
Detecting Spectre Attacks Using Hardware
Performance Counters

Congmiao Li ,Member, IEEE and Jean-Luc Gaudiot , Life Fellow, IEEE

Abstract—Spectre attacks can be catastrophic and widespread because they exploit common design flaws caused by the speculative

capabilities in modern processors to leak sensitive data through side channels. Completely fixing the problem would require a redesign

of the architecture for transient execution or the implementation of a new design on re-configurable hardware. However, such fixes

cannot be backported to old machines with fixed hardware design. Completely replacing those machines will take a long time.

Moreover, existing software patches may cause significant performance overhead. This paper proposes to detect Spectre by

monitoring deviations in microarchitectural events using hardware performance counters with promising accuracy above 90 percent

under a variety of workload conditions. However, the attacker may attempt to evade detection by slowing down the attack or mimicking

benign programs. This paper thus compares different evasion strategies quantitatively and demonstrates that it is possible for the

attacker to avoid detection when operating the attacks at a lower speed while maintaining a reasonable attack success rate. Then, we

show that, in order to resist evasion, the original detector must be enhanced by randomly switching between a set of detectors using

different features and sampling periods so we can keep the detection accuracy above 80 percent.

Index Terms—Evasive malware, microarchitectural attacks, security

Ç

1 INTRODUCTION

CONFIDENTIALITY is an important component of ensuring
information security. It often means protecting informa-

tion from access by unauthorized parties. Information can
be leaked to unprivileged parties through unintended side
channels. These unintentional side channels can be timing
information [1], [2], [3], [4], power consumption informa-
tion [5, 6, 7], electromagnetic radiation [8], [9], light emis-
sion [10] or sound [11]. By measuring and analyzing the
differences in side channel information, confidential data
could be discovered by adversaries. In microarchitectural
side-channel attacks, malicious processes attempt to inter-
fere with the victim through shared microarchitectural
resources such as cache [12], [13], [14], [15], branch predic-
tor [16], [17] or Branch Target Buffers [18], [19]. The interfer-
ence pattern can then be measured to infer secrets.

Speculative execution reduces the processor idle time to
improve performance by executing a predicted path before
the actual path is confirmed. However, this may leave observ-
able side effects that allow attackers to obtain confidential
data. The branch predictor guesses which branch is more
likely to be taken according to the execution history. The pro-
cessor fetches the associated data and instructions. Then it
starts speculatively executing them. If the branch predictor
guessed correctly, the processor continues running without
delay. Otherwise, the processor will roll back the execution

state. Instructions only retire after the correct path is known.
However, changes to other microarchitectural features such
as cache contents are not reversed and it is this information
that an attackerwill seek to harvest.

Spectre attacks [20] exploit speculative execution to leak
confidential information through unintended side channels
by tricking the processor into taking carefully designed mali-
cious code. Spectre attacks have different variants and work
on various Intel, AMD and ARM platforms. Therefore, there
is no single patch for the whole class of attacks. Furthermore,
software patches experience large performance overhead. To
completely solve the problem, changes to the processor design
and instruction set architectures (ISAs) are required.

In this paper, we aim to develop an online detector to detect
Spectre during the attack and improve its resilience to evasion.
We first propose to use low-level microarchitectural features
which can be extracted fromHPCs to detect the original Spectre
Variant 1 [20] during the attack with offline supervised mach-
ine learning algorithms. We then study how the original Spec-
tre could be even more maliciously updated to operate effec-
tively without being detected by HPC-based classifiers in a
quantitative way. Our research demonstrates that it is possible
to profile the attack in a given system setup so as to construct
such an evasive version of Spectre by changing the microarchi-
tectural characteristics of a Spectre attack. We also quantita-
tively compare different strategies to determine the best way
the attackers could use to evade detection while maintaining a
reasonable attack success rate and attack speed. Finally, we
improve our proposed Spectre detector by randomly switching
betweendifferent detectors to simulate counter evasion.

2 RELATED WORK

Traditional antivirus (AV) software scans suspicious instruc-
tions in binaries or traces in system logs files to statically

� The authors are with the Department of Electrical Engineering and
Computer Science, University of California Irvine, Irvine, CA 92697
USA. E-mail: {congmial, gaudiot}@uci.edu.

Manuscript received 30 May 2020; revised 9 Feb. 2021; accepted 16 May 2021.
Date of publication 20 May 2021; date of current version 10 May 2022.
(Corresponding author: Congmiao Li.)
Recommended for acceptance by A. Karanth.
Digital Object Identifier no. 10.1109/TC.2021.3082471

1320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

detect malicious attacks. Unfortunately, Spectre usually does
not leave traces in system log files. Thus, it is difficult to detect
Spectre with a static analysis. Recent research [21], [22], [23]
has shown that malware can be detected by using dynamic
microarchitectural execution patterns gleaned from existing
Hardware Performance Counters (HPC) in modern process-
ors. Demme et al. [21] adopted an offline analysis based on
various supervisedmachine learning algorithms using a com-
plete trace of the program behavior after execution to detect
malware in the Android OS. Tang et al. [22] deployed unsu-
pervised machine learning techniques to detect return-ori-
ented programming and buffer overflow attacks. Khasawneh
et al. [23] proposed to use ensemble learning to detectmalware
at runtime. Researchers [24] also used HPCs to detect side
channel attacks. Mambretti et al. [25] developed a perfor-
mance-counter-based tool to aid in designing speculative exe-
cution attacks andmitigation.

3 BACKGROUND

Spectre exploits critical design flaws in some modern proces-
sor design to allow attackers to steal sensitive information
from users’ devices throughmicroarchitectural side channels.
In this section, we describe in detail the attack and review
existing mitigation techniques. In addition, we review possi-
ble detection approaches and some known evasivemalware.

3.1 Description of Spectre

As reported in [20], the original Spectre has two variants:
bounds check bypass and branch target injection. The first
variant exploits conditional branch mispredictions. The sec-
ond variant targets the indirect jump target prediction. Subse-
quently, Intel

�
identified eight new similar variants, referred

to as Spectre Next Generation (Spectre-NG) [26]. One of the new
variants allows the execution of malicious code from a virtual
machine (VM) to attack the host machine or other VMs on the
same server. Another variant exploits return stack buffers
(RSBs) to trigger mispredictions of return addresses and leaks
sensitive information across processes [27]. All the variants
follow the same principles in that they rely on the changes in
the state of the cache caused by the speculative execution. The
behavior of a processor at runtime may be different depend-
ing on whether one looks at it from the architectural or the
microarchitectural point of view. For example, architecturally,
a program that loads a value from a particular address in
memory will wait until the address is known before the load.
However, at the micro-architecture level, the processor may
speculatively load the value from the predicted address in
memory. If the prediction was wrong, the processor will load
again from the correct address which preserves the architec-
tural behavior. However, the microarchitectural behavior
such as the content of the cache can be changed, thereby
allowing the attacker to infer the values stored in memory. In
general, any observable changes from the speculatively exe-
cuted codemay cause the leaking of confidential information.

All variants of Spectre exploit processor microarchitec-
tural vulnerabilities in the similar way it was discussed
above. Spectre Variant 1 (Spectre-V1) is the most difficult to
detect and defend against. In this paper, we take Spectre-V1 as
our benchmark and study possible detection techniques in
details. Different variants exploit different kinds of speculative

executions following different control or data misprediction,
but in the final phase, secret information is usually leaked
through a cache side channel. Therefore, we can monitor the
cache behavior to detect the attacks. Spectre-V1 is activated as
the result of a branch misprediction. For example, the victim
function in 1 receives an integer x from an untrusted source.
To ensure security, the function does a bound check on x to
prevent the process from an unauthorized memory read out-
side array1. However, speculative execution can lead to out-
of-bounds memory reads: assume the attacker makes several
calls to victim_function() to train the branch predictor to
expect taking the branch by feeding it with valid values of x,
then calls the same functionwith an out-of-boundx that points
to a secret byte in the victim’smemory.

The attack usually consists of three phases. In general, it
starts with the setup phase where the attacker prepares the
side channel to leak the victim’s sensitive information, and
other necessary pre-requisites such as to mis-train the
branch predictor to take erroneous execution path, and to
load target memory location into registers, etc. In the follow-
ing phase, the attacker diverts confidential information from
the victim’s context to a microarchitectural side channel by
exploiting different hardware vulnerabilities such as out-of-
order execution or speculative execution. Then during the
final phase, the attacker gains access to the secret data
through the prepared side channel in the previous stages.

3.2 Mitigating Spectre

Mitigating the effects of Spectre is difficult because there are
many variations of possible attacks. For example, to prevent
Spectre-V1, speculative execution needs to be stopped on all
potentially sensitive execution paths. However, insertion of
such blocking mechanisms in all conditional branches and
their destinations by compiler would severely degrade per-
formance. There is also a lack of efficient, architecture-inde-
pendent ways of addressing Spectre-V1 in user space code.
OS and firmware updates for other variants of Spectre pub-
lished have been reported to slow down the computer sys-
tems significantly.

3.3 Detecting Spectre

Besides patching the systems, it is also important to proac-
tively detect malicious attacks and stop them as early as
possible. To our knowledge, no existing research shows the
effectiveness of detecting Spectre using hardware perfor-
mance counters. Despite the fact that many different var-
iants of Spectre attacks exist, they all entail tricking the
processor to take the wrong execution path, and then leak
the confidential information through an observable micro-
architectural side channel.

For the conditional branch example in Fig. 1, the attacker
calls the victim function multiple times so as to cause the
condition predicted to be true. In turn, this means that the
branch misprediction rate will be reduced during the attack.
In the final step of the attack, the secret data are leaked

Fig. 1. Conditional branch example.

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1321

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

through cache side channels. The attacker needs to con-
stantly flush the cache to make sure array2 and array1_-

size are not cached, which means that the cache miss rate
will likely rise. Consequently, monitoring the deviation of
these two microarchitectural behaviors is one possible hint
as to how to detect the attack.

To further validate our hypothesis, we conducted experi-
mental attacks based on the proof of concept code in [20] and
periodically collected microarchitectural traces from hard-
ware performance counters. An analysis of these results is
presented in subsequent sections. The proposed detection
method can be further extended to other variations of Spectre
attacks by monitoring additional microarchitectural features
depending on the side channels likely to be exploited.

3.4 Evasive Malware

Attackers may attempt to evade detection by reverse-engi-
neering the detector and mimicking the behavior of normal
programs. Previous research [28], [29], [30] suggested gener-
ating evasive malware (also known asmimicry attack) by inser-
tion of no-op instructions, code obfuscation, or calling of
benign functions in between malignant payloads so as to
bypass software malware detectors. Researchers [31] also
discussed evading detection by hardware malware detec-
tors after adding instructions into the control flow graph of
the malware without changing the execution state of the
program. However, for Spectre attacks to be successful,
attackers must also ensure that cache and branch predictor
states are not affected. Therefore, our research also studies
the feasibility of developing evasive Spectre with reasonable
attack success rate and the countermeasures to detect such
attacks.

3.5 Hardware Performance Counters

Modern processors provide a variety of Hardware Perfor-
manceCounters (HPCs) formonitoring andmeasuring events
during program execution such as instruction retired, cache
hits or misses and branch misprediction etc.. Profiling tools
such as perf can be used to access HPCs measurements
through a simple commandline interface. Perf can be read
using twomodes, namely counting or sampling. In the count-
ing mode, the occurrences of events are simply aggregated
and presented on standard output at the end of an application
run. In the sampling mode, it samples various metrics based
on the occurrence of a certain number of events. We use the
samplingmode in our experiments.

4 DETECTION OF THE ORIGINAL SPECTRE ATTACK

In this section, we propose and demonstrate an approach
which will permit us to monitor microarchitectural events
from existing CPU performance counters and to detect the
original Spectre-V1 while under attack, with high detection
accuracy and minimal performance overhead.

4.1 Proposed Online Detection Approach

Our proposed detection approach periodically collected
microarchitectural features from performance counters. For
the Spectre-V1 attack discussed in Section 3.1 (exploiting
conditional branches), we chose to monitor four events
related to the cache miss rate and the branch misprediction

rate: namely cache references, cache misses, branch instruc-
tions retired, and branch mispredictions. The data was col-
lected from a “clean” environment where the computer
runs typical desktop applications such as web browser,
video player, and text editors, as well as from an environ-
ment under Spectre attack while running the same desktop
applications. The data was then labeled to train the machine
learning classifier to classify the input data at each time
interval. At runtime, the output time series from the trained
classifier was fed into the online detection mechanism to
decide if the system was under attack. This section describes
in detail the machine learning algorithms we used to train
the classifier and our proposed online detection approach.

4.1.1 Machine Learning Classifiers

Machine learning (ML) can be used to train classifiers that
determine the class to which a given data set belongs. We
used supervised learning [32] to train the attack detector
with a set of pre-labeled examples. Supervised learning
entails a training phase and a testing phase. For each type of
attacks, we collected data in ten independent runs and used
the same number (1,200) of samples from both classes to
avoid any bias. Then, we randomly divided the collected
data into training (80 percent) and test (20 percent) data,
and separated the data into training (80 percent) and valida-
tion (20 percent) data.

We chose three different machine learning algorithms
including Logistic Regression (LR) [33], Support Vector
Machine (SVM) [34], [35], and Artificial Neural Networks
(ANN) (also known asMultilayer Perceptron (MLP)) [36], [37],
[38], to build the classifiers with increasing model complexity
(many othermachine learning algorithms exist, but for demon-
stration purposes, we chose three commonly used algorithms
with different complexities according to the data size).

4.1.2 Online Attack Detection

We used a sliding window-based online classification meth-
ods similar to that proposed in [39] to detect malicious
behavior at runtime. To this end, we collected microarchi-
tectural features at a 100 ms sample period. The multidi-
mensional data were then fed to a machine learning
classifier to make decisions as to whether malicious code
was being executed or not. The problem of detecting mali-
cious attacks in real time was to make decisions according
to the binary time series generated by the base classifier.

To smooth the fluctuated time series data, a Weighted
MovingAverage (WMA)was used to filter out noise for better
decision making by assigning a weight factor to each element
in the time series. More recent data were given higher
weights. Then we segmented the data using a sliding win-
dow [40], [41] to calculate the average of consecutive decisions
within the current window. If the average is above a certain
threshold, we conclude that an attack (malicious code) is in
progress. Attackers could use evasion techniques such as
slowing down the attack to keep the average below the thresh-
old.We discuss the possible evasion strategies in detail in Sec-
tion 5. Fig. 2 illustrates an example of a sliding window
processwith awindow size of 5. Each numbered segment cor-
responds to the classification result of each sampling period.
The initial window contains the first 5 decisions. The data

1322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

within this window were used to determine the final classifi-
cation result for the current time. The detection ran continu-
ously for the next period where the window slid to the right
by one segment to cover data from segments 2 to 6, before it
moved on to the nextwindow.

In this experiment, we chose the window size to be 10
and sampling period of performance counters data collec-
tion to be 100 ms, which means our detector makes a deci-
sion every second on whether the system is under attack. In
Section 5 we study multiple ways to evade detection such
as slowing down the attack. While window size and sam-
pling period could affect detection accuracy and overall sys-
tem performance overhead for different hardware systems,
we selected the above numbers so as to yield a satisfactory
detection accuracy without a major slowdown of the sys-
tem. In Section 6, we used randomized sampling periods to
improve the resilience of our detector.

4.1.3 Evaluation of Detection Performance

A key criterion to evaluate the detection performance is the
accuracy of the model used to make decisions on previously
unseen data. To characterize accuracy, we used metrics
such as False Positives (FP), the percentage of misclassified
malicious instances, and False Negatives (FN), the percent-
age of misclassified normal instances. A detection approach
with good performance is expected to minimize both.

To visualize the tradeoff between the percentage of cor-
rectly identified malicious instances and the percentage of
normal instances misclassified, we used Receiver Operating
Characteristic (ROC) graphs plotting True Positives ðTP ¼
100%� FNÞ against FP . To compare the performance of dif-
ferent models, we computed and compared the area under
the ROC curve for eachmodel. The Area Under Curve (AUC)
score, also known as the c-index, provides a quantitative met-
ric of how well an attack detection approach can distinguish
between malicious and normal execution with a higher AUC
value for better performance.

4.2 Experimental Setup

To examine whether data from performance counters can be
used to effectively detect Spectre, we collected events which
are expected to be affected by the attack (this includes cache
references, cache misses, branch instructions retired and
branch mispredictions from running the attack on top of nor-
mal programs and running typical benign applications alone
respectively). The data were then pre-processed before being
used to train different machine learning classifiers to detect
malicious behavior. In this section, we described the details of

the data collection mechanism and the system settings under
attack and in normal conditions. We demonstrated the pro-
posed online detector under a standalone personal computer
environment, but our work could easily be extended to server
environments in the future.

Overfitting is a common problem for machine learning
classifiers. To allay this problem, we first sought to include
more data by collecting data from performance counters
periodically in 10 independent runs and used the same
number (1,200) of samples from malicious and normal clas-
ses. We used the same number of samples from both classes
to ensure the training data are not biased by different clas-
ses. Then, we randomly split the collected data into training
(80 percent) and test (20 percent) data, then separated the
training data into training (80 percent) and validation (20
percent) data for cross-validation. We also included regular-
ization parameters in the machine learning models during
training. In addition, we compared the detection accuracy
under normal and high system load conditions to study the
effectiveness of the malware classifiers.

4.2.1 Data Collection Mechanism

We ran the attack on a typical personal laptop with Debian
Linux 4.8.5 OS on an Intel

�
CoreTM i3-3217U 1.8 GHz pro-

cessor with 3 MB cache and 4 GB of DDR3 memory from
Micron. The Intel

�
processor contains a model-specific per-

formance counter monitor (PCM) and can be configured to
count four different hardware events at the same time.
According to the discussion on the nature of Spectre attack
in Section 3.1, we chose the following available events for
our system:

� Last-level cache reference event (LLC references)
� Last-level cache misses event (LLC misses)
� Branch instruction retired event (branches)
� Branch mispredict retired event

(branch mispredictions)
We used the standard profiling infrastructure of Linux,

perf tools, to obtain performance counter data. We ran perf
in sampling mode and record the measurements every 100
ms so as not to excessively degrade the performance. We
collected system-wide data rather than for individual pro-
cesses for the following reasons. First, monitoring each pro-
cess separately may introduce significant performance
overhead, it may not be a scalable solution for systems run-
ning many programs. Second, classification using system-
wide data is more difficult since the training data labelled
“malicious” includes noise from legitimate programs. Previ-
ous researchers [21] also adopted a similar method. Using
system-wide data can better demonstrate the feasibility of
our proposed detector than using data from individual pro-
cesses since the classification results of individual processes
are expected to be better with less false positives.

4.2.2 Test Environment Setup

In a clean environment, we sought to create realistic scenarios
by randomly browsing through popular websites (according
to Wikipedia in FireFox) and by streaming videos from
browser plug-ins. In addition, we also ran text editors to read
and edit files. For data collection when the system was under

Fig. 2. Sliding window example.

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1323

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

a malicious attack, we launched the Spectre proof of concept
attack on top of normal running applications. To experiment
with systems under high load conditions, besides running the
above-mentioned applications, we stressed the system with
(1) a memory intensive load running memcpy (copy 2 MB of
data from a shared region to a buffer using memcpy and then
moved the data in the buffer withmemmove), (2) a CPU inten-
sive load running floating-point operations cfloat in a loop
and (3) both memory and CPU intensive workloads running
in parallel. We wiped and restored all non-volatile storage
and also reset the CPU memory and cache by reading the
same large file (4 GB) after each run to independency of the
measurements across a variety of clean and exploit runs.

4.3 Detection Results

In this section, we first analyzed the collected raw data to
determinewhether it is feasible to differentiate measurements
in clean environments from those under attack by visualizing
the distribution of data. We then used different machine
learning algorithms to train the classifier and built the online
attack detector using the sliding window approach discussed
in Section 4.1.2.

4.3.1 Data Distribution Analysis

Our data collection mechanism produced 4-dimensional time
series data. Each sample contains event counts for branchmis-
predictions, LLCmisses, branches, andLLC references during
the sampling period. We also calculated the branch miss rate
(1) and the LLCmiss rate (2) for each interval as

branch miss rate ¼ branch mispredictions=branches

(1)

LLC miss rate ¼ LLC misses=LLC references: (2)

We used boxplot to visualize the range and variance of the
measured data for each individual microarchitectural feature.
Fig. 3 gives a direct indication of the feasibility to detect mali-
cious attacks using one particular feature. We observed an
increased number of branches and branch mispredictions
during the attacks. In contrast, the branch miss rate was
decreased. This was because the attacker attempted to train
the branch predictor by calling the conditional branch many
times with different input values that make the condition
true. For the LLC, the number of references and misses were
both increased with the miss rate concentrated on the higher
percentage region due to cache side channel attacks. The
experimental results validated the hypothesis we proposed in
Section 3.3.

We also analyzed the feasibility of distinguishing the col-
lected performance counter data using more than one fea-
ture by plotting the sample points in 2D graph with each
dimension corresponding to one feature. Fig. 4 shows the
distribution of normal and malicious sample points for Spec-
tre attacks using branch miss rate and LLC miss rate param-
eters. We could observe the data points of two different
classes distributed in two different regions and the bound-
aries between the two are obvious. This demonstrated that

we could detect Spectre attacks using the selected microarch-
itectural features.

4.3.2 Online Detection Performance

We used the three different machine learning algorithms
mentioned in Section 4.1.1 to train the base classifier, then
smoothed the output time series with WMA, and finally
built the online detector based on the sliding window
approach described in Section 4.1.2.

To enhance detection accuracy, different parameters
were selected for each ML model. We used a randomized
search over different parameters to find the best combina-
tion, where each setting was sampled over a distribution of
possible parameter values. Compared with an exhaustive
search, it is less computationally expensive and gives results
that are close to the optimal solution.

To choose the most suitable classifier, in real world appli-
cations such as those found in embedded systems, we need
to consider constraints of time, energy consumption, mem-
ory resources, etc. In addition, we need to know how much
the system is allowed to tolerate in terms of false positives
and false negatives.

To quantitatively evaluate the performance of online
detection based on different classifiers, we look at the
Receiver Operating Characteristic (ROC) curves which plots
false positive rate as the x-axis against true positives as the
y-axis as shown in Fig. 5. Indeed, ROC curves are typically
used to show the tradeoff between false positives and true
positives. If we allow a higher rate of false positives (in
other words, moving towards the right of the graph), the
detector should be able to catch more malicious attacks. The
dotted diagonal line connecting (0,0) and (1,1) represents
the performance of a classifier that randomly guesses. For a

Fig. 3. Distribution of microarchitectural features from performance
counters for Spectre.

1324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

classifier to perform better than a random guess, its ROC
will lie above the diagonal. Obviously, all our trained classi-
fiers had significantly better performance than a random
guess. To choose the best configuration, we picked the point
on the curve at the top left corner which gives the lowest
combined number of false negatives and false positives. We
can see that they all performed quite well with an AUC
above 0.99. Overall, MLP outperformed other classifiers
with the highest AUC value for the best case scenario. This
was as expected because MLP is more flexible than the other
methods used.

False positives are common in antivirus software. When
deploying the detector in real systems, we propose several
ways to handle such cases. First, the detectorwill send awarn-
ing message to the user when malicious activity is detected.
The user will decide if it is a false positive or choose to stop
malicious applications. Second, we will allow the user to send
a feedback to the antivirus developer to improve the detector.
Online learning algorithms can also be implemented in the
detector to received feedback directly from the user and auto-
matically improve the detection accuracy. Finally, we can

allow the user to define a set of benign applications to be
excluded from themonitoring.

We compared the performance of each classifier quantita-
tively using the AUC index and chose the best point on the
ROC which gives the minimum FP and FN as shown in
Table 1. The best case using MLP gives 0 percent false nega-
tives with only 0.77 percent false positives. We also observed
thatmore complexmodels required longer training time since
thereweremore parameters.

Table 2 compares the detection accuracy under different
system load conditions. The classifiers were trained using
data collected under normal load condition. By running dif-
ferent kinds of additional workloads on top of the normal
workload, we studied how the detection accuracy of the origi-
nal classifier varies. To better understand the experimental
results. We compare the classification features including
branch mispredictions and cache misses for system running
memory intensive load and CPU intensive load. We found
there was no significant difference for branch misprediction
under different workloads. However, the difference in LLC
misses was very obvious as shown in Fig. 6. the number of
LLC misses reduces when CPU intensive workloads were
running on top of attack because CPU intensive workloads
slowed down the attack without introducing more LLC
misses. Whereas memory intensive workloads introduced
more LLC misses and made it easier to classify malicious
attack from normal condition. Therefore, the detection accu-
racy drops when we stress the system with CPU intensive
workloads for all kinds of machine learning classifiers. How-
ever, the detection accuracy increases when we run memory
intensive workloads. When the system is stressed by both
kinds of workloads, the detection accuracy drops less than
when running CPU intensive workloads alone. In general,
our detector is able to maintain a detection accuracy above 90
percent for all the scenarioswe tested.

5 EVASIVE SPECTRE

In this section, we imagine quantitatively how the original
Spectre [20] could be even more maliciously updated to oper-
ate effectively without being detected by our previously pro-
posed detector in Section 4. As discussed in Section 3.4,
developing evasive microarchitectural side channel attacks
such as Spectre has additional requirements compared with
traditional evasivemalware: the attackermust ensure that the
relevant microarchitectural status remains unchanged during
the attack in order to perform “successfully” (success obvi-
ously being from the point of view of the attacker). We first
study the feasibility of constructing an “evasive Spectre” that
is able to bypass HPC-based detectors while maintaining a
reasonable attack success rate, and also the trade-off betweenFig. 5. ROC for online detection of Spectre using different classifiers.

TABLE 1
Performance of Different Classifiers for Spectre

Classifier AUC FP(%) FN(%) Training Time (sec)

LR 0.9956850054 1.15 2.43 0.04

SVM 0.9913142134 0.77 0.97 9.8

MLP 0.9998512071 0.77 0 95

Fig. 4. Distribution of branch miss rate and LLC miss rate features for
Spectre.

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1325

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

attack success rate and attack evasiveness. Then we compare
different evasion strategies to determine how an attacker
could best evade detection while maintaining a reasonable
success rate and speed. To achieve reasonable attack success
rates, the attacker has to insert instructions or put the attack to
sleep at a coarser granularity than a basic block in the control
flowgraph. Therefore,we define atomic tasks (detailed defini-
tion in Section 5.2.1) and reshape the microarchitectural fea-
tures in the granularity of the atomic task level. If an atomic
task is interrupted, the chances of success for an attack would
be greatly reduced.

5.1 Threat Model

We assume that the victim’s machine is running an HPC-
based malware detector such as proposed in [42] to defend
from Spectre attacks. The detector monitors four microarchi-
tectural features including Last-Level Cache references (LLC
references), Last-Level Cache misses (LLC misses), branch
instructions retired (branches), and branch mispredict retired
(branchmispredictions) at a fixed sampling rate on a separate
core. In future research, the condition will be relaxed for
mixed sampling rate and the detector can be implemented in
dedicated hardware to reduce performance overhead. We
assume the attacker’s goal is to reveal some confidentialmem-
ory content on the victim machine without being detected as
malware. To achieve this goal, we further assume the attacker
can observe the behavior of the malware classifier from a
machine with a similar HPC-based detector as the victim
machine. The attacker can evade detection by changing the
microarchitectural characteristics of the updated Spectre so as
to behave like a benign program.

We assume the attacker knows the features being moni-
tored by the malware classifier. This is reasonable because
the attacker knows that the original Spectre [20] would cause
increased cache misses and reduced branch mispredictions.
However, the attacker does not know the sampling period
of the detector. Yet this can be reverse engineered (see [31]).

As a Spectre attack runs in a loop, we assume the attacker
can slow down the attack by calling the victim function/API
at specific intervals. In addition, we assume the attacker can
manipulate the performance counters by inserting instruc-
tions that reduce LLC cache misses and increase branch mis-
predictions by exploiting other vulnerabilities such as just-in-
time code reuse attacks. This gives the attacker more privi-
leges and could help us test the detector’s resilience to evasion
in extreme conditions.

Previous work [31] shows that the accuracy of HPC-based
detectors decreases significantly as the number of instructions
inserted in the original attack increases and assumes the

attacker is interested inmaintaining a reasonable performance
of the attacks. However, this did not consider how the
inserted instructionsmay affect the success rate of the detector
in inferring the correct content. Since Spectre is time sensitive,
the inserted instructionsmay change or provide opportunities
for other running programs to change the cache status and
cause the attack to read the wrong content. Therefore, besides
maintaining performance (side channel bandwidth), we fur-
ther assume the attacker aims atmaintaining a reasonable suc-
cess rate.Without these assumptions, it is impossible to detect
an attack when the attack is running indefinitely slow and
reading thewrong content.

5.2 Development of an “Evasive Spectre”

To avoid detection by HPC-based detectors, the attacker
would seek to shape its microarchitectural trace to mimic
that of benign programs. In so doing, the attacker would
have to sacrifice the efficiency of the attack and perform it
more slowly (reduced side channel bandwidth). However,
slowing down Spectre could result in a failure of the attack.
In this section, we profile the original Spectre-V1 to study its
feasibility to perform an attack without detection and dis-
cuss strategies to develop an “Evasive Spectre.” We use the
same experiment setup as discussed in Section 4.2 under
normal workload conditions and launch “Evasive Spectre”
attacks using the strategies proposed in Section 5.2.2 on top
of normal applications.

5.2.1 Feasibility Analysis of “Evasive Spectre”

In order for the attack to be successful, the attacker must
complete malicious tasks faster than the detection fre-
quency. Thus, the microarchitectural trace of the attack
should be reshaped so the attack can make progress faster
than each detection interval. We thus define an atomic task
as a sequence of instructions that should not be interrupted
during execution if progress is to be made towards the com-
pletion of a malicious task to achieve success. We identified
three atomic tasks in the proof of concept Spectre-V1 [20]: (1)
Flushing cache lines, (2) Mistraining branch predictor, (3)
Attempting to infer the secret byte that is loaded into the cache.
We compared the attack success rate of interrupting the
attack during atomic tasks and between atomic tasks by
inserting the same instructions. Table 3 shows that the
attack success rate drops significantly when defined atomic
tasks are interrupted. Therefore, we chose to reshape the

TABLE 2
Detection Accuracy for System Under

Different Load Conditions(%)

ClassifierNormal Memory
Intensive

CPU
Intensive

Memory & CPU
Intensive

LR 96.42 97.32 90.77 94.79

SVM 98.26 99 91.63 96.63

MLP 99.23 99.57 94.42 96.97

Fig. 6. Distribution of LLC misses for Spectre under different workloads.

1326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

microarchitectural features for evasion at the atomic task
level rather than at a finer granularity in the control flow
graph. The three atomic tasks respectively took 10ms, 13ms,
38ms to complete on average. For each byte, the three tasks
were performed multiple times to get the best results. The
original attack read secret bytes at an approximate band-
width of 2 KB/second on average.

As discussed in Section 5.1, we assumed the attacker knew
the features being monitored but did not know the classifica-
tion period. we used the method proposed in [31] to collect
multiple pairs of testing and training data sets of the same fea-
tures using different collection periods and trained a reverse-
engineered detector for each data set. The victim’s collection
period (100 ms) was the same as the collection period of the
reverse-engineered detectorwith the highest accuracy.

Since the sampling period of the victim detector is much
larger than the time taken to perform each atomic task, the
attacker can transform the microarchitectural profile of Spec-
tre by inserting instructions or “sleeping” at a finer granu-
larity than the sampling rate of the detector. To analyze the
feasibility of evading detection, we executed atomic tasks
using 20 percent of each sampling period and put the attack
to sleep for the remainder. Fig. 7 shows the distribution of
(1) benign, (2) malicious and (3) evasive sample points using
cache miss rate and branch miss rate features. It shows a
clear boundary between normal and malicious sample
points while the evasive sample points shift the original
malicious program to overlap with normal ones (they can-
not fully overlap because unlike a normal program, the eva-
sive attack still needs to perform malicious tasks). Modified
Spectre performs with an 89 percent success rate.

5.2.2 Strategies to Construct “Evasive Spectre”

As discussed in Section 3.3, the original Spectre increases
LLC misses and reduces branch mispredictions. To evade
detection, the attack could be slowed by putting it to sleep
or inserting instructions that reduce the number of LLC
misses (reading the same memory bytes) and increase the
number of branch mispredictions (adding unpredictable
branches). Assuming the attack runs in a loop, at each cycle,
the attacker needs to complete a series of atomic attacks to
retrieve one secret byte from the victim. We thus considered
the following four strategies:

1) Put the attack to sleep in between atomic tasks.
2) Put the attack to sleep after all tasks have completed.
3) Insert instructions in between atomic tasks.
4) Insert instructions after all tasks have completed.
The first two strategies slow down the attack while strat-

egies 3 & 4 directly manipulate the performance counters.
Varying sleep time or looping the instructions that

reshape the microarchitectural profile different times will

accordingly change the attack bandwidth. We studied the
effectiveness of different strategies by gradually reducing
the attack bandwidth and analyzing the results in the fol-
lowing section.

5.3 Experimental Results

We now evaluate different evasion strategies proposed in
Section 5.2.2 by varying the bandwidth reduction from 1X
to 7X and comparing the detection accuracy and the attack
success rate. We define the success rate as the percentage of
correct bytes inferred by the attacker over the total number
of bytes inferred. Putting the attack to sleep or inserting
instructions to reshape the microarchitectural profile of the
attack reduces the rate of confidential content read. The lon-
ger the attack takes to reshape the profile, the higher the
bandwidth reduction it will incur and the lower the success
rate, due to higher TLB and cache pollution. Therefore, an
effective evasion strategy should result in a low detection
accuracy and maintain a reasonable attack success rate and
bandwidth.

For each experimental setup with different evasion strat-
egies and bandwidth reduction, we recorded the attack suc-
cess rate and detection accuracy using the existing victim
detector with different Machine Learning classifiers. We col-
lected data in 10 independent runs for each setup and calcu-
lated the average values.

Figs. 9 to 10 show detection accuracy versus bandwidth
reduction using different ML classifiers for each of the four
strategies. In all cases, the detection accuracy drops with the

TABLE 3
Attack Success Rate After Interruption at Different Levels

Task 1 Task 2 Task 3

Interrupt During Atomic Task 65% 58% 60%

Interrupt After Atomic Task 89% 90% 92%

Fig. 7. Branch miss rate versus LLC miss rate for “evasive Spectre”.

Fig. 8. Detection accuracy - strategy 1 (sleep between atomic tasks).

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1327

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

bandwidth because the attack becomes more evasive and
closer to benign programs as it runs slower. In addition, the
MLP classifier retains a better detection accuracy as the
bandwidth drops. Therefore, MLP has a higher resiliency to
evasive attacks. In contrast, it is easier to avoid detection by
a simple LR classifier.

Fig. 12 shows the detection accuracy of different evasion
strategies as bandwidth decreases using MLP. Strategy 1
causes the detection accuracy to drop fastest as bandwidth
drops. The detection accuracy diminished to around 50 per-
cent (random guess) when the bandwidth reduction was
7X. Therefore, strategy 1 produces the most evasive attack.
On the other hand, strategy 4 performs the worst in this
regard. Strategy 2 and 3 perform similarly in terms of evad-
ing detection. Note that shaping the microarchitectural pro-
file in between atomic tasks yields a more evasive attack
than shaping it after all the tasks are done no matter what
method (sleep or insert instructions) is used.

Fig. 13 shows the attack success rate using different eva-
sion strategies. As the attack bandwidth decreases, so does
the success rate. Therefore, an attack is more likely to fail
when it is running more slowly due to possible TLB and
cache pollution by other processes. Similarly, inserting
instructions or sleeping between atomic tasks has a higher
chance to fail than inserting or sleeping after all tasks are
done. The success rate dropped below 50 percent with strat-
egy 1 at 7X bandwidth reduction.

To better evade detection (or to reduce detection accu-
racy), the attack must run at a lower rate and suffer a corre-
sponding decrease in success rate. Considering the trade-off

between detection accuracy and attack success rate, strategy
1 produces the most evasive attacks but the lowest success
rate. Conversely, strategy 4 has the best success rate but is
the least evasive. Strategy 2 yields slightly more evasive
attacks than strategy 3 as bandwidth reduces further; strat-
egy 2 has a better attack success rate than strategy 3. There-
fore, strategy 2 is on the overall most effective. At a 7X
bandwidth reduction, the LR classifier can only perform at
58.77 percent accuracy, i.e., no better than a random guess.
Meanwhile, the attack success rate remains at 85 percent.
Therefore, with strategy 2, the attacker can evade detection
by an LR classifier without sacrificing much in terms of suc-
cess rate and bandwidth. To evade the scrutiny of a more
complex classifier such as MLP, the attacker can further
reduce the bandwidth for a lower detection accuracy. At
10X bandwidth reduction, the MLP classifier performs at 70
percent accuracy and the attack success rate remains at 85
percent.

6 EVASION RESILIENT SPECTRE DETECTOR

In this section,we showhow to improve the Spectredetector to
be evasion-resilient by randomly switching between multi-
ples detectors with different settings. As discussed in Sec-
tion 5.1, the attacker must rely on a reverse-engineering
approach to obtain the detailed settings of the victim detector.
Randomization introduces errors to reverse-engineering and
makes the detector resistant to evasion. Researchers [31], [33]
have proven theoretically that randomizing among a set of
low-complexity, low-accuracy classifiers makes it inherently

Fig. 9. Detection accuracy - strategy 2 (sleep after all tasks).

Fig. 10. Detection accuracy - strategy 3 (insert instructions between
atomic tasks). Fig. 12. Detection accuracy using Multi-Layer Perceptron.

Fig. 11. Detection accuracy - strategy 4 (insert instructions after all
tasks).

1328 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

more difficult to reverse-engineer than using a single deter-
ministic classifierwith high complexity and accuracy.

To develop an evasive-resilient Spectredetector,we assume
the attacker uses the most effective strategy (i.e., strategy 2:
sleep after all tasks are done) as mentioned in Section 5.2.2 to
evade detection. We also assume that the victim detector uses
MLP as other simpler models (LR and SVM) can be easily
evaded. We build detectors with different settings in terms of
features used for detection and sampling periods and ran-
domly switch between themwith equal probability.

The accuracy of the reverse engineering technique is
defined as the percentage of equivalent decisions made by
the victim detector and reverse-engineered detector. It
measures how well the attacker can mimic the victim detec-
tor. The highest accuracy occurs when the settings for the
reversed-engineered detector are the same as the victim
detector. Thus, the attacker can infer the victim’s settings by
experimenting different settings for the detector and choose
the one with the highest reverse engineering accuracy.

We study how randomizing the features used for detec-
tion and sampling periods affects the accuracy of the
reverse engineering and the results are presented in Figs. 14
and 15. The features used for detection include cache related
features (cache references and cache misses), branch related
features (branch instructions retired and branch mispredic-
tions) or a combination of them. The sampling period used
for detection is switched between 50 ms and 100 ms. The
victim detector switches between a collection of random-
ized detectors. We built the collection of detectors with
increasing diversity using different features and sampling
periods. The baseline detector consists of only one detector

which uses a combination of cache and branch related fea-
tures with a fixed sampling period of 100 ms. Then we built
3 detectors with randomized features to be either cache
related, branch related or the combined features and switch
between them in am unpredictable order. Finally, we build
6 detectors by randomizing both features and sampling
periods. In general, when reverse-engineering the features
used for detection (Fig. 14) and sampling period (Fig. 15),
the accuracy drops as the detector diversity increases. For
detectors with no randomization or only randomized fea-
tures, it was possible to reverse engineer the correct settings
in our experiment. However, for increased diversity with
randomized features and periods, the reverse-engineering
failed to infer the accurate settings of the victim.

Based on the reverse-engineered detector, the attacker
could use the strategies discussed in Section 5.2.2 to evade
detection. However, due to the errors introduced by ran-
domly switching between different detectors to the reverse-
engineering, it became difficult to avoid detection. Fig. 16
shows the detection accuracy for detectors of different ran-
domization settings with increasing side channel bandwidth
reduction (or attack speed reduction) up to 30X. The results
show that the detection accuracy decreased as the bandwidth
increased for all detectors. The baseline detector had a slightly
higher detection accuracy than the other two strategies with a
randomized detector for the original Spectre (no bandwidth
reduction). However, the accuracy decreased dramatically as
the bandwidth reduction increased. This means that the base-
line detector could not perform well when the attack was get-

Fig. 13. Attack success rate using the proposed evasion strategies.

Fig. 14. Reverse-engineering features used for detection.

Fig. 15. Reverse-engineering the sampling period.

Fig. 16. Detection accuracy for evasion resilient Spectre detector.

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1329

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

ting more evasive especially in the extreme condition where
bandwidth reduction was 30X. On the other hand, the detec-
tion strategy which randomly switches between detectors
with different features and sampling periods was able to
maintain a relative better detection accuracy when the band-
width reduction was greater than 2X. Even when faced with
the most extreme conditions (bandwidth reduction = 30X) in
our experiments, the detection accuracy was above 80 percent
which was much better than 50 percent of the baseline detec-
tor. Therefore, although switching between amore diverse set
of detectors had lower accuracy for the original Spectre, it was
more resilient to evasion as the bandwidth decreases.

7 CONCLUSION AND FUTURE RESEARCH

As complete mitigation to the Spectre is challenging, it is more
practical now to detect such attacks proactively. We proposed
to detect Spectre attack by monitoring microarchitectural fea-
tures collected from hardware performance counters com-
monly available in modern processors. An online detection
approach was adopted to detect malicious behaviors during
the attack and the experimental results showed a promising
detection accuracy with only 0.77 percent of false positives
and no false negatives using a MLP classifier when detecting
the original Spectre-V1 under normal workloads. We also
tested the detector under different workload and it was able
tomaintain an accuracy above 90 percent.

In addition, We demonstrated the feasibility of a re-
designed Spectre-V1which evadesHPC-basedmalware detec-
tors and proposed strategies to reshape themicroarchitectural
profile of the attack by putting attacks to sleep or inserting
instructions. We showed that putting Spectre to sleep after it
has performed malicious tasks allows an attacker to effec-
tively evade simple LR malware classifiers and maintain as
high a success rate as 86 percent with a concomitant 7X band-
width reduction. Complex models such as MLP mean higher
resiliency to evasion, however, with a 10X bandwidth reduc-
tion, and a lower 70 percent detection accuracy.

Finally, we sought to improve the resiliency to evasion of
the detection model by randomly switching between detec-
tors with different settings. For the detector that consists of
6 different detectors with randomized features and sam-
pling periods, our experimental results showed that the
attacker could not reverse-engineer the accurate settings of
the victim and the detector was able to maintain the detec-
tion accuracy above 80 percent to counter evade as the side
channel bandwidth decreased by as much as 30X.

In terms of future research, we will look into reducing
the performance overhead of the detector such as using
dedicated hardware to implement the malware classifier.
We will also expand the work to detect other attacks target-
ing GPU and other hardware vulnerabilities. As malware
becomes pervasive and stealthier, future security mecha-
nisms should actively monitor even the subtlest anomalies
or signs of malware infection in every layer of the system
from networks, software applications to hardware. The
defense system should also be able to proactively respond
to and remedy threats and be easily reconfigured to future
attacks. More sophisticated machine learning algorithms
using features not only from the hardware performance
counters will be explored to predict program execution

behaviors to prevent attacks at an earlier stage. Online
learning algorithms will also be experimented with to
involve real-time user feedback and respond to ever-chang-
ing malware behaviors.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (NSF) under Grant CNS-2026675. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of Diffie-Hell-
man, RSA, DSS, and other systems,” in Proc. Annu. Int. Cryptol.
Conf., 1996, pp. 104–113.

[2] W. Schindler, “A timing attack against RSA with the chinese
remainder theorem,” in Proc. Second Int. Workshop Cryptographic
Hardware Embedded Syst., 2000, pp. 109–124.

[3] W. Schindler, “Optimized timing attacks against public key
cryptosystems,” Statist. Risk Model., vol. 20, no. 1–4, pp. 191–210,
2002.

[4] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
in Proc. 12th Conf. USENIX Secur. Symp., 2003, pp. 1–13.

[5] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Ann. Int. Cryptol. Conf., 1999, pp. 388–397.

[6] J.-S. Coron and L. Goubin, “On boolean and arithmetic masking
against differential power analysis,” in Proc. Second Int. Workshop
Cryptographic Hardware Embedded Syst., 2000, pp. 231–237.

[7] J. Waddle and D. Wagner, “Towards efficient second-order power
analysis,” in Proc. Int. Workshop Cryptographic Hardware Embedded
Syst., 2004, pp. 1–15.

[8] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Proc. Int. Workshop Cryptographic Hardware
Embedded Syst., 2001, pp. 251–261.

[9] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Proc. Int.
Conf. Res. Smart Card Program. Secur., 2001, pp. 200–210.

[10] M. G. Kuhn, “Optical time-domain Eavesdropping risks of CRT
displays,” in Proc. IEEE Symposium Secur. Privacy, 2002, pp. 3–18.

[11] A. Shamir and E. Tromer, “Acoustic cryptanalysis: On nosy peo-
ple and noisy machines,” in Proc. Eurocrypt Rump Session, 2004.

[12] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: The case of AES,” in Proc. Cryptographers Track RSA
Conf. Topics Cryptol. 2006, pp. 1–20.

[13] D. J. Bernstein, “Cache-timing attacks on AES,” Technical Report,
Univ. Illinois, IL, USA, Rep. 60607–7045, 2005.

[14] Y. Yarom and K. Falkner, “FlLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in Proc. 23rd USENIX
Conf. Secur. Symp., 2014, pp. 719–732.

[15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2015, pp. 605–622.

[16] O. Aciiçmez, S. Gueron, and J. P. Seifert, “New branch prediction
vulnerabilities in OpenSSL and necessary software counter-
measures,” in Proc. IMA Int. Conf. Cryptogr. Coding, 2007, pp. 185–
203.

[17] O. Acıiçmez, Ç. K. Koç, and J. P. Seifert, “Predicting secret keys
via branch prediction,” in Proc. Cryptographers Track RSA Conf.,
2007, pp. 225–242.

[18] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in Proc.
IEEE/ACM Annu. Int. Symp. Microarchit., 2016, pp. 1–13.

[19] S. Lee, M. W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in Proc. 26th USENIX Conf. Secur. Symp.,
2017, pp. 557–574.

[20] P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” in Proc. 40th IEEE Symp. Secur. Privacy, 2019, pp. 1–19.

[21] J. Demme et al., “On the feasibility of online malware detection
with performance counters,” in Proc. 40th Annu. Int. Symp. Com-
put. Archit., 2013, pp. 559–570.

1330 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

[22] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anom-
aly-based malware detection using hardware features,” in Proc. Int.
Workshop Recent Adv. IntrusionDetection, 2014, pp. 109–129.

[23] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, “Ensemble learning for low-level hardware-sup-
ported malware detection,” in Proc. 18th Int. Symp. Recent Adv.
Intrusion Detection, 2015, pp. 3–25.

[24] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance counters to rescue: A machine learning based safe-
guard against micro-architectural side-channel-attacks,” IACRCryp-
tology ePrint Archive, vol. 2017, 2017, Art. no. 564.

[25] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda, W.
Robertson, and A. Kurmus, “Speculator: A tool to analyze specu-
lative execution attacks and mitigations,” in Proc. 35th Annu. Com-
put. Secur. Appl. Conf., 2019, pp. 747–761.

[26] V. C. Windeck, “CPU vulnerabilities specter-ng: Updates are roll-
ing in,” 2018. [Online]. Available: https://www.heise.de/
security/meldung/CPU-Sicherheitsluecken-Spectre-NG-
Updates-rollen-an-4051900.html

[27] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution
using return stack buffers,” in Proc. ACM Conf. Comput. Commun.
Secur., 2018, pp. 2109–2122.

[28] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anom-
aly detector resistant to mimicry attack,” in Proc. 9th Int. Conf.
Recent Adv. Intrusion Detection, 2006, pp. 226–248.

[29] D. Bruschi, L. Cavallaro, and A. Lanzi, “An efficient technique for
preventing mimicry and impossible paths execution attacks,” in
Proc. IEEE Int. Perform., Comput. Commun. Conf., 2007, pp. 418–425.

[30] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection
from code reuse attacks,” in IEEE 19th Int. Symp. High Perform.
Comput. Archit., 2013, pp. 258–269.

[31] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu,
“RHMD: Evasion-Resilient Hardware Malware Detectors,” in Proc.
Annu. Int. Symp.Microarchit., MICRO, 2017, pp. 315–327.

[32] J. D. Frank, “Artificial intelligence and intrusion detection: Cur-
rent and future directions,” in Proc. Nat. 17th Comput. Secur. Conf.,
1994, pp. 1–12.

[33] Tom M. Mitchell, Machine learning, New York, NY, USA:
McGraw-Hill, 1997.

[34] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vec-
tor Machines and Other Kernel-based Learning Methods. Cambridge
Univ. New York, NY, USA: Press, 2000.

[35] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge,
MA, USA: MIT Press, 2001.

[36] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford Univ. Press, 1995.

[37] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd ed. New York,
NY, USA: Springer, 2009.

[38] A. Bors and M. Gabbouj, “Minimal topology for a radial basis
functions neural network for pattern classification,” Digit. Signal
Process., vol. 4, pp. 173–188, Jul. 1994.

[39] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and
D. Ponomarev, “Malware-aware processors: A framework for effi-
cient online malware detection,” in Proc. IEEE 21st Int. Symp. High
Perform. Comput. Archit., 2015, pp. 651–661.

[40] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time
series: A survey and novel approach,”Data Mining Time Ser. Data-
bases, 2004, pp. 1–21.

[41] M. Vafaeipour, O. Rahbari, M. A. Rosen, F. Fazelpour, and
P. Ansarirad, “Application of sliding window technique for pre-
diction of wind velocity time series,” Int. J. Energy Environ. Eng.,
vol. 5, no. 2, May 2014, Art. no. 105.

[42] C. Li and J.-L. Gaudiot, “Online detection of spectre attacks using
microarchitectural traces from performance counters,” in Proc.
30th Int. Symp. Comput. Archit. High Perform. Comput., 2019, pp.
25–28.

Congmiao Li (Member, IEEE) received the BS
degree in computing (computer science) withminor
in mathematics and the MS degree in electrical
engineering from the National University of Singa-
pore, in 2009 and 2013, respectively, and the PhD
degree in computer engineering from theUniversity
of California, Irvine (UCI), in 2020. She is currently
a postdoc with UCI. Her research interests include
security and computer architecture.

Jean-Luc Gaudiot (Life Fellow, IEEE) received the
Diplôme d’Ing�enieur from the �Ecole Sup�erieure
d’Ing�enieurs en electroniquewith Electrotechnique,
Paris, France, in 1976, and the MS and PhD
degrees in computer science from UCLA, in 1977
and 1982, respectively. He is currently a distin-
guished professor with the Department of Electrical
Engineering and Computer Science, UC Irvine.
Prior to joining UCI in 2002, he was a professor of
electrical engineering with the University of South-
ern California in 1982. He has authored or coau-

thored more than 250 journal and conference papers. His research
interests include multithreaded architectures, fault-tolerant multiproces-
sors, and implementation of reconfigurable architectures. His research has
been sponsored by NSF, DoE, and DARPA, as well as a number of indus-
trial companies. He has served the community in various positions and was
thePresident of the IEEEComputer Society in 2017.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI AND GAUDIOT: DETECTING SPECTRE ATTACKS USING HARDWARE PERFORMANCE COUNTERS 1331

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 07,2022 at 08:52:31 UTC from IEEE Xplore. Restrictions apply.

