ2, δφ2, δφ1) ∈ S(R;V). (7.5)

We now turn the proof of Theorem 2.9.

Proof of Theorem 2.9. The proof of this result proceeds similarly to the proof of [57, 
Theorem 2.12]. Smoothness of ιm follows from its multilinear structure, therefore it 
remains to check that

(i) ι∗mA∞ ⊂ AS,V ,
(ii) ι∗m{·, ·}G∗

∞
= {ι∗m·, ι∗m·}L2,V .

We first prove assertion (i). Let F ∈ A∞, and set f := F ◦ ιm. By the chain rule for 
the Gâteaux derivative, we have that
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df [γ](δγ) = dF [ιm(γ)](dιm[γ](δγ))

= i

∞∑
k=1

Tr1,...,k
(
dF [ιm(γ)](k)dιm[γ](δγ)(k)

)

= i

2

∞∑
k=1

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1 〉 〈φ⊗k

2 |
)

+ Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k

2 〉 〈
k∑

α=1
φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1 |

)

+ Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ

⊗(k−α)
2 〉 〈φ⊗k

1 |
)

+ Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k

1 〉 〈
k∑

α=1
φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ

⊗(k−α)
2 |

)
,

(7.6)

where the ultimate equality follows from application of Lemma 7.1.
Next, observe that by Definition C.5 for the generalized trace and Definition 2.2 for 

the good mapping property, we have that

Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k

2 〉 〈
k∑

α=1
φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1 |

)

=
〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉
= 〈δφ1|ψF,2,k〉 , (7.7)

where ψF,2,k ∈ S(R) is the necessarily unique Schwartz function coinciding with the 
antilinear functional

δφ1 �→
〈〈

k∑
α=1

(·) ⊗α φ
⊗(k−1)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉
, δφ1

〉
S′(R)−S(R)

:=
〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉 (7.8)

and where the reader will recall the definition of the notation ⊗α from (5.32). By the 
same reasoning,

Tr1,...,k

(
dF [ιm(γ)](k) |φ⊗k

1 〉 〈
k∑

α=1
φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ

⊗(k−α)
2 |

)
= 〈δφ2|ψF,1,k〉 , (7.9)
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where ψF,1,k is the necessarily unique Schwartz function coinciding with the antilinear 
functional 〈

k∑
α=1

(·) ⊗α φ
⊗(k−1)
2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
1

〉
. (7.10)

Next, using that dF [ιm(γ)](k) is skew-adjoint,

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1 〉 〈φ⊗k

2 |
)

= −
〈
dF [ιm(γ)]φ⊗k

2

∣∣∣∣∣
k∑

α=1
φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1

〉

= −
〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ δφ1 ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)]φ⊗k
2

〉
= −〈δφ1|ψF,2,k〉

= −〈ψF,2,k|δφ1〉 . (7.11)

By the same reasoning,

Tr1,...,k

(
dF [ιm(γ)](k) |

k∑
α=1

φ
⊗(α−1)
2 ⊗ δφ2 ⊗ φ

⊗(k−α)
2 〉 〈φ⊗k

1 |
)

= −〈ψF,1,k|δφ2〉 .

(7.12)

Substituting identities (7.7), (7.9), (7.11), and (7.12) into (7.6), we find that

df [ιm(γ)](δγ) = i

2

∞∑
k=1

(〈δφ1|ψF,2,k〉 + 〈δφ2|ψF,1,k〉 − 〈ψF,2,k|δφ1〉 − 〈ψF,1,k|δφ2〉)

= i

2(〈δφ1|ψF,2〉 + 〈δφ2|ψF,1〉 − 〈ψF,2|δφ1〉 − 〈ψF,1|δφ2〉), (7.13)

where we have defined ψF,1 :=
∑∞

k=1 ψF,1,k and similarly for ψF,2. Note that these 
are well-defined Schwartz functions since dF (k) is zero for all but finitely many k by 
assumption that F ∈ A∞ (recall that A∞ is generated by the set (2.28)). The preceding 
formula can be rewritten as

df [ιm(γ)](δγ) = 1
2 trC2⊗C2

(
Jadiag(ψF,1, ψF,2, ψF,2, ψF,1)adiag(δφ2, δφ1, δφ1, δφ2)

)
,

(7.14)
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where J = diag(i, −i, i, −i). Recalling definition (4.68) for the symplectic form ωL2,V , we 
then see from (7.14) that the symplectic gradient of f with respect to the form ωL2,V , 
which we denote by ∇s,Vf , is given by

∇s,Vf(γ) = 1
2adiag(ψF,1, ψF,2, ψF,2, ψF,1). (7.15)

That the map

S(R;V) → S(R;V), γ �→ ∇s,Vf(γ) (7.16)

is smooth follows from the fact that γ depends smoothly on (ψF,1, ψF,2), a consequence 
of the good mapping property. This completes our verification of assertion (i).

We now verify assertion (ii) using the formula (7.15). By definition of the Hamiltonian 
vector field in (P3) of Definition 4.24 together with Proposition 2.5, which gives a formula 
for the vector field XG(ιm(γ)), we have that

{F,G}
G∗

∞
(ιm(γ))

= dF [ιm(γ)](XG(ιm(γ))

=
∞∑
k=1

iTr1,...,k

⎛⎝dF [ιm(γ)](k)

⎛⎝ ∞∑
j=1

j Trk+1,...,k+j−1

×
([

k∑
α=1

dG[ιm(γ)](j)(α,k+1,...,k+j−1), ιm(γ)(k+j−1)

])))

By the bosonic symmetry of dG[ιm(γ)](j),

∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1
dG[ιm(γ)](j)(α,k+1,...,k+j−1), ιm(γ)(k+j−1)

])

=
∞∑
j=1

Trk+1,...,k+j−1

⎛⎝⎡⎣ k∑
α=1

j∑
β=1

dG[ιm(γ)](j)(k+1,...,k+β−1,α,k+β,...,...,k+j−1), ιm(γ)(k+j−1)

⎤⎦⎞⎠.

(7.17)

It is then a short computation using the Schwartz kernel theorem and the definition of 
ιm that

j∑
β=1

dG[ιm(γ)](j)(k+1,...,k+β−1,α,k+β,...,k+j−1)ιm(γ)(k+j−1)

= 1
2

(
|φ⊗(k−1)

1 ⊗α dG[ιm(γ)](j)(φ⊗j
1 )〉 〈φ⊗(k+j−1)

2 |

+ |φ⊗(k−1)
2 ⊗α dG[ιm(γ)](j)(φ⊗j

2 )〉 〈φ⊗(k+j−1)
1 |

)
,

(7.18)



88 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525

,

where φ⊗(k−1)
1 ⊗α dG[ιm(γ)](j)(φ⊗j

1 ) is the element of S ′(Rk+j−1) defined by(
φ
⊗(k−1)
1 ⊗α dG[ιm(γ)](j)(φ⊗j

1 )
)
(xk+j−1)

:= φ
⊗(α−1)
1 (xα−1)φ

⊗(k−α)
1 (xα+1;k)

⎛⎝ j∑
β=1

dG[ιm(γ)](j)(φ⊗j
1 )(xk+1;k+β−1, xα, xk+β;k+j−1)

⎞⎠
(7.19)

and similarly for φ⊗(k−1)
2 ⊗α dG[ιm(γ)](j)(φ⊗j

2 ). Since dG[ιm(γ)] has the good mapping 
property by assumption that G ∈ A∞, Remark C.14 and the definition of the generalized 
trace imply that for every 1 ≤ α ≤ k,

Trk+1,...,k+j−1

⎛⎝ j∑
β=1

dG[ιm(γ)](j)(k+1,...,k+β−1,α,k+β,...,k+j−1)ιm(γ)(k+j−1)

⎞⎠
= 1

2

(
|φ⊗(α−1)

1 ⊗ ψG,1,j ⊗ φ
⊗(k−α)
1 〉 〈φ⊗k

2 | + |φ⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2 〉 〈φ⊗k

1 |
)
,

(7.20)

where ψG,1,j , ψG,2,j ∈ S(R) are the necessarily unique Schwartz functions satisfying

〈φ|ψG,1,j〉 =
〈

j∑
β=1

φ⊗β φ
⊗(j−1)
2

∣∣∣∣∣∣dG[ιm(γ)](j)φ⊗j
1

〉
(7.21)

〈φ|ψG,2,j〉 =
〈

j∑
β=1

φ⊗β φ
⊗(j−1)
1

∣∣∣∣∣∣dG[ιm(γ)]φ⊗j
2

〉
, ∀φ ∈ S(R). (7.22)

By repeating the same arguments and now using that the skew-adjointness of 
dG[ιm(γ)](j), we also obtain that for every 1 ≤ α ≤ k,

Trk+1,...,k+j−1

⎛⎝ j∑
β=1

ιm(γ)(k+j−1)dG[ιm(γ)](j)(α,k+1,...,k+j−1)

⎞⎠
= −1

2

(
|φ⊗k

1 〉 〈φ⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2 | + |φ⊗k

2 〉 〈φ⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1 |

)
.

(7.23)

Substituting identities (7.20) and (7.23) into (7.17) above, we find that

{F,G}
G∗

∞
(ιm(γ))

= i

2

∞∑
Tr1,...,k

⎛⎝dF [ιm(γ)](k)

⎛⎝ ∞∑
j=1

|
k∑

α=1
φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1 〉 〈φ⊗k

2 |

k=1
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+ |
k∑

α=1
φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2 〉 〈φ⊗k

1 |
))

+ i

2

∞∑
k=1

Tr1,...,k

⎛⎝dF [ιm(γ)](k)

⎛⎝ ∞∑
j=1

|φ⊗k
2 〉 〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1 |

+ |φ⊗k
1 〉 〈

k∑
α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2 |

))

= i

2

∞∑
j=1

∞∑
k=1

〈
φ⊗k

2

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1
φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1

)〉

+
〈
φ⊗k

1

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1
φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2

)〉

+
〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉

+
〈

k∑
α=1

φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
1

〉
, (7.24)

where the ultimate equality is immediate from the definition of the generalized trace. 
Recalling the definitions of ψF,1,k and ψF,2,k in (7.7) and (7.9), respectively, we have that〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉
= 〈ψG,1,j |ψF,2,k〉 , (7.25)

〈
k∑

α=1
φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
1

〉
= 〈ψG,2,j |ψF,1,k〉 . (7.26)

Now using the skew-adjointness of dF [ιm(γ)](k), we find that〈
φ⊗k

2

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1
φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1

)〉

= −
〈

k∑
α=1

φ
⊗(α−1)
1 ⊗ ψG,1,j ⊗ φ

⊗(k−α)
1

∣∣∣∣∣dF [ιm(γ)](k)φ⊗k
2

〉
= −〈ψF,2,k|ψG,1,j〉 . (7.27)

Similarly,〈
φ⊗k

1

∣∣∣∣∣dF [ιm(γ)](k)

(
k∑

α=1
φ
⊗(α−1)
2 ⊗ ψG,2,j ⊗ φ

⊗(k−α)
2

)〉
= −〈ψF,1,k|ψG,2,j〉 .

(7.28)
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Hence,

{F,G}
G∗

∞
(ιm(γ))

= i

2

∞∑
j=1

∞∑
k=1

〈ψG,1,j |ψF,2,k〉 + 〈ψG,2,j |ψF,1,k〉 − 〈ψF,2,k|ψG,1,j〉 − 〈ψF,1,k|ψG,2,j〉

= i

2(〈ψG,1|ψF,2〉 + 〈ψG,2|ψF,1〉 − 〈ψF,2|ψG,1〉 − 〈ψF,1|ψG,2〉), (7.29)

where we have defined ψF,� :=
∑∞

k=1 ψF,�,k, for � ∈ {1, 2}, and similarly for ψG,�. Note 
that these are well-defined elements of S(R) since ψF,�,k, ψG,�,j are identically zero for 
all but finitely many k, j. By (7.15), we know that

∇s,Vf(γ) = 1
2adiag(ψF,1, ψF,2, ψF,2, ψF,1), (7.30)

∇s,Vg(γ) = 1
2adiag(ψG,1, ψG,2, ψG,2, ψG,1). (7.31)

Hence by recalling the definition (4.68) for the symplectic form ωL2,V and Proposi-
tion 4.37, then proceeding by direct computation, we find that

{f, g}L2,V(γ)

= ωL2,V(∇s,Vf(γ),∇s,Vg(γ))

= 1
2

∫
R

dx trC2⊗C2
(
diag(i,−i, i,−i)adiag(ψF,1, ψF,2, ψF,2, ψF,1)

×adiag(ψG,2, ψG,1, ψG,1, ψG,2)
)
(x)

= (7.29). (7.32)

Therefore, we have shown that

{F,G}
G∗

∞
(ιm(γ)) = {f, g}L2,V(γ), (7.33)

completing the proof. �
7.2. Relating the functionals Hn and Ib,n

We now use the analysis of Section 6.3 to relate the functionals Hn, defined in (2.45), 
on the infinite-particle phase space G∗

∞ to the functionals Ib,n, defined in (2.52), on the 
one-particle mixed-state phase space S(R; V), defined in (2.51).

Proposition 7.2. For every n ∈ N, it holds that

Hn(ιm(γ)) = Ib,n(γ), ∀γ ∈ S(R;V). (7.34)
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Proof. Fix n ∈ N and let γ = 1
2adiag(φ1, φ2, φ2, φ1), for φ1, φ2 ∈ S(R). Unpacking the 

definition (2.45) of Hn, the definition (2.44) for Wn, and the bilinearity of the generalized 
trace, we see that

Hn(ιm(γ)) = 1
4

∞∑
k=1

1
k!

∑
π∈Sk

Tr1,...,k
(
W̃(k)

n,(π(1),...,π(k)) |φ
⊗k
1 〉 〈φ⊗k

2 |
)

+ Tr1,...,k
(
W̃(k)

n,(π(1),...,π(k)) |φ
⊗k
2 〉 〈φ⊗k

1 |
)

+ Tr1,...,k
(
W̃(k),∗

n,(π(1),...,π(k)) |φ
⊗k
1 〉 〈φ⊗k

2 |
)

+ Tr1,...,k
(
W̃(k),∗

n,(π(1),...,π(k)) |φ
⊗k
2 〉 〈φ⊗k

1 |
)
.

(7.35)

By Corollary 6.8, we have the identities

Tr1,...,k
(
W̃(k)

n,(π(1),...,π(k)) |φ
⊗k
1 〉 〈φ⊗k

2 |
)

= I(k)
n (φ×k

1 ;φ2
×k),

Tr1,...,k
(
W̃(k)

n,(π(1),...,π(k)) |φ
⊗k
2 〉 〈φ⊗k

1 |
)

= I(k)
n (φ×k

2 ;φ1
×k),

Tr1,...,k
(
W̃(k),∗

n,(π(1),...,π(k)) |φ
⊗k
1 〉 〈φ⊗k

2 |
)

= I
(k)
n (φ×k

2 ;φ1
×k),

Tr1,...,k
(
W̃(k),∗

n,(π(1),...,π(k)) |φ
⊗k
2 〉 〈φ⊗k

1 |
)

= I
(k)
n (φ×k

1 ;φ2
×k),

(7.36)

for every k ∈ N and π ∈ Sk. Consequently, by Remark 6.4,

Hn(ιm(γ)) = 1
4

∞∑
k=1

(
I(k)
n (φ×k

1 ;φ2
×k) + I(k)

n (φ×k
2 ;φ1

×k)

+ I
(k)
n (φ×k

2 ;φ1
×k) + I

(k)
n (φ×k

1 ;φ2
×k)

)
= 1

4

(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1) + Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
. (7.37)

By (A.61), we know that the Ĩn have the involution property

Ĩn(f, g) = Ĩn(g, f), ∀f, g ∈ S(R). (7.38)

So, we obtain by the definition of Ib,n in (2.52) that

Hn(ιm(γ)) = 1
2
(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
= Ib,n(γ), (7.39)

as required. �
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7.3. Proof of Theorem 2.8 and Theorem 2.10

The goal of this subsection is to complete the proof of Theorem 2.8:

Theorem 2.8 (Involution theorem). Let n, m ∈ N. Then

{Hn,Hm}
G∗

∞
≡ 0 on G∗

∞. (2.48)

As detailed in the introduction, we will establish Theorem 2.8 by proving Theo-
rem 2.10, the statement of which we recall here.

Theorem 2.10 (Poisson commutativity equivalence). For any n, m ∈ N,

{Ib,n, Ib,m}L2,V(γ) = 0, ∀γ ∈ S(R;V), (2.60)

if and only if

{Hn,Hm}
G∗

∞
(Γ) = 0, ∀Γ ∈ G∗

∞. (2.61)

We refer to (2.52) for the definition of Ib,n. In light of Proposition A.14 which estab-
lishes the validity of (2.60), Theorem 2.8 is then an immediate corollary of Theorem 2.10. 
Thus we focus on proving Theorem 2.10.

Proof of Theorem 2.10. The implication that

{Hn,Hm}
G∗

∞
≡ 0 =⇒ {Ib,n, Ib,m}L2,V ≡ 0

is a consequence of Theorem 2.9 and Proposition 7.2. Indeed, the latter states that

Hn(ιm(γ)) = Ib,n(γ),

and hence by Theorem 2.9, we have

{Ib,n, Ib,m}L2,V(γ) = {Hn,Hm}
G∗

∞
(ιm(γ)) = 0.

To show the reverse implication, we first claim that it suffices to show that

{Hn,Hm}
G∗

∞
(Γ) = 0,

∀Γ = (γ(k))k∈N , γ(k) = 1
2
(
|f⊗k

k 〉 〈g⊗k
k | + |g⊗k

k 〉 〈f⊗k
k |

)
, fk, gk ∈ S(R). (7.40)

Indeed, for any k ∈ N, Corollary B.8 gives that finite linear combinations of the form
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Nk∑
j=1

aj
2
(
|f⊗k

j 〉 〈g⊗k
j | + |g⊗k

j 〉 〈f⊗k
j |

)
, aj ∈ C, fj , gj ∈ S(R), Nk ∈ N (7.41)

are dense in g∗k (recall (2.26)). Since by definition G∗
∞ is the topological direct product 

of the g∗k (recall (2.27)), elements Γ = (γ(k))k∈N ∈ G∗
∞ of the form

γ(k) =
∞∑
j=1

ajk
2

(
|f⊗k

jk 〉 〈g⊗k
jk | + |g⊗k

jk 〉 〈f⊗k
jk |

)
, k ∈ N, (7.42)

where fjk, gjk ∈ S(R) and ajk ∈ C with ajk = 0 for all but finitely many j ∈ N, are 
dense in G∗

∞. Now recalling the definition (2.29) for the Poisson bracket {Hn,Hm}
G∗

∞
and using the bilinearity of the generalized trace, we need to show that for Γ in the form 
of (7.42),

0 = {Hn,Hm}
G∗

∞
(Γ)

=
∞∑
k=1

∞∑
j=1

iajk
2 Tr1,...,k

(
[−iWn,−iWm](k)

G∞

(
|f⊗k

jk 〉 〈g⊗k
jk | + |g⊗k

jk 〉 〈f⊗k
jk |

))

=
∞∑
j=1

ajk{Hn,Hm}
G∗

∞
(Γj), (7.43)

where

Γj = (γ(k)
j )k∈N , γ

(k)
j := 1

2

(
|f⊗k

jk 〉 〈g⊗k
jk | + |g⊗k

jk 〉 〈f⊗k
jk |

)
. (7.44)

Note that because [−iWn,−iWm](k)
G∞

is zero for all but finitely many k, and for each 
fixed k ∈ N, ajk is zero for all but finitely many j, it follows that there are only finitely 
many nonzero terms in the double series above, and consequently, there are no issues 
of convergence. (7.40) will imply that each summand in (7.43) is zero, so by continuity 
of {Hn,Hm}

G∗
∞

and by density of elements of the form (7.42) in G∗
∞, we arrive at the 

desired implication.
Thus, we proceed to show (7.40). Unpacking the definition of {Hn,Hm}

G∗
∞

(Γ), we see 
that

{Hn,Hm}
G∗

∞
(Γ) = i

2

∞∑
k=1

Tr1,...,k
(
[−iWn,−iWm](k)

G∞

(
|f⊗k

k 〉 〈g⊗k
k | + |g⊗k

k 〉 〈f⊗k
k |

))
(7.45)

For each k ∈ N and λ ∈ C, consider the element γk,λ ∈ S(R; V) defined by

γk,λ := 1
2adiag(λfk, λgk, λgk, λfk) (7.46)

Then by the assumption (2.60) and Theorem 2.9,
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0 = {Ib,n, Ib,m}L2,V(γk,λ)

= {Hn,Hm}
G∗

∞
(ιm(γk,λ))

=
∞∑
j=1

iTr1,...,j
(
[−iWn,−iWm](j)

G∞
ιm(γk,λ)(j)

)

= i

2

∞∑
j=1

|λ|2j Tr1,...,j
(
[−iWn,−iWm](j)

G∞
( |f⊗j

k 〉 〈g⊗j
k | + |g⊗j

k 〉 〈f⊗j
k |)

)
=: i

2ρk(λ). (7.47)

ρk is well-defined on C, since there are only finitely many indices j for which the summand 
is nonzero. Since for any r ∈ N,

0 = ((∂λ∂λ)rρk)(0) = r! Tr1,...,r
(
[−iWn,−iWm](r)

G∞
( |f⊗r

k 〉 〈g⊗r
k | + |g⊗r

k 〉 〈f⊗r
k |)

)
,

(7.48)
it follows that

Tr1,...,k
(
[−iWn,−iWm](k)

G∞
( |f⊗k

k 〉 〈g⊗k
k | + |g⊗k

k 〉 〈f⊗k
k |)

)
= 0. (7.49)

Therefore, each summand in the right-hand side of (7.45) vanishes, yielding (7.40). Thus, 
the proof of Theorem 2.9 is complete. �
7.4. Nontriviality

In this subsection, we prove that the statement of Theorem 2.8 is nontrivial in the 
sense that the functionals Hn do not Poisson commute with every element of A∞. The 
proof of this fact proceeds by a reduction to proving a one-particle result.

Proposition 7.3. For every n ∈ N, there exists a functional F ∈ A∞ and an element 
Γ ∈ G∗

∞ such that

{F,Hn}G∗
∞

(Γ) �= 0. (7.50)

Proof. We proceed by contradiction and suppose that for every F ∈ A∞, it holds that 
{F,Hn}G∗

∞
≡ 0 on G∗

∞. So by the Definition 4.24(P3) for the Hamiltonian vector field, 
we have that

0 = {F,Hn}G∗
∞

(Γ) = dF [Γ](XHn
(Γ)). (7.51)

By duality, it follows that XHn
≡ 0 on G∗

∞. In particular, for any pure state Γ = ι(φ), 
where ι is as in (7.2) and φ ∈ S(R), we have by Theorem 2.11 (to be proved in the next 
section) that
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XHn
(ι(φ))(1) = |φ〉 〈∇sIn(φ)| + |∇sIn(φ)〉 〈φ| = 0 ∈ g∗1. (7.52)

Taking the 1-particle trace of the right-hand side and using the characterization of the 
symplectic gradient (see Definition 4.33), we obtain that

0 = dIn[φ](φ) =
∞∑
k=1

2kI(k)
n [φ×k;φ×k], (7.53)

where the ultimate equality follows by direct computation. However, (7.53) is a contra-
diction by Lemma 6.3, and therefore the proof is complete. �
8. The equations of motion: nGP and nNLS

In this last section, we prove Theorem 2.11. Before recalling the statement of this 
theorem, we first recall that for each n ∈ N, the Hamiltonian functionals Hn are given 
by the formula

Hn(Γ) := Tr(Wn · Γ), ∀Γ ∈ G∗
∞ (8.1)

and the Hamiltonian equation of motion defined by the functional Hn on G∗
∞, which we 

have called the n-th GP-hierarchy (nGP), is given by

d

dt
Γ = XHn

(Γ), (8.2)

where XHn
is the Hamiltonian vector field associated to Hn.

Theorem 2.11 (Connection between (nGP) and (nNLS)). Let n ∈ N. Let I ⊂ R be a 
compact interval and let φ ∈ C∞(I; S(R)) be a solution to the (nNLS) with lifespan I. 
If we define

Γ ∈ C∞(I;G∗
∞), Γ :=

(
|φ⊗k〉 〈φ⊗k|

)
k∈N , (2.63)

then Γ is a solution to the (nGP).

Theorem 2.11 asserts that (nGP) admits a special class of factorized solutions of the 
form

Γ = (γ(k))k∈N , γ(k) := |φ⊗k〉 〈φ⊗k| , φ ∈ C∞(I;S(R)), (8.3)

where φ solves the n-th nonlinear Schrödinger equation (nNLS):(
d
φ

)
(t) = ∇sIn(φ(t)), ∀t ∈ I, (8.4)
dt
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and where ∇s is the symplectic gradient with respect to the L2 standard symplectic 
structure (recall Definition 4.33 and Remark 4.34). We note that existence and unique-
ness for the (nNLS) equation in the class C∞(I; S(R)) follows from the inverse scattering 
results of [5,86,87].

8.1. nGP Hamiltonian vector fields

We first relate the formula given by Proposition 2.5 for the Hamiltonian vector field 
XHn

to the nonlinear operators wn. This connection underpins the proof of Theorem 2.11. 
For n ∈ N, Proposition 2.5 gives

XHn
(Γ)(�) =

∞∑
j=1

j Tr�+1,...,�+j−1

([
�∑

α=1
(−iWn)(j)(α,�+1,...,�+j−1), γ

(�+j−1)

])
,

� ∈ N, Γ ∈ G∗
∞. (8.5)

The main lemma is a formula for

Tr�+1,...,�+j−1

([
�∑

α=1
(−iWn)(j)(α,�+1,...,�+j−1), γ

(�+j−1)

])

in the special case where γ(�+j−1) is of the form

γ(�+j−1) = 1
2

(
|f⊗(�+j−1)〉 〈g⊗(�+j−1)| + |g⊗(�+j−1)〉 〈f⊗(�+j−1)|

)
, f, g ∈ S(R).

(8.6)

Lemma 8.1. Let �, j ∈ N. Suppose that γ(�+j−1) is of the form (8.6). Then for any 
α ∈ N≤� and β ∈ N≤j, it holds that

Tr�+1,...,�+j−1

(
(Wn,sa)(j)(�+1,...,�+β−1,α,�+β,...,�+j−1)γ

(�+j−1)
)
(x�;x′

�)

= 1
4f

⊗(�−1)(xα−1, xα+1;�)g⊗�(x′
�)

×
(
w

(j),t
n,β′ [f×j ; g×(j−1)](xα) + w

(j),t
n,β [g×(β−1), f , g(j−β); f×(j−1)](xα)

)
+ 1

4g
⊗(�−1)(xα−1, xα+1;�)f⊗�(x′

�)

×
(
w

(j),t
n,β′ [g×j ; f×(j−1)](xα) + w

(j),t
n,β [f×(β−1), g, f×(j−β); g×(j−1)](xα)

)
, (8.7)

and
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Tr�+1,...,�+j−1

(
γ(�+j−1)(Wn,sa)(j)(�+1,...,�+β−1,α,�+β,...,�+j−1)

)
(x�;x′

�)

= 1
4g

⊗�(x�)f⊗(�−1)(x′
α−1, x

′
α+1;�)

×
(
w

(j),t
n,β′ [f×j ; g×(j−1)](x′

α) + w
(j),t
n,β [g×(β−1), f , g×(j−β); f×(j−1)](x′

α)
)

+ 1
4f

⊗�(x�)g⊗(�−1)(x′
α−1, x

′
α+1;�)

×
(
w

(j),t
n,β′ [g×j ; f×(j−1)](x′

α) + w
(j),t
n,β [f×(β−1), g, f×(j−β); g×(j−1)](x′

α)
)
. (8.8)

In all cases, equality holds in the sense of tempered distributions.

Proof. By considerations of symmetry, it suffices to consider the case α = �. Then by 
Proposition C.11 for the (� +j−1)-particle extension, Proposition C.9 for the generalized 
partial trace, and the definition (5.74) for Wn,sa, we find that

Tr�+1,...,�+j−1

(
W(j)

n,sa,(�+1,...,�+β−1,�,�+β,...,�+j−1)γ
(�+j−1)

)
= 1

4 Tr�+1,...,�+j−1

(
W̃(j)

n,(�+1,...,�+β−1,�,�+β,...,�+j−1) |f
⊗(�+j−1)〉 〈g⊗(�+j−1)|

)
+ 1

4 Tr�+1,...,�+j−1

(
W̃(j),∗

n,(�+1,...,�+β−1,�,�+β,...,�+j−1) |f
⊗(�+j−1)〉 〈g⊗(�+j−1)|

)
+ 1

4 Tr�+1,...,�+j−1

(
W̃(j)

n,(�+1,...,�+β−1,�,�+β,...,�+j−1) |g
⊗(�+j−1)〉 〈f⊗(�+j−1)|

)
+ 1

4 Tr�+1,...,�+j−1

(
W̃(j),∗

n,(�+1,...,�+β−1,�,�+β,...,�+j−1) |g
⊗(�+j−1)〉 〈f⊗(�+j−1)|

)
= 1

4 |f⊗(�−1)〉 〈g⊗(�−1)| ⊗
(
Tr2,...,j

(
W̃(j)

n,(2,...,β,1,β+1,...,j) |f
⊗j〉 〈g⊗j |

)
+ Tr2,...,j

(
W̃(j),∗

n,(2,...,β,1,β+1,...,j) |f
⊗j〉 〈g⊗j |

))
+ 1

4 |g⊗(�−1)〉 〈f⊗(�−1)| ⊗
(
Tr2,...,j

(
W̃(j)

n,(2,...,β,1,β+1,...,j) |g
⊗j〉 〈f⊗j |

)
+ Tr2,...,j

(
W̃(j),∗

n,(2,...,β,1,β+1,...,j) |g
⊗j〉 〈f⊗j |

))
,

(8.9)

where the ultimate equality follows from the tensor product structure. We introduce the 
permutation π ∈ Sj defined by

π(a) :=

⎧⎪⎪⎨⎪⎪⎩
a + 1, 1 ≤ a ≤ β − 1
1, a = β

a, β + 1 ≤ a ≤ j

, (8.10)

so that we can then write
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W̃(j)
n,(2,...,β,1,β+1,...,j) = W̃(j)

n,(π(1),...,π(j)) (8.11)

and similarly for the adjoint. Using the notation ΦW̃(j)
n,(π(1),...,π(j))

introduced in (6.50), 
and similarly for the adjoint, we have that

Tr2,...,j
(
W̃(j)

n,(π(1),...,π(j)) |f
⊗j〉 〈g⊗j |

)
(x;x′)+Tr2,...,j

(
W̃(j),∗

n,(π(1),...,π(j)) |f
⊗j〉 〈g⊗j |

)
(x;x′)

= ΦW̃(j)
n,(π(1),...,π(j))

(f, . . . , f ; g, . . . , g)(x;x′) + ΦW̃(j),∗
n,(π(1),...,π(j))

(f, . . . , f ; g, . . . , g)(x;x′)

(8.12)

and

Tr2,...,j
(
W̃(j)

n,(π(1),...,π(j)) |g
⊗j〉 〈f⊗j |

)
(x;x′)+Tr2,...,j

(
W̃(j),∗

n,(π(1),...,π(j)) |g
⊗j〉 〈f⊗j |

)
(x;x′)

= ΦW̃(j)
n,(π(1),...,π(j))

(g, . . . , g; f, . . . , f)(x;x′) + ΦW̃(j),∗
n,(π(1),...,π(j))

(g, . . . , g; f, . . . , f)(x;x′)

(8.13)

in the sense of tempered distributions on R2. Next, applying Lemma 6.7, we obtain that 
for π(1) = 1 it holds that

(8.12) = g(x′)
(
w(j)

n [f×j ; g×(j−1)](x) + w
(j),t
n,1 [f, g×(j−1); f×(j−1)](x)

)
, (8.14)

and

(8.13) = f(x′)
(
w(j)

n [g×j ; f×(j−1)](x) + w
(j),t
n,1 [g, f×(j−1); g×(j−1)](x)

)
, (8.15)

while if π(1) �= 1, we have

(8.12) = g(x′)
(
w

(j),t
n,π−1(1)′ [f

×j ; g×(j−1)](x)

+w
(j),t
n,π−1(1)[g×(π−1(1)−1), f , g×(j−π−1(1)); f×(j−1)](x)

)
, (8.16)

and

(8.13) = f(x′)
(
w

(j),t
n,π−1(1)′ [g

×j ; f×(j−1)](x)

+w
(j),t
n,π−1(1)[f (π−1(1)−1), g, f×(j−π−1(1)); g×(j−1)](x)

)
. (8.17)

Since π−1(1) = β by definition of the permutation π, we obtain (8.7) after a little 
bookkeeping.

To obtain (8.8) from (8.7), observe that the self-adjointness of W(j)
n,sa and γ(�+j−1)

implies the Schwartz kernel identity
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Tr�+1,...,�+j−1

(
W(j)

n,sa,(�+1,...,�+β−1,α,�+β,...,�+j−1)γ
(�+j−1)

)
(x′

�;x�)

= Tr�+1,...,�+j−1

(
γ(�+j−1)W(j)

n,sa,(�+1,...,�+β−1,α,�+β,...,�+j−1)

)
(x�;x′

�).
(8.18)

Substituting (8.7) into the left-hand side of the preceding identity yields the desired 
conclusion. �

We conclude this subsection by recording the required formula of the Hamiltonian 
vector field XHn

which follows from the previous lemma and some algebraic manipula-
tions.

Lemma 8.2. Suppose that Γ = ( |φ⊗k〉 〈φ⊗k|)k∈N , for some φ ∈ S(R). Then for any 
n ∈ N, we have the Schwartz kernel identity

XHn
(Γ)(�)(x�;x′

�)

= − i

2

∞∑
j=1

�∑
α=1

|φ⊗(�−1)〉 〈φ⊗(�−1)| (xα−1, xα+1;�;x′
α−1, x

′
α+1;�)

×

⎛⎝φ(x′
α)

j∑
β=1

(
w

(j),t
n,β′ [φ×j ;φ×(j−1)] + w

(j),t
n,β [φ×(β−1), φ, φ(j−β);φ×(j−1)]

)
(xα)

−φ(xα)
j∑

β=1

(
w

(j),t
n,β′ [φ×j ;φ×(j−1)] + w

(j),t
n,β [φ×(β−1), φ, φ(j−β);φ×(j−1)]

)
(x′

α)

⎞⎠
(8.19)

for every � ∈ N.

Proof. We use the formula (8.5) and recalling definition (2.44) for Wn, we obtain that

XHn
(Γ)(�)(x�;x′

�)

= −i
∞∑
j=1

1
(j − 1)!

∑
π∈Sj

Tr�+1,...,�+−1

([
�∑

α=1
W(j)

n,sa,(π(α),π(�+1),...,π(�+β−1)), γ
(�+j−1)

])
,

(8.20)

where here, Sj denotes the symmetric group on the set {α, � + 1, . . . , � + j − 1}. We can 
decompose Sj by

Sj =
⋃

r∈{α,�+1,...,�+j−1}
{π ∈ Sj : π−1(α) = r} =: Sj,r. (8.21)

Note that each set in the partition has cardinality (j − 1)!. It is a straightforward com-
putation using the bosonic symmetry of γ(�+j−1) that
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Tr�+1,...,�+j−1

([
W(j)

n,sa,(π(α),π(�+1),...,π(�+j−1)), γ
(�+j−1)

])

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr�+1,...,�+j−1

([
W(j)

n,sa,(α,�+1,...,�+j−1), γ
(�+j−1)

])
, r = α

Tr�+1,...,�+j−1

([
W(j)

n,sa,(�+1,...,r,α,r+1,...,�+j−1), γ
(�+j−1)

])
,

r ∈ {� + 1, . . . , � + j − 1}.

(8.22)

Using these observations and applying Lemma 8.1 to (8.20), we obtain the Schwartz 
kernel identity

(8.20)

= −i

∞∑
j=1

�∑
α=1

j∑
β=1

Tr�+1,...,�+j−1

([
W(j)

n,sa,(�+1,...,�+β−1,α,�+β,...,�+j−1), γ
(�+j−1)

])
(x�;x′

�)

= − i

2

∞∑
j=1

�∑
α=1

|φ⊗(�−1)〉 〈φ⊗(�−1)| (xα−1, xα+1;�;x′
α−1, x

′
α+1;�)

×

⎛⎝φ(x′
α)

j∑
β=1

(
w

(j),t
n,β′ [φ×j ;φ×(j−1)] + w

(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ×(j−1)]

)
(xα)

− φ(xα)
j∑

β=1

(
w

(j),t
n,β′ [φ×j ;φ×(j−1)] + w

(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ×(j−1)]

)
(x′

α)

⎞⎠ .

(8.23)

This yields the desired formula. �
8.2. Proof of Theorem 2.11

In this subsection, we prove Theorem 2.11.

Proof of Theorem 2.11. Fix n ∈ N. We would like to establish that Γ =( |φ⊗k〉 〈φ⊗k|)k∈N , 
where φ ∈ C∞(I; S(R)), satisfies

d

dt
Γ = XHn

(Γ), (8.24)

i.e. Γ is a solution to the n-th GP hierarchy, if

d

dt
φ = ∇sIn(φ), (8.25)

i.e. φ is a solution to the n-th NLS. By the Leibniz rule,
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(
d

dt
Γ
)(�)

=
�∑

α=1
|φ⊗(α−1) ⊗ d

dt
φ⊗ φ⊗(�−α)〉 〈φ⊗�| + |φ⊗�〉 〈φ⊗(α−1) ⊗ d

dt
φ⊗ φ⊗(�−α)| .

(8.26)

Substituting equation (8.25) into the right-hand side of the preceding equality, we obtain 
that

(
d

dt
Γ
)(�)

=
�∑

α=1
|φ⊗(α−1) ⊗∇sIn(φ) ⊗ φ⊗(�−α)〉 〈φ⊗�| + |φ⊗�〉 〈φ⊗(α−1) ⊗∇sIn(φ) ⊗ φ⊗(�−α)| .

(8.27)

Now the reader will recall that ∇sIn is the symplectic gradient with respect to the form 
ωL2 and by (6.40) is given by the formula

∇sIn(φ) = − i

2

∞∑
j=1

⎧⎨⎩
j∑

β=1

(
w

(j),t
n,β [φ×(β−1), φ, φ×(j−β);φ×(j−1)] + w

(j),t
n,β′ [φ×j ;φ×(j−1)]

)⎫⎬⎭ .

(8.28)
Substituting identity (8.28) into the right-hand side of (8.27) and comparing the resulting 
expression with the formula (8.19) given by Lemma 8.2 yields the desired conclusion. �
8.3. An example: the fourth GP hierarchy

We conclude this section with an example computation of one the n-th GP hierarchies. 
Specifically, we explicitly compute the equation of motion for the fourth GP hierarchy, 
which is the next one after the usual GP hierarchy (the third one in our terminology). In 
light of our Theorem 2.11, the fourth GP hierarchy corresponds to the complex mKdV 
equation

∂tφ = ∂3
xφ− 6κ|φ|2∂xφ, κ ∈ {±1}. (8.29)

Example 8.3 (Fourth GP hierarchy). We first recall from Example 5.8 that the

W4 =
(

(−i∂x1)3,−
3κi
2 (∂x1 + ∂x2)δ(X1 −X2), 0, . . .

)
. (8.30)

Substituting (8.30) into the right-hand side of the (2.62), using Lemma 2.4 and the fact 
that dH[Γ](j) = −iW(j)

n once again, the fourth GP equation, written in operator form, 
simplifies to
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∂tγ
(�) =

�∑
α=1

2∑
j=1

j∑
β=1

Tr�,...,�+j−1

(
(−iW(j)

4 )(�+1,...,�+β−1,α,�+β,...,�+j−1)γ
(�+j−1)

)
− Tr�+1,...,�+j−1

(
γ(�+j−1)(−iW(j)

4 )(�+1,...,�+β−1,α,�+β,...,�+j−1)

)
= −i

�∑
α=1

(
W(1)

4,(α)γ
(�) + γ(�)W(1)

4,(α) + Tr�+1

(
W(2)

4,(α,�+1)γ
(�+1) − γ(�+1)W(2)

4,(α,�+1)

)
+ Tr�+1

(
W(2)

4,(�+1,α)γ
(�+1) − γ(�+1)W(2)

4,(�+1,α)

))
,

where we recall that the subscript notation is used to specify the variables on which the 
W(j)

n operators act. By direct computation, this expression simplifies to yield

∂tγ
(�+1) =

�∑
α=1

(∂3
xα

+ ∂3
x′
α
)γ(�) − 6κ

(
B+

α;�+1(∂xα
γ(�+1)) + B−

α;�+1(∂x′
α
γ(�+1))

)
, (8.31)

which is the fourth GP hierarchy, and which can readily be seen to yield (8.29) for 
factorized solutions.

Appendix A. NLS Poisson commutativity

A.1. Transition and monodromy matrices

In this appendix, we sketch the proof that the 1-particle functionals In are involution 
with respect to the Poisson bracket {·, ·}L2 . We generalize the presentation to allow for 
the case where the two Schwartz functions ψ, ψ̄ are independent, since this is the actual 
1-particle result that we use in Section 7. Hence, rather than considering the scalar NLS 
equation (1.1), we consider the system

{
(i∂t + Δ)ψ1 = 2κψ2

1ψ2

(i∂t − Δ)ψ2 = −2κψ2
2ψ1

, κ ∈ {±1}. (A.1)

Our presentation will proceed at a high level, following the exposition in [23, Chapter I 
and Chapter III]; however, the reader may consult Chapter I, §7 and Chapter III, §4 of 
the aforementioned reference to fill in any omitted analytic details. We also consider the 
L-periodic case rather than entire real line. The extension to the latter case follows from 
truncation and periodization to fundamental domain [−L, L], application of the periodic 
result, and then passage to the limit L → ∞.

We start by fixing some notation. For L > 0, we let TL denote the domain [−L, L]
with periodic boundary conditions and C∞(TL) the space of smooth functions on TL. 
Equivalently, C∞(TL) is the space of smooth functions on the real line whose derivatives 
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of all order are 2L-periodic. Given a (C2 ⊗C2)-valued functional M(ψ1,ψ2) on C∞(TL), 
we define

M†
(ψ1,ψ2) := M(ψ2,ψ1) (A.2)

where the complex conjugate of the matrix is taken entry-wise. Evidently, the † operation 
is involutive.

The system (A.1) is a compatibility condition for the overdetermined system of equa-
tions {

∂xF(ψ1,ψ2)(t, x, λ) = U(ψ1,ψ2)(t, x, λ)F(ψ1,ψ2)(t, x, λ),
∂tF(ψ1,ψ2)(t, x, λ) = V(ψ1,ψ2)(t, x, λ)F(ψ1,ψ2)(t, x, λ)

, (A.3)

where F(ψ1,ψ2) is a spacetime C2-valued column vector and U(ψ1,ψ2) and V(ψ1,ψ2) are 
λ-dependent 2 × 2 matrices given by

U(ψ1,ψ2)(λ) := U0,(ψ1,ψ2) + λU1, U0,(ψ1,ψ2) :=
√
κ

(
0 ψ2
ψ1 0

)
, U1 := 1

2i

(
1 0
0 −1

)
(A.4)

and

V(ψ1,ψ2)(λ) := V0,(ψ1,ψ2) + λV1,(ψ1,ψ2) + λ2V2,

V0,(ψ1,ψ2) := i
√
κ

(√
κψ1ψ2 −∂xψ2
∂xψ1 −√

κψ1ψ2

)
, V1,(ψ1,ψ2) := −U0,(ψ1,ψ2), V2 := −U1.

(A.5)

In the preceding and following material, λ plays the role of an auxiliary spectral pa-
rameter. It will be convenient going forward to introduce notation for the 2 × 2 Pauli 
matrices:

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, σ+ := σ1 + iσ2

2 , σ− := σ1 − iσ2

2 .

(A.6)
Written using U and V , the compatibility condition for the system (A.3) is then

∂tU(ψ1,ψ2) − ∂xV(ψ1,ψ2) +
[
U(ψ1,ψ2), V(ψ1,ψ2)

]
= 0 (A.7)

point-wise in λ. In the sequel, we will omit the subscript (ψ1, ψ2), which shows that the 
matrices are really matrix-valued functionals evaluated at a specific point, except when 
invoking the dependence is necessary. We hope that this omission will not result in any 
confusion on the reader’s part.

There is a geometric interpretation to (A.7) in terms of local connection coefficients 
in the vector bundle R2 ×C2. Equation (A.7) then says that the (U, V )-connection has 
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zero curvature. For this reason, (A.7) is often called the zero curvature representation in 
the literature. We will not emphasize this geometric aspect in the appendix, as it does 
not play a role for us.

Now fix a time t0 and consider the auxiliary linear problem

∂xF = U(t0, x, λ)F. (A.8)

The object of interest associated to (A.8) is the monodromy matrix, which is the matrix 
of parallel transport along the contour t = t0, −L ≤ x ≤ L positively oriented:

TL(λ, t0) := �exp

⎛⎝ L∫
−L

dxU(x, t0, λ)

⎞⎠, (A.9)

where 
�exp denotes the path-ordered exponential.26 By using the superposition principle 

for parallel transport and the fact that parallel transport along a closed curve is triv-
ial, one can show that the monodromy matrices are conjugate for different values of t. 
Consequently, the trace of the monodromy matrix is constant in time:

trC2 TL(λ, t2) = trC2 TL(λ, t1), ∀t1, t2 ∈ R, (A.11)

where trC2 denotes the 2 × 2 matrix trace. Furthermore, one can show that the choice 
of fundamental domain [−L, L] in the definition (A.9) is immaterial to computing the 
trace. We conclude that

F̃L(λ) := trC2 TL(λ) (A.12)

is a generating function for the conservation laws of (A.1).
More generally, we have the transition matrix, which is the matrix of parallel transport 

from y to x along the x-axis:

T (x, y, λ) := �exp

⎛⎝ x∫
y

dzU(z, λ)

⎞⎠. (A.13)

The monodromy matrix is then the special case of the transition matrix obtained by 
setting (x, y) = (L, −L). From the definition (A.13), it is immediate that the transition 
matrix satisfies the Cauchy problem

26 For A ∈ L∞(TL; Cn ⊗ Cn), the path-ordered exponential of A is defined by

�exp

⎛⎝ x∫
−L

dzA(z)

⎞⎠ :=
∞∑

n=0

x∫
−L

dxn

xn∫
−L

dxn−1 · · ·
x2∫

−L

dx1A(xn) · · ·A(x1). (A.10)

.
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{
∂xT (x, y, λ) = U(x, λ)T (x, y, λ)
T (x, y, λ)|x=y = IC2

, (A.14)

where IC2 is the identity matrix on C2. T (x, y, λ) is a smooth function of (x, y) and is 
also analytic in λ due to the analyticity of U(x, λ) and the initial datum. By using that ∫ x

y
= − 

∫ y

x
in (A.13), we see that T (x, y, λ) also satisfies the ODE

∂yT (x, y, λ) = −T (x, y, λ)U(y, λ). (A.15)

Additionally, the transition matrix has several elementary properties, which we record 
with the following lemma.

Lemma A.1. The following properties hold:

(i) T (x, z, λ)T (z, y, λ) = T (x, y, λ),
(ii) T (x, y, λ) = T−1(y, x, λ),
(iii) detC2T (x, y, λ) = 1.

Proof. Properties (i) and (ii) are straightforward, and we leave them to the reader. For 
property (iii), the reader will recall Jacobi’s formula that for any n × n matrix A(t),

d

dt
detCn(A(t)) = trCn

(
adj(A(t))dA(t)

dt

)
, (A.16)

where adj(A(t)) is the adjugate of A(t) (i.e. the transpose of the cofactor matrix of 
A(t)). Fixing y, λ and applying Jacobi’s formula to T (x, y, λ) with independent variable 
x instead of t and also using the equation (A.14), we find that detC2(T (x, y, λ)) is a 
solution to the Cauchy problem{

∂xdetC2(T (x, y, λ)) = trC2(adj(T (x, y, λ))U(x, λ)T (x, y, λ)),
detC2(T (x, y, λ))|x=y = 1

(A.17)

Since

adj(T (x, y, λ)) =
(

T 22(x, y, λ) −T 12(x, y, λ)
−T 21(x, y, λ) T 11(x, y, λ)

)
, (A.18)

it follows by direct computation that

T (x, y, λ)adj(T (x, y, λ)) = detC2(T (x, y, λ))IdC2 . (A.19)

So by the cyclicity and linearity of trace, detC2(T (x, y, λ)) is the unique constant solution 
to the Cauchy problem
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{
∂xdetC2(T (x, y, λ))) = detC2(T (x, y, λ)) trC2(U(x, y, λ)IC2) = 0
detC2(T (x, y, λ))|x=y = 1

, (A.20)

where we use that U(x, y, λ) is trace-less. Thus, the proof of (iii) is complete. �
It is evident from its definition (A.4) that

U†
(ψ1,ψ2)(x, λ) = σU(ψ1,ψ2)(x, λ̄)σ, (A.21)

where

σ =
{
σ1, κ = 1
σ2, κ = −1

, (A.22)

where κ is the defocussing/focusing parameter in (A.1) and σ1, σ2 are the Pauli matrices 
in (A.6). The transition matrix also satisfies an important involution relation leading to 
the special structure of the matrix T (x, y, λ), which we isolate in the next lemma.

Lemma A.2. T (x, y, λ) has the involution property

σT(ψ1,ψ2)(x, y, λ̄)σ = T †
(ψ1,ψ2)(x, y, λ). (A.23)

Consequently, we can write the monodromy matrix TL,ψ1,ψ2(λ) as

TL,(ψ1,ψ2)(λ) =
(
aL,(ψ1,ψ2)(λ) sgn(κ)b†L,(ψ1,ψ2)(λ̄)
bL,(ψ1,ψ2)(λ) a†L,(ψ1,ψ2)(λ̄)

)
, (A.24)

where a†L,(ψ1,ψ2)(λ) := aL,(ψ2,ψ1)(λ) and analogously for b†L,(ψ1,ψ2).

Proof. Since the Cauchy problem (A.14) has a unique solution and σ2 = IC2 , it suffices 
to show that the matrix

T̃(ψ1,ψ2)(x, y, λ) := σT †
(ψ1,ψ2)(x, y, λ̄)σ (A.25)

is a solution of (A.14).
It is evident from T(ψ1,ψ2)(x, y, λ)|x=y = IC2 and σ2 = IC2 that the initial condition 

holds. Now using that ∂x commutes with left- (and right-) multiplication by a constant 
matrix and complex conjugation, we find that

∂xT̃(ψ1,ψ2)(x, y, λ) = σ∂xT(ψ2,ψ1)(x, y, λ̄)σ

= σU(ψ2,ψ1)(x, λ)T(ψ2,ψ1)(x, y, λ̄)σ

= σU†
(ψ1,ψ2)(x, λ)T †

(ψ1,ψ2)(x, y, λ̄)σ, (A.26)
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where the penultimate equality follows from application of (A.14) with (ψ1, ψ2) replaced 
by (ψ2, ψ1) and the ultimate equality follows from the definition of the dagger superscript. 
Since σ2 = IC2 , we can use the associativity of matrix multiplication together with the 
identity (A.21) to write

σU†
(ψ1,ψ2)(x, λ)T †

(ψ1,ψ2)(x, y, λ)σ =
(
σU†

(ψ1,ψ2)(x, λ)σ
)(

σT †
(ψ1,ψ2)(x, y, λ)σ

)
= U(ψ1,ψ2)(x, λ)T̃(ψ1,ψ2)(x, y, λ), (A.27)

which is exactly what we needed to show.
We now show the second assertion concerning the structure of the monodromy matrix. 

We only present the details in the case κ = 1 and leave the κ = −1 case as an exercise 
for the reader. Writing

T(ψ1,ψ2)(x, y, λ) =
(
T 11

(ψ1,ψ2)(x, y, λ) T 12
(ψ1,ψ2)(x, y, λ)

T 21
(ψ1,ψ2)(x, y, λ) T 22

(ψ1,ψ2)(x, y, λ)

)
, (A.28)

we see from direct computation that

σT(ψ1,ψ2)(x, y, λ̄)σ =
(

0 1
1 0

)(
T 12

(ψ1,ψ2)(x, y, λ̄) T 11
(ψ1,ψ2)(x, y, λ̄)

T 22
(ψ1,ψ2)(x, y, λ̄) T 21

(ψ1,ψ2)(x, y, λ̄)

)

=
(
T 22

(ψ1,ψ2)(x, y, λ̄) T 21
(ψ1,ψ2)(x, y, λ̄)

T 12
(ψ1,ψ2)(x, y, λ̄) T 11

(ψ1,ψ2)(x, y, λ̄)

)
. (A.29)

Now by the involution property (A.23) and the definition of T †
(ψ1,ψ2), we see that

⎛⎝T 11
(ψ2,ψ1)

(x, y, λ) T 12
(ψ2,ψ1)

(x, y, λ)

T 21
(ψ2,ψ1)

(x, y, λ) T 22
(ψ2,ψ1)

(x, y, λ)

⎞⎠ = T †
(ψ1,ψ2)(x, y, λ)

=
(
T 22

(ψ1,ψ2)(x, y, λ̄) T 21
(ψ1,ψ2)(x, y, λ̄)

T 12
(ψ1,ψ2)(x, y, λ̄) T 11

(ψ1,ψ2)(x, y, λ̄)

)
.

(A.30)

Evaluating this identity at (x, y) = (L, −L) and defining

aL,(ψ1,ψ2)(λ) := T 11
L,(ψ1,ψ2)(λ), bL,(ψ1,ψ2)(λ) := T 21

L,(ψ1,ψ2)(λ), (A.31)

we obtain the desired conclusion. �
Remark A.3. Since the transition matrix is an entire function of λ, it follows that the 
functions aL,(ψ1,ψ2), a

† , bL,(ψ1,ψ2), b
† are entire functions as well. In fact, 
L,(ψ1,ψ2) L,(ψ1,ψ2)
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they are of exponential type L. Moreover, the unimodularity property (iii) for the tran-
sition matrix implies the normalization condition

aL,(ψ1,ψ2)(λ)a†L,(ψ1,ψ2)(λ) − sgn(κ)bL,(λ1,λ2)(λ)b†L,(ψ1,ψ2)(λ) = 1, λ ∈ R. (A.32)

We close this subsection with an alternative way to see that the trace of the mon-
odromy matrix, which we called F̃L(λ) in (A.12), is conserved in time. By differentiating 
both sides of equation (A.14) with respect to time and performing some algebraic ma-
nipulation, one finds that

∂tT (t, x, y, λ) = V (t, x, λ)T (t, x, y, λ) − T (t, x, y, λ)V (t, y, λ) (A.33)

Since V is 2L-periodic and therefore V (t, L, λ) = V (t, −L, λ), it follows that the mon-
odromy matrix satisfies the von Neumann equation

∂tTL(t, λ) = [V (t, L, λ), TL(t, λ)]. (A.34)

Since differentiation commutes with the trace and the trace of a commutator is zero, it 
follows that

∂t trC2(TL(t, λ)) = 0. (A.35)

A.2. Integrals of motion

We now use an asymptotic expansion for the generating functional F̃L(λ) (recall 
(A.12)) to identify conserved quantities for the system (A.1). We start by finding a 
gauge transformation that reduces the transition matrix to diagonal form expZ(x, y, λ):

T (x, y, λ) = (IC2 + W (x, λ)) exp(Z(x, y, λ))(IC2 + W (y, λ))−1
, (A.36)

where W and Z are anti-diagonal and diagonal matrices, respectively. We will see that 
W and Z have the large real λ asymptotic expansions

W (x, λ) ∼
∞∑

n=1

Wn(x)
λn

, Z(x, y, λ) ∼ (x− y)λσ3

2i +
∞∑

n=1

Zn(x, y, λ)
λn

, (A.37)

where the reader will recall the Pauli matrix σ3 from (A.6). Here and throughout the 
appendix, the asymptotic should be interpreted as follows: for any k ∈ N,

o(|λ|−k) = sup
−L≤x≤L

‖W (x, λ) −
k∑

n=1

Wn(x)
λn

‖

+ sup
−L≤x,y,≤L

‖Z(x, y, λ) − (x− y)λσ3

2i −
k∑ Zn(x, y, λ)

λn
‖

(A.38)
n=1
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as |λ| → ∞ on the real line, where ‖ · ‖ denotes any matrix norm.
Proceeding formally to identify the relevant equations, we substitute (A.36) into the 

transition matrix differential equation (A.14) and use the Leibniz rule to obtain that

U(x, λ)(IC2 + W (x, λ)) exp(Z(x, y, λ))(IC2 + W (y, λ))−1

= ∂xW (x, λ) exp(Z(x, y, λ))(IC2 + W (y, λ))−1

+ (IC2 + W (x, λ))∂xZ(x, y, λ) exp(Z(x, y, λ))(IC2 + W (y, λ))−1
,

(A.39)

which can be manipulated to yield

U(x, λ)(IC2 + W (x, λ)) = ∂xW (x, λ) + (IC2 + W (x, λ))∂xZ(x, y, λ). (A.40)

Recalling from (A.4) that U(x, λ) = U0(x) + λU1, where U0 is anti-diagonal and U1 is 
diagonal, and decomposing both sides of (A.40) into anti-diagonal and diagonal parts, 
we find that W and Z satisfy the coupled system of equations

{
∂xW + W∂xZ = U0 + λU1W

∂xZ = U0W + λU1
. (A.41)

Substituting the second equation into the first one and using that U1 anticommutes with 
W , we find that W satisfies the matrix Riccati equation

∂xW + iλσ3W + WU0W − U0 = 0. (A.42)

One can rewrite (A.42) as an integral equation and use the fixed-point method to show 
that (A.42) has a smooth solution on TL for sufficiently large λ depending on the data 
(‖φ‖L1(TL), ‖φ‖L∞(TL), L), with the asymptotic expansion (A.37). We can then solve for 
Z subject to the initial condition Z(x, y, λ)|x=y = 0C2 by

Z(x, y, λ) = λ(x− y)
2i σ3 +

x∫
y

dz U0(z)W (z, λ). (A.43)

In particular, the asymptotic expansion of Z is then determined by the asymptotic 
expansion for W . W and Z satisfy (A.36) since both the left-hand side and right-hand 
side of the equation (A.36) are solutions to the same Cauchy problem, which has a unique 
solution.

Next, substituting the expansion 
∑∞

n=1
Wn(x)
λn into equation (A.42), we find that the 

coefficients Wn(x) satisfy the recursion relation
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W1(x) = −iσ3U0(x) = i
√
κ

(
0 −ψ2(x)

ψ1(x) 0

)
,

Wn+1(x) = iσ3

(
∂xWn(x) +

n−1∑
k=1

Wk(x)U0(x)Wn−k(x)
)
.

(A.44)

Evidently, the matrices Wn(x) are 2L-periodic and are polynomials of the derivatives of 
U0(x). By equation (A.42) for W and the continuity method together with the equation 
(A.43) for Z, one can show that the asymptotic (A.37) holds. In the next lemma, we 
record an important involution property of the Wn. As before with U , we include the 
subscripts (ψ1, ψ2) in the sequel to denote the underlying dependence.

Lemma A.4. For every n ∈ N, it holds that Wn is anti-diagonal and

W †
n,(ψ1,ψ2)(x) = σWn,(ψ1,ψ2)(x)σ, (A.45)

where σ is as in (A.22). Additionally, Wn,(ψ1,ψ2)(x) has the form

i
√
κ

(
0 −w†

n,(ψ1,ψ2)(x)
wn,(ψ1,ψ2)(x) 0

)
, (A.46)

where the functions wn,(ψ1,ψ2)(x) satisfy the recursion relation

w1,(ψ1,ψ2)(x) = ψ1(x),

wn+1,(ψ1,ψ2)(x) = −i∂xwn(x) + κψ2(x)
n−1∑
k=1

wk,(ψ1,ψ2)(x)wn−k,(ψ1,ψ2)(x).
(A.47)

Proof. We prove the lemma by strong induction on n using the recursion formula (A.44). 
The base case n = 1 follows from

U†
0,(ψ1,ψ2)(x) = σU0,(ψ1,ψ2)(x)σ (A.48)

and the fact that σ anti-commutes with σ3.
For the induction step, suppose that for some n ∈ N, the involution relation holds for 

all k ∈ N≤n−1. Multiplying (A.44) by σ on the left and right and using that σ2 = IC2 , 
we find that

σWn+1,(ψ1,ψ2)(x)σ

= iσσ3

(
∂xWn,(ψ1,ψ2)(x) +

n−1∑
k=1

Wk,(ψ1,ψ2)(x)U0,(ψ1,ψ2)(x)Wn−k,(ψ1,ψ2)(x)
)
σ

= −iσ3
(
∂x(σWn,(ψ1,ψ2)(x)σ)
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+
n−1∑
k=1

(σWk,(ψ1,ψ2)(x)σ)(σU0,(ψ1,ψ2)(x)σ)(σWn−k,(ψ1,ψ2)(x)σ)
)

= −iσ3

(
∂xW

†
n,(ψ1,ψ2)(x) +

n∑
k=1

W †
k,(ψ1,ψ2)(x)U†

0,(ψ1,ψ2)(x)W †
n−k,(ψ1,ψ2)(x)

)
,

(A.49)

where we again use (A.48) and the anti-commutativity of σ and σ3 to obtain the penul-
timate equality and the induction hypothesis to obtain the ultimate equality. Since 
(iσ3)† = −iσ3 and the † operation is a homomorphism of algebras which commutes 
with differentiation, (A.45) is proved. Since W1,(ψ1,ψ2), . . . , Wn,(ψ1,ψ2) are anti-diagonal, 
it follows from some basic algebra and the diagonality and anti-diagonality of σ3 and U0, 
respectively, that Wn+1,(ψ1,ψ2) is anti-diagonal. Thus, the proof of the induction step is 
complete.

Now since Wn,(ψ1,ψ2) is anti-diagonal, it takes the form

Wn,(ψ1,ψ2) =
( 0 w12

n,(ψ1,ψ2)
w21

n,(ψ1,ψ2) 0

)
, w12

n,(ψ1,ψ2), w
21
n,(ψ1,ψ2) ∈ C∞(TL), (A.50)

which by direct computation implies that

σWn,(ψ1,ψ2)σ =
( 0 sgn(κ)w21

n,(ψ1,ψ2)
sgn(κ)w12

n,(ψ1,ψ2) 0

)
. (A.51)

Now the involution relation (A.45) implies the equality

( 0 sgn(κ)w21
n,(ψ1,ψ2)

sgn(κ)w12
n,(ψ1,ψ2) 0

)
= W †

n,(ψ1,ψ2) =
(

0 w12,†
n,(ψ1,ψ2)

w21,†
n,(ψ1,ψ2) 0

)
.

(A.52)
Therefore, defining wn,(ψ1,ψ2) := w21

n,(ψ1,ψ2)/(i
√
κ), we can write Wn,(ψ1,ψ2) in the form

Wn,(ψ1,ψ2) = i
√
κ

(
0 −w†

n,(ψ1,ψ2)(x)
wn,(ψ1,ψ2)(x) 0

)
, (A.53)

where by (A.44), the functions wn,(ψ1,ψ2)(x) satisfy the recursion relation

w1,(ψ1,ψ2)(x) = ψ1(x),

wn+1,(ψ1,ψ2)(x) = −i∂xwn,(ψ1,ψ2)(x) + κψ2(x)
n−1∑
k=1

wk,(ψ1,ψ2)(x)wn−k,(ψ1,ψ2)(x).
(A.54)

Thus, the proof of the lemma is complete. �
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By using the equation (A.42), one can also show that W(ψ1,ψ2)(x, λ) satisfies the same 
involutive property as Wn. So we can write

W(ψ1,ψ2)(x, λ) = i
√
κ
(
w(ψ1,ψ2)(x, λ)σ− − w†

(ψ1,ψ2)(x, λ̄)σ+

)
, (A.55)

where σ± are defined in (A.6) and where w(ψ1,ψ2) has the large real lambda asymptotic 
expansion

w(ψ1,ψ2)(x, λ) ∼
∞∑

n=1

wn,(ψ1,ψ2)(x)
λn

. (A.56)

Using equation (A.43) for Z(ψ1,ψ2)(x, y, λ) and evaluating (x, y) = (L, −L), we find that

ZL,(ψ1,ψ2)(λ)

:= Z(ψ1,ψ2)(L,−L, λ)

= λL

i
σ3 +

L∫
−L

dzU(ψ1,ψ2)(z)W(ψ1,ψ2)(z, λ)

=
(
−iλL 0

0 iλL

)

+
L∫

−L

dz

(
0

√
κψ2(z)√

κψ1(z) 0

)(
0 −i

√
κw†

(ψ1,ψ2)(z, λ)
i
√
κw(ψ1,ψ2)(z, λ) 0

)

=
(
−iλL + iκ

∫ L

−L
dzψ2(z)w(ψ1,ψ2)(z, λ) 0

0 iλL− iκ
∫ L

−L
dzψ1(z)w†

(ψ1,ψ2)(z, λ)

)
(A.57)

Evaluating both sides of equation (A.36) at (x, y) = (L, −L), we find that the monodromy 
matrix TL(λ) has the representation

TL,(ψ1,ψ2)(λ) =
(
IC2 + W(ψ1,ψ2)(L, λ)

)
exp

(
ZL,(ψ1,ψ2)(λ)

)(
IC2 + W(ψ1,ψ2)(−L, λ)

)−1
.

(A.58)

We now turn to finding a formula for the generating function F̃L(λ) (recall (A.12)) in 
terms of the functions w and w†. We first have an important involution property for the 
entries of ZL(λ).

Lemma A.5. For every (ψ1, ψ2) ∈ S(R)2 and λ ∈ R sufficiently large so that w(ψ1,ψ2)(·, λ)
exists, it holds that
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L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ) =
L∫

−L

dxψ1(x)w†
(ψ1,ψ2)

(x, λ) =
L∫

−L

dxψ1(x)w(ψ2,ψ1)(x, λ).

(A.59)
In particular, if for every n ∈ N, we define

Ĩn(ψ1, ψ2) :=
L∫

−L

dxψ2(x)wn,(ψ1,ψ2)(x), ∀(ψ1, ψ2) ∈ S(R)2, (A.60)

then

Ĩn(ψ1, ψ2) = Ĩn(ψ2, ψ1). (A.61)

Proof. Since detC2(TL,(ψ1,ψ2)(λ)) = 1 by the unimodularity property Lemma A.1(iii) 
and (

IC2 + W(ψ1,ψ2)(L, λ)
)−1

= IC2 + W(ψ1,ψ2)(−L, λ) (A.62)

by the 2L-periodicity of W (·, λ), it follows from the multiplicative property of determi-
nant that

1 = detC2(TL,(ψ1,ψ2)(λ)) = detC2

(
expZL,(ψ1,ψ2)(λ)

)
. (A.63)

Now for any matrix A ∈ Cn ⊗Cn, Jacobi’s formula implies the trace identity

detCn(eA) = exp(trCn A). (A.64)

Hence,

1 = exp
(
trC2 ZL,(ψ1,ψ2)(λ)

)
= 1 =⇒ trC2 ZL,(ψ1,ψ2)(λ) = 0. (A.65)

So by identity (A.57), we obtain that

L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ) =
L∫

−L

dxψ1(x)w†
(ψ1,ψ2)

(x, λ) =
L∫

−L

dxψ1(x)w(ψ2,ψ1)(x, λ),

(A.66)

where the ultimate equality follows by definition of the † superscript. Substituting the 
asymptotic expansions (A.56) for w(ψ1,ψ2)(x, λ) and w(ψ2,ψ1)(x, λ) into the left-hand and 
right-hand sides of the preceding equation, respectively, and using the definition (A.60)
for Ĩn(ψ1, ψ2) and Ĩn(ψ2, ψ1), the second assertion follows as well. �
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Lemma A.6. For every (ψ1, ψ2) ∈ S(R)2 and λ ∈ R sufficiently large as in Lemma A.5, 
it holds that

F̃L(ψ1, ψ2;λ) = 2 cos

⎛⎝−λL + κ

L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ)

⎞⎠, (A.67)

where F̃L is defined in (A.12).

Proof. Since the trace is invariant under unitary transformation and W(ψ1,ψ2) is 2L-
periodic, we have that

F̃L(ψ1, ψ2;λ) = trC2 TL,(ψ1,ψ2)(λ) = trC2 exp
(
ZL,(ψ1,ψ2)(λ)

)
, (A.68)

so we have reduced to considering the right-hand side expression.
Using that ZL,(ψ1,ψ2)(λ) is diagonal and applying formula (A.57) and Lemma A.5, we 

find that

ZL,(ψ1,ψ2)(λ)

=
(
−iλL + iκ

∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ) 0

0 iλL− iκ
∫ L

−L
dxψ2(x)w(ψ1,ψ2)(x, λ))

)
,

(A.69)

it follows that the exponential of ZL,(ψ1,ψ2)(λ) is the diagonal matrix with the entries 
given by the exponential of the entries of ZL(λ). Using the elementary trigonometric 
identity

eiz + e−iz = 2 cos(z), z ∈ C, (A.70)

we then obtain that

trC2 exp
(
ZL,(ψ1,ψ2)(λ)

)
= 2 cos

⎛⎝−λL + κ

L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ)

⎞⎠, (A.71)

which completes the proof of the lemma. �
Remark A.7. By Lemma A.2, we have the involution relation

trC2 TL,(ψ1,ψ2)(λ) = trC2

(
σT †

L,(ψ1,ψ2)
(λ̄)σ

)
= trC2 T †

L,(ψ1,ψ2)
(λ̄) = trC2

(
TL,(ψ2,ψ1)(λ̄)

)
,

(A.72)
where we use the cyclicity of trace and σ2 = IC2 to obtain the penultimate equality. 
Consequently, we have that
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F̃L(ψ1, ψ2;λ) = F̃L(ψ2, ψ1; λ̄). (A.73)

Consequently, if we take twice the real part of F̃L(ψ1, ψ2; λ),

FL,Re(ψ1, ψ2;λ) := 2 Re
{
F̃L(ψ1, ψ2;λ)

}
, ∀(ψ1, ψ2, λ) ∈ C∞(TL)2 ×C, (A.74)

then we obtain from (A.67) that

FL,Re(ψ1, ψ2;λ) = 2 cos

⎛⎝−λL + κ

L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ)

⎞⎠
+ 2 cos

⎛⎝−λL + κ

L∫
−L

dxψ1(x)w(ψ2,ψ1)(x, λ̄)

⎞⎠.

(A.75)

Similarly, if we take twice the imaginary part of F̃L(ψ1, ψ2; λ),

FL,Im(ψ1, ψ2;λ) := 2 Im
{
F̃L(ψ1, ψ2)

}
, (A.76)

then we have that

FL,Im(ψ1, ψ2;λ) = −i

⎛⎝2 cos

⎛⎝−λL + κ

L∫
−L

dxψ2(x)w(ψ1,ψ2)(x, λ)

⎞⎠
−2 cos

⎛⎝−λL + κ

L∫
−L

dxψ1(x)w(ψ2,ψ1)(x, λ)

⎞⎠⎞⎠ .

(A.77)

Moreover, we can regard FL,Re(·, ·; λ) and FL,Im(·, ·; λ), respectively, as restrictions of the 
complex functionals of four variables to the subspace ψ1̄ = ψ1, ψ2̄ = ψ2. More precisely, 
for fixed λ ∈ C, define complex-valued functionals on C∞(TL)4 by

F̃L,Re(ψ1, ψ2̄, ψ2, ψ1̄;λ) := F̃L(ψ1, ψ2̄;λ) + F̃L(ψ2, ψ1̄;λ),

F̃L,Im(ψ1, ψ2̄, ψ2, ψ1̄;λ) := −i
(
F̃L(ψ1, ψ2̄;λ) − F̃L(ψ2, ψ1̄;λ)

)
,

(A.78)

so that

FL,Re(ψ1, ψ2̄;λ) = F̃L,Re(ψ1, ψ2, ψ2, ψ1;λ)

FL,Im(ψ1, ψ2̄;λ) = F̃L,Im(ψ1, ψ2, ψ2, ψ1;λ).
(A.79)

Consequently, FL,Re(λ) and FL,Im(λ) extend with an abuse of notation to well-defined 
smooth functionals on the space C∞(TL; V) (recall the space of matrices V in (4.63)) 
given by
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{
FL,Re(γ;λ) := FL,Re(φ1, φ2;λ),
FL,Im(γ;λ) := FL,Im(φ1, φ2;λ)

, ∀γ = 1
2adiag(φ1, φ2, φ2, φ1), (A.80)

which belong to the admissible algebra AS,V , provided that F̃L ∈ AS,C, a result we 
postpone until the next subsection. By the same reasoning, the functionals

Ib,n(γ)

:= 1
2
(
Ĩn(φ1, φ2) + Ĩn(φ2, φ1)

)
= 1

2

L∫
−L

dx
(
φ2(x)wn,(φ1,φ2)(x) + φ1(x)wn,(φ2,φ1)(x)

)
, ∀γ = 1

2adiag(φ1, φ2, φ2, φ1),

(A.81)

where the subscript b is to denote the dependence on two inputs, extend to smooth 
functionals on C∞(TL; V) which belong to AS,V . This latter admissibility can be verified 
using the results of Section 6.2. Note that by Lemma A.5, the functionals Ib,n are real-
valued.

A.3. Poisson commutativity

In this last subsection of the appendix, we show that the functionals Ib,n defined 
in (A.81) are in involution with respect to the Poisson bracket {·, ·}L2,V defined in 
Proposition 4.37. We obtain this result by first showing that the generating function-
als F̃L(λ), F̃L(μ), for λ, μ ∈ C, are in involution with respect to the Poisson bracket 
{·, ·}L2,C. The reader will recall that the F̃L was defined in (A.12) above.

Given two complex-valued functionals F, G on C∞(TL)2 satisfying the conditions of 
Remark 4.41, we recall their Poisson bracket is defined by

{F,G}L2,C(ψ1, ψ2)

= −i

L∫
−L

dx(∇1F (ψ1, ψ2)∇2̄G(ψ1, ψ2) −∇2̄F (ψ1, ψ2)∇1G(ψ1, ψ2))(x), (A.82)

where ∇1 and ∇2̄ denote the variational derivatives defined in (4.52). Now let A and B
be two complex-matrix-valued functionals on C∞(TL)2. We introduce the notation

{A⊗, B}L2,C(ψ1, ψ2) := −i

L∫
−L

dx(∇1A(ψ1, ψ2) ⊗∇2̄B(ψ1, ψ2)

−∇2̄A(ψ1, ψ2) ⊗∇1B(ψ1, ψ2)) (x), (A.83)
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where our identification of the tensor product is the 4 × 4 matrix

(A⊗B)jk,mn = AjmBkn, j,m, k, n ∈ {1, 2}, (A.84)

so that

{A⊗, B}L2,Cjk,mn
= {Ajm, Bkn}L2,C. (A.85)

Remark A.8. An observation important for our identities in the sequel is that the nota-
tion {⊗, } admits an obvious extension to general n × n matrices.

The reader may check that the above tensor Poisson bracket notation has the following 
properties:
Skew-symmetry:

{A⊗, B}L2,C = −P{B⊗, A}L2,CP, (A.86)

where P is the permutation matrix in C2 ⊗C2 defined by P (ξ ⊗ η) = η ⊗ ξ, for 
ξ, η ∈ C2.

Leibniz rule:

{A⊗, BC}L2,C = {A⊗, B}L2,C(IC2 ⊗ C) + (IC2 ⊗B){A⊗, C}L2,C, (A.87)

Jacobi identity:

0 = {A⊗, {B⊗, C}L2,C}L2,C + P13P23{C⊗, {A⊗, B}L2,C}L2,CP23P13

+ P13P12{B⊗, {C⊗, A}L2,C}L2,CP12P13,
(A.88)

where Pij is the permutation matrix in (C2)⊗3 which swaps the ith and jth

element of a tensor ξ1 ⊗ ξ2 ⊗ ξ3, for i, j ∈ {1, 2, 3}.

Remark A.9. The reader can also check that P is idempotent (i.e. P 2 = IC2) and P (A ⊗
B) = (B ⊗A)P , for any 2 × 2 matrices A, B.

With the above notation in hand, we proceed to compute Poisson brackets. Let us 
consider U(ψ1,ψ2)(z, λ) from (A.4) as a functional of (ψ1, ψ2), for fixed (z, λ). For the 
reader’s benefit, we recall that

U(ψ1,ψ2)(x, λ) = λ

2iσ3 + U0(x) = λ

2iσ3 +
√
κ(ψ2(x)σ+ + ψ1(x)σ−), (A.89)

where U0(x) is defined in (A.4). The first objective is to prove the following lemma which 
gives the so-called fundamental Poisson brackets.
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Lemma A.10 (Fundamental Poisson brackets). For any (λ, μ) ∈ C2, we have the distri-
butional (on T 2

L) identity

{U(x, λ)⊗, U(y, μ)}L2,C = −[r(λ− μ), U(x, λ) ⊗ IC2 + IC2 ⊗ U(y, μ)]δ(x− y), (A.90)

where r(λ − μ) := − κ
(λ−μ)P .27

Proof. We recall the (classical) canonical commutation relations

{ψ1(x), ψ1(y)}L2,C = {ψ2(x), ψ2(y)}L2,C = 0, {ψ1(x), ψ2(y)}L2,C = −iδ(x− y),
(A.91)

which should be interpreted in the sense of tempered distributions on T 2
L. It then follows 

from (A.89) that

(∇1U(x, λ))(ψ1, ψ2) =
√
κσ−δx, (∇2̄U(x, λ))(ψ1, ψ2) =

√
κσ+δx, (A.92)

where δx is the Dirac mass centered at the point x. Hence,

{U(x, λ)⊗, U(y, μ)}L2,C(ψ1, ψ2)

= −i

L∫
−L

dz((∇1U(x, λ))(ψ1, ψ2)(∇2̄U(y, μ))(ψ1, ψ2)

−(∇2̄U(x, λ))(ψ1, ψ2)(∇1U(y, μ))(ψ1, ψ2)) (z)

= −iκ

L∫
−L

dzδ(z − x)δ(z − y)(σ− ⊗ σ+ − σ+ ⊗ σ−)

= −iκδ(x− y)(σ− ⊗ σ+ − σ+ ⊗ σ−).

One can check from the commutation relations for the Pauli matrices defined in (A.6)
that

σ− ⊗ σ+ − σ+ ⊗ σ− = 1
2[P, σ3 ⊗ IC2 ] = −1

2 [P, IC2 ⊗ σ3]. (A.93)

Therefore,

iκ(σ− ⊗ σ+ − σ+ ⊗ σ−) = iκλ

λ− μ
(σ− ⊗ σ+ − σ+ ⊗ σ−) − iκμ

λ− μ
(σ− ⊗ σ+ − σ+ ⊗ σ−)

= − κ

λ− μ

(
λ

2i [P, σ3 ⊗ IC2 ] + μ

2i [P, IC
2 ⊗ σ3]

)
. (A.94)

27 This matrix r is called an r-matrix in the integrable systems literature and is a central object in the 
study of such systems.
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Now recalling the definition of U(x, λ) in (A.89) and that P commutes with the ten-
sor U0(x) ⊗ IC2 + IC2 ⊗ U0(x) by the symmetry of the latter, we obtain the desired 
conclusion. �

The importance of the fundamental Poisson brackets is that they yield a formula 
for the Poisson brackets between the entries of the transition matrices T (x, y, λ) and 
T (x, y, μ), regarded as matrix-valued functionals, as the next lemma shows.

Lemma A.11. For fixed −L < y < x < L and (λ, μ) ∈ C2, regard T (x, y, λ) as the 
C2 ⊗ C2-matrix valued functional C∞(TL)2 defined by (ψ1, ψ2) �→ T(ψ1,ψ2)(x, y, λ) and 
similarly for T (x, y, μ). Then it holds that

{T (x, y, λ)⊗, T (x, y, μ)}L2,C = −[r(λ− μ), T (x, y, λ) ⊗ T (x, y, μ)]. (A.95)

Proof. We use the differential equations (A.14) and (A.15) for the transition matrix in 
order to prove the lemma. Since the (a, b) entry of the matrix-valued functional T (x, y, λ)
depends on (ψ1, ψ2) through the entries of the matrix-valued functional U(z, λ) it follows 
from the definition of the Poisson bracket {·, ·}L2,C reviewed in (A.82) and the chain rule 
that{

T ab(x, y, λ), T cd(x, y, μ)
}
L2,C

(ψ1, ψ2)

=
x∫

y

x∫
y

dzdz′(∇Ujk(λ)T
ab(x, y, λ)(ψ1, ψ2))(z)

{
U jk(z, λ), U �m(z′, μ)

}
L2,C

(ψ1, ψ2)

× (∇U�m(μ)T
cd(x, y, μ)(ψ1, ψ2))(z′),

(A.96)

where ∇Ujk(λ)T
ab(x, y, λ) and ∇U�m(μ)T

cd(x, y, μ) are the variational derivatives 
uniquely defined by (a priori in the sense of distributions)

dT ab(x, y, λ)[ψ1, ψ2](δU jk(λ)) =
L∫

−L

dz(∇Ujk(λ)T
ab(x, y, λ)(ψ1, ψ2))(z)δU jk(z, λ),

dT cd(x, y, μ)[ψ1, ψ2](δU �m(μ)) =
L∫

−L

dz(∇U�m(μ)T
cd(x, y, μ)(ψ1, ψ2))(z′)δU �m(z′, μ).

(A.97)

In (A.96), we use the convention of Einstein summation, so the summation over repeated 
indices is implicit.

We now seek a formula for ∇Ujk(λ)T
ab(x, y, λ) and ∇U�m(μ)T

cd(x, y, μ). To find such 
a formula, we take the Gâteaux derivative of both sides of (A.14) at the point U(·, λ) in 
the direction δU(·, λ) to obtain the equation
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⎧⎪⎪⎨⎪⎪⎩
∂xdT (x, y, λ)[U(·, λ)](δU(·, λ)) = U(x, λ)dT (x, y, λ)[U(·, λ)](δU(·, λ))

+ δU(x, λ)T (x, y, λ),

dT (x, y, λ)[U(·, λ)](δU(·, λ))|x=y = IC2 .

(A.98)

The reader can check by direct computation that the solution to this equation is given 
by

dT (x, y, λ)[U(·, λ)](δU(·, λ)) =
x∫

y

dzT (x, y, λ)δU(z, λ)T (z, y, λ). (A.99)

Examining identity (A.99) entry-wise, we have that

dT ab(x, y, λ)[U(·, λ)](δU(·, λ)) =
x∫

y

dzT aj(x, y, λ)δU jk(z, λ)T kb(z, y, λ),

dT cd(x, y, μ)[U(·, λ)](δU(·, λ)) =
x∫

y

dzT c�(x, y, μ)δU �m(z′, μ)Tmd(z′, y, μ),

(A.100)

which upon comparison with (A.97) yields the identity

(∇Ujk(λ)T
ab(x, y, λ)(ψ1, ψ2))(z)

=
{
T aj

(ψ1,ψ2)(x, y, λ)T kb
(ψ1,ψ2)(z, y, λ), −L < y < z < x < L

0, otherwise
,

(∇U�m(λ)T
cd(x, y, μ)(ψ1, ψ2))(z′)

=
{
T c�

(ψ1,ψ2)(x, y, μ)Tmd
(ψ1,ψ2)(z

′, y, μ), −L < y < z′ < x < L

0, otherwise

. (A.101)

Substituting the identity (A.101) into (A.96), we find that

{T (x, y, λ)⊗, T (x, y, μ)}L2,C(ψ1, ψ2)

=
x∫

y

x∫
y

dzdz′
(
T(ψ1,ψ2)(x, z, λ) ⊗ T(ψ1,ψ2)(x, z

′, μ)
)
{U(z, λ)⊗, U(z′, μ)}L2,C(ψ1, ψ2)

×
(
T(ψ1,ψ2)(z, y, λ)⊗, T(ψ1,ψ2)(z

′, y, μ)
)
.

(A.102)

Using the formula given by Lemma A.10, we obtain that the right-hand equals
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−
x∫

y

dz
(
T(ψ1,ψ2)(x, z, λ) ⊗ T(ψ1,ψ2)(x, z, μ)

)
[r(λ− μ), U(z, λ) ⊗ IC2 + IC2 ⊗ U(z, μ)]

×
(
T(ψ1,ψ2)(z, y, λ) ⊗ T(ψ1,ψ2)(z, y, μ)

)
.

(A.103)

We now claim that the integrand is the partial derivative with respect to z of(
T(ψ1,ψ2)(x, z, λ) ⊗ T(ψ1,ψ2)(x, z, μ)

)
r(λ− μ)

(
T(ψ1,ψ2)(z, y, λ) ⊗ T(ψ1,ψ2)(z, y, μ)

)
,

(A.104)

which then completes the proof. Indeed, the reader may verify this is the case by direct 
computation using the Leibniz rule and the equations (A.14) and (A.15) for the transition 
matrix. So upon application of the fundamental theorem of calculus and using the initial 
condition T (x, y, λ)|x=y = IC2 , we obtain the desired conclusion. �

We next check that the functional F̃L(λ) defined in (A.12), is admissible (i.e. it belongs 
to AS,C defined in (4.50)). This admissibility will then imply that FL,Re(λ) and FL,Im(λ)
defined in (A.74) and (A.76), respectively, belong to AS,V defined in (4.70). First, observe 
that by taking the direction

δU(z, λ) =
√
κ(δψ2(z)σ+ + δψ1(z)σ−) (A.105)

in (A.99), we find that

(∇1T (x, y, λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(x, z, λ)σ−T(ψ1,ψ2)(z, y, λ),

(∇2̄T (x, y, λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(x, z, λ)σ+T(ψ1,ψ2)(z, y, λ),

(A.106)

for z ∈ [y, x], and zero for z ∈ (−L, L) \ (y, x). Letting x → L+ and y → L−, we find 
that

(∇1TL(λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(L, z, λ)σ−T(ψ1,ψ2)(z,−L, λ),

(∇2̄TL(λ)(ψ1, ψ2))(z) =
√
κT(ψ1,ψ2)(L, z, λ)σ+T(ψ1,ψ2)(z,−L, λ).

(A.107)

Note that ∇1TL(λ)(ψ1, ψ2), ∇2̄TL(λ)(ψ1, ψ2) are smooth in (−L, L) but discontinuous 
at the boundary, and consequently do no belong to C∞(TL) (i.e. TL(λ) is not an admis-
sible functional). However, if we take the 2 ×2 matrix trace of both sides of the preceding 
identities and use that the variational derivative commutes with the trace together with 
the cyclicity of trace, we obtain that the resulting expressions extend smoothly period-
ically to the entire real line. We summarize the preceding discussion with the following 
lemma.

Lemma A.12. For any λ ∈ C, F̃L ∈ AS,C. Consequently, FL,Re(λ), FL,Im(λ) ∈ AS,V .
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We now show that traces F̃L(λ), F̃L(μ), for fixed μ, λ ∈ C, are in involution with 
respect to the Poisson bracket {·, ·}L2,C. They key ingredient of this result is the identity 
of Lemma A.11 for the Poisson brackets between the entries of the transition matrices.

Lemma A.13. For any λ, μ ∈ C, we have that

{F̃L(λ), F̃L(μ)} L2,C ≡ 0. (A.108)

Proof. Applying Lemma A.11, we have that[
r(λ− μ), T(ψ1,ψ2)(x, y, λ) ⊗ T(ψ1,ψ2)(x, y, μ)

]
=

L∫
−L

dz(∇1T (x, y, λ) ⊗∇2̄T (x, y, μ) −∇2̄T (x, y, λ) ⊗∇1T (x, y, μ))(φ1, φ2)(z).

(A.109)

Taking the 4 × 4 matrix trace trC2⊗C2 of both sides and using that the trace of a 
commutator is zero together with the algebraic identity

trC2⊗C2(A⊗B) = trC2(A) trC2(B), (A.110)

for any 2 × 2 matrices A, B, we obtain that

0 = −
L∫

−L

dz (∇1(trC2(T (x, y, λ))∇2̄ trC2(T (x, y, μ)))(φ1, φ2)(z)

−(∇2̄ trC2(T (x, y, λ))∇1 trC2(T (x, y, μ)))(φ1, φ2)(z)) ,

(A.111)

where we also use that the trace commutes with the variational derivative. Now using 
the continuity in (x, y) of the integrand, we can let x → L− and y → −L+ and use 
that trC2(TL(λ)) = F̃L(λ) by definition (A.12) and trC2(TL(μ)) = F̃L(μ) to obtain the 
desired conclusion. �

Now we show that the functionals Ib,n defined in (A.81) are mutually involutive with 
respect to the Poisson structure on C∞(TL; V). We begin by defining the generating 
functional

p̃L(φ1, φ2;λ) := arccos
(

1
2 F̃L(φ1, φ2;λ)

)
, ∀(φ1, φ2, λ) ∈ C∞(TL)2 ×C, (A.112)

where we take the principal branch of the function arccos. We first want to show that

{p̃L(λ), p̃L(μ)}L2,C(φ1, φ2) = 0, ∀(φ1, φ2) ∈ C∞(TL)2, (A.113)
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for λ, μ ∈ R with sufficiently large modulus, which requires us to compute the variational 
derivatives of p̃L(λ), p̃L(μ).

Recall from (A.67) that

1
2 F̃L(φ1, φ2;λ) = cos

⎛⎝−λL + κ

L∫
−L

dxφ2(x)w(φ1,φ2)(x, λ)

⎞⎠. (A.114)

We want to show that we can choose λ so that the cos in the right-hand side of the 
preceding equation is at positive distance from ±1 for all (φ1, φ2) in a closed ball of 
C∞(TL). To this end, we know from Appendix A.2 that given (φ1, φ2) ∈ C∞(TL)2, we 
can choose

λ = λ(‖φ1‖L1(TL), ‖φ1‖L∞(TL), ‖φ2‖L1(TL), ‖φ2‖L∞(TL), L) ∈ R

with sufficiently large modulus so that there exists w(φ1,φ2)(λ) in (A.55) with the asymp-
totic expansion (A.56). Consequently, for any k ∈ N, we have that

‖w(φ1,φ2)(λ)‖L∞(TL) ≤
∥∥∥∥∥w(φ1,φ2)(λ) −

k∑
n=1

wk,(φ1,φ2)

λn

∥∥∥∥∥
L∞(TL)

+
k∑

n=1

‖wk,(φ1,φ2)‖L∞(TL)

λn

= o(|λ|k) +
k∑

n=1

‖wk,(φ1,φ2)‖L∞(TL)

λn
, (A.115)

where the implicit constant in o(|λ|k) depends only the data ‖∂n−1
x φj‖L∞(TL) for n ∈

N≤k+1 and j ∈ {1, 2}. By the analysis of Section 6.1,

‖wk,(φ1,φ2)‖L∞(TL) �k

k∑
n=0

(
‖∂n

xφ1‖L∞(TL) + ‖∂n
xφ2‖L∞(TL)

)
. (A.116)

Hence, ∣∣∣∣∣∣
L∫

−L

dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣∣∣ ≤ 2L‖φ2‖L∞(TL)‖w(φ1,φ2)(λ)‖L∞(TL)

� 2L
λ

1∑
n=0

(
‖∂n

xφ1‖L∞(TL) + ‖∂n
xφ2‖L∞(TL)

)
.

(A.117)

Thus, given ε > 0, we can choose λ ∈ R with sufficiently large modulus depending the 
data

(ε, L, ‖∂n
xφj‖L∞(TL)), ∀(n, j) ∈ {0, 1} × {1, 2},
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so that ∣∣∣∣∣∣
L∫

−L

dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣∣∣ < ε. (A.118)

Also choosing λ so that mink∈Z{|λL − kπ|} > 2ε, we conclude that given R > 0,

min
k∈Z

⎧⎨⎩
∣∣∣∣∣∣kπ − λL + κ

L∫
−L

dxφ2(x)w(φ1,φ2)(x, λ)

∣∣∣∣∣∣
⎫⎬⎭ ≥ δ > 0 (A.119)

for all φ1, φ2 ∈ C∞(TL) with ‖∂n
xφ1‖L∞(TL), ‖∂n

xφ2‖L∞(TL) ≤ R, for n ∈ {0, 1}. For such 
choice of λ, we have that

p̃L(φ1, φ2;λ) = −λL + κ

L∫
−L

dxφ2(x)w(φ1,φ2)(x, λ), φ1, φ2 ∈ C∞(TL), (A.120)

for all φ1, φ2 ∈ C∞(TL) with max{‖∂n
xφ1‖L∞(TL), ‖φ2‖L∞(TL)} ≤ R, n ∈ {0, 1}. More-

over, for such φ1, φ2, we can use the chain rule without concern over the singularity of 
arccos(z) at z = ±1 to compute the variational derivatives p̃L, finding

(∇1p̃L(λ))(φ1, φ2) = 1
2

(
1 −

(
F̃L(φ1, φ2;λ)

2

)2)−1/2

(∇1F̃ (λ))(φ1, φ2),

(∇2̄p̃L(λ))(φ1, φ2) = 1
2

(
1 −

(
F̃L(φ1, φ2;λ)

2

)2)−1/2

(∇2̄F̃ (λ))(φ1, φ2),

(A.121)

where by Lemma A.12, the variational derivatives of F̃L(λ) are elements of C∞(C∞(TL)2;
C∞(TL)). Recalling the definition (4.84) for the Poisson bracket {·, ·}L2,C, we then find 
that for appropriate λ, μ ∈ R,

{p̃L(λ), p̃L(μ)}L2,C(φ1, φ2)

= − i

4

(
1 −

(
F̃L(φ1, φ2;λ)

2

)2)−1/2(
1 −

(
F̃L(φ1, φ2;μ)

2

)2)−1/2

×
L∫

−L

dx
(
(∇1F̃L(λ))(φ1, φ2)(∇2̄F̃L(μ))(φ1, φ2)

−(∇2̄F̃L(λ))(φ1, φ2)(∇1F̃L(μ))(φ1, φ2)
)
(x)
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= 1
4

(
1 −

(
F̃L(φ1, φ2;λ)

2

)2)−1/2(
1 −

(
F̃L(φ1, φ2;μ)

2

)2)−1/2

×
{
F̃L(λ), F̃L(μ)

}
L2,C

(φ1, φ2)

= 0,

where the ultimate equality follows from an application of Lemma A.13.

We now use (A.113) to prove the mutual involution of the functionals Ib,n.

Proposition A.14. For any n, m ∈ N, it holds that

{Ib,n, Ib,m}L2,V ≡ 0 on C∞(TL;V). (A.122)

Proof. Fix n, m ∈ N, and let γ = 1
2adiag(φ1, φ2, φ2, φ1) ∈ C∞(TL; V). Let us first 

introduce some notation that will simplify the computations in the sequel. Define and

pL(γ;λ) := p̃L(φ1, φ2;λ) + p̃L(φ2, φ1;λ), ∀(γ, λ) ∈ C∞(TL;V) ×C, (A.123)

where we recall that p̃L is defined in (A.112). Note that it is tautological that pL is the 
restriction of a complex-valued functional on C∞(TL)4, which by an abuse of notation 
we write as

pL(φ1, φ2̄, φ2, φ1̄;λ) = p̃L(φ1, φ2̄;λ) + p̃L(φ2, φ1̄;λ), φ1, φ1̄, φ2, φ2̄ ∈ C∞(TL).
(A.124)

Now for γ ∈ C∞(TL; V), we have by the variational derivative formulation of the 
Poisson bracket {pL(λ), pL(μ)}L2,V (recall (4.79)) and (A.124) that

{pL(λ), pL(μ)}L2,V(γ)

= −i

L∫
−L

dz((∇1pL(λ))(∇2̄pL(μ)) − (∇2̄pL(λ))(∇1pL(μ)))(φ1, φ2, φ2, φ1)(z)

− i

L∫
−L

dz((∇2pL(λ))(∇1̄pL(μ)) − (∇1̄pL(λ))(∇2pL(μ)))(φ1, φ2, φ2, φ1)(z)

= −i

L∫
−L

dz((∇1p̃L(λ)(∇2̄p̃L(μ)) − (∇2̄p̃L(λ))(∇1p̃L(μ)))(φ1, φ2)(z)

− i

L∫
−L

dz((∇1p̃L(λ)(∇2̄p̃L(μ)) − (∇2̄p̃L(λ))(∇1p̃L(μ)))(φ2, φ1)(z). (A.125)
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Recalling Remark 4.41 for the variational derivative formulation of the Poisson bracket 
{·, ·}L2,C, we can rewrite the right-hand side of the preceding equality to obtain that

{pL(λ), pL(μ)}L2,V(γ) = {p̃L(λ), p̃L(μ)}L2,C(φ1, φ2) + {p̃L(λ), p̃L(μ)}L2,C(φ2, φ1).
(A.126)

Given R > 0, for all γ ∈ C∞(TL; V) with ‖∂n
xγ‖L∞(TL) ≤ R, for n ∈ {0, 1}, we can choose 

λ, μ ∈ R arbitrarily large to apply (A.113), yielding that both terms in the right-hand 
side of the preceding equality are zero. Hence,

{pL(λ), pL(μ)}L2,V(γ) = 0. (A.127)

Now by the formula (A.120) for p̃L(λ) and the large real λ asymptotic expansion 
(A.56) for w(φ1,φ2)(λ), we see that

p̃L(φ1, φ2;λ) ∼ −λL + κ

∞∑
k=1

∫ L

−L
dxφ2(x)wk,(φ1,φ2)(x)

λk
= −λL + κ

∞∑
k=1

Ĩk(φ1, φ2)
λk

,

(A.128)
where the ultimate equality follows from the definition (A.60) for Ĩk. Taking the varia-
tional derivatives of both sides of the preceding identity, we find that

∇1p̃L(φ1, φ2;λ) ∼ κ
∞∑
k=1

∇1Ĩk(φ1, φ2)
λk

, ∇2̄p̃L(φ1, φ2;λ) ∼ κ
∞∑
k=1

∇2̄Ĩk(φ1, φ2)
λk

.

(A.129)
Substituting the asymptotic expansions (A.129) into (A.125), we see that

0 = {pL(λ), pL(μ)}L2,V(γ)

∼ −iκ2
∞∑

k,j=1

1
λkμj

L∫
−L

dz
(
∇1Ĩk(φ1, φ2)∇2̄Ĩj(φ1, φ2) −∇2̄Ĩk(φ1, φ2)∇1Ĩj(φ1, φ2)

)
(z)

− iκ2
∞∑

k,j=1

1
λkμj

L∫
−L

dz
(
∇1Ĩk(φ2, φ1)∇2̄Ĩj(φ2, φ1) −∇2̄Ĩk(φ2, φ1)∇1Ĩj(φ2, φ1)

)
(z)

=
∞∑

k,j=1

4{Ib,k, Ib,j}L2,V(γ)
λkμj

, (A.130)

where the ultimate equality follows from Remark 4.38 and the definition (A.81) of the 
functionals Ib,n. By the uniqueness of coefficients of asymptotic expansions, we conclude 
that {Ib,k, Ib,j} 2 ≡ 0 on C∞(TL; V), completing the proof of the proposition. �
L ,V
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Appendix B. Multilinear algebra

In this appendix, we review some useful facts from multilinear algebra about sym-
metric tensors, which we make use of to prove Theorem 2.8. Throughout this appendix, 
V denotes a finite-dimensional complex vector space unless specified otherwise. For con-
creteness, the reader can just take V = Cd, where d is the dimension of V . For more 
details and the omitted proofs, we refer the reader to [32] and [12], in particular the 
latter for a concise, pedestrian exposition.

Let n ∈ N, and let V ×n → V ⊗n be an algebraic n-fold tensor product28 for V . Now 
given any n-linear map T : V ×n → W , where W is another complex finite-dimensional 
vector space, the universal property of the tensor product asserts that there exists a 
unique linear map T̄ : V ⊗n → W , such that the following diagram commutes

V ×n V ⊗n

W

T
T̄

. (B.1)

In particular, given any permutation π ∈ Sn, there is a unique map π̄ : V ⊗n → V ⊗n

with the property that

π̄(v1 ⊗ · · · ⊗ vn) = vπ(1) ⊗ · · · ⊗ vπ(n), ∀v1, . . . , vn ∈ V. (B.2)

Using these maps π̄, we can define the symmetrization operator Symn on V ⊗n by

Symn(u) := 1
n!

∑
π∈Sn

π̄(u), ∀u ∈ V ⊗n (B.3)

and define what it means for a tensor to be symmetric.

Definition B.1 (Symmetric tensor). We say that u ∈ V ⊗n is symmetric if Symn(u) = u. 
Equivalently, π̄(u) = u for every π ∈ Sn. We let Symn(V ⊗n), alternatively 

⊗n
s V or 

V ⊗n
s , denote the subspace of V ⊗n consisting of symmetric tensors.

Remark B.2. If {e1, . . . , ed} is a basis for V , then {ej1 ⊗ · · · ⊗ ejn}dj1,...,jn=1 is a basis for 
V ⊗n, so that dim(V ⊗n) = dn. Similarly, {Symn(ej1 ⊗ · · · ⊗ ejn)}1≤j1≤···≤jn≤d is a basis 
for V ⊗n

s , so that dim(V ⊗n
s ) =

(
d+n−1

n

)
.

We now claim that any element of V ⊗n
s is uniquely identifiable with an element of 

C[x1, . . . , xd]n, the space of homogeneous polynomials of degree n in d variables. Indeed, 
fix a basis {e1, . . . , ed} for V , so that {Symn(ej1 ⊗ · · · ⊗ ejn)}1≤j1≤···≤jn≤d is a basis for 
V ⊗n

s . By mapping

28 The reader will recall that the tensor product is only defined up to unique isomorphism.
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Symn(ej1 ⊗ · · · ⊗ ejn) �→ xα1
1 · · ·xαd

d =: xαd

d , (B.4)

where αd is the multi-index defined by

αj :=
n∑

i=1
δj(ji), ∀j ∈ N≤d, (B.5)

where δj is the discrete Dirac mass centered at j, one obtains a linear map from V ⊗n
s →

C[x1, . . . , xd]n. One can show this map is, in fact, an isomorphism. Consequently, if

u =
∑

1≤j1≤···≤jn≤d

uj1···jn Symn(ej1 ⊗ · · · ⊗ ejn) (B.6)

is an element of V ⊗n
s , then u is uniquely identifiable with the element F ∈ C[x1, . . . , xd]n

given by

F (xd) =
∑

1≤j1≤···≤jn≤d

uj1···jnx
αd(j

n
)

d , (B.7)

where we write αd(jn) to emphasize that αd is intended as a function of j
n

according to 
the rule (B.5).

There is a useful bilinear form on C[x1, . . . , xd]n defined as follows: if F, G ∈
C[x1, . . . , xd]n are respectively given by

F (xd) =
∑

|αd|=n

(
n

α1, . . . , αd

)
aαd

x
αd

d , G(xd) =
∑

|αd|=n

(
n

α1, . . . , αd

)
bαd

x
αd

d , (B.8)

then we define

〈F,G〉 :=
∑

|αd|=n

(
n

α1, . . . , αd

)
aαd

bαd
. (B.9)

The form 〈·, ·〉, which is evidently symmetric, has the important property of nonde-
generacy, as the next lemma shows.

Lemma B.3 (Nondegeneracy). The symmetric bilinear form 〈·, ·〉 : C[x1, . . . , xd]n ×
C[x1, . . . , xd]n → C is nondegenerate: if 〈F, G〉 = 0 for all G ∈ C[x1, . . . , xd]n, then 
F ≡ 0.

When G is of the form G(xd) = (β1x1 + · · · + βdxd)n (i.e. an nth power of a linear 
form), then the next lemma provides an explicit formula for 〈F, G〉.

Lemma B.4. If G(xd) = (β1x1 + · · · + βdxd)n, where β
d
∈ Cd, then for every F ∈

C[x1, . . . , xd]n, we have that
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〈F,G〉 = F (β
d
). (B.10)

We now use Lemma B.4 to prove the existence of a special decomposition for elements 
of V ⊗n

s . We have included a proof as it is a nice argument.

Lemma B.5 (Symmetric rank-1 decomposition). For any u ∈ V ⊗n
s , there exists an integer 

N ∈ N, coefficients {aj}Nj=1 ⊂ C, and elements {vj}Nj=1 ⊂ V , such that

u =
N∑
j=1

ajv
⊗n
j . (B.11)

Proof. Let W ⊂ V ⊗n
s denote the set of elements which admit a decomposition of the 

form (B.11). Evidently, W is a subspace of V ⊗n
s . Fix a basis {e1, . . . , ed} for V . If v =

β1e1 + · · · + βded, then one can check that under the isomorphism given by (B.7), v⊗n

is uniquely identifiable with the polynomial

(β1x1 + · · · + βdxd)n,

i.e. an nth power of a linear form. Consequently, W is isomorphic to the span of nth

powers of linear forms in C[x1, . . . , xd]n.
Assume for the sake of a contradiction that W is a proper subspace, so that the 

orthogonal complement W⊥ with respect to the form 〈·, ·〉 is nontrivial. Then it follows 
from the embedding of W ⊂ C[x1, . . . , xd]n that there exists a nonzero polynomial 
F ∈ C[x1, . . . , xd]n, such that 〈F, G〉 = 0 for every G ∈ W . Lemma B.4 then implies that 
F (β

d
) = 0 for every β

d
∈ Cd, which contradicts that F is a nonzero polynomial. �

Remark B.6. Since Lemma B.5 asserts that a decomposition of the form (B.11) always 
exists, one can define the symmetric rank of an element u ∈ V ⊗n

s by the minimal integer 
N . Evidently, a tensor of the form v⊗n has symmetric rank 1. Although we will not need 
the notion of symmetric rank in this work, we will refer to the decomposition (B.11) as 
a symmetric-rank-1 decomposition.

As an application of the symmetric-rank-1 tensor decomposition, we now show an 
approximation result for bosonic Schwartz functions (i.e. elements of Ss(Rd)).

Lemma B.7. Let f ∈ Ss(Rd). Then given ε > 0 and a Schwartz seminorm N , there exist 
N ∈ N, elements {fi}Ni=1 ⊂ S(R), and coefficients {ai}Ni=1 ⊂ C, such that

N
(
f −

N∑
i=1

aif
⊗d
i

)
≤ ε. (B.12)

In other words, finite linear combinations of symmetric-rank-1 tensor products are dense 
in Ss(Rd).
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Proof. Fix f ∈ Ss(Rd), ε > 0, and seminorm N . Since Ss(Rd) ∼=
⊗̂d

sS(R), there exists 
an integer M ∈ N, elements {gij} 1≤i≤d

1≤j≤M
⊂ S(R), and coefficients {aj}1≤j≤M ⊂ C, such 

that

N

⎛⎝f −
M∑
j=1

aj Symd

(
d⊗

i=1
gij

)⎞⎠ ≤ ε. (B.13)

Define the complex vector space

V := spanC{gij : 1 ≤ i ≤ d, 1 ≤ j ≤ M}, (B.14)

which is evidently finite-dimensional. For each j ∈ N≤M , consider the symmetric tensor

Symd

(
d⊗

i=1
gij

)
∈ V ⊗d

s . (B.15)

By Lemma B.5, there exists an integer Nj ∈ N, elements {fj�}Nj

�=1 ⊂ V , coefficients 
{aj�}Nj

�=1 ⊂ C, such that

Symd

(
d⊗

i=1
gij

)
=

Nj∑
�=1

aj�f
⊗d

j� . (B.16)

Consequently,

M∑
j=1

aj Symd

(
d⊗

i=1
gij

)
=

M∑
j=1

Nj∑
�=1

ajaj�f
⊗d

j� , (B.17)

so upon substitution of this identity into (B.13), we obtain the desired conclusion. �
As a corollary of Lemma B.7, we obtain the following decomposition for elements in 

L(S ′
s(Rd), Ss(Rd)).

Corollary B.8. Let γ(d) ∈ L(S ′
s(Rd), Ss(Rd)). Then given ε > 0 and a Schwartz seminorm 

N , there exists N ∈ N, elements {fi, gi}Ni=1 ⊂ S(R), and coefficients {ai}Ni=1 ⊂ C, such 
that

N
(
γ(d) −

N∑
i=1

aif
⊗d
i ⊗ g⊗d

i

)
≤ ε. (B.18)

Proof. Fix γ(d) ∈ L(S ′
s(Rd), Ss(Rd)), ε > 0, and seminorm N . Since

L(S ′
s(Rd),Ss(Rd)) ∼= Ss(Rd)⊗̂Ss(Rd),
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there exists an integer N , elements {f̃i, ̃gi}Ni=1 ⊂ Ss(Rd), and coefficients {ai}Ni=1 ⊂ C, 
such that

N
(
γ(d) −

N∑
i=1

aif̃i ⊗ g̃i

)
≤ ε. (B.19)

For each i ∈ N≤N , Lemma B.7 implies that there exist integers Ni,f , Ni,g ∈ N, elements 
{fij}Ni,f

j=1 , {gij}
Ni,g

j=1 ⊂ S(R), and coefficients {aij,f}Ni,f

j=1 , {aij,g}
Ni,g

j=1 ⊂ C, such that

f̃i =
Ni,f∑
j=1

aij,ff
⊗d
ij , g̃i =

Ni,g∑
j=1

aij,gg
⊗d
ij . (B.20)

By setting coefficients equal to zero, we may assume without loss of generality that 
Ni,f = Ni,g = M ∈ N, for every i ∈ N≤N . So by the bilinearity of tensor product, we 
obtain the decomposition

N∑
i=1

aif̃i ⊗ g̃i =
N∑
i=1

M∑
j,j′=1

aiaij,faij′,gf
⊗d
ij ⊗ g⊗d

ij′ . (B.21)

Substitution of this identity into (B.19) and relabeling/re-indexing of the summation 
yields the desired conclusion. �
Appendix C. Distribution-valued operators

Following Appendix B of our companion paper [57], we review and develop some 
properties of distribution-valued operators (DVOs) (i.e. elements of L(S(Rk), S ′(Rk))), 
which are used extensively in this work. Most of these properties are a special case of 
a more general theory involving topological tensor products of locally convex spaces for 
which we refer the reader to [36,73,82] for further reading.

C.1. Adjoint

In this subsection, we record some properties of the adjoint of a DVO as well as some 
properties of the map taking a DVO to its adjoint.

Lemma C.1 (Adjoint map). Let k ∈ N, and let A(k) ∈ L(S(Rk), S ′(Rk)). Then there is 
a unique map (A(k))∗ ∈ L(S(Rk), S ′(Rk)) such that

〈
(A(k))∗g(k), f (k)

〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), g(k)

〉
S′(Rk)−S(Rk)

, ∀f (k), g(k) ∈ S(Rk).

(C.1)
Furthermore, the adjoint map
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∗ : L(S(Rk),S ′(Rk)) → L(S(Rk),S ′(Rk)), A(k) �→ (A(k))∗ (C.2)

is a continuous involution.
Additionally, for B(k) ∈ L(S ′(Rk), S ′(Rk)), there exists a unique linear map in 

(B(k))∗ ∈ L(S(Rk), S(Rk)) such that〈
u(k), (B(k))∗g(k)

〉
S′(Rk)−S(Rk)

=
〈
B(k)u(k), g(k)

〉
S′(Rk)−S(Rk)

, ∀(g(k), u(k)) ∈ S(Rk) × S ′(Rk). (C.3)

Moreover, the adjoint map

∗ : L(S ′(Rk),S ′(Rk)) → L(S(Rk),S(Rk)) (C.4)

is a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps.

Lemma C.2. Let A(k) ∈ L(S(Rk), S ′(Rk)) and B(k) ∈ L(S ′(Rk), S ′(Rk)). Then(
B(k)A(k)

)∗
= (A(k))∗(B(k))∗. (C.5)

Definition C.3 (Self- and skew-adjoint). Given k ∈ N, we say that an operator 
A(k) ∈ L(S(Rk), S ′(Rk)) is self-adjoint if (A(k))∗ = A(k). Similarly, we say that 
A(k) ∈ L(S(Rk), S ′(Rk)) is skew-adjoint if (A(k))∗ = −A(k).

Remark C.4. Note that if A(k) ∈ L(S(Rk), S ′(Rk)) is an operator mapping S(Rk) →
L2(Rk), then our definition of self-adjoint does not coincide with the usual Hilbert space 
definition for densely defined operators, but instead with the definition of a symmetric 
operator.

C.2. Trace and partial trace

In this subsection, we generalize the trace of an operator on a separable Hilbert 
space to the DVO setting. Viewing the trace as a bilinear map and using the canonical 
isomorphisms

L(S(RN ),S ′(RN )) ∼= S ′(R2N ) and L(S ′(RN ),S(RN )) ∼= S(R2N ) (C.6)

given by the Schwartz kernel theorem, we can define the generalized trace of the right-
composition of an operator in L(S(RN ), S ′(RN )) with an operator in L(S ′(RN ), S(RN ))
through the pairing of their Schwartz kernels. More precisely,
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Tr1,...,N (A(N)γ(N)) = 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ) (C.7)

is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A(N), 
which belongs to S ′(R2N ), with the Schwartz kernel of the transpose of γ(N),29 which 
belongs to S(R2N ).

Definition C.5 (Generalized trace). We define

Tr1,...,N : L(S(RN ),S ′(RN )) × L(S ′(RN ),S(RN )) → C

Tr1,...,N
(
A(N)γ(N)

)
:= 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ).

(C.8)

Remark C.6. The Schwartz kernel theorem implies that for A(N) ∈ L(S(RN ), S ′(RN )),

Tr1,...,N
(
A(N)(f ⊗ g)

)
= 〈A(N)f, g〉S′(RN )−S(RN ), ∀f, g ∈ S(RN ). (C.9)

Remark C.7. The reader can check that if A(N) ∈ L(S(RN ), S ′(RN )) and γ(N) ∈
L(S ′(RN ), S(RN )) are such that A(N)γ(N) is a trace-class operator ρ(N), then our def-
inition of the generalized trace of A(N)γ(N) coincides with the usual definition of the 
trace of ρ(N) as an operator on the Hilbert space L2(RN ).

We now record some properties of the generalized trace which are reminiscent of 
properties of the usual trace encountered in functional analysis.

Proposition C.8 (Properties of generalized trace). Let A(N) ∈ L(S(RN ), S ′(RN )), and let 
γ(N) ∈ L(S ′(RN ), S(RN )). The following properties hold:

(i) Tr1,...,N is separately continuous.
(ii) We have the following identity:

Tr1,...,N
(
(A(N))∗γ(N)

)
= Tr1,...,N

(
A(N)(γ(N))∗

)
. (C.10)

(iii) If B(N) ∈ L(S ′(RN ), S ′(RN )), then Tr1,...,N satisfies the cyclicity property

Tr1,...,N
((

B(N)A(N)
)
γ(N)

)
= Tr1,...,N

(
A(N)

(
γ(N)B(N)

))
. (C.11)

We now extend the partial trace map to our setting using our bilinear perspective.

Proposition C.9 (Generalized partial trace). Let N ∈ N and let k ∈ {0, . . . , N −1}. Then 
there exists a unique bilinear, separately continuous map

29 (γ(N))t is the operator f 
→
∫
RN dx′

Nγ(x′
N ; xN )f(x′

N ).
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Trk+1,...,N : L(S(RN ),S ′(RN )) × L(S ′(RN ),S(RN )) → L(S(Rk),S ′(Rk)), (C.12)

which satisfies

Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
=

∫
RN−k

dxk+1;N (A(N)f (N))(xk, xk+1;N )g(N)(x′
k, xk+1;N ),

(C.13)
for all A(N) ∈ L(S(RN ), S ′(RN )), and f (N), g(N) ∈ S(RN ). That is,

〈
Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
φ(k), ψ(k)

〉
S′(Rk)−S(Rk)

=
〈
A(N)f (N), ψ(k) ⊗ 〈g(N), φ(k)〉S′

xk
(Rk)−Sxk

(Rk)

〉
S′(RN )−S(RN )

,
(C.14)

for all φ(k), ψ(k) ∈ S(Rk).

Remark C.10. Our notation Trk+1,...,N implies a partial trace over the variables with 
indices belonging to the index set {i : k + 1 ≤ i ≤ N}. To alleviate some notational 
complications, we will use the convention that if the index set of the partial trace is 
empty, we do not take a partial trace.

C.3. Contractions and the “good mapping property”

Given A(i) ∈ L(S(Ri), S ′(Ri)), an integer k ≥ i, and a cardinality-i subset 
{�1, . . . , �i} ⊂ N≤k, we want to define to an operator acting only on the variables asso-
ciated to {�1, . . . , �i}. We have the following result.

Proposition C.11 (k-particle extensions). There exists a unique A(i)
(�1,...,�i) ∈ L(S(Rk),

S ′(Rk)), which satisfies

A
(i)
(�1,...,�i)(f1 ⊗ · · ·⊗ fk)(xk) = A(i)(f�1 ⊗ · · ·⊗ f�i)(x�1 , . . . , x�i) ·

( ∏
�∈N≤k\{�1,...,�i}

f�(x�)
)

(C.15)
in the sense of tempered distributions.

An important property of the above k-particle extension is that it preserves self- and 
skew-adjointness.

Lemma C.12. Let i ∈ N, let k ∈ N≥i, and let A(i) ∈ L(S(Rk), S ′(Ri)) be self-adjoint 
(resp skew-adjoint). Then for any cardinality-i subset {�1, . . . , �i} ⊂ N≤k, we have that 
A

(i) is self-adjoint (resp. skew-adjoint).
(�1,...,�i)
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Now let i, j ∈ N, let k := i + j − 1, and let (α, β) ∈ N≤i × N≤j . The proof of 
Proposition 2.3 in [57] requires us to give meaning to the composition

A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k) (C.16)

as an operator in L(S(Rk), S ′(Rk)), when A(i) ∈ L(S(Ri), S ′(Ri)) and B(j) ∈
L(S(Rj), S ′(Rj)).

Remark C.13. Without further conditions on A(i) or B(j), the composition (C.16) may 
not be well-defined. Indeed, consider the operator A ∈ L(S(R2), S ′(R2)) defined by

Af := δ0f, ∀f ∈ S(R2), (C.17)

where δ0 denotes the Dirac mass about the origin in R2. Then for f, g ∈ S(R),∫
R

dx2(Af⊗2)(x1, x2)g⊗2(x′
1, x2) = f(0)g(0)f(x1)g(x′

1)δ0(x1) ∈ S ′(R) ⊗ S(R). (C.18)

It is easy to show that fδ0 ∈ S ′(R) does not coincide with a Schwartz function.

This issue leads us to a property we call the good mapping property. The intuition for 
the good mapping property is the basic fact from distribution theory that the convolu-
tion of a distribution of compact support with a Schwartz function is again a Schwartz 
function. We recall the definition of the good mapping property here.

Definition 2.2 (Good mapping property). Let � ∈ N. We say that an operator A(�) ∈
L(S(R�), S ′(R�)) has the good mapping property if for any α ∈ N≤�, the continuous 
bilinear map

S(R�) × S(R�) → Sx′
α
(R;S ′

xα
(R))

(f (�), g(�)) �→
∫

R�−1

dx1 . . . dxα−1dxα+1 . . . dx�A
(�)(f (�))(x1, . . . , x�)

× g(�)(x1, . . . , xα−1, x
′
α, xα+1, . . . , x�),

may be identified with a continuous bilinear map S(R�) × S(R�) → S(R2).30

Remark C.14. By tensoring with identity, we see that if A(i) has the good mapping 
property, then A(i)

(�1,...,�i) has the good mapping property, where i is replaced by k and 
α ∈ N≤k.

30 Here and throughout this paper, an integral involving a distribution should be understood as a distri-
butional pairing unless specified otherwise.
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C.4. The subspace Lgmp(S(Rk), S ′(Rk))

Lastly, we expand more on Lgmp(S(Rk), S ′(Rk)) as a topological vector subspace of 
L(S(Rk), S ′(Rk)) with the following lemma.

Lemma C.15. For k ∈ N, it holds that

(i) Lgmp(S(Rk), S ′(Rk)) is a dense subspace of L(S(Rk), S ′(Rk));
(ii) The topological dual Lgmp(S(Rk), S ′(Rk))∗ endowed with the strong dual topology 

is isomorphic to L(S ′(Rk), S(Rk)).

Appendix D. Products of distributions and the wave front set

In this appendix, we review some basic facts from microlocal analysis about the wave 
front set of a distribution and its application to proving the well-definedness of the 
product of two distributions, as used in Section 5.1. We mostly follow the exposition in 
Chapter VIII of [35], but refer the reader to Chapter IX, §10 of [67] for a more pedestrian 
treatment.

Definition D.1 (Singular support). Let u ∈ D′(Rk). We say that x ∈ Rk is a regular point
of u if and only if there exists an open neighborhood U � x and a function f : U → C

which is C∞ on U , such that

〈u, φ〉D′(Rk)−D(Rk) =
∫
Rk

f(x)φ(x)dx, ∀φ ∈ C∞
c (Rk) with supp(φ) ⊂ U. (D.1)

We call the set

Rk \ {x ∈ Rk : x is a regular point for u} (D.2)

the singular support of u, denoted by sing supp(u).

Remark D.2. It is evident that sing supp(u) ⊂ supp(u). Since the set of regular points is 
open (any other point in the neighborhood U above also belongs to the singular support), 
it follows that sing supp(u) is a closed subset of supp(u).

The singular support is useful for establishing the well-definedness of a product of 
distributions uv via localization, as the next proposition shows.

Proposition D.3. Let u, v ∈ D′(Rk), and suppose that sing supp(u) ∩ sing supp(v) = ∅. 
Then there is a unique w ∈ D′(Rk) such that the following holds:

(i) If x /∈ sing supp(v) and v = f in a neighborhood of x, where f ∈ C∞(Rk), then 
w = fu in a neighborhood of x.
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(ii) If x /∈ sing supp(u) and u = g in a neighborhood of x, where g ∈ C∞(Rk), then 
w = gv in a neighborhood of x.

Proof. See Theorem IX.42 in [67]. �
Next, we introduce the wave front set of a distribution. While the singular support 

captures the location of the singularities of a distribution, the wave front set also contains 
information about the directions of the high frequencies that cause these singularities.

Definition D.4 (Wave front set). Let u ∈ D′(Rk). We say that a point (xk, ξk) ∈ Rk ×
(Rk \ {0}) is a regular directed point for u if and only if there exist radii εx, εξ > 0 and 
a function φ ∈ C∞

c (Rk) which is identically one on the open ball B(xk, εx), such that∣∣∣φ̂u(λη
k
)
∣∣∣ �N (1 + |λ|)−N

, ∀(η
k
, λ) ∈ B(ξ

k
, εξ) × [0,∞), ∀N ∈ N0. (D.3)

We define the wave front set of u to be the complement in Rk × (Rk \ {0}) of the set of 
regular directed points:

WF(u) :=
(
Rk × (Rk \ {0})

)
\ {(xk, ξk) ∈ Rk × (Rk \ {0}) :

(xk, ξk) is a regular directed point for u}. (D.4)

Remark D.5. In [35], Hörmander uses a definition of the wave front set of a distribution u, 
which is seemingly different from our Definition D.4. More precisely, for any xk ∈ Rk and 
φ ∈ C∞

c (Rk), such that φ(xk) �= 0, he defines the set Σ(φu) consisting of all ξ
k
∈ Rk \{0}

having no conic neighborhood U such that

|φ̂u(ξ
k
)| �N

(
1 + |ξ

k
|
)−N

, ∀ξ
k
∈ U, ∀N ∈ N. (D.5)

He then defines the set Σx(u) by

Σxk
(u) :=

⋂
φ

Σ(φu), φ ∈ C∞
c (Rk) s.t. φ(xk) �= 0. (D.6)

Hörmander’s definition of the wave front set of u, which we denote by W̃F(u), is then 
given by

W̃F(u) := {(xk, ξk) ∈ Rk × (Rk \ {0}) : ξ
k
∈ Σxk

(u)}. (D.7)

It follows from Lemma D.6 below that W̃F(u) = WF(u) (i.e. the two definitions are 
equivalent).

We record some properties of the wave front set.
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Lemma D.6. If u ∈ D′(Rk) and g ∈ C∞
c (Rk), then WF(gu) ⊂ WF(u). Similarly, if 

u ∈ S ′(Rk) and g ∈ S(Rk), then WF(gu) ⊂ WF(u).

Proposition D.7. Let u ∈ D′(Rk).

(a) WF(u) is a closed subset of Rk × (Rk \ {0}).
(b) For each xk ∈ Rk, the set

WFxk
(u) := {ξ

k
∈ Rk \ {0} : (xk, ξk) ∈ WF(u)} (D.8)

is a cone.
(c) If v ∈ D′(Rk), then

WF(u + v) ⊂ WF(u) ∪ WF(v). (D.9)

(d) sing supp(u) = {xk ∈ Rk : WFxk
(u) �= ∅}.

(e) If v ∈ D′(Rj), then

WF(u⊗ v) ⊂ (WF(u) × WF(v)) ∪ ((supp(u) × {0}) × WF(v))

∪ (WF(u) × (supp(v) × {0})). (D.10)

(f) If u ∈ S ′(Ri), v ∈ S ′(Rj) and w ∈ S(Ri+j) then

WF((u⊗ v)w) ⊂ WF(u⊗ v).

Proof. Properties (a) - (c) are quick consequences of the definition of the wave front set. 
For (d), see Theorem IX.44 in [67]. For property (e), see Theorem 8.2.9 in [35]. Property 
(f) follows from Lemma D.6. �

In our proof of Lemma 5.1, we will need the following result.

Lemma D.8 (Wave front set of δ(xi − xj)). Let k ∈ N, and let i < j ∈ N≤k. Then

WF(δ(xi − xj)) = {(xk, ξk) ∈ Rk × (Rk \ {0}) : xi = xj , ξi + ξj = 0,

and ξ� = 0 ∀l ∈ N≤k \ {i, j}}.

Proof. By symmetry, it suffices to consider the case (i, j) = (1, 2). Since δ(x1 − x2) has 
singular support in the hyperplane {x1 = x2} ⊂ Rk, it follows from Proposition D.7(d) 
that (xk, ξk) ∈ WF(δ(x1 − x2)) implies that x1 = x2.

Now suppose that (xk, ξk) ∈ Rk × (Rk \ {0}) and ξ1 + ξ2 �= 0. We claim that such a 
point is a regular directed point for δ(x1 − x2) (i.e. it does not belong to the wave front 
set). Indeed, let ϕ ∈ C∞

c (Rk) be such that ϕ(xk) �= 0. Then
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F(δ(x1 − x2)ϕ)(ξ′
k
) =

∫
Rk−1

dy2;kϕ(y2, y2;k)e
−i(ξ′1+ξ′2)y2+ξ′3;k·y3;k , ∀ξ′

k
∈ Rk. (D.11)

Since ϕ is Schwartz class, repeated integration by parts in y2;k yields

∣∣∣F(δ(x1 − x2)ϕ)(ξ′
k
)
∣∣∣ �N

(
1 + |ξ′1 + ξ′2| + |ξ′3;k|

)−N

, ∀N ∈ N0. (D.12)

We consider two cases based on the values of ξ1 and ξ2.

I. If sgn(ξ2) = sgn(ξ1), then

|ξ1 + ξ2| ≥ max{|ξ1|, |ξ2|}, (D.13)

which implies that

(
1 + |ξ1 + ξ2| + |ξ3;k|

)−N

�N

(
1 + |ξ

k
|
)−N

. (D.14)

Hence, if ε > 0 is sufficiently small so that sgn(ξ′1) = sgn(ξ′2) for all ξ′
k
∈ B(ξ

k
, ε), 

then∣∣∣F(δ(x1 − x2)ϕ)(λξ′
k
)
∣∣∣ �N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞).

(D.15)
II. If sgn(ξ2) = − sgn(ξ1), then without loss of generality suppose that |ξ1| > |ξ2|. 

Then for ε > 0 sufficiently small, we have that there exists θ ∈ (0, 1) such that

|ξ′2|
|ξ′1|

≥ θ, ∀ξ′
k
∈ B(ξ

k
, ε). (D.16)

So by the reverse triangle inequality,

(
1 + λ|ξ′1 + ξ′2| + λ|ξ′3;k|

)−N

�θ,N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞).

(D.17)

Now suppose that (xk, ξk) ∈ Rk × (Rk \ {0}), ξ1 + ξ2 = 0, and ξ3;k �= 0 ∈ Rk−2. We 
claim that such a point is a regular directed point. We consider two cases based on the 
magnitude of |ξ2| relative to |ξ3;k|.

I. If |ξ1| ≤ |ξ3;k|, then for ε > 0 sufficiently small,

(
1 + λ|ξ′1 + ξ′2| + λ|ξ′3;k|

)−N

�N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞).

(D.18)
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II. If |ξ1| > |ξ3;k|, then for ε > 0 sufficiently small, there exists θ ∈ (0, 1) such that

|ξ′3;k|
|ξ′1|

≥ θ, ∀ξ′
k
∈ B(ξ

k
, ε). (D.19)

Hence,

|ξ′3;k| ≥
|ξ′3;k|

2 + θ

4

(
|ξ′1| + |ξ′2|

)
, (D.20)

which implies that

(
1 + λ|ξ′3;k|

)−N

�θ,N

(
1 + λ|ξ

k
|
)−N

, ∀ξ′
k
∈ B(ξ

k
, ε), λ ∈ [0,∞). (D.21)

Thus, we have shown that

WF(δ(x1 − x2)) ⊂ {(xk, ξk) ∈ Rk × (Rk \ {0}) : x1 = x2, ξ1 + ξ2 = 0, and ξ3;k = 0}.
(D.22)

For the reverse inclusion, we claim that (xk, (−ξ2, ξ2, 03;k)) ∈ Rk × (Rk \ {0}) is not a 
regular directed point for δ(x1 − x2). Indeed, this claim follows from observing that for 
a bump function ϕ ∈ C∞

c (Rk) about xk, we have that for all λ ∈ [0, ∞),

∣∣F(δ(x1 − x2)ϕ)(−λξ2, λξ2, 03;k)
∣∣ =

∫
Rk−1

dx2;kϕ(x2, x2;k). � (D.23)

We now seek to systematically give meaning to the product of distributions and, in 
particular, preserve the property that the Fourier transform maps products to convo-
lution. We accomplish this task with a useful criterion due to Hörmander–one which 
we make heavy use of in Section 5–for how to “canonically” define the product of two 
distributions. Before stating Hörmander’s result, we need a few technical preliminaries.

For a closed cone Γ ⊂ Rk × (Rk \ {0}), define the set

D′
Γ(Rk) := {u ∈ D′(Rk) : WF(u) ⊂ Γ}. (D.24)

Lemma D.9. u ∈ D′(Rk) belongs to D′
Γ(Rk) if and only if for every φ ∈ C∞

c (Rk) and 
every closed cone V ⊂ Rk satisfying

Γ ∩ (supp(φ) × V ) = ∅, (D.25)

we have that

sup
ξ ∈V

|ξ
k
|N |(̂φu)(ξ

k
)| < ∞, ∀N ∈ N. (D.26)
k
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Proof. See Lemma 8.2.1 in [35]. �
It is clear that D′

Γ(Rk) is a subspace of D′(Rk). We say that a sequence {uj}∞j=1 in 
D′

Γ(Rk) and u ∈ D′
Γ(Rk), we say that uj → u in D′

Γ(Rk) as j → ∞ if uj → u in the 
weak-* topology on D′(Rk) and for every N ∈ N,

sup
ξ
k
∈V

|ξ
k
|N |(̂φu)(ξ

k
) − (̂φuj)(ξk)| → 0, (D.27)

as j → ∞, for every φ ∈ C∞
c (Rk) and closed cone V ⊂ Rk such that (D.25) holds.

The next lemma shows that C∞
c (Rk) is sequentially dense in the space D′

Γ(Rk).

Lemma D.10. For every u ∈ D′
Γ(Rk), there exists a sequence uj ∈ C∞

c (Rk) such that 
uj → u in D′

Γ(Rk).

Proof. See Theorem 8.2.3 in [35]. �
Lemma D.11. Let m, n ∈ N and let f : Rm → Rn be a C∞ map. Define the set of 
normals of the map f by

Nf := {(f(xm), η
n
) ∈ Rn ×Rn : f ′(xm)T η

n
= 0}, (D.28)

where f ′(xm)T denotes the transpose of the matrix f ′(xm). Then the pullback distribution 
f∗u can be defined in one and only one way for all u ∈ D′(Rn) with

Nf ∩ WF(u) = ∅ (D.29)

so that f∗u = u ◦f , when u ∈ C∞(Rn) and for any closed conic subset Γ ⊂ Rn×(Rn\{0})
satisfying Γ ∩Nf = ∅, we have a continuous map f∗ : D′

Γ(Rn) → D′
f∗Γ(Rm), where

f∗Γ := {(xm, f ′(xm)T η
n
) : (f(xm), η

n
) ∈ Γ}. (D.30)

In particular, for every u ∈ D′(Rn) satisfying (D.29), we have that

WF(f∗u) ⊂ f∗ WF(u). (D.31)

Proof. See Theorem 8.2.4 in [35]. �
We are now prepared to state Hörmander’s criterion for the existence of the product 

of two distributions.

Proposition D.12 (Hörmander’s criterion). Let u1, u2 ∈ D′(Rk), and suppose that

WF(u1) ⊕ WF(u2) := {(xk, ξk) ∈ Rk × (Rk \ {0}) : ξ
k

= ξ1,k + ξ2,k,

(xk, ξ ) ∈ WF(uj) for j = 1, 2} (D.32)

j,k



142 D. Mendelson et al. / Advances in Mathematics 406 (2022) 108525
does not contain an element of the form (xk, 0). Then the product u1u2 can be defined as 
the pullback of the tensor product u1 ⊗ u2 by the diagonal map d : Rk → R2k. Moreover,

WF(u1u2) ⊂ WF(u1) ∪ WF(u2) ∪ (WF(u1) ⊕ WF(u2)). (D.33)

We refer to this definition of the product u1u2 as the Hörmander product.

Proof. See Theorem 8.2.10 in [35]. �
Sometimes it is easy to make an ansatz for an explicit formula for the product of two 

distributions, for example δ(x1−x2)δ(x2−x3). The next lemma is useful for verifying that 
the ansatz indeed coincides with the product distribution defined by Proposition D.12.

Lemma D.13. Let u, v ∈ D′(Rk). Then there exists at most one distribution w ∈ D′(Rk)
such that for every xk ∈ Rk, there exists φ ∈ C∞

c (Rk) which is ≡ 1 on B(xk, ε), for 
some ε > 0, and such that for every ξ

k
∈ Rk,

F(φu) · F(φv)(ξ
k
− ·) ∈ L1(Rk), (D.34)

the map

Rk → C, ξ
k
�→ (F(φu) ∗ F(φv))(ξ

k
) (D.35)

is polynomially bounded, and

F(φ2w)(ξ
k
) = (2π)−k/2

∫
Rk

dη
k
F(φu)(η

k
)F(φv)(ξ

k
− η

k
). (D.36)

Proof. We first claim that for any ψ ∈ C∞
c (Rk),

F(ψφ2w)(ξ
k
) = (2π)−k/2(F(ψφu1) ∗ F(φu2))(ξk) = (2π)−k/2(F(φu1) ∗ F(ψφu2))(ξk),

(D.37)
for all ξ

k
∈ Rk where the integrals defining the convolutions converge absolutely for ξ

k

fixed. Indeed, since ψ̂ is Schwartz and F(φ2w) is analytic,

F(ψφ2w)(ξ
k
) = (2π)−k/2

∫
Rk

dη
k
F(ψ)(ξ

k
− η

k
)F(φ2w)(η

k
)

= (2π)−k/2
∫
Rk

dη
k
F(ψ)(ξ

k
− η

k
)

⎛⎝∫
Rk

dη′
k
F(φu1)(ηk − η′

k
)F(φu2)(η′k)

⎞⎠,

(D.38)

where the integrals are absolutely convergent. Hence, by the Fubini-Tonelli theorem,
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∫
Rk

dη
k
F(ψ)(ξ

k
− η

k
)

⎛⎝∫
Rk

dη′
k
F(φu1)(ηk − η′

k
)F(φu2)(η′k)

⎞⎠
=
∫
Rk

dη′
k
F(φu2)(η′k)

⎛⎝∫
Rk

dηkF(ψ)(ξ
k
− η

k
)F(φu1)(ηk − η′

k
)

⎞⎠.

(D.39)

By the translation invariance of the Lebesgue measure,∫
Rk

dη
k
F(ψ)(ξ

k
− η

k
)F(φu1)(ηk − η′

k
) =

∫
Rk

dη
k
F(ψ)(ξ

k
− η′

k
− η

k
)F(φu1)(ηk)

= (F(ψ) ∗ F(φu1))(ξk − η′
k
)

= (2π)k/2F(ψφu1)(ξk − η′
k
), (D.40)

where the ultimate equality follows from Fourier inversion. Therefore,

(2π)−k/2
∫
Rk

dη′
k
F(φu2)(η′k)

⎛⎝∫
Rk

dηkF(ψ)(ξ
k
− η

k
)F(φu1)(ηk − η′

k
)

⎞⎠
= (F(ψφu1) ∗ F(φu2))(ξk). (D.41)

By symmetry, we have also shown that

F(ψφ2w)(ξ
k
) = (F(φu1) ∗ F(ψφu2))(ξk). (D.42)

Now suppose that w1, w2 ∈ D′(Rk) are two distributions such that there exist φ1, φ2 ∈
C∞

c (Rk) so that

F(φ2
1w1) = (F(φ1u1) ∗ F(φ1u2)) (D.43)

F(φ2
2w2) = (F(φ2u1) ∗ F(φ2u2)), (D.44)

where the integrals defining the convolutions are absolutely convergent for fixed ξ
k

and 
there exists N1, N2 ∈ N0 so that

sup
ξ
k
∈Rk

〈ξ
k
〉−N1

∫
Rk

dη
k

∣∣∣F(φ1u1)(ξk − η
k
)F(φ1u2)(ηk)

∣∣∣ < ∞ (D.45)

sup
ξ
k
∈Rk

〈ξ
k
〉−N2

∫
Rk

dη
k

∣∣∣F(φ2u1)(ξk − η
k
)F(φ2u2)(ηk)

∣∣∣ < ∞. (D.46)

Then by (D.37),
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Table 1
Notation.

Symbol Definition
xk or xi;i+k (x1, . . . , xk) or (xi, . . . , xi+k)
dxk or dxi;i+k dx1 · · · dxk or dxi · · · dxi+k

N or N0 natural numbers or natural numbers inclusive of zero
N≤i or N≥i {n ∈ N : n ≤ i} or {n ∈ N : n ≥ i}
Sk symmetric group on k elements
C∞

c (Rk) or D(Rk) smooth, compactly supported functions on Rk

S(Rk) or Ss(Rk) Schwartz space or bosonic Schwartz space on Rk: Definition 4.17
S(Rk; V) Schwartz functions on Rk with values in V: (2.51), (4.63)
S′(Rk) or S′

s(R
k) tempered distributions or bosonic tempered distributions on Rk

D′(Rk) distributions on Rk

L(E, F ) continuous linear maps between locally convex spaces E and F
dF the Gâteaux derivative of F : Definition 4.3
∇ or ∇s, ∇s,V , ∇s,C the real or symplectic L2 gradients: Definition 4.33 and Remark 4.34, 

Proposition 4.37, Proposition 4.40
∇1, ∇1̄, ∇2, ∇2̄ variational derivatives: (4.52), (4.77)
A

(k)
(π(1),...,π(k)) conjugation of an operator by a permutation: see (4.29)

Symk(f) symmetrization operator for functions: Definition 4.16
Symk(A(k)), Sym(A) symmetrization operator for operators: Definition 4.20
B±

i;j , Bi;j contraction operators: (2.34) (2.35)
φ⊗k or φ×k k-fold tensor or cartesian product of φ with itself: (4.27) or (4.28)
ωL2 , ωL2,V , ωL2,V L2 symplectic forms: (4.47), (4.68), (4.80)
AS , AS,V , AS,C see (4.50), (4.70), (4.83)
{·, ·}L2 , {·, ·}L2,V , {·, ·}L2,C L2 Poisson brackets: (4.51), (4.72), (4.84)
(G∞, [·, ·]G∞ ) Lie algebra of observable ∞-hierarchies: see discussion around Propo-

sition 2.3
(G∗

∞, A∞, {·, ·}G∗
∞

) Lie-Poisson manifold of density matrix ∞-hierarchies: (2.29) and dis-
cussion around Proposition 2.5

wn, wn,(ψ1,ψ2) recursive functions: (1.22), (6.31)
w(k)

n ; w(k),t
n,j , w(k),t

n,j′ k-particle component of wn: (6.2); partial transposes of w(k)
n : 

Lemma 6.5
In, Ĩn, Ib,n involutive functionals: (1.23), (2.50), (2.52)
W̃n the unsymmetrized operators: (2.36)
Wn,sa the self-adjoint operators: (5.74)
Wn the bosonic, self-adjoint operators: (2.44)
Hn the n-th Hamiltonian functional: (2.45)
Tr1,...,N generalized trace: Definition C.5
Trk+1,...,N generalized partial trace: Proposition C.9
WF (u) wave front set of a distribution u: Definition D.4

F(φ2
1φ

2
2w1) = (2π)−k/2F(φ2) ∗ F(φ2φ

2
1w1) = (2π)−k/2F(φ2) ∗ (F(φ1u1) ∗ F(φ1φ2u2))

= (2π)−k/2F(φ2φ1u1) ∗ F(φ2φ1u2), (D.47)

where the ultimate equality is justified since F(φ2) is a Schwartz function and the fact 
that there exists some N ∈ N so that

sup
ξ
k
∈Rk

〈ξ
k
〉−N

∫
Rk

dη
k

∣∣∣F(φ1u1)(ξk − η
k
)F(φ1φ2u2)(ηk)

∣∣∣ < ∞, (D.48)

which is a consequence of (D.45). Similarly,

F(φ2
1φ2w2) = (2π)−k/2F(φ1φ2u1) ∗ F(φ1φ2u2), (D.49)
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which shows that F(φ2
1φ

2
2w1) = F(φ2

1φ
2
2w2). By a localization argument (see, for in-

stance, Theorem 2.2.1 in [35]), it follows that w1 = w2 in D′(Rk), completing the proof 
of the lemma. �

Lastly, we record some basic properties of the product of two distributions, when it 
exists.

Proposition D.14 (Properties of product). The following properties hold:

(a) If f ∈ D(Rk) and u ∈ D′(Rk), then the usual definition of the fu coincides with 
Proposition D.12.

(b) If u, v, w ∈ D′(Rk) and the products uv, (uv)w, vw, and u(vw) all exist, then 
u(vw) = (uv)w. Furthermore, if uv exists, then vu also exists and uv = vu.

(c) If u, v ∈ D′(Rk) have disjoint singular supports, then uv exists and is given by the 
product distribution guaranteed by Proposition D.3.

(d) If u, v ∈ D′(Rk) and uv exists, then supp(uv) ⊂ supp(u) ∩ supp(v).

Proof. See Theorem IX.43 in [67]. �
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