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ABSTRACT Morphology changes in cross-linked actin networks are important in cell motility, division, and cargo transport.
Here, we study the transition from a weakly cross-linked network of actin filaments to a heavily cross-linked network of actin
bundles through microscopic Brownian dynamics simulations. We show that this transition occurs in two stages: first, a compos-
ite bundle network of small and highly aligned bundles evolves from cross-linking of individual filaments and, second, small bun-
dles coalesce into the clustered bundle state. We demonstrate that Brownian motion speeds up the first stage of this process at a
faster rate than the second. We quantify the time to reach the composite bundle state and show that it strongly increases as the
mesh size increases only when the concentration of cross-links is small and that it remains roughly constant if we decrease the
relative ratio of cross-linkers as we increase the actin concentration. Finally, we examine the dependence of the bundling time-
scale on filament length, finding that shorter filaments bundle faster because they diffuse faster.

SIGNIFICANCE Eukaryotic cells contain an actin cytoskeleton that gives the cell its structure and controls its mechanical
properties. In this work, we consider two main components of the cytoskeleton, actin fibers and transient cross-linkers, and
show how the action of the cross-linkers can transition the filament structure from a homogeneous meshwork of filaments,
which flows easily, to a network of tightly cross-linked bundles, which has a high resistance to deformation. We discuss
how Brownian motion and cross-linking combine to yield a timescale for the bundling process and quantify how this
timescale depends on the filament length and concentration and the amount of cross-linking protein in the system.

INTRODUCTION

The structure and mechanical properties of eukaryotic cells
are largely controlled by the actin cytoskeleton, which con-
tains a network of actin filaments interconnected by protein
cross-linkers (CLs) (1,2). Changes in cell mechanical prop-
erties, from more viscous to more elastic, relate to corre-
sponding cytoskeletal morphology changes, from a weakly
cross-linked network of actin filaments to a network of
clustered bundles (3,4). The formation of a clustered bundle
state has previously been observed in actin suspensions with
CLs, such as filamin (5,6), scruin (7), and a-actinin (8,9). In
all of these systems, increasing the concentration of the
cross-linking protein progressively transitions the steady
state from a homogeneous meshwork, where filaments are
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distributed isotropically, through a composite bundle state,
where bundles are composed of only a few filaments, to
the clustered bundle state, where bundles can be separated
by distances as large as 100 um (5,8).

Usually, the bundled network steady state is the result of a
balance between cross-linking and other mechanisms that
break up bundles. Indeed, in our previous work (3), we
introduced actin filament turnover (to model [de]polymeri-
zation) and found that the steady-state network morphology
is the result of a competition between actin bundling and
actin turnover. In particular, we observed either a homoge-
neous filament meshwork or network of bundles embedded
in the filament meshwork, depending on the relationship
between the turnover time and the timescale of filament
bundling. In most of this paper, we will disable filament
turnover and study how the timescale of bundling, which
we define approximately as the time to reach the composite
bundle state, is affected by the underlying microscopic
parameters and the Brownian motion of the filaments. Quan-
tifying this timescale is important because its competition

uuuuuuu


mailto:om759@nyu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2022.02.030&domain=pdf
https://doi.org/10.1016/j.bpj.2022.02.030

with filament turnover rate determines the steady-state
network structure, as we will demonstrate.

Although it was observed over 30 years ago (6) that
Brownian motion drives bundle formation, its precise
mechanism for doing so remains unclear. For instance,
Hou et al. (6) speculated that rotational diffusion aids in
bundling, as filaments that are linked at one location rotate
until other locations can be linked together, resulting in a
bundle. More recently, it was shown that bundling is most
efficient in a fluid-like environment, where actin filaments
can diffuse more readily (10,11). At minimum, these studies
imply that bundling is more difficult without Brownian
motion, but could actin filaments still arrange into bundles
without it?

The importance of Brownian motion in bundling can be
seen in experiments where filament length varies or when
polymerization and bundling are initiated simultaneously.
In this case, shorter filaments form a more stable clustered
bundle state (12,11), with the shortest filaments organizing
into spindle-type structures (13,14). In systems where
polymerization and bundling happen simultaneously, it has
been shown that the formation of the clustered bundle state
can be prevented via an increase in the actin polymerization
rate (10). Mean field theory and simulations show that the
slow down in bundling at high polymerization rates could
be driven by a combination of steric interactions and the
Brownian motion of the fibers being constrained by CLs
(11). It remains unclear, however, to what extent the attenu-
ation of bundling is driven by sterics versus cross-linking
and even whether a composite bundle state can form if the
length of the filaments is larger than the initial mesh size.

An underlying assumption in conceptual explanations of
bundling is that sufficient CL is available to cross-link
filaments once they move closer together. The literature is
conflicted, however, on exactly how much CL is sufficient.
For instance, in the same experimental system of filamin
and actin, some authors report a constant ratio of CL to actin
necessary for bundling (6,9), although others report that the
relative amount of CL necessary for bundling decreases as
actin concentration increases (5). There is also a nontrivial
effect of temperature on the amount of CL required for
bundling; with higher CL-to-actin ratios, bundling can occur
at lower temperatures (15). Experimental investigation of
the precise amount of CL necessary for the clustered bundle
state to form is difficult since the observation of bundles is a
qualitative phenomenon with a subjective definition and
therefore varies based on the tools used. Simulations can
provide a more definitive analysis of how bundling depends
on CL concentration.

Two simulation approaches have been used to theorize
about the bundling of actin filaments. One of them was to
use equilibrium thermodynamics to find conditions at which
the free energy, consisting of translational and rotational
entropy of rod-like filaments and enthalpy and entropy of
the CL distribution, is lower in the bundled state than in
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the unbundled mesh (16,17). The important results of
these theories were that a critical CL concentration is
needed for the bundling phase transition and that ultimately
one giant bundle has to form, but transiently, the filaments
could be kinetically trapped in multiple bundles (16,18).
However, actin bundling is not taking place in thermody-
namic equilibrium, and several modeling studies harnessed
the Brownian dynamics approach. One of the earliest (19)
of these studied the roles of translational and rotational
diffusion in bundling of uniformly laterally attracting fila-
ments. A very detailed model in three dimensions in the
presence of polymerization, steric interactions, and angular
stiffness of the filament-CL bond (20) revealed how the
morphology of the bundled network scales with mechanical
and biochemical parameters. Last, but not least, a combina-
tion of scaling estimates and Brownian dynamics simula-
tions with simplified CL properties revealed multi-scale
transitions from the isotropic to bundled phase (11). Most
of these previous studies focused on the actin network struc-
ture rather than on the temporal evolution of the bundled
state.

In this paper, we use agent-based simulations to quantify the
evolution of the clustered bundle state from a homogeneous
meshwork of filaments and examine the role of Brownian mo-
tion therein. We begin by describing our computational
methods (3,21). Then, we demonstrate how a composite
bundle state, and subsequently a clustered bundle state, evolve
from a homogeneous meshwork, similar to what is observed in
experimental networks (4). We introduce a timescale, 7., that
quantifies the time to reach the composite bundle state and
show that the dynamics on shorter, but not so much on longer,
timescales are accelerated by Brownian motion. Although we
do not consider steric interactions, we demonstrate that the
strong cross-linking present at later times is sufficient to arrest
the bundling process. We also show that the bundling time-
scaleis limited by filament diffusion for smaller CL concentra-
tions, although for larger CL concentrations, this diffusion
has a minor effect. We find that the relative CL-to-actin ratio
required to achieve the same bundling time decreases with
increasing actin network mesh size. Finally, we show that
the diffusion effect explains the faster bundling for shorter
filaments. We discuss some remaining questions, and possible
extensions of our model necessary to answer them, in the
conclusions.

MATERIALS AND METHODS

We begin with a review of the kinematics of inextensible fibers, slender
body hydrodynamics, and our model of dynamic cross-linking (3,21). In
our model, actin fibers are represented by one-dimensional curves whose
shape, position, and orientation evolve over time under the action of a
network of dynamic CLs. The CLs are modeled as elastic springs between
appropriately separated filament pairs and are dynamic because they appear
and disappear with characteristic rates. Steric interactions are neglected, as
is the chirality and twist elasticity of the actin filaments, and our model does
not track CLs as individually diffusing entities. Having studied the role of
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hydrodynamics in detail in previous work (3), in this paper, we neglect hy-
drodynamic interactions between distinct filaments. Lastly, when Brownian
motion is included, the filaments are approximated as rigid and bending
fluctuations are neglected, since the persistence length of actin (22) is at
least 10 times the length of the fibers we consider.

After reviewing our formulation from previous work (3,21), we introduce
new material pertinent to the simulation of actin bundles, including how we
modify our algorithm to simulate rigid fibers and to account for their trans-
lational and rotational diffusion. Once we introduce thermal motion, a
consistent model also requires us to keep the CL dynamics in detailed bal-
ance, i.e., that the binding and unbinding dynamics are in equilibrium with
respect to the Gibbs-Boltzmann distribution. We account for this via a sim-
ple change to the rates of CL binding. Finally, we discuss how we use a
time-splitting algorithm to evolve the system in time. Although the CL
binding and unbinding dynamics and filament evolution are treated in a
first-order-accurate manner, we use a higher order integrator for the Brow-
nian term that can more accurately preserve fluctuation-dissipation balance.

Dynamic cross-linking of semiflexible,
inextensible fibers

This section reviews our algorithm for simulating the dynamic cross-linking
of semiflexible fibers (3,21), beginning with the kinematics of inextensible
fibers and slender-body hydrodynamics (21) and concluding with our model
of dynamic cross-linking (3). As in our previous work (3,21), we use a pe-
riodic boundary condition in all three dimensions to mimic a bulk
suspension.

Semiflexible, inextensible fibers

We represent the centerline of each fiber by the Chebyshev interpolant X (s),
where se€ [0,L] is arclength and L is the fiber length. Likewise, the corre-
sponding fiber tangent vector is represented by 7(s) = X,(s). Because
the fibers are inextensible, the tangent vector should have unit length for
all time, 7(s,¢)+7(s,7) = 1, for all s and ¢. Differentiating this constraint
with respect to time, we obtain 7,+7 = 0, so that the velocity of the filament
centerline can be parameterized as (21)

Us) =X,(s) = U+ /Os(al(s')nl(s') + ay(sHny(s')) ds' -
= (K[X]a)(s),
(1)

where 7(s),n; (s), n2(s) are an orthonormal coordinate system at each s and
a;(s) and a;(s) are two unknown functions. Eq. 1 defines a continuum ki-
nematic operator /C that parameterizes the space of inextensible motions
(Sec. 3 in (21)).

To close the system and solve for @ = {«ay, az,v}, we need to state the
forces acting on the fiber centerline. To enforce the inextensibility
constraint, we introduce a Lagrange multiplier force density A(s,?). In addi-
tion to the constraint force, the fibers are also subject to a bending force with
density f“[X] = — kX5 Where K is the bending stiffness, and an external
force density that comes from any attached cross-links, denoted by f (L),
The total force density at every instant in time is therefore f = A+ f“+
f (L), Introducing the hydrodynamic mobility operator M [X] that gives ve-
locity from force (density), the evolution equation of the fiber centerline can
be written as

[X] (fK [X] + A +f(CL))7 (2)

subject to the “free fiber” boundary conditions (23).
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X (s = 0,1) = X5(s = 0,1) = 0, 3)
Xo(s = L) = Xoo(s = L,1) = 0.

We solve Eq. 2 for the kinematic coefficients & and constraint forces A.
The adjoint condition £*A = 0 closes the system of equations, and encodes
the principle of virtual work that constraint forces A do no work for any in-
extensible motion of the fiber centerline (Sec. 3.4 in (21)). We still have to
discuss the evaluation of M([X] and Y, which we do next.

Mobility evaluation

In previous work (3,21), we utilized three different approaches to evaluate
the mobility operator M [X]. All of these approaches are based on tradi-
tional slender-body theories (24,25), which relate the velocity of a slender
filament in Stokes flow to the force density exerted on its centerline. The
total velocity at a point on the filament can be broken into three parts:
that from force concentrated near the point (the “local drag” part, which
dominates as the fiber becomes infinitely slender), that from the rest of
the filament (intra-fiber hydrodynamics), and that from forcing on other fil-
aments (through hydrodynamic interactions mediated by the fluid medium).
The first two of these are simple to evaluate, given that they can be
computed on each filament separately, but the third is expensive to compute
because it involves all-to-all interactions through the fluid.

We have already studied the role of nonlocal hydrodynamic interactions
in previous work (3), where we found that the time required to reach a
particular bundled state is underestimated by at most 10% — 20% when in-
ter-fiber hydrodynamic interactions are dropped. In this paper, our interest
will be in how parameters other than hydrodynamic interactions affect the
bundling time. Therefore, to improve computational efficiency, we will
ignore hydrodynamic interactions between distinct filaments and evaluate
the mobility by including only the local drag part and intra-fiber hydrody-
namics. Specifically, the mobility operator on each fiber is given by
nonlocal slender-body theory (24,25).

(8mu)U(s) = (8mu) (MIXIF)(s) = (el
+(I- 37() (s)))()

o[ (e

5
)

where r(s,s’) = X(s) — X(s'), r = ||r||, ¥ = r/r, and c(s) is a local drag
coefficient, which has a logarithmic dependence on the fiber radius a.
Away from the fiber endpoints, we use the classical result (24).

«(s) = In (@) )

c(s) (I+7' ()7 (s))

a

Near the endpoints, we regularize Eq. 5 over a distance 6 = 0.1L, as dis-
cussed in (Sec. 2.1 in (21)). The choice of mobility in Eq. 4 allows us to
simulate the evolution of bundles faster and prevents possible numerical
problems that could result when evaluating the nonlocal flows induced by
hundreds of filaments in a bundle on each other (3).

Evaluation of £t

We use a stochastic simulation algorithm to update the locations of the dy-
namic CLs. At each time step, this algorithm, which we discuss in the next
section, gives the fiber indices i and j that are linked by each link, as well as
the arclength coordinates s7 on fiber i and 7 on fiber j, where the link is



bound. Letting K be the link stiffness (units force/length) and ¢ the CL rest
length, we define the force density on fiber i due to the CL as

V4
1— _ _ ) sfsf
IXO(s7) = X9 (s7)]] s =s0)

/()L(X(i)(s) _X(/)(s’))éh (s’ —s}‘) ds',

f6s) = K.

1

(©6)

where 0, is a Gaussian density with standard deviation ¢. Although ¢ — 0
corresponds to a standard spring point force, we use a finite ¢ to preserve
smoothness for our spectral numerical method. For N = 16 points per
fiber, which we use throughout this paper, we use o/L = 0.1 (21). As dis-
cussed in (3), this model is an approximation to the complex elasticity of
a-actinin and is based on experimental observations that the torsional stiff-
ness of the a-actinin-actin bond does not influence the dynamics of that
bond (26).

Dynamic cross-linking

Our model of dynamic cross-linking is discussed in detail in (3). Briefly, we
discretize each fiber into N, uniformly spaced “binding sites” with distance
As, =L/(N,—1) between the sites. We make the assumption that the
diffusion of individual CLs is sufficiently fast that it can be coarse grained
into a single binding rate k,, with units 1/(length x time). This means that a
CL end can bind to a single discrete fiber-binding site with rate ko, As, per sec-
ond. In the absence of Brownian motion, as in (3), when one end of the CL is
bound, the second end can bind to a nearby fiber with rate k., s. By “nearby” we
mean a binding site on a distinct fiber that is within a distance interval

kT
h =\/=
where ¢ - @)

(0 — 51,6+ ol),
from the first bound end, where / is the CL rest length and 6/ is a measure of
the fluctuations in spring length.

Each of the binding reactions has a reverse reaction: a CL with both ends
bound can have one end unbind, leaving one end bound, with rate kg, and
a CL with one end bound can unbind with rate k. to have zero ends bound.
There are thus four possible reactions, which we simulate stochastically
using a version of the standard stochastic simulation/Gillespie algorithm
(27,28). The details of our implementation can be found in (3).

In the clustered bundle states that we simulate here, the number of links
attached to a given site can grow without bound. To prevent this, we intro-
duce a CL width ¢,, = 20 nm (29) and set the maximum number of bound
CLs at each site to [As, /c,]. We implement this in the stochastic simula-
tion algorithm using rejection: if a binding event is selected and the binding
site is full, we simply move on to the next possible event.

Modifications for rigid fibers

To straightforwardly account for thermal fluctuations, we will consider the
case when the fibers are rigid, so that the only possible fluctuations are
translational and rotational diffusion. To simulate rigid fibers, we modify
the kinematic operators K[X] and K*[X] in Eqs. 1 and 2. For rigid fibers,
we introduce =V = {U,, Q} to parameterize the space of rigid body mo-
tions, where U, = dX_/dt is the translational velocity of the fiber center
X, =X(L/2) and Q is the angular velocity of the fiber about its center.
This gives the fiber velocity

U(s) = (KV)(s) = U.+Q x (X—-X.), (8)

which reduces the constraint of virtual work to the fact that A produces no
net force and torque,
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/OL A(s) ds

KA = L =0. 9
/0 (X(s) — X.) x A(s) ds

We then solve the system (2) with X, and K replacing K and £*. In the
supporting text, we show how to easily generalize our discretization for in-
extensible fibers (21) to straight rigid fibers by restricting the number of
Chebyshev modes included in the kinematic operator C to only the first one.

Because the fibers are rigid, we can formulate the hydrodynamic mobility
as a 6 X 6 mobility matrix N[X], which computes the fiber motion due to a
total force F and torque T,

Ny Ny F\ F
(5 R )

When the fibers are straight, as in this work, and we measure the mobility
about the geometric center of the fiber, the cross translation-rotation and
rotation-translation mobilities vanish, N, = N, = 0. We recall that, in
this work, we neglect hydrodynamic interactions between fibers, so the
mobility matrix N can be computed for each fiber separately.

The mobility N can be obtained numerically from the slender-body
mobility matrix M (see Sec. 4.2 in (21) for the discretization) via the Schur
complement (30,31)

N= (kM 'K)". (11)

Note that the pseudo-inverse is required because applying a torque about
the axis of a straight fiber produces no net motion (other than twisting,
which we do not account for here). For straight fibers with constant tangent
vector 7, by symmetry, the mobility N must be of the form

N, = 7 (I —77). (12)

1
- (a(e) +(e)7r), T

Ny =
0

In Table S1, we tabulate the coefficients «, 3, and vy for biologically rele-
vant €. See also (32) for semi-analytical approximations.

Thermal fluctuations with rigid fibers

For Brownian dynamics simulations, we need to solve the overdamped Ito
Langevin equation

%‘ = M(A+f ) + /2T KN'PW,

= K.NKf'Y +\/2kT K,N'*W

13)

where W(1) is a vector of six independent and identically distributed white-
noise processes and Nl/z(Nl/z)T = N. The last equality, which puts the
overdamped Langevin equation into the more traditional symmetric form,
follows from the fact that the deterministic velocity can be written using
Egs. 9 and 10 as

U=M@A+fY) =Kv

= KNK; (A+£ D) = KNKfF. (1

Note that, because the fiber mobility is measured around the obvious
geometric center, there is no stochastic drift term in the resulting Ito over-
damped Langevin Eq. 13 (33,34). In our Brownian dynamics simulations
with straight fibers, we use the precomputed values of «, 8, and 7y in

Biophysical Journal 121, 1230-1245, April 5, 2022 1233



Maxian et al.
Eq. 12 to generate Ntlt/ % and N;,/ 2 from the fiber tangent vector T according
to Eq. S10 in the supporting text.

The random displacement of a fiber over a time interval T can be sampled
the following way:

1. Draw a vector W of six independent and identically distributed standard
Gaussian variates and sample the rigid velocity,

(U"> = \/Zk—BTNl/ZW. (15)
Q T

2. Update the fiber by translating its center by U.7 and rotating the fiber
about its center by an oriented angle Q.

Note that, for straight fibers, one can simplify the formulation of Brow-
nian dynamics; the formulation presented here applies to curved rigid fibers
as well.

Keeping the CL dynamics in detailed balance

When we account for thermal translation and rotation of the fibers, we
also want to be sure that the binding and unbinding of the links is
consistent with detailed balance, which is not the case for the constant
rates we introduced earlier. Let C denote a configuration of C links
(list of fiber pair connections) and x denote the configuration of fibers
(binding site positions). The desired Gibbs-Boltzmann equilibrium dis-
tribution is

K. (4 =0y
Pe(C,x) = C(C)Hexp —7%

keC

) 16)

where ¢ is the length of link k& and {(C) determines the probability to
observe the cross-linking configuration C. Now consider a transition to or
from a state C’ with one added link C’, which has length ¢/ . Then, at equi-
librium, the transition between the two states must obey

Peq(Cvx)kon,s(ék/) - Peq(c/wx)koff,s(ek/)' (17)

Substituting Peq from Eq. 16 into Eq. 17, we obtain the constraint of
detailed balance
K. (¢ —¢)

Kons(l) _ -5 ] a8)

- () exp
kotes(G')  €(C) 2 kT

To satisfy Eq. 19 for every choice of C and C’ with binding and unbind-
ing rates that only depend on spring length and not C and C’, we must
have

0 2
koms(gk/) _ kon‘s exp K. (ek, — Z) 19)
N o A T . |
koits (0') kG 2 kT
where kgnvs and kgffvs are the transition rates for a link at rest length.
To satisfy Eq. 19, we maintain a constant ko (¢ ) = kgff.s and set
K. (¢ —0)?
N _ 1.0 c k
kon,s (ék ) = kon’sexp — 7 kB—T . (20)

Other choices are possible; for example, the rate of unbinding can depend
on the stretch (35,36). To efficiently search for possible binding pairs, we
approximate the set of all binding combinations by setting the maximum
link stretch in Eq. 7 to be two standard deviations of the Gaussian in

Eq. 20, i.e., 60 = 2\/kgT/K,.
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Temporal integration

We employ a time-splitting approach to evolve the cross-linked actin
network. At each time step, we have three processes to simulate: the
thermal diffusion of the fibers, the binding and unbinding of the dynamic
CLs, and the deterministic evolution of the fiber positions. The last two
of these steps are laid out in full in (3), where we employ Lie splitting to
first process binding and unbinding events and then use the method
developed in (21) to evolve the fiber positions in an inextensible (or rigid;
see supporting text section A) way. Here, we use the first-order accurate,
backward Euler version of the deterministic fiber update, which is discussed
in (3).

It remains to be determined how we will treat the Brownian update. We
use a second-order Strang-type splitting scheme, where during each time
step of duration At we:

1. Randomly displace and rotate the fibers over a time interval T = At/2
using the algorithm around Eq. 15.

2. Update the cross-link attachments (using the stochastic simulation
algorithm) and perform a deterministic fiber update, both over a time
interval Az, using the method of (3).

3. Randomly displace and rotate the fibers over a time interval 7 = At/2
using the algorithm around Eq. 15.

Network statistics

We quantify the evolution of the cross-linked actin network by examining
the connectivity of the fibers in two ways. First, given the total number of
CLs in the system C, we compute an average link density per fiber via the
formula “Link density” = 2C/(LF). Second, we map the network to a
connected graph to study how the structure evolves in time (13). We define
a “bundle” as a connected group of at least Fp = 2 filaments, where a
connection between two fibers is a pair of links with anchoring locations
at least dpung = L/4 apart on each fiber (3), so that the links limit the fibers’
rotational degrees of freedom. We then define two measures of the degree of
bundling in the system. The first measure is the bundle density, which is the
number of bundles per unit volume B /LZ where B is the number of bundles
and L, is the length of the simulation cell. The second measure is the
percentage of fibers in bundles, defined as the percentage of filaments
connected to at least one other filament by two links at least dpyng = L/4
apart. The bundle density statistic preferentially weights smaller bundles,
since a bundle of two filaments is counted the same as a bundle of five
filaments, although the percentage of fibers in bundles is independent of
Fp (one can think of a bundle of Fp filaments as contributing a weight
~ 1/Fj to the bundle density but a weight ~ Fj to the percentage of fibers
in bundles.)

For a bundle of b filaments, we define an orientation parameter as the
maximum eigenvalue of the matrix (13).

0=5 > [ e en

The orientation parameter takes values in [1/3, 1], with 1 being the value
for a group of straight fibers with the same tangent vector. Given informa-
tion about the bundles, we compute an average bundle orientation
parameter by taking an average over bundles with at least two filaments,
weighted by the number of filaments in each bundle.

Throughout this paper, we will quantify the concentration of fibers in

terms of the initial mesh size (37) of the suspension, £, = 4 /Lf, /(FL) (pa-

rameters are defined in Table 1). Note that this estimate for ¢,, applies to
non-bundled (disordered) suspensions of fibers, so really when we use
4, we mean the initial mesh size, before the bundling process beginning.
We will operate in the regime where the fluctuations in the CL rest length
as defined in Eq. 7, which are of magnitude 6/ = 20 nm (see parameters in
Table 1), are several times smaller than the typical filament spacing, which
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TABLE 1 Simulation parameters

Parameter Definition Value Unit Notes

a fiber radius 4 nm (38)

L fiber length 0.5,1 wm (39,40)

F number of fibers 200-1,600

Ly simulated volume’s extent 2-4 pm cubic unit cell

m cytoplasm viscosity 0.1 Pa-s 100 x water (cytoplasm) (41)
K fiber bending stiffness 0.07 pN«um? 17 um persistence length (22)
K. CL spring stiffness 10 pN/pm (42)

l CL rest length 50 nm 29)

kon CL first end binding rate 5 1/(um-s) 3)

kon,s CL second end binding rate 50 1/(umes) kon,s > kon, not measured
kot CL (one end bound) unbinding rate 1 1/s (43,44)

Kot s CL (both ends bound) unbinding rate 1 1/s kotrs = Koff

Cy actin-binding site width 20 nm 29)

kT thermal energy 4x107° pN-um 25°C

N number of Chebyshev points 16 ((21), Sec. 6.3.1)

As, binding site spacing 0.026 pm 3)

At time step size 10-* S limited by K.

is at most the initial mesh size ¢,, = O(100) nm and at least the cross-linker
length of 50 nm.

RESULTS AND DISCUSSION

We begin this section by discussing the kinetics of bundling for
non-Brownian, semiflexible fibers and establish that semiflex-
ible fibers with a persistence length similar to that of actin (22)
can be well approximated by rigid filaments. We then show
that rigid, Brownian fibers have similar kinetic behavior,
except that the Brownian motion (translational and rotational
diffusion) speeds up the timescale of bundling.

After these preliminaries, we use our simulations to clarify
and explain some of the experimental results on the dynamic
formation of cross-linked actin bundles. First, we show how
the timescale needed to reach the composite bundle state
depends on the fiber concentration (initial mesh size) and
concentration of CLs (which controls k,, in our model). We
show that the bundling process is slower when the actin or
CL concentration is lower but that bundling can still occur
at low actin concentration, provided there are enough CLs
available to bundle the fibers, and that the relative amount
of CLs needed for a fixed bundling time decreases as actin
concentration increases. Second, we show that the experi-
mental result that bundling occurs faster for shorter fibers
(10,12) can only be reproduced in systems where we consider
translational and rotational diffusion. Unless otherwise
noted, we will use the simulation parameters listed in Table
1. As discussed in (3), the cross-linking parameters are
chosen to mimic a-actinin, although we will compare our re-
sults with systems with different CLs, such as filamin (5).

Kinetics of bundling for non-Brownian,
semiflexible fibers

We begin with simulations in a system of initial mesh size
£, = 0.2 um, which translates to F' = 200 filaments in an
Ly =2 pm domain, F = 675 filaments in an L; = 3 pum
domain, and F = 1,600 filaments in an L; = 4 pm domain.

The mesh size we use is of the same order of magnitude as
that in cell cortex in vivo (45) and corresponds to 10-15 pM
G-actin concentration often used in in vitro experiments
(8,9). In Fig. S2, we show that the statistics of the bundling
process are insensitive to the domain size up to the point
where there is mass coalescence of almost all the fibers in
the simulation cell. For this reason, we will consider results
from only one set of simulations, the one with F = 675 fil-
aments and L; = 3.

We initialize the set of F filaments with random locations
and orientations and then, during each time step, we evolve
the fibers by updating the dynamic CLs and then updating
the fiber positions in sequential order. Fig. 1 shows how
the bundling process evolves in small and large systems.
On the microscopic scale, filaments that are initially not
parallel are linked by CLs, which pull them closer together
and allow more links to bind. The binding of additional links
leads to the alignment of filaments. Note that the key to the
bundling process is the flexibility of the CL, in particular,
rapid thermal fluctuation of the CL length, which is present
implicitly in our model from Eq. 7. Because the CLs are
small, fluctuations in their length occur on a timescale that
is much faster than other characteristic timescales, and so
we do not model the fluctuations explicitly. The combina-
tion of the CLs’ elasticity and length fluctuations is crucial,
as the length fluctuations effectively allow the CLs to “find”
the neighboring fibers and bind them, whereupon the
elasticity of the CL aligns the fibers, making further cross-
linking faster.

This process plays out on a larger scale in snapshots from
the simulations, shown in Fig. 1 atr = 5, 10, 20, and 40 s.
The initial stage of bundling (first two snapshots) is charac-
terized by bundles of a few straight, aligned filaments,
which is similar to the experimentally observed composite
bundle state (4) and the three-filament bundle shown at
the top of Fig. 1. Later times (bottom two frames) show coa-
lescence of these smaller bundles into larger bundles, with
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A

some curvature appearing in the fibers in the final frame.
By t = 40 s, there are only a few bundles made of coalesced
smaller bundles and the network resembles the experimen-
tally observed clustered bundle state (4), which ap-
proaches the low energy state consisting of a single
aligned bundle (46).

To quantify our observations, in Fig. 2, we plot the mean
link density (2C/(LF); see the network statistics section),
bundle density (B/L)), percentage of fibers in bundles,
mean bundle alignment parameter, and mean and maximum
bundle size throughout the bundling process for three values
of fiber stiffness: k = 0.07 (the value for actin), k = 0.007 (fi-
bers 10-fold less stiff), and k = o (rigid filaments). In all
systems, we see the number of links per fiber grow in time
to approach the maximum of [As, /c,] x L/As, = 80,
whereas the bundle density in all systems exhibits a peak
around a critical time 7, = 16 s. At this time, the other panels
of Fig. 2 tell us that 60% of the fibers are already in bundles,
which have a mean alignment parameter larger than 0.9.
Fig. S3 gives a more precise look at the composition of the
bundles, which are the same for the three values of stiffness
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FIGURE 1 Bundling dynamics on small and
large scales. Top: a small-scale bundling process
with three filaments and snapshots taken at times
t=20,2,4,6,8, and 10 s. Bottom: snapshots of
the bundling process taken (from left to right and
top down) at 7 = 5, 10, 20, and 40 s for semiflexible
fibers with stiffness k = 0.07 pN+um? are shown.
Fibers in the same bundle are colored with the
same color. The two networks at the middle are
before the coalescence transition time 7.=16 s,
whereas the two networks at the bottom are after
the coalescence time. To see this figure in color,
go online.

when t<7.:att = 7., most (>50%) of the fibers are in bun-
dles of size 11 or less, with a small percentage (<10%) in
bundles of size 10-20 and the other 40% of the filaments
notin bundles at all. Thus, a time 7. into the bundling process,
most of the fibers are in small, highly aligned bundles, as we
see in the snapshots in Fig. 1, and the dynamics up to this
point are roughly independent of the fiber stiffness. Based
on Fig. 1, we can also think of 7, as the time required to reach
the composite bundle state. For this system of non-Brownian
filaments, Fig. 2 shows 7. = 16 s corresponds to the timescale
of increase of the percentage of fibers in bundles (see middle
left frame), meaning it is also the timescale on which
the fibers’ rotational degrees of freedom are arrested or
constrained.

After the coalescence time, we see a transition to coales-
cence of bundles, and the flexibility of the fibers comes into
play. Fig. 2 shows that the number of bundles is declining
and the mean bundle alignment is dropping for >7., which
implies that bundles are forming with non-aligned fibers.
The mean and maximum bundle sizes also start to grow,
which again means that small bundles are coming together
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to form the larger ones we see in the bottom row of Fig. 1.
Fig. S3 shows that, by ¢ = 60 s, at least 75% of the fibers are
in bundles of size 30 or larger. It is in this stage where the
flexibility of the fibers can become important: when k =
0.007 (fibers 10-fold less stiff than actin), coalescence of
bundles occurs faster than in systems with k = 0.07 or sys-
tems with rigid fibers, since in the former case, the fibers are
more compliant and can be linked together more easily by
deforming. That said, when k = 0.07 (persistence length
17 pm), Figs. 2 and S3 show that the dynamics throughout
the bundling process are well approximated by rigid fila-
ments. This analysis is of course limited by the fiber length
we have chosen: in particular, we have shown that, in the
absence of Brownian motion, rigid filaments are a good
approximation to semiflexible actin filaments for fibers of

length <1 pum, which are most common in vivo. The
approximation will be worse as the filament length gets
larger. Henceforth, we will consider rigid fibers only.

Thermal fluctuations speed up the bundling
process

We now consider simulations with rigid fibers, for which we
can account for translational and rotational diffusion using
standard Brownian dynamics methods (33), while maintain-
ing detailed balance in the cross-linking kinetics. An impor-
tant quantity in this case is the time for a fiber to diffuse
across a mesh size. In our initial set-up, the fibers are spaced
approximately ¢, apart, and they first must find each other to
cross-link and begin the bundling process. The theoretical
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translational diffusion coefficient of a straight fiber, derived

in (33), can be written in terms of the 3 x 3 translational

mobility matrix Ny for rigid body motions as
_ kgT kgT

D, —tr(Nn) =17 167,

22
3 3ul 22)

where the last equality gives the result for a fiber aspect ratio
of ¢ = 0.004, which we obtain from slender-body theory
with intra-fiber hydrodynamics (see Table S1 and note
that this estimate accounts for the anisotropy of the fiber,
since Ny has an eigenvalue in the parallel direction that
is twice as large as the perpendicular directions). The
mean square displacement of the fiber center is then
(r2(t)) = 6D,t. Substituting the parameters in Table 1, we
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obtain 6D,;~=0.13 umzls, and thus, the time to diffuse a
mesh size is given by 7, = ¢2/(6D,)=/2/0.13 s. Since
diffusion promotes mixing of the suspension and gives more
opportunities for cross-linking, our expectation is that thermal
fluctuations should speed up the transition from the homoge-
neous meshwork to the composite bundle state, where bundles
are made of a few fibers that must be close enough together to
cross-link. This assumes that the CL concentration is large
enough for links to bind as soon as fibers are close enough
together; we will analyze this assumption in the next section.

To understand how thermal diffusion affects the bundling
process, in Fig. 3, we plot the statistics both with (orange)
and without (blue) thermal fluctuations. We see that the entire
process is faster with diffusion, as we might expect (see
Videos S4 and S5), but the degree of acceleration changes

—F— No diffusion
—F— With diffusion ||
- = =4.7e"(t=16)/40

Bundle density

097

0.85F

087

Mean Bundle alignment

0.75

Max bundle size
S

0 10 20 30 40 50 60
t

FIGURE 3 Statistics for the bundling process with and without thermal fluctuations. The blue lines show the results without thermal movement, whereas
the orange lines show the results with translational and rotational diffusion. Here, we use At = 10~*; we have verified that the statistical noise exceeds the
time-stepping error for this time-step size. The peak in the bundle density occurs at 7. =16 s for systems without diffusion, although for systems with diffu-
sion it occurs at 7. =4 s. Error bars are the error in the mean over five trials. To see this figure in color, go online.
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before and after 7.. Before 7., the process with diffusion is
significantly faster than without; for instance, it takes about
3 s for 50% of the fibers to be in bundles with diffusion,
whereas without diffusion, it takes 12 s (Fig. 3 inset), which
is a difference of a factor of four. Indeed, the critical bundling
time 7. ~4 s with diffusion, although we have already seen
7.~ 16 s without diffusion, so that the difference is again a
factor of four. For #>7., when bundles start to coalesce, the
difference is only a factor of two; an exponential fit to the de-
caying bundle density gives a constant of 20 s for simulations
with diffusion and 40 s for simulations without diffusion.

A similar relationship holds when we look not at the num-
ber of bundles (which depends on Fp, the minimum number
of fibers forming a bundle) but the percentage of fibers in
bundles, which is independent of Fp and shown in the
middle left frame of Fig. 3. Unlike in the non-Brownian
case, where a single timescale fits the data, the Brownian
case requires two timescales for fitting, which are 3 s (which
is close, but not equal, to 7. =4 s) and 13 s. In this case, the
new fast timescale of 3 s reflects the ability of Brownian
filaments to freely diffuse translationally and rotationally
early in the simulation. Later in the simulation, the filaments
are arrested and the timescale on which filaments enter
bundles approaches that of non-Brownian filaments, 17 s.
This provides more evidence for our two-stage model of
bundling, where thermal fluctuations make more of a differ-
ence in the first stage, when fibers are less constrained by
CLs. Sure enough, Fig. S4 (left, blue curve) shows that the
mean squared displacement for simulations with Brownian
motion decays exponentially to a constant, meaning that,
at times larger than 7., the Brownian motion is inhibited
by cross-linking and therefore becomes less important.
Equivalently, entropic effects (Brownian motion of fibers
and cross-linker stretching) are more important at early
times, whereas at later times, energetic effects trap the fibers
in the clustered bundle state.

To show that the network morphology has not changed
when we add thermal movement, in Fig. S6, we show the
networks at r=7, without and with thermal fluctuations.
The composite bundle network morphology at 7. is similar
between the two, which demonstrates that fluctuations speed
up the pace of bundling without changing the types of
bundles that evolve.

In subsequent sections, we will analyze how the timescale
7. that we use to quantify the speed of bundling depends on
the microscopic parameters. Although the precise value of
7. depends on the parameter Fg (the minimum number of
filaments in a bundle), Fig. 3 shows that this timescale can
roughly capture the initial growth rate of the percentage of
fibers in bundles, which is independent of Fz. Since 7, is
easier to measure by looking at the peak bundle density
(and is in principle easier to measure experimentally
through microscopy) than by fitting a double-exponential
curve (which is an ill-conditioned problem for larger
timescales), we will use the bundle density maximum as

Bundling in actin networks

the definition of 7.. Of course, making Fjp larger increases
7., as we show in Fig. S5 by setting Fp = 5, but the ratio
of 7, between the Brownian and non-Brownian system
remains the same. However, increasing Fp will cause us to
miss the initial stage of bundling, where two-filament
bundles form and the fibers’ rotational degrees of freedom
are arrested, so we will use Fg = 2 henceforth.

Dependence of bundling timescale on actin and
CL concentration

Our conclusion that thermal fluctuations significantly
accelerate the initial stage of the bundling process is depen-
dent on having a sufficient concentration of CLs. Although
thermal fluctuations undoubtedly increase the frequency of
fibers coming close enough together for cross-linking, the
bundling process still must be initiated via binding of a CL.
Consequently, in this section, we consider a range of values
of mesh size (actin concentration) and k., (CL attachment
rate, which is proportional to CL concentration) to get a
more complete picture of how the critical bundling time 7,
depends on these parameters. In particular, we will consider
mesh sizes ¢,, = 0.2 (F = 675; L; = 3 um), 0.4 (F = 400;
L;=4 pm), and 0.8 pm (F = 338; L; =6 pm) and
single-end binding rates k,, = 1.25, 5 (the base value), and
20 (um- s). By changing the rate at which a single CL end
binds to a fiber, we effectively vary the CL concentration.

Fig. 4 shows the resulting evolution of the bundle density
for the nine different systems, as well as the resulting critical
bundling time 7. For systems with large k,,, where binding
is essentially instantaneous once filaments come close
enough together, 7.=3 s for the small-enough mesh sizes
of ¢,, = 0.2 and 0.4 pm. Once the mesh size increases to
0.8 um, the bundling time increases but only to about
4.5 s (see inset of Fig. 4). Thus, 7, is not a strong function
of mesh size for larger k,,, which implies that the process
for large ko, where there is always sufficient cross-linker
available for binding, is primarily limited by cross-linking
dynamics (alignment of filaments), with diffusion (across
the mesh size) playing only a secondary role.

Let us now consider the case of slower k,,. In this case,
filaments could come close enough to link together but
diffuse away before a CL can actually bind them. As a result
of this, the bundling process is slowed and, in fact, the peak
bundle density drops. Indeed, as shown in Fig. 5, networks
with smaller k,, (lower CL concentration) contain larger
bundles at # = 7. than those with larger k,, (higher concen-
tration). As shown in Videos S1-S3 upon reducing ko, tWo
filaments finding each other becomes the limiting step in the
bundling process. This causes a slow growth of the bundle
curve and a bias toward larger bundles, which build up at
a faster rate (relative to 7.), and the process is rate limited
by two-filament bundle formation. The scaling of 7. at small
kon (left column of the bottom right panel in Fig. 4) is remi-
niscent of a diffusion-limited process, as it increases from
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9 s to 17 s, then to 56 s as the mesh size doubles, scaling
approximately as éfn as the mesh size increases. In some
sense, diffusion is actually a hindrance to bundling, since fi-
bers that are close to each other diffuse away before a CL
can bind them together.

We note that a roughly constant bundling time can be
achieved by decreasing k., as the mesh size decreases
(moving from the fop right to the bottom left of the bottom
right panel in Fig. 4). This implies that the relative
concentration of CL required for a particular bundled state
decreases with the mesh size, as has been found experimen-
tally (5). When the mesh size is smaller, the filaments are in
contact for longer, and so it is less important that a CL be
available immediately to bind them together. By contrast,
filaments in larger-mesh-size systems are only in contact
for a brief time, so relatively more CLs are necessary to
ensure that these filaments are linked when they come into
contact with each other.

Brownian motion is responsible for faster
bundling with shorter filaments

We will now explore the dependence of the critical bundling
time 7. on the fiber length. Experimentally, it has been
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shown that shorter filaments bundle faster (10,12), but it is
still unclear whether this is due to thermal movements,
cross-linking kinetics, or some combination of both. In
this section, we show that the experimental results can
only be reproduced if we consider thermal movements, so
that cross-linking kinetics are not responsible for the
speedup in bundling. We use a fixed mesh size of
£y, = 0.2 pm, which translates to F = 675 filaments of
length L=1 pum in a domain of size L; =3 pm and
F =400 filaments of length L = 0.5 um in a domain of
size Ly = 2 pm.

In Fig. 6, we show how the bundle density, percentage of fi-
bers in bundles, and mean bundle size evolve for the two
different filament lengths both 1) without and 2) with actin
diffusion. In Fig. 6 a, we see that, in the absence of
Brownian motion, the behavior in the two systems is similar,
with the peak bundle density occurring in both cases around
7.~ 15 s. Furthermore, there is only a mild difference in the
percentage of fibers in bundles over time. The mean bundle
size is at most twice larger for the system with shorter
filaments, but we would expect this, since the filaments are
twice as short and there are twice as many of them if £,, is fixed.

Earlier, we showed that Brownian motion speeds up
the bundling process by promoting mixing and more near
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FIGURE 5 Snapshots of the network at r = 7, with initial mesh size ¢,, = 0.4 um and varying CL concentration. The networks contain F = 400 filaments
of length L = 1 in a domain of size Ly = 4 with kon /K = 1/4 (left, 7.=17), kon /Koy = 1 (middle, 7. =5), and ko /k's = 4 (right, 7. =2.5). A smaller
kon (smaller CL concentration) gives fewer but larger bundles at t = 7., as well as a smaller percentage of fibers in bundles. To see this figure in color,

go online.

contacts of filaments. In particular, we saw that the time for
a filament with length L = 1 pum to diffuse a mesh size of
£y = 0.2 um is 7,,=0.30 s, so that filaments can find each
other rapidly and begin the bundling process. In the case
of filaments with L = 0.5 um, our thermal diffusion coeffi-
cient in Eq. 22 scales log-linearly with the fiber length, so
that it takes 7,, = 0.17 s to diffuse a mesh size of ¢, =
0.2 um. We might expect, therefore, that at least the initial
stages of the bundling process will be sped up by a factor
of two.

Fig. 6 b shows that this is indeed the case. For ¢, =
0.2 pum, the bundle density peak occurs around 7.~ 2 s
when L = 0.5 um, although with L = 1 pum, it occurs around
T.~4 s, so it appears that bundling time with thermal mo-
tion scales linearly with filament length, which is in
(approximate) accordance with the scaling of the transla-
tional diffusion coefficient. The faster bundling behavior
also manifests itself in the link density and percentage of fi-
bers in bundles, where we see that systems with shorter fil-
aments reach a number of links or percentage of fibers about
twice as fast. For instance, 80% of the fibers are in bundles
by t=4 s in the L = 0.5 um case, although with L = 1 um,
the 80% mark is not reached until about =8 s.

Ratio of bundling and turnover times control
steady-state morphology

Because we define the bundle density in terms of bundles of
an arbitrary number of filaments (Fp = 2), the precise value
of the timescale 7, that we obtain is also somewhat arbitrary.
Indeed, plotting the decay of the fibers’ mean-square
displacement over the course of the simulation, as we do
in Figs. S4 and S7, shows that 7. is not the only timescale
characterizing the bundling process. However, if we in-
crease the number of filaments required for a bundle to
Fp =5, Fig. S5 shows that the peak in the bundle density

occurs about a factor of two later in both Brownian and
non-Brownian filament simulations. We therefore postulate
that the ratio T((;A> / TE-B ) between systems A and B is a mean-
ingful quantity, approximately independent of the definition
of 7., and can be used to predict the steady-state
morphology in systems with fiber turnover.

To test this, we introduce filament turnover with mean fila-
ment lifetime 7 (see (3) for implementation details) and fix
7 as a function of 7, so that the ratio of the turnover times
equals the ratio of the bundling times between the Brownian

(B) and non-Brownian (NB) cases, T}B> / Tf(NB) = TEB) / TENB),

or equivalently, T;-NB) / TS-NB) = 7';.8) / TS-B). In Fig. 7, we vary
the ratio 77 /7. between 0.5 and 2 and plot the bundle density
and percentage of fibers in bundles as they evolve to a steady
state in each case. Despite the system of Brownian filaments
having much faster bundling dynamics than the system of
non-Brownian filaments, the morphology of the steady state
is the same in the Brownian and non-Brownian cases, as is

shown in the snapshots of Fig. S8.

CONCLUSION

We used numerical simulations to investigate the kinetics of
bundling in cross-linked actin suspensions. After validating
that semiflexible actin fibers can be approximated as rigid in
non-Brownian suspensions, we treated actin fibers as
Brownian rigid, straight, slender rods, in accordance with
a number of other simulation studies (11,13). We coarse
grained the diffusion and binding and unbinding of a-actinin
CLs into four microscopic rates: kon,kons,Koff, and Koy .
This enabled the simulation of a gel with about 700 actin
fibers and as many as 50 CLs bound to each fiber.

We found that, even without thermal movements, actin
filaments can still bundle, as filaments that are initially close
enough are linked together at small patches with CLs. These
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CLs pull fibers together and align them, thereby allowing
more CLs to bind to other sections of the fibers. What results
initially, for times smaller than the critical bundling coales-
cence time 7., is a collection of bundles with a few highly
aligned filaments, also called a composite bundle state (4).
For times larger than 7., these bundles coalesce into larger
bundles using a similar mechanism as that for individual
fibers, and a clustered bundle state forms. Our critical
bundling timescale 7. thus describes the initial time at which
networks transition from the composite bundle state to the
clustered bundle state. In networks with fiber turnover, a
clustered bundle steady state is only possible if the turnover
time is much larger than 7, (3). Although our work leaves

unclear the role of steric interactions in slowing down
bundling, we did show that the strong cross-linking present
at later times is sufficient to arrest the bundling process. In
fact, strong cross-linking provides a force somewhat
equivalent to steric interactions, since the finite rest length
of the CLs keeps linked filaments apart (see Note 23 in
(46)). In this sense, our model properly treated the strong
cross-linking limit, where the fibers are so constrained by
the CLs that they do not overlap.

We quantified the role of diffusion throughout the bundling
process, finding that it has a larger impact in the initial stages
of bundling, when the filaments are not severely constrained
by CLs and can move freely to find each other. We associated

‘ —I—NE, TP = T(,/é —J—B, ‘Tf =7./2
~—f1—NB,7y=7 —F—B,77=7
NB, 7; = 2. —I—B, 1 = 2r, 50t

FIGURE 7 Steady-state morphologies for sys-
tems with turnover. We introduce filament turn-
over with mean filament lifetime 7, (see (3) for

! implementation details) and observe the steady-
«E‘ 2401 state bundle density (left) and percentage of fibers
_qg) 3 g in bundles (right) for 77/7,=1/2 (black), 1
o 2 30 (green), and 2 (red). Note that using a constant
EEY: 8 ~ (B) ) (NB) _
z =50l 7¢/Tc in the two systems ensures 7, /T, =

TEB) /TENB). Using both non-Brownian (lighter

1 10 colors, 7.=16 s) and Brownian (darker colors,

L 7.=4 s) filaments, we show that the steady-state
0 ' ot bundling statistics are roughly the same when
0 ! 2 3 4 5 77 /7. is matched. Error bars are the error in the
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mean over five trials. To see this figure in color,
go online.



this stage with r<7, and showed that adding thermal fluctua-
tions decreases 7. from 16 s to 4 s. We showed that the stage
when bundles coalesce (r>7.) is less affected by thermal
diffusion (sped up by a factor of two), since at that stage,
the filaments are constrained by CLs, which are more
involved in bundle coalescence. This complements the
observation in ((10 and 14)) that bundling occurs faster in a
fluid-like environment, where filaments can move freely
before kinetic arrest.

At first glance, the order of magnitude of 7. that we
obtained seems shorter than the characteristic bundling
time obtained experimentally, which is generally reported
to be on the order of minutes (29). The comparison is diffi-
cult, however, since experimental times generally include
polymerization, and the bundling timescale in experiments
is defined by the onset of the clustered bundle steady state,
which is much later than the composite bundle state where
we define 7.. Nevertheless, the most instructive comparison
is between our work and Fig. 4 in (10), which shows
experimentally that the addition of 10% nucleates (which
speeds up the polymerization process) gives a saturated
bundled state after 100 s of polymerization and bundling,
where the bundles are made of at least 15-30 filaments and
are spaced some 10-20 um apart. Given this observation,
and the fact that bundling slows down over time, it is not
difficult to imagine that the transition from the homogeneous
state to the composite bundle state could take place on the
order of 5-10 s after CLs are added to a system of (polymer-
ized and capped) actin filaments.

Although diffusion of fibers speeds up the bundling
process, we showed that it must be combined with a sufficient
concentration of CLs for rapid bundling to occur. In partic-
ular, we showed that a high concentration of CLs (high CL
binding rate) can induce bundling for filaments of any
mesh size, with a critical bundling time 7. that depends
only weakly on the mesh size. By contrast, when the concen-
tration of CLs is small, bundling is more difficult for any
fixed mesh size and gets near impossible as the mesh size
increases, as near-fiber contacts become less frequent. This
is in accordance with a number of experimental papers
(5,12) which find that bundling requires a critical CL concen-
tration. In addition, because the fibers are in contact for a
short time at larger mesh sizes, the system must be saturated
with CLs for bundling to proceed at a reasonable rate. This
saturation is less important at smaller mesh sizes, where fiber
pairs come into contact more frequently. Translating our
results to experimental parameters, we find that the ratio of
the cross-linker concentration to the F-actin concentration
that is needed for a particular bundling timescale decreases
as the actin concentration increases, which is in accordance
with existing experimental observations (see Fig. 3 in (5)).

As already mentioned, one of the drawbacks of some exper-
imental studies is the sensitivity of the bundling time to the rate
of actin polymerization. For example, it is shown in (10)
(Fig. 4 d) that polymerization kinetics make an order of magni-
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tude difference in the bundling kinetics. Although simulta-
neous polymerization and bundling also occurs in vivo, our
study here allowed us to divorce bundling and polymerization
by focusing on a fixed filament length. By doing this, we
showed that shorter filaments bundle faster exclusively
because they can diffuse faster, because without thermal
fluctuations, we saw no difference in the bundling kinetics
between short and long filaments. This clarifies why shorter
actin filaments are able to associate more rapidly into bundles
without the presence of a background actin mesh (12,14).

There are, of course, other timescales that we could have
examined in the bundling process. For instance, Figs. S4
and S7 show that the timescale for slow down of the fibers’
diffusivity, measured by the decay of their mean-square
displacement, is related to but certainly not the same as the
critical bundling time 7.. Our choice to focus on the
timescale 7. was motivated by our observation in previous
work (3) that the steady-state morphology of cross-linked
actin networks is driven by a competition between bundling
(which occurs on timescale 7.) and filament turnover
(which occurs on timescale 7¢). Although it is intuitively
obvious that increasing the turnover timescale 7, will
produce a steady state with more bundles, it is fair to ask
whether the ratio 74/7. alone controls the steady-state
morphology or whether some other microscopic parameters
come into play. In Fig. 7, we showed that, for turnover times
Tr = T /2, 7., and 27, the gel evolves to a steady state,
where the bundle density and percentage of fibers in bundles
depend primarily on the ratio 77 /7. for either Brownian or
non-Brownian fibers (recall that 7. differs by a factor of
four for these two cases). Snapshots in Fig. S8 show little
qualitative difference between the network morphology of
the Brownian and non-Brownian steady states for a fixed
Ty /7. Thus, for a fixed turnover time 7, the steady-state
morphology is controlled by 7., which is the timescale we
studied in detail here.

‘We can also extrapolate our results to the cell cytoskeleton,
but this must be done with some caution because of the
complexity of the in vivo system. The simulated actin
network densities are characteristic of those observed in
cell actin cortex, where mesh sizes are on the order 0.1 pm
(45). Considering that the characteristic turnover times for
the cell cortex are in the order of tens of seconds (47), longer
than the characteristic bundling times our model predicts,
the simple model prediction is that there is significant
bundling in the cell cortex. However, to support this
prediction, additional complexity, such as binding of
filaments to the cell membrane and a mix of formin- and
Arp2/3-generated filaments, will have to be added to the
model. Similarly, in the future, the model could be modified
to investigate effects of bundling rates that depend on mutual
orientation of the filament pair (29).

Our study here used rigid filaments and coarse grained the
dynamics of CL diffusion and binding. Although we showed
that non-Brownian semiflexible actin filaments can be
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approximated by rigid ones, we have not accounted for the
transverse bending fluctuations in actin filaments. In some
sense, softening the stiffness of the CLs, which gives a wider
range of binding distances than might otherwise be possible,
qualitatively accounts for this, but we plan to develop a nu-
merical method that includes bending fluctuations in the
future. We also hope to place our model of cross-linker dy-
namics on more rigorous footing by comparing it with a
model that actually tracks the diffusion, binding, and un-
binding of individual CLs. Other modeling studies ad-
dressed bundling in more complex systems, for example,
formation of unipolar bundles from a branched actin
network (48) and bundling in the presence of a mix of
CLs and myosin molecular motors (35,49). Interestingly,
the appearance of the bundles in these more complex
systems (49), which form when CL concentration is above
a threshold value (50), resemble those predicted by our
model without motors. Another level of complexity is
limits on bundle sizes due to chirality effects (51) and
long-range electrostatic repulsion between the filaments
(reviewed in (52)). Finally, in this work, it was too difficult
for us to simulate the experimental steady-state, clustered,
bundled morphologies, since we simulated actin filament
lengths of 1 um and the observed steady states have bundles
separated by hundreds of microns (5,8). More efficient,
graphics-processor-unit-based simulation techniques might
enable the efficient simulation of even larger systems.
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2022.02.030.

AUTHOR CONTRIBUTIONS

O.M., A.D., and A.M. designed the research. O.M. carried out all simula-
tions and analyzed the data. O.M., A.D., and A.M. wrote the article.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation through
Research Training Group in Modeling and Simulation under award RTG/
DMS-1646339 and through the Division of Mathematical Sciences award
DMS-2052515. O.M. is supported by the National Science Foundation
via GRFP/DGE-1342536, and A.M. is supported by National Science Foun-
dation grant DMS-1953430. Code and input files for the simulations are
available at https://github.com/stochasticHydroTools/SlenderBody. All of
our simulations were run on the New York University High Performance
Computing Greene Supercomputer cluster.

REFERENCES

1. Alberts, B., A. Johnson, ..., P. Walter. 2002. Molecular Biology of the
Cell. Garland Science.

2. Chaubet, L., A. R. Chaudhary, ..., A. G. Hendricks. 2020. Dynamic
actin cross-linking governs the cytoplasm’s transition to fluid-like
behavior. Mol. Biol. Cell. 31:1744-1752.

1244 Biophysical Journal 121, 1230-1245, April 5, 2022

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Maxian, O., R. P. Peléez, ..

. Lieleg, O., K. M. Schmoller, ..

., A. Donev. 2021. Simulations of dynam-
ically cross-linked actin networks: morphology, rheology, and hydro-
dynamic interactions. PLoS Comput. Biol. 17:¢1009240.

. Lieleg, O., M. M. Claessens, and A. R. Bausch. 2010. Structure and

dynamics of cross-linked actin networks. Soft Matter. 6:218-225.

. Schmoller, K., O. Lieleg, and A. Bausch. 2009. Structural and visco-

elastic properties of actin/filamin networks: cross-linked versus
bundled networks. Biophys. J. 97:83-89.

. Hou, L., K. Luby-Phelps, and F. Lanni. 1990. Brownian motion of inert

tracer macromolecules in polymerized and spontaneously bundled
mixtures of actin and filamin. J. Cell Biol. 110:1645-1654.

. Gardel, M., J. H. Shin, ..., D. Weitz. 2004. Elastic behavior of cross-

linked and bundled actin networks. Science. 304:1301-1305.

., A. R. Bausch. 2009. Structural poly-
morphism in heterogeneous cytoskeletal networks. Soft Matter.
5:1796-1803.

. Wachsstock, D. H., W. Schwartz, and T. D. Pollard. 1993. Affinity of

alpha-actinin for actin determines the structure and mechanical proper-
ties of actin filament gels. Biophys. J. 65:205.

Falzone, T. T., M. Lenz, ..., M. L. Gardel. 2012. Assembly kinetics
determine the architecture of a-actinin crosslinked F-actin networks.
Nat. Commun. 3:1-9.

Foffano, G., N. Levernier, and M. Lenz. 2016. The dynamics of fila-
ment assembly define cytoskeletal network morphology. Nat. Commun.
7:1-8.

Kasza, K., C. Broedersz, ..., D. Weitz. 2010. Actin filament length
tunes elasticity of flexibly cross-linked actin networks. Biophys. J.
99:1091-1100.

Ma, R., and J. Berro. 2018. Structural organization and energy storage
in crosslinked actin assemblies. PLoS Comput. Biol. 14:¢1006150.

Weirich, K. L., S. Banerjee, ..., M. L. Gardel. 2017. Liquid behavior of
cross-linked actin bundles. P. Natl. Acad. Sci. U S A. 114:2131-2136.

Tempel, M., G. Isenberg, and E. Sackmann. 1996. Temperature-
induced sol-gel transition and microgel formation in a-actinin cross-
linked actin networks: a rheological study. Phys. Rev. E. 54:1802.

Borukhov, I., R. F. Bruinsma, ..., A. J. Liu. 2005. Structural polymor-
phism of the cytoskeleton: a model of linker-assisted filament aggrega-
tion. P. Natl. Acad. Sci. U S A. 102:3673-3678.

Zilman, A., and S. Safran. 2003. Role of cross-links in bundle forma-
tion, phase separation and gelation of long filaments. Europhys. Lett.
63:139.

Kierfeld, J., T. Kiihne, and R. Lipowsky. 2005. Discontinuous unbind-
ing transitions of filament bundles. Phys. Rev. Lett. 95:038102.

Yu, X., and A. Carlsson. 2004. Kinetics of filament bundling with
attractive interactions. Biophys. J. 87:3679-3689.

Kim, T., W. Hwang, and R. Kamm. 2009. Computational analysis of a
cross-linked actin-like network. Exp. Mech. 49:91-104.

Maxian, O., A. Mogilner, and A. Donev. 2021. Integral-based spectral
method for inextensible slender fibers in Stokes flow. Phys. Rev. Fluids.
6:014102.

Gittes, F., B. Mickey, ..., J. Howard. 1993. Flexural rigidity of micro-

tubules and actin filaments measured from thermal fluctuations in
shape. J. Cell Biol. 120:923-934.

Tornberg, A.-K., and M. J. Shelley. 2004. Simulating the dynamics
and interactions of flexible fibers in Stokes flows. J. Comput. Phys.
196:8-40.

Keller, J. B., and S. I. Rubinow. 1976. Slender-body theory for slow
viscous flow. J. Fluid Mech. 75:705-714.

Johnson, R. E. 1980. An improved slender-body theory for Stokes flow.
J. Fluid Mech. 99:411-431.

Courson, D. S., and R. S. Rock. 2010. Actin cross-link assembly and
disassembly mechanics for a-actinin and fascin. J. Biol. Chem.
285:26350-26357.

Gillespie, D. T. 2007. Stochastic simulation of chemical kinetics. Annu.
Rev. Phys. Chem. 58:35-55.


https://doi.org/10.1016/j.bpj.2022.02.030
https://doi.org/10.1016/j.bpj.2022.02.030
https://github.com/stochasticHydroTools/SlenderBody
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref1
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref1
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref2
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref2
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref2
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref3
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref3
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref3
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref4
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref4
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref5
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref5
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref5
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref6
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref6
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref6
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref7
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref7
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref8
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref8
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref8
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref9
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref9
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref9
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref10
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref10
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref10
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref11
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref11
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref11
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref12
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref12
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref12
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref13
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref13
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref14
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref14
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref15
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref15
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref15
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref16
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref16
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref16
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref17
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref17
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref17
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref18
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref18
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref18
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref19
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref19
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref20
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref20
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref21
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref21
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref21
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref22
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref22
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref22
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref23
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref23
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref23
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref24
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref24
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref25
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref25
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref26
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref26
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref26
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref27
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref27

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Anderson, D. F. 2007. A modified next reaction method for simulating
chemical systems with time dependent propensities and delays.
J. Chem. Phys. 127:214107.

Meyer, R. K., and U. Aebi. 1990. Bundling of actin filaments by alpha-
actinin depends on its molecular length. J. Cell Biol. 110:2013-2024.

Sprinkle, B., F. Balboa Usabiaga, ..., A. Donev. 2017. Large scale
Brownian dynamics of confined suspensions of rigid particles.
J. Chem. Phys. 147:244103.

Westwood, T. A., B. Delmotte, and E. E. Keaveny. 2021. A generalised
drift-correcting time integration scheme for Brownian suspensions of
rigid particles with arbitrary shape. Preprint at arXiv:2106.00449.

Zero, K., and R. Pecora. 1982. Rotational and translational diffusion in

semidilute solutions of rigid-rod macromolecules. Macromolecules.
15:87-93.

Makino, M., and M. Doi. 2004. Brownian motion of a particle of gen-
eral shape in Newtonian fluid. J. Phys. Soc. Jpn. 73:2739-2745.

Delong, S., F. Balboa Usabiaga, and A. Donev. 2015. Brownian dy-
namics of confined rigid bodies. J. Chem. Phys. 143:144107.

Bidone, T. C., W. Jung, ..., T. Kim. 2017. Morphological transforma-
tion and force generation of active cytoskeletal networks. PLoS
Comput. Biol. 13:¢1005277.

Evans, D. J., D. J. Searles, and S. R. Williams. 2016. Fundamentals of
Classical Statistical Thermodynamics: Dissipation, Relaxation, and
Fluctuation Theorems. John Wiley & Sons.

Morse, D. C. 1998. Viscoelasticity of concentrated isotropic solutions
of semiflexible polymers. 1. model and stress tensor. Macromolecules.
31:7030-7043.

Grazi, E. 1997. What is the diameter of the actin filament? FEBS Lett.
405:249-252.

Janmey, P. A., S. Hvidt, ..., T. P. Stossel. 1994. The mechanical prop-
erties of actin gels. Elastic modulus and filament motions. J. Biol.
Chem. 269:32503-32513.

McGrath, J. L., E. A. Osborn, ..., J. H. Hartwig. 2000. Regulation of

the actin cycle in vivo by actin filament severing. P. Natl. Acad. Sci.
USA. 97:6532-6537.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

Bundling in actin networks

Luby-Phelps, K. 1999. Cytoarchitecture and physical properties of
cytoplasm: volume, viscosity, diffusion, intracellular surface area. In
International Review of Cytology. Elsevier, pp. 189-221.

Le, S., X. Hu, ..., J. Yan. 2017. Mechanotransmission and mechano-
sensing of human alpha-actinin 1. Cell Rep. 21:2714-2723.

Kuhlman, P. A., J. Ellis, ..., C. R. Bagshaw. 1994. The kinetics of the
interaction between the actin-binding domain of a-actinin and F-actin.
FEBS Lett. 339:297-301.

Xu, J., D. Wirtz, and T. D. Pollard. 1998. Dynamic cross-linking by
a-actinin determines the mechanical properties of actin filament
networks. J. Biol. Chem. 273:9570-9576.

Eghiaian, F., A. Rigato, and S. Scheuring. 2015. Structural, mechani-
cal, and dynamical variability of the actin cortex in living cells.
Biophys. J. 108:1330-1340.

Miller, K. W., R. F. Bruinsma, ..., A. J. Levine. 2014. Rheology of
semiflexible bundle networks with transient linkers. Phys. Rev. Lett.
112:238102.

Fritzsche, M., A. Lewalle, ..., G. Charras. 2013. Analysis of turnover
dynamics of the submembranous actin cortex. Mol. Biol. Cell.
24:757-767.

Yang, L., D. Sept, and A. Carlsson. 2006. Energetics and dy-
namics of constrained actin filament bundling. Biophys. J.
90:4295-4304.

Popov, K., J. Komianos, and G. A. Papoian. 2016. MEDYAN: mecha-
nochemical simulations of contraction and polarity alignment in acto-
myosin networks. PLoS Comput. Biol. 12:¢1004877.

Chandrasekaran, A., A. Upadhyaya, and G. A. Papoian. 2019. Remark-
able structural transformations of actin bundles are driven by their
initial polarity, motor activity, crosslinking, and filament treadmilling.
PLoS Comput. Biol. 15:e1007156.

Grason, G. M. 2015. Colloquium: geometry and optimal packing of
twisted columns and filaments. Rev. Mod. Phys. 87:401.

SchnauB, J., T. Handler, and J. A. Kas. 2016. Semiflexible biopolymers
in bundled arrangements. Polymers. 8:274.

Biophysical Journal 121, 1230-1245, April 5, 2022 1245


http://refhub.elsevier.com/S0006-3495(22)00154-0/sref28
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref28
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref28
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref29
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref29
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref30
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref30
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref30
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref31
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref31
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref31
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref32
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref32
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref32
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref33
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref33
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref34
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref34
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref35
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref35
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref35
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref36
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref36
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref36
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref37
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref37
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref37
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref38
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref38
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref39
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref39
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref39
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref40
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref40
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref40
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref41
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref41
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref41
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref42
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref42
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref43
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref43
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref43
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref44
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref44
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref44
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref45
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref45
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref45
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref46
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref46
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref46
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref46
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref47
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref47
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref47
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref48
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref48
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref48
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref49
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref49
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref49
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref50
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref50
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref50
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref50
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref51
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref51
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref52
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref52
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref52
http://refhub.elsevier.com/S0006-3495(22)00154-0/sref52

	Interplay between Brownian motion and cross-linking controls bundling dynamics in actin networks
	Introduction
	Materials and methods
	Dynamic cross-linking of semiflexible, inextensible fibers
	Semiflexible, inextensible fibers
	Mobility evaluation
	Evaluation of f(CL)
	Dynamic cross-linking
	Modifications for rigid fibers
	Thermal fluctuations with rigid fibers
	Keeping the CL dynamics in detailed balance
	Temporal integration
	Network statistics

	Results and discussion
	Kinetics of bundling for non-Brownian, semiflexible fibers
	Thermal fluctuations speed up the bundling process
	Dependence of bundling timescale on actin and CL concentration
	Brownian motion is responsible for faster bundling with shorter filaments
	Ratio of bundling and turnover times control steady-state morphology

	Conclusion
	Supporting material
	Author contributions
	Acknowledgments
	References


