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Continuum kinetic theories provide an important tool for the analysis and simulation 
of particle suspensions. When those particles are anisotropic, the addition of a particle 
orientation vector to the kinetic description yields a 2d − 1 dimensional theory which 
becomes intractable to simulate, especially in three dimensions or near states where 
the particles are highly aligned. Coarse-grained theories that track only moments of the 
particle distribution functions provide a more efficient simulation framework, but require 
closure assumptions. For the particular case where the particles are apolar, the Bingham 
closure has been found to agree well with the underlying kinetic theory; yet the closure 
is non-trivial to compute, requiring the solution of an often nearly-singular nonlinear 
equation at every spatial discretization point at every timestep. In this paper, we present a 
robust, accurate, and efficient numerical scheme for evaluating the Bingham closure, with 
a controllable error/efficiency tradeoff. To demonstrate the utility of the method, we carry 
out high-resolution simulations of a coarse-grained continuum model for a suspension of 
active particles in parameter regimes inaccessible to kinetic theories. Analysis of these 
simulations reveals that inaccurately computing the closure can act to effectively limit 
spatial resolution in the coarse-grained fields. Pushing these simulations to the high spatial 
resolutions enabled by our method reveals a coupling between vorticity and topological 
defects in the suspension director field, as well as signatures of energy transfer between 
scales in this active fluid model.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Suspensions of rod-like particles form a broad class of complex fluids. Liquid crystal polymer solutions are one such 
example, where passive elongated particles, like the tobacco mosaic virus [1], are translated and reoriented by the fluid, 
modifying its rheological properties [2,3]. In more recent settings however, the suspended particles generate active stresses 
through propulsive mechanisms [4,5], chemically induced surface flows [6,7], or active cross-linking [8–10]. Such active 
suspensions can exhibit collective flows at scales orders of magnitude larger than those of the constitutive particles. These 
large-scale flows, sometimes called active turbulence, are characterized by unsteady, roiling states filled with jets, vortices, 
and topological defects [11–14]. These compelling non-equilibrium structures have motivated various theoretical models 
ranging from the particle to continuum levels [15–19].
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Particle-based models provide detailed information but are computationally intractable when the number of particles 
is large. Continuum kinetic theories provide a powerful alternative to discrete models in the large particle number limit. 
Here the suspension is represented by means of a particle distribution function which evolves through a nonlinear partial 
differential equation (PDE) – a Fokker-Planck equation – allowing the use of well-established analytical tools and numerical 
methods [18,20]. Its coefficients are usually grounded in modeling of the microscopic physics. Though less demanding than 
discrete models, kinetic theories are not immune from computational challenges. Typically the distribution function depends 
on both particle position and orientation as independent variables, meaning there are 2d − 1 degrees of freedom, with d
the spatial dimension. This cost can be reduced by coarse-graining, in which the suspension is represented by macroscopic 
fields derived from the distribution function. However, the equations of motion for the coarse-grained fields depend on 
unknown fields which must be approximated through a closure model. Constructing an accurate closure model is therefore 
essential for preserving the multi-scale dynamics and capturing the correct physics [21].

Closures have long been used for computational models in rheology [22], many-particle systems [23], and classical tur-
bulence [24], and have more recently been applied to active fluids [25–28]. Not only do these models provide efficient 
computational frameworks, but they can also offer alternative analytical approaches [29,30]. This paper is concerned with 
a specific closure model for apolar suspensions called the Bingham closure, originally introduced by Chaubal and Leal in the 
context of liquid crystal polymers [31]. In this context, only the zeroth and second moments, with respect to the orientation 
variables, of the distribution function are evolved in time. The fourth moment, which appears in the corresponding evo-
lution equations, is then approximated as the fourth moment of the Bingham distribution on the unit sphere [32], whose 
parameters are computed at each point in space by constraining the zeroth and second moments. (Because the system we 
consider here is apolar, odd moments do not occur in the dynamics, however other theories may include such moments.) 
The Bingham closure demonstrates excellent analytical and numerical agreement with the underlying kinetic theory, cap-
turing the same linear instabilities and topological properties of the director field [33]. Accurately computing the closure is 
essential for maintaining these features, however previous approaches lack robust methods for doing so.

Existing methods for computing the Bingham closure typically use low order polynomial interpolants from the second 
to fourth moment tensors, whose coefficients are fit from sample values over the physically feasible domain of the second 
moment tensor. While these methods are fast, they have limited accuracy. In this paper, we propose a fast Chebyshev 
method for computing the Bingham closure which maintains the efficiency of polynomial interpolation while achieving 
near machine precision. The method relies on transforming the domain of eigenvalues of the second moment tensor to 
a square domain, where the sample points can be chosen on a Chebyshev grid. We numerically compute the Bingham 
distribution from the second moment tensor on this Chebyshev grid and integrate to obtain the fourth moment tensor. Here 
we combine spectrally accurate quadrature for the moments with asymptotics to resolve the nearly-singular distribution 
function at strongly aligned states.

We first restate and coarse-grain a continuum kinetic model for an active suspension and describe how the Bingham 
closure arises from the coarse-grained theory. We discuss some analytical properties of the closure model, including a 
proof that it preserves the evolution of the system entropy. We then describe the numerical method for both two- and 
three-dimensional systems, and evaluate its accuracy and efficiency. This analysis shows that inaccurate computation of the 
closure reduces the effective spatial resolution, limiting stability and convergence of the underlying numerical method as 
well as the accessible parameter regimes. Analytical arguments quantify the computational savings of the Bingham closure 
versus the kinetic theory, which shows impractically high cost for the kinetic theory at strong nematic alignment. Though 
we focus on a particular active fluid model, the methods and analyses here equally apply to other apolar kinetic theories, 
such as those for passive liquid crystal polymer solutions. We conclude with high resolution two- and three-dimensional 
simulations, focusing on limits of strong steric interactions and large system size. These simulations reveal novel features 
in the dynamics, including a length scale determination by the steric alignment parameter as well as connections between 
fluid vorticity and topological defects.

2. Model formulation

Here we outline a basic model of an active nematic, a more detailed derivation of which can be found in References 
[20] and [33]. Consider a collection of N rod-like particles of length � and thickness b such that the aspect ratio is large, 
r = �/b � 1. Each particle generates a surface flow of the form U(s) = sign(s)u0p, where −�/2 ≤ s ≤ �/2 is the signed 
arclength along the rod center-line, u0 is the signed surface speed, and p is the particle’s orientation. Because the surface 
flow is anti-symmetric across s = 0, the surface flow generates no motion of the particle itself. That is, the particles are 
immotile and the system is said to be apolar.

We assume the particles are immersed in a Stokes fluid having linear dimension L and volume V = Ld , where d is the 
spatial dimension. If the number of particles is large, the suspension can be represented by means of a distribution function 
�(x, p, t), which describes the density of particles at center of mass x with orientation p. Because the number of particles 
is conserved, this distribution function satisfies a Fokker-Planck equation,

∂� + ∇ · (ẋ�) + ∇p · (ṗ�) = 0, (1)

∂t
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where ∇ is the spatial gradient and ∇p = (I − pp) · ∂/∂p is the gradient operator projected onto the unit sphere. The 
conformational fluxes ẋ and ṗ in the equation above describe each particle’s translational and angular velocities, re-
spectively, and typically depend on the mean field velocity u(x, t) and moments of the distribution function. Defining 
〈g(p)〉 = ´|p|=1 g(p)� dp, the relevant moments are the particle concentration c(x, t) = 〈1〉 and the second-moment tensor 
D(x, t) = 〈pp〉, where pp denotes the outer product. The conformational fluxes are then given by

ẋ = u− DT∇ log�, (2)

ṗ = (I− pp) · (∇u + 2ζ0D) · p− DR∇p log�, (3)

where DT and DR are the translational and rotational diffusion coefficients. The translational flux (2) simply says particles 
move at the local fluid velocity and diffuse, while the rotational flux (3) represents torques acting on the particles and 
their rotational diffusion. The torque is generated by the mean-field quantity ∇u +2ζ0D, which consists of Jeffery’s equation 
modeling particle rotation due to local velocity gradients [34], and steric interactions from Maier-Saupe theory, which causes 
particles to align with the principal axis of D [35]. The parameter ζ0 describes the strength of steric interactions, though its 
value does not have a precise physical interpretation.

The biological active fluids we consider typically have small length and velocity scales, so the fluid is well-approximated 
by the Stokes equation,

−η�u+ ∇q = ∇ · �,

∇ · u = 0,
(4)

where η is the viscosity, q(x, t) is the fluid pressure, and �(x, t) is the so-called extra stress tensor. The extra stress has 
three contributions coming from the dipolar active stress due to the surface flow, stress due to particle density and rigidity, 
and stress caused by steric interactions. Defining the symmetric rate of strain tensor E(x, t) = (∇u + ∇uT )/2 and the fourth 
moment tensor S(x, t) = 〈pppp〉, the total stress is given by

� = σaD+ σcS : E− σs(D ·D− S : D), (5)

where σa = −πη�2u0/2 log(2r) is the dipole strength, σc = πη�3/6 log(2r) arises from particle rigidity, and σs =
πη�3ζ0/3 log(2r) is the strength of steric interactions. Note that the dipole strength σa has the opposite sign of the im-
posed surface flow u0. For u0 > 0 the stress is said to be extensile, like that produced by pusher particles, and for u0 < 0
the stress is contractile, like that produced by puller particles. As demonstrated in several studies, the sign of the dipole 
strength has considerable effects on the system’s structure and stability [18,20].

2.1. Non-dimensionalization

Defining the mean number density n = N/V , we choose a reference length �c = 1/n�2, velocity scale |u0|, stress scale 
η|u0|/�c , and normalize the distribution function so that (1/V ) ̃ � dpdx = 1. In this case the conformational fluxes take 
the dimensionless form,

ẋ = u− dT∇ log�, (6)

ṗ = (I− pp) · (∇u + 2ζD) · p− dR∇p log�, (7)

and the stress becomes

� = αD+ βS : E− 2ζβ(D ·D− S : D). (8)

Here α = σa/η|u0|�2 is the dimensionless dipole strength, ζ = ζ0/|u0|�2 is the strength of steric interactions, β =
πn�3/6 log(2r) characterizes the density of particles, and dT = (n�2/|u0|)DT and dR = (1/n�2|u0|)DR are the dimension-
less translation and rotational diffusion coefficients. The conservation equation (1) keeps the same form, and the Stokes 
equation becomes

−�u+ ∇q = ∇ · �,

∇ · u = 0.
(9)

The system of equations (1) and (6)-(9) is now a closed system which we call the kinetic theory.
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2.2. Moment equations

The full kinetic theory is complex and high dimensional which makes it expensive to simulate. By taking moments of 
the Fokker-Planck equation (1), we can instead represent the dynamics in terms of coarse-grained fields which depend only 
on space [11]. Integrating (1) over the unit sphere in orientation space {p : |p| = 1} leads to an advection-diffusion equation 
for the particle concentration c,

∂c

∂t
+ u · ∇c = dT�c. (10)

Similarly, multiplying by pp and integrating yields an evolution equation for the tensor D,

D∇ + 2S : E = 4ζ(D ·D− S : D) + dT�D− 2ddR

(
D− c

d
I
)

, (11)

where D∇ = ∂D/∂t+u ·∇D −(∇u ·D +D ·∇uT ) is the upper-convected time derivative, with the convention (∇u)i j = ∂ui/∂x j . 
The second-moment tensor can be used as a quantifier of local alignment. This is more precisely measured by the scalar 
orientational order parameter,

s(x, t) = d(μ1(x, t) − 1/d)

d − 1
, (12)

where μ1 is the largest eigenvalue of the normalized second-moment tensor Q(x, t) = D(x, t)/c(x, t), often called the tensor 
orientational order parameter. Notably, the scalar order parameter is zero in an isotropic state μ1 = 1/d and unity in a 
strongly aligned state μ1 = 1. The eigenvector m(x, t) corresponding to the eigenvalue μ1 is called the director, which 
can be interpreted as the mean particle orientation. Note that the director is only defined up to sign, and, moreover, is 
ill-defined in an isotropic state D/c = I/d.

Now the PDE (11) depends on the fourth-moment tensor S = 〈pppp〉 which so far lacks a dynamical equation. One 
resolution is to take the fourth moment of the Fokker-Planck equation, however this yields an equation that depends on the 
sixth-moment tensor 〈pppppp〉, posing the same issue. Alternatively, we can approximate S in terms of the known lower 
order moments c and D through a closure model.

2.3. The Bingham closure

The kinetic theory, being rooted in microscopic modeling, is similar to the classical Doi-Onsager theories for liquid crystal 
polymers [36]. Various closures have been proposed for such theories, a detailed summary of which can be found in [21], 
however most are not based on self-consistent solutions for the distribution function, but rather on asymptotic or ad-hoc 
approximations. As a result, such closures fail to reproduce essential properties of the microscopic model.

Chaubal and Leal introduced a parametric closure scheme for the Doi-Onsager theory which is not only self-consistent, 
but also yields exact results in the relevant asymptotic regimes [31]. Specifically, they assume the distribution function takes 
the form of the Bingham distribution on the unit sphere [32],

�B(x,p, t) = Z−1(x, t)eB(x,t):pp, (13)

where B is a traceless symmetric tensor and Z is a scalar normalization constant. (Note that, because I : pp = 1, translations 
of the form B �→ B + γ I only affect the normalization constant Z , hence it is sufficient to take tr(B) = 0 in which case B
is unique [30].) The parameters B and Z can be computed by imposing the moment constraints c = 〈1〉B and D = 〈pp〉B , 
where 〈·〉B denotes moments of the Bingham distribution. The Bingham closure then consists of an intermediate mapping 
D �→ B[D], after which the distribution function �B is integrated to obtain the fourth moment tensor,

SB [D] = Z−1
ˆ

|p|=1

pppp eB[D]:pp dp. (14)

Since SB is a function of D, we can re-express the dynamics of our coarse-grained model as a closed system in terms of c
and D, with

D∇ + 2SB [D] : E = 4ζ(D ·D− SB [D] : D) + dT�D− 2ddR

(
D− c

d
I
)

, (15)

and the Stokes equation (9) forced by the extra stress

�B = αD+ βSB [D] : E− 2ζβ(D ·D− SB [D] : D). (16)

The Bingham closure has several analytical properties that make it a natural modeling choice. First, the Bingham distri-
bution has a clear physical interpretation, being the unique minimizer of the entropy
4
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S(t) =
ˆ

V

ˆ

|p|=1

(�/�0) log(�/�0) dpdx

subject to the constraints c = 〈1〉 and D = 〈pp〉 [37], where �0 = 1/dπ is the isotropic distribution function. Moreover, it 
satisfies the same evolution identity for the system entropy E(t) = S(t) + κD(t),

E ′(t) = − d

α�0

⎛
⎝ˆ

V

2E : E+ βE : SB : E dx

⎞
⎠ + (2dζ/�0 − 4ddRκ)

ˆ

V

(
D− c

d
I
)

:
(
D− c

d
I
)
dx

+ 8κζ

ˆ

V

D : (D ·D− SB : D) dx − 2κdT

ˆ

V

|∇D|2 dx

−
⎡
⎢⎣dT

ˆ

V

ˆ

|p|=1

�B |∇ log�B |2 dpdx + dR

ˆ

V

ˆ

|p|=1

�B |∇p log�B |2 dpdx

⎤
⎥⎦ ,

(17)

where κ = −dζβ/2�0α and D(t) = ´ (D − (c/d)I) : (D − (c/d)I) dx (see the Appendix for a detailed proof). Importantly, this 
implies the sources of entropy production and dissipation are equivalent in both models. Further, the Bingham distribution 
yields exact solutions for both the isotropic and nematic base states, and the linear stability of these base states is in good 
agreement with the kinetic theory [33]. Finally, coupled with the evolution equation (15), the Bingham closure preserves 
the physical trace condition tr(D) = c, which can be shown by contracting equation (15) with the identity matrix. Accurately 
computing the closure is essential for preserving these analytical properties, which is the main objective of the following 
section.

3. Numerical method

The Bingham closure can be posed as an inverse problem that consists of determining the parameters B and Z such that 
the following constraints are satisfied at each point in space,

c(x, t) = Z−1(x, t)
ˆ

|p|=1

eB(x,t):pp dp, (18)

D(x, t) = Z−1(x, t)
ˆ

|p|=1

pp eB(x,t):pp dp. (19)

As written, this is a d(d + 1)/2 + 1 nonlinear system for the upper triangular components of the symmetric tensor B and 
the normalization constant Z . We can use the first equation (18) to solve for Z so that the nonlinear system can be written

D(x, t)

c(x, t)
=
´
|p|=1 pp eB(x,t):pp dp´

|p|=1 e
B(x,t):pp dp

. (20)

Further, by rotating into the diagonal frame of D and using the trace conditions tr(D) = c and tr(B) = 0, this can be reduced 
to a mapping from the largest (d − 1) eigenvalues of D/c to the largest (d − 1) eigenvalues of B, which is a (d − 1)-
dimensional nonlinear system [31]. For ease of notation, in the following we assume D and SB are normalized by c; the 
argument can be followed identically by replacing D �→ D/c and SB �→ SB/c.

3.1. Diagonalization

Because D is symmetric, it has an eigendecomposition of the form D = �D̃�T , where � is an orthonormal matrix and 
D̃ = diag{μi}di=1 is a diagonal matrix consisting of the ordered eigenvalues of D with 

∑d
i=1 μi = 1. Conjugating the constraint 

(19) by �, we get

D̃ =
ˆ

|p|=1

(�Tp)(�Tp)T �B dp

=
ˆ

|p|=1

p̃p̃T �̃B dp̃,

(21)

where p̃ = �Tp and �̃B = Z̃−1eB:(�p̃p̃T �T ) . Note that because � is orthonormal, the transformation p �→ p̃ is simply a 
re-parameterization of the unit sphere.
5
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A sufficient condition for the off-diagonal terms in the integral above to be zero is that the matrix B is also diagonalized 
by �, which is a consequence of the off-diagonal moments being odd in at least one component of the orientation vector 
pi . (In fact, because B is unique, this is also a necessary condition.) Under this condition the Bingham distribution takes the 
diagonal form �̃B = Z̃−1eB̃:p̃p̃T

, where B̃ = {λi}di=1 is the diagonal matrix of the eigenvalues of B. Using the condition |p̃| = 1
and tracelessness of B, we can write

�̃B = Z̃−1 exp

(
λd +

d−1∑
k=1

λ′
k p

2
k

)
,

which yields d − 1 equations for the parameters {λ′
i = λi − λd}d−1

i=1 ,

μi =
´
|p|=1 p2

i exp
(∑d−1

k=1 λ′
k p

2
k

)
dp

´
|p|=1 exp

(∑d−1
k=1 λ′

k p
2
k

)
dp

, i = 1, . . . ,d − 1, (22)

where we’ve canceled the common factor eλd and dropped tildes in the integrals.
After solving for the λ′

i , the rotated fourth-moment tensor (S̃B )i jk� = �mi�nj�pk�q�Smnpq can be computed from

S̃ i jk� =
´
|p|=1 pi p j pkp� exp

(∑d−1
k=1 λ′

k p
2
k

)
dp

´
|p|=1 exp

(∑d−1
k=1 λ′

k p
2
k

)
dp

, i, j,k, � = 1, . . . ,d. (23)

Because the diagonalized distribution function is even in each pi , only terms of the form S̃ ii j j (which we refer to as the 
diagonal terms of S̃B ) and their permutations are nonzero. We can further simplify computations by taking advantage of the 
trace identity

d∑
k=1

S̃ iikk = D̃ii = μi, (24)

the last equality of which holds because D̃ is diagonalized, so that only 2d − 3 entries of S̃ need to be computed. After 
computing S̃B , we can determine the contractions SB : D and SB : E using the transformation �, which we later describe in 
more detail.

Solving the nonlinear system (22) requires the computation of several integrals on the (d −1)-dimensional unit sphere at 
each point in the domain. Moreover, as μ1 → 1, which corresponds to the strongly aligned state �̃(x, p, t) = c(x, t)δ(p − x̂), 
the system becomes ill-conditioned; in fact λ1 → ∞ as μ1 → 1. As an alternative, we can compute the bounded mapping 
D̃ �→ S̃B in advance and interpolate at each time step. Chaubal and Leal proposed cubic interpolants for these mappings. 
However, their interpolants only agree to about 3 digits, with less accuracy near the aligned states [31]. Here we construct 
Chebyshev interpolants which resolve the mapping to near machine precision while maintaining low computational cost.

3.2. Two-dimensional Bingham map

Here we detail the construction of the two-dimensional Bingham map. Because μ1 + μ2 = 1, we only need to consider 
values where the maximum eigenvalue μ1 is in the interval [1/2, 1]. In this case the nonlinear system (18)-(19) for the 
largest eigenvalue λ1 = λ of the Bingham parameter B becomes

μ1 =
´ 2π
0 cos2 θeλ cos2θ dθ´ 2π

0 eλ cos2θ dθ
, (25)

where we’ve converted the integrals in Equation (22) to polar coordinates with p = (cos θ, sin θ). Note that we’ve used 
λ1 = −λ2 to simplify the exponent.

The integrals in equation (25) can be computed analytically using the identity

2πˆ

0

cos(2nθ)eλ cos 2θ dθ = 2π In(λ),

where In(λ) is the nth modified Bessel function of the first kind. We can then write equation (25) as

F (λ;μ1) := 1

2

(
1+ I1(λ)

I0(λ)

)
− μ1 = 0, with 1/2 ≤ μ1 ≤ 1. (26)
6
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Given μ1 ∈ [1/2, 1], we solve this equation for λ(μ1) with Newton’s method, where the Jacobian can similarly be expressed 
in terms of Bessel functions,

∂ F (λ;μ1)

∂λ
= 1

4

(
1− 2

( I1(λ)

I0(λ)

)2 + I2(λ)

I0(λ)

)
.

Once λ(μ1) has been computed, we evaluate S̃1111(μ1) using the formula

S̃1111(μ1) = 1

8

(
3+ 4

I1(λ(μ1))

I0(λ(μ1))
+ I2(λ(μ1))

I0(λ(μ1))

)
. (27)

Because the off-diagonal terms of S̃ are zero, the physical-frame tensor SB can be completely determined by S̃1111, the trace 
identity (24), and the rotation matrix �, so we only need to compute μ1 �→ S̃1111.

3.2.1. Asymptotics near the aligned state μ1 → 1
Towards the aligned state μ1 → 1 we find λ → ∞ for which evaluating the Bessel functions is ill-conditioned. However, 

only ratios of Bessel functions occur which are bounded for all λ. To evaluate the ratios when λ � 0, we make use of the 
series expansion

In(λ) ∼ eλ

√
2πλ

∞∑
k=0

(−1)kak(n)

λk
, (28)

where

ak(n) =
∏k

�=0(4n
2 − (2� − 1)2)

8kk! .

The ratios can then be stably computed by canceling the leading coefficient eλ/
√
2πλ in (28),

In(λ)

I0(λ)
∼

( ∞∑
k=0

(−1)kak(n)

λk

)/( ∞∑
k=0

(−1)kak(0)

λk

)
. (29)

We use this asymptotic form whenever λ > 700, retaining terms up to order 1/λ4 where the remainder is found to be 
O (10−15). Finally, at the limiting point μ1 = 1, we set S̃1111 = 1, which is easily shown by taking the limit λ → ∞ in the 
expressions (27) and (29).

3.2.2. Interpolation
We represent the mapping μ1 �→ S̃1111 in a Chebyshev basis

S̃1111(μ1) ≈
M∑

m=0

cmTm(4μ1 − 3), (30)

where Tm(ν) is the mth Chebyshev polynomial. To compute the coefficients, we solve equation (26) for λ(μ1) on a Cheby-
shev grid μ1,k = [cos((2k − 1)π/2n) + 3]/4, and evaluate S̃1111(μ1) = S̃1111(λ(μ1)) with equation (27), using asymptotics 
when relevant as described above. We then use the MATLAB package chebfun [38] to compute the coefficients cm . To 
efficiently evaluate this interpolant in practice, we take advantage of the recurrence relation Tm+1(ν) = 2νTm(ν) − Tm−1(ν)

[39].
Fig. 1 shows the intermediate map μ1 �→ λ and the closure map μ1 �→ S̃1111 along with the magnitude of its Chebyshev 

coefficients. We find about 100 modes are needed to resolve the closure map to near machine precision. In Fig. 1(b), we 
compare this mapping with two common closures [11]. These are the linear closure, S̃1111 = 3/8 + (μ1 − 1/2), which is the 
linear approximation about the isotropic state μ1 = 1/2, and the quadratic closure S̃1111 = μ2

1, which is the correct form 
in the strongly aligned limit μ1 = 1. As expected, the Bingham closure produces exact results in both limits, matching not 
only point-wise values but also derivatives.

3.3. Three-dimensional Bingham map

In three dimensions, the physically meaningful domain of the pair of two largest eigenvalues (μ1, μ2) is determined by 
the constraints μ1 + μ2 + μ3 = 1 and 0 ≤ μ3 ≤ μ2 ≤ μ1 ≤ 1, which forms a triangle T with corners (1/3, 1/3), (1/2, 1/2)
and (1, 0). These corners correspond to the fully isotropic state (μi = 1/3), the planar isotropic state (μ3 = 0), and the 
perfectly aligned state (μ1 = 1). From the constraints the boundaries of T are μ1 = μ2, μ2 = μ3, and μ1 + μ2 = 1, the last 
of which reflects alignment within a plane.
7
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Fig. 1. Two-dimensional Bingham map. Panel (a) shows the parameter λ(μ1) of the diagonalized Bingham distribution. As μ1 → 1, the parameter rapidly 
increases to infinity which makes inverting equation (25) ill-conditioned. Panel (b) shows the better-conditioned Bingham map μ1 �→ S̃1111 with compari-
son to the linear (– –) and quadratic (–.) closures from [11]. The Bingham map is consistent with each map in their correct limits, matching both pointwise 
values and first derivatives. Panel (c) shows the corresponding Chebyshev coefficients from Equation (30), where we find approximately 100 modes are 
needed to resolve the map to near machine precision. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

In order to construct a Chebyshev interpolant, we must map T to the square domain C = {(ν1, ν2) : −1 ≤ ν1, ν2 ≤ 1}. One 
such mapping can be constructed by composing the linear transformation

A(μ1,μ2) =
(

μ1 − μ2
2μ1 + 4μ2 − 2

)

with the nonlinear transformation

G(μ′
1,μ

′
2) =

(
2(μ′

1 + μ′
2) − 1

μ′
1−μ′

2
μ′

1+μ′
2

)
.

The resultant H=G ◦A is an invertible mapping from the triangle T to the square C . The inverse of this map is simply given 
by H−1 = A−1 ◦ G−1, where

G−1(ν1, ν2) =
(

(1+ν1)(1+ν2)
4

(1+ν1)(1−ν2)
4

)

and

A−1(ν ′
1, ν

′
2) =

(
2ν ′

1/3+ ν ′
2/6+ 1/3

−ν ′
1/3+ ν ′

2/6+ 1/3

)
.

The image of a separable Chebyshev grid over C under the map H−1 is shown in Fig. 2. The points are well-distributed 
across T , with clustering near the isotropic, planar aligned, and strongly aligned states. In terms of this transformation, the 
nonlinear system we need to solve for each (ν1, ν2) ∈ C is

F1(λ1, λ2;ν1, ν2) =
´
|p|=1 p2

1e
λ1p21+λ2p22dp´

|p|=1 e
λ1p21+λ2p22dp

− H−1
1 (ν1, ν2) = 0,

F2(λ1, λ2;ν1, ν2) =
´
|p|=1 p2

2e
λ1p21+λ2p22dp´

|p|=1 e
λ1p21+λ2p22dp

− H−1
2 (ν1, ν2) = 0.

(31)

Given (ν1, ν2) ∈ C , we solve this system with Newton’s method. Here the Jacobian is

∂(F1, F2)

∂(λ1, λ2)
=

(〈p1p1p1p1〉B − 〈p1p1〉B〈p1p1〉B 〈p1p1p2p2〉B − 〈p1p1〉B〈p2p2〉B
〈p1p1p2p2〉B − 〈p1p1〉B〈p2p2〉B 〈p2p2p2p2〉B − 〈p2p2〉B〈p2p2〉B

)
, (32)

where as before 〈g(p)〉B = ´|p|=1 g(p)�B dp denotes moments of the Bingham distribution. Note that the Jacobian contains 
S̃1111 = 〈p1p1p1p1〉B , S̃1122 = 〈p1p1p2p2〉B , and S̃2222 = 〈p2p2p2p2〉B at the converged value. As before, since the off-
diagonal terms of S̃B are zero, we can completely determine SB from these three values, the trace identity (24), and the 
rotation matrix �.
8
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Fig. 2. Mapping H−1(ν1, ν2) from the two-dimensional Chebyshev grid C = {(ν1, ν2) : −1 ≤ ν1, ν2 ≤ 1} to the feasible domain of eigenvalues T = {(μ1, μ2) :
μ1 + μ2 + μ3 = 1 and 0 ≤ μ3 ≤ μ2 ≤ μ1 ≤ 1}. Panel (b) shows the image of the vertical and horizontal contours on the Chebyshev grid, which are well 
distributed with a tendency to cluster near the isotropic (μi = 1/3), planar aligned (μ1 + μ2 = 1), and strongly aligned (μ1 = 1) states.

3.3.1. Quadrature
Unlike the two-dimensional case, there is no clear analytical form for the integrals involved in the nonlinear solve. 

Instead, we compute them numerically in a spherical coordinate system p = (cos θ, sinφ sin θ, cosφ sin θ) where (φ, θ) ∈
[0, 2π ] × [0, π ], using the spectrally-accurate trapezoidal rule in φ and Gauss quadrature in θ . Note that we’ve permuted 
p1 and p3 from the usual choice of spherical coordinates so that the quadrature nodes cluster at p1 = ±1, which is where 
the Bingham distribution has its peaks in the diagonal coordinate system. For the maps computed here, we used 1024 
equispaced nodes in φ and 4096 Gauss nodes in θ . To avoid overflow for large values of λ1 and λ2, we subtract λ1 from the 
exponent when numerically evaluating the exponential in the integrand eλ1p21+λ2p22−λ1 . Because only ratios of the integrals 
occur, the common factor e−λ1 vanishes and so this does not change the computed moments.

3.3.2. Asymptotics at the planar aligned state μ1 + μ2 = 1
The nonlinear system (31) becomes increasingly ill-conditioned as we approach the boundary μ1 + μ2 = 1, or μ3 =

0. Using the standard spherical coordinate system p = (cosφ sin θ, sinφ sin θ, cos θ) and noting that integrand for μ3 =
〈cos2 θ〉B is strictly positive, at this limit the distribution function must take the form of a δ-function in θ ,

�B = Z−1eλ1 cos2 φ sin2 θ+λ2 sin
2 φ sin2 θ δ(θ − π/2). (33)

Integrating then gives

μ1 =
´ 2π
0

´ π
0 cos2 φ sin3 θeλ′

1 cos2φδ(θ − π/2) dφdθ´ 2π
0

´ π
0 sin θeλ′

1 cos2φδ(θ − π/2) dφdθ
=
´ 2π
0 cos2 φeλ′

1 cos2φ dφ´ 2π
0 eλ′ cos2φ dφ

,

which is the same as the equation for the two-dimensional Bingham map (25) in the unknown λ′
1 = λ1 − λ2, and can be 

solved as described before. Because of the constraint μ1 + μ2 = 1, solving for λ′
1 here is sufficient to determine the full 

distribution function (33). Once we have λ′
1, we integrate using the same representation (33) to obtain S̃1111, ̃S1122, and 

S̃2222. In the precomputations, this asymptotic form is used to determine values of the closure map along the boundary 
μ1 + μ2 = 1.

3.3.3. Interpolation
We represent the maps (ν1, ν2) �→ S̃ ii j j in a separable Chebyshev basis,

S̃ ii j j(ν1, ν2) ≈
∑

m1+m2≤M

C (i, j)
m1m2 Tm1(ν1)Tm2(ν2). (34)

As before, Tm(ν) is the mth Chebyshev polynomial, and C(i, j) is the (M + 1) × (M + 1) matrix of coefficients. To compute 
the expansion, we solve equation (31) over a two-dimensional Chebyshev grid (ν1,k, ν2,�) = (cos((2k − 1)π/2n), cos((2� −
1)π/2n)), after which the coefficients are computed using the extension of chebfun in two-dimensions [40]. Note that in 
9
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Fig. 3. Three-dimensional Bingham map (ν1, ν2) �→ (S̃1111, ̃S1122, ̃S2222). Panels (a)-(c) show the computed maps over the transformed domain (ν1, ν2) =
H(μ1, μ2). The magnitude of the corresponding Chebyshev coefficients, averaged over each term of degree m, are shown below in panels (d)-(f). The 
coefficients decay near-exponentially, reaching near machine precision at approximately m = 100.

practice we must first map the eigenvalues of D to the transformed domain H(μ1, μ2) = (ν1, ν2), and then evaluate the 
interpolant in terms of ν1 and ν2.

Fig. 3 shows the closure maps (ν1, ν2) �→ ( S̃1111, ̃S1122, ̃S2222) over the transformed domain, along with the magni-
tude of their coefficients, averaged over each term with degree m. Similar to the two-dimensional map, about 100 modes 
are needed to resolve each map to near machine precision. We again make use of the recurrence relation Tm+1(ν) =
2νTm(ν) − Tm−1(ν) to efficiently evaluate Tm1 (ν1) and Tm2 (ν2), each of which only needs to be done once to compute 
S̃1111(ν1, ν2), ̃S1122(ν1, ν2), and S̃2222(ν1, ν2).

3.4. Eigendecomposition

The diagonal formulation requires an eigendecomposition of the matrix D at every grid point. Although each matrix is 
only d × d, computing large numbers of such small decompositions using calls to external routines (e.g. LAPACK) carries 
significant overhead and complicates efficient parallelization. Here we provide a simple yet robust method to compute the 
eigendecomposition of D without external routines in both two and three dimensions.

3.4.1. Two dimensions
It’s straightforward to show the largest eigenvalue μ1 of D is given by 2μ1 = 1 + √

2(D : D) − 1, and the corresponding 
rotation matrix � is

� =
(
cosω − sinω
sinω cosω

)
,

with 2ω = arctan[2D12/(2D11 − 1)]. Note that the eigenvectors must be arranged as � = (v1 v2) in descending order.

3.4.2. Three dimensions
Rather than use explicit formulas for the eigenvalues, which are numerically unstable to evaluate, we instead numerically 

solve for the roots of the characteristic polynomial of D, which is given by

pD(z) = z3 − z2 + a1z + a0,
10
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where a1 = −1/2[1 − tr(D2)] and a0 = − det(D). (As the eigenvalues are bounded between 0 and 1, this is a well-conditioned 
problem.) This equation is quickly solved with a few iterations of Newton’s method. Once we have one solution μ0 , we can 
analytically compute the others via

μ± = −(μ0 − 1) ± √
(μ0 − 1)2 − 4(a1 + μ0(μ0 − 1))

2
.

Finally, we sort μ0 and μ± so that μ1 ≥ μ2 ≥ μ3. From the eigenvalues, we can compute the eigenvectors by taking 
advantage of orthogonality of � [41]. To be concrete, the ith eigenvector vi with eigenvalue μi satisfies (D − μiI) · vi = 0. 
Dotting this with the jth basis vector e j gives vTi · (d j − μie j) = 0, where d j is the jth column of D. Notably, this means vi
is orthogonal to d j − μie j for each j, which implies

vi = (d1 − μie1) × (d2 − μie2), i = 1,2. (35)

Since the eigenvectors are orthogonal, we can get the final eigenvector by computing the cross product v3 = v1 × v2. Com-
putationally, especially near the isotropic state D ≈ I/3, the formula (35) yields eigenvectors that are not orthogonal to 
machine precision, which can result in numerical instability. To stabilize this, we simply redefine v2 = v1 × v3 at each point. 
Finally, we normalize and arrange the eigenvectors in descending order to get the transformation � = (v1 v2 v3).1

3.5. Rotating to the physical frame

The fourth-moment tensor SB has many independent components which makes it expensive to store, especially in three 
dimensions. Fortunately, we only need contractions of SB with rank two tensors, that is, SB : D and SB : E. This storage can 
be further reduced by observing that Equations (5) and (11) only depend on the symmetric rank-two tensor SB : T with 
T := E + 2ζD. Moreover, we can utilize the rotation-based framework to efficiently compute this contraction. Specifically, 
write SB as the rotation

Sijk� = �im� jn�kp��q S̃mnpq, (36)

where repeated indices denote summation. We then have

(SB : T)i j = (�im� jn�kp��q S̃mnpq)Tk�

= (�im� jn S̃mnpq)(�kp��qTk�)

= �im� jn( S̃mnpq T̃ pq)

= �im� jn(S̃B : T̃)mn,

or in matrix notation, SB : T = �(S̃B : T̃)�T with T̃ = �T T�. Since only the diagonal elements of S̃B are nonzero, this requires 
far fewer operations than the explicit rotation formula (36).

3.6. Summary of the closure

The method described here has several important features. Most significantly, Chebyshev interpolation preserves the 
accuracy of a direct nonlinear solve of equation (22) at relatively low cost. This interpolation, rather than directly solving 
the nonlinear system, is essential for efficiency and numerical stability near the aligned state μ1 → 1. Further, explicit 
calculation of the rotations bypasses overhead from eigenvalue routines, which admits efficient parallelization. Lastly, storing 
and rotating the contraction SB : T = �(S̃B : T̃)�T substantially reduces memory requirements and the number of floating 
point operations. To summarize, the algorithm consists of the following steps:

(1) At each spatial discretization point, compute the eigendecomposition of the second-moment tensor D = �D̃�T using 
the method described in Section 3.4.

(2) Evaluate the Chebyshev interpolants μ1 �→ S̃1111 in 2D or (μ1, μ2) �→ ( S̃1111, ̃S1122, ̃S2222) in 3D, and use the trace 
identities (24) to compute the remaining elements of S̃B .

(3) Rotate T̃ = �T (E + 2ζD)�, and compute and store the tensor SB : T = �(S̃B : T̃)�T .

1 At the perfectly isotropic state D = I/3, the method above results in divide by zero errors when normalizing the eigenvectors. We avoid this by 
perturbing the off-diagonal terms of D by 10−16 in all cases.
11
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Fig. 4. Convergence in the velocity spectrum 〈|ûk|〉, averaged over wave number |k| = k, with the degree M of the Chebyshev interpolant. The gray dashed 
line indicates the third-order interpolant of Chaubal and Leal (C & L), for which the velocity is resolved to about 10−8. This approximately agrees with the 
fully resolved M = 80 interpolant up to k ≈ 32, indicating effectively a fourth of the Fourier expansion is used.

4. Numerical tests

In this section, we evaluate the cost and accuracy of our numerical implementation. We restrict our discussion to the 
three-dimensional case, finding similar results in two dimensions. The numerical method is based on a pseudo-spectral 
discretization of Eqns (9), (15), and (16) with the 2/3 anti-aliasing rule, along with a second-order implicit-explicit back-
ward differentiation time-stepping scheme (SBDF2), where the linear terms are handled implicitly and the nonlinear terms 
explicitly. Both our two- and three-dimensional codes are written in C++ and use OpenMP to parallelize computations. All 
computations in this section were done on a grid of 2563 Fourier modes with a time step �t = 0.05.

For the following tests we set the dimensionless parameters to be α = −1, β = 0.8, and ζ = 1, with box size L = 15 and 
diffusion coefficients dT = dR = 0.1. This choice of parameters ensures the isotropic and nematic base states are unstable 
[20], driving persistent chaotic flows, but also guarantees length and time scales are highly resolved for the chosen grid 
and time-step. In each simulation we initialize D with a plane-wave perturbation about the isotropic state D0 = I/3 such 
that tr(D) = 1 and take the concentration to be uniform, c(x, t) ≡ 1. Based on the evolution equation (10), this means the 
concentration stays uniform for all time.

4.1. Spatial convergence

An important and somewhat surprising feature of the Bingham closure is that the accuracy of the entire method is 
limited by that of the mapping from D̃ to S̃B . To demonstrate this, for our initial data and for a fixed value of M of the 
Chebyshev expansion (34), we run the simulation to a statistical steady state (t = 50). Fig. 4 shows the resulting velocity 
spectra 〈|ûk|〉 averaged over spherical shells in the wave number |k| = k. As we increase the degree M of the Chebyshev 
interpolant the dynamical range expands, reaching near machine precision with M = 80. For the interpolant of Chaubal and 
Leal [31], the spectrum deviates from the full expansion at wave number k = 32 and plateaus, indicating that effectively 
only a fourth of the potential resolution is used. To be sure this is not an artifact of the eigendecomposition approach in 
Section 3.4, we performed equivalent calculations in two dimensions using MATLAB’s eig function and found the same 
results.

The inaccuracy in the velocity field when using a low order interpolant is a consequence of the rotation-based approach 
in Section 3.1. To be precise, close to aligned states where the second moment tensor D has repeated eigenvalues, the eigen-
decomposition of D is ill-defined which results in spatial discontinuities in the rotation matrix �(x, t). In exact arithmetic, 
these discontinuities are canceled when rotating back to the original frame. However, if the interpolation is not computed 
accurately, the discontinuities will carry through the inverse rotation. This error becomes even more pronounced in the 
velocity field due to derivatives of SB occurring in the active force ∇ · �B . Note that this problem could be avoided by 
computing SB in the original frame. However, in this case the nonlinear system (22) is five-dimensional and defined over 
an irregular grid, which is not only more expensive and less stable, but also poses further challenges for interpolation.

4.2. Computational cost

Representing the closure maps in a Chebyshev series allows us to explicitly balance cost with accuracy. We characterize 
the cost in Fig. 5, which shows the fraction of each time step taken by computing the Bingham closure for interpolants of 
12
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Fig. 5. Fraction of each time step taken by computing the Bingham closure. In serial, the cost between the Bingham closure and the rest of the loop is 
comparable for M = 40. For a fixed degree, the fraction decreases with the number of cores, taking less than half of each time step when the number of 
cores exceeds 16 for each value of M tested.

increasing degree. In serial, we find that when M = 40 the cost of the Bingham closure is comparable to the remaining cost 
of each time step. Increasing the number of cores decreases the relative cost, with the Bingham closure taking less than half 
of a time step for all values of M explored when the number of cores exceeds 16.

It is also useful to compare the cost of evaluating the Bingham closure through Chebyshev interpolation with that of 
a direct inversion of equation (22). The interpolation has a fixed O ((M + 1)d−1) cost where M is at most 100, while the 
nonlinear solve is O (Nd−1), where N is the number of quadrature points in each dimension. We can get an estimate on the 
number of quadrature points required using the analytical form of the Bingham distribution. Here we make use of identity 
(A.1) from the Appendix,

D · B− SB : B = d

2
(D− I/d) .

Conjugating this equation by � gives

D̃ · B̃− S̃B : B̃ = d

2

(
D̃− I/d

)
,

which, because D, B and SB are diagonalized in the same frame, is a diagonal system of equations. Restricting to the two-
dimensional case d = 2, the first of these equations is

μ1λ1 − ( S̃1111λ1 + S̃1122λ2) = μ1 − 1/2.

Using the fact that B̃ is trace-free λ2 = −λ1 and the trace condition S̃1111 + S̃1122 = μ1, we can solve this equation for λ1,

λ1 = μ1 − 1/2

2(μ1 − S̃1111)
.

This gives an expression for the standard deviation of the Bingham distribution about p = (1, 0),

σ =
√

μ1 − S̃1111
μ1 − 1/2

.

As an estimate, we demand at least 10 quadrature nodes within one standard deviation, which, assuming the trapezoidal 
rule in polar coordinates p = (cos θ, sin θ), yields

N ≈ 40π

√
μ1 − 1/2

μ1 − S̃1111
. (37)

For example, when μ1 = 0.99, which regularly occurs when the alignment strength ξ = 2ζ/dR is within the physically 
relevant regime, this estimates N ≈ 345. In practice, when directly inverting equation (22) in a simulation rather than using 
interpolation, these integrals need to be evaluated several times at every point in space, which may be reasonable in 2D, 
but is inaccessible with the equivalent estimate in 3D. Moreover, using S̃1111 ≈ μ2 as μ1 → 1, we find N ∼ (1 − μ1)

−1/2

1

13
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Fig. 6. Snapshot of a two-dimensional simulation with alignment strength ζ = 64 and box size L = 30. Panel (a) shows the vorticity field, which consists 
of isolated vortex dipoles and hexapoles and large regions of nearly constant vorticity. A close up of the vorticity and scalar order fields, indicated by the 
small box outlined in red in panel (a), shows a matching of symmetry between the dipoles/hexapoles and the ±1/2 disclinations. (Movies of this and the 
following simulation(s) can be found in the supplementary material.)

so that approaching the aligned state requires prohibitive increases in resolution. The estimate (37) equally applies to the 
number of discretization points in orientation when simulating the kinetic theory, giving us a rigorous characterization of 
the savings gained by the closure model. We note that the cost of quadrature can be mitigated by adaptive methods or 
asymptotic approximations to the moment integrals [42], however such methods are still subject to ill-conditioning of the 
nonlinear system near the aligned state.

5. Numerical simulations

In this section we use the Bingham closure to study two- and three-dimensional suspensions of active extensile parti-
cles in the regimes of strong steric interactions and large system size. The Bingham closure is particular useful here as it 
yields accurate solutions near the isotropic and aligned states which both frequently occur in these regimes. As before, the 
discretization is pseudo-spectral and we use the implicit-explicit SBDF2 time-stepping scheme, where we use a 40962 grid 
in two dimensions and a 5123 grid in three dimensions, with degree M = 80 Chebyshev interpolants in all cases.

5.1. Strongly aligned dynamics

Active nematic suspensions exhibit rich topological structures that are an intrinsic part of the system’s dynamics [43–
45,33,13]. The primary features are called disclinations, or defects, which refer to points of low orientational order (i.e. 
the scalar order parameter s, defined in equation (12), is approximately zero) at which the director field is ill-defined. In 
two dimensions, the characteristic topological features are ±1/2 defects, which correspond to a clockwise/counterclockwise 
rotation of the director about a point of isotropy s = 0, respectively. Simulations of a phenomenological Landau-deGennes 
Q -tensor theory have found equivalent features in three dimensions that are closed disclination lines and rings along 
which the director undergoes various types of three-dimensional rotations [14]. Here we find and examine these topological 
features using the Bingham closure for the case of strong alignment ζ � 1 in both two and three dimensions. The remaining 
dimensionless parameters are fixed at α = −1, β = 0.8, dT = dR = 0.05, and L = 30.

Fig. 6 shows a snapshot of a two-dimensional simulation at a late time for ζ = 64 where the time step is �t = 10−4. The 
vorticity field, shown in panel (a), consists of isolated vortices which trail shock-like structures in the global field. Close ups 
of the scalar order and vorticity fields near two defects are shown in panels (b) and (c), which show dipole and hexapole 
structures whose 1- and 3-fold symmetries are inherited by the ±1/2 sign of the defect, respectively.

A three-dimensional simulation is shown in Fig. 7 for ζ = 8, where the time step is �t = 0.0025. We find the scalar 
order field, shown in panel (a), consists primarily of long tubes of low orientational order, which is consistent with simu-
lations of the Landau-deGennes theory [14]. The three-dimensional vortex field lines, shown near isolated disclination lines 
in panel (b), wind around the axis of the disclination. Such intertwining structures are observed in vorticity in classical 
three-dimensional turbulence, and are the analogous extension of the dipoles observed in the previous two-dimensional 
simulation.
14
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Fig. 7. Three-dimensional simulation with alignment strength ζ = 8 and box size L = 30. Panel (a) shows three-dimensional contours of the scalar order 
field, which reveal relatively isolated disclination lines and loops. A close up of these disclinations is shown in panel (b), with example vortex field lines 
(white) superimposed. The vortex lines wind around the disclinations, similar to mutual interactions between vortex lines in Navier-Stokes turbulence.

Fig. 8. Characterization of the vortex length scale at strong alignment. Panel (a) shows the squared magnitude of the vorticity spectra for several values of 
ζ . The oscillations reveal a length scale which can be associated with the radius of decay of the vortex dipoles and hexapoles generated by disclinations in 
the director field. Panel (b) shows the onset wavenumber k∗ of the oscillations (identified by the squares in panel (a)) against the alignment strength, in 
which we find a k∗ ∝ ζ 1/2 scaling, which is consistent with analytical predictions.

These and further simulations show that the vortex structures above exhibit length scales that are strongly coupled 
to the alignment parameter ζ . We can get an analytical estimate on these length scales by rescaling the coarse-grained 
equations (8)-(11). Defining t′ = ζ t , x′ = ζ 1/2x and u′ = ζ−1/2u, we find

−�′u′ + ∇′q′ = ∇′ · �′,
∇′ · u′ = 0,

and

D∇′ + 2S : E′ = 4(D ·D− S : D) + dT�′D− 2ddRζ−1
(
D− c

d
I
)

,

where the rescaled stress is

�′ = αζ−1D+ βS : E′ − 2β(D ·D− S : D).

In the limit 2dR/ζ � 1 and α/ζ � 1, this system of equations becomes independent of ζ so that the characteristic length 
�c must scale as �c ∝ ζ−1/2, regardless of the spatial dimension.
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Fig. 9. (a) Scalar order and (b) vorticity fields from a two-dimensional simulation with box size L = 500 and alignment strength ζ = 1. The scalar order 
field consists of many regions of low orientational order connected with topological defects in the director field. In comparison with panel (b), we find the 
vorticity rapidly changes sign across the bands of low orientational order generating patch-like patterns.

To assess this asymptotic regime, we run several two-dimensional simulations with successively doubled values of ζ
and compare the vorticity spectra at a late time. As shown in Fig. 8a, the instantaneous spectra exhibit regular oscillations 
that increase in amplitude and width as ζ increases. Notably, the spectra reveal a length scale corresponding to the onset 
wave number k∗ at which the oscillations begin. Fig. 8b shows this onset wavenumber as a function of ζ , which indicates 
a k∗ ∝ ζ 1/2 scaling, in agreement with the analytical prediction as the wave number has units of inverse length. Taken 
with the predicted characteristic time scale tc ∝ ζ−1, this scaling could also be used to characterize the number and rate of 
creation of defects, as well as their typical velocities [44].

5.2. Turbulent dynamics

A peculiar property of the continuum kinetic model is that linear stability analysis in periodic geometries predicts the 
smallest wavenumbers are the most unstable [20]. Because of this, the linear theory does not predict a characteristic length 
scale. Nonlinear simulations, however, can provide insight into characteristic length scales in the system and the transfer of 
energy across them. Here we simulate the coarse-grained model with the Bingham closure to study this nonlinear behavior 
for large box sizes. Large box simulations allow for more unstable low wave numbers in the system, which we expect to 
drive increasingly turbulent dynamics. The precise statistics of this so-called active turbulence has been the focus of several 
recent studies with Landau-deGennes type theories [46,47], and our formulation allows us to study these statistics with a 
first-principles approach. For the following simulations we fix the dimensionless parameters α = −1, β = 0.8, ζ = 1, and 
dT = dR = 0.05, and vary the linear dimension L.

Fig. 9 shows a snapshot of the scalar order and vorticity fields from a two-dimensional simulation with box size L = 500. 
In contrast to the simulations with strong alignment in Section 5.1, the scalar order field is densely packed with topological 
defects that undergo rapid nucleation and annihilation events. These defects do not seem to create strong vortex dipoles, 
rather the bands of low orientational order connecting them generate small patches of nearly constant vorticity. In three 
dimensions, with L = 200, we find the scalar order field also consists of fine-scale defect structures, shown in Fig. 10a, with 
many intertwining disclination loops and tubes which also undergo frequent nucleation and annihilation events.

In both of these simulations the dense defect structures drive large scale motion. This transfer across scales is often 
observed in turbulent fluids and can be characterized by analyzing the squared velocity spectrum, which in classical turbu-
lence reflects kinetic energy. (Note that due to the low Reynolds number the kinetic energy of our system has no relevance. 
However, based on the entropy identity (17), velocity gradients characterize entropy production or dissipation as they would 
in classical turbulence.) Panel (b) in Fig. 10 shows the computed velocity spectrum 〈|ûk|2〉 summed over spherical shells in 
the wave number |k| = k. Unlike the strongly aligned case the spectrum does not exhibit oscillations, rather, at lower wave 
numbers we observe an approximate power law between k−4 and k−5, which transitions to a more rapid decay at k ≈ 80. 
This transition wave number may indicate a characteristic turbulent length scale, whose precise interpretation is the subject 
of future investigation.
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Fig. 10. Three-dimensional simulation with box size L = 200 and alignment strength ζ = 1. Panel (a) shows contours of the scalar order field, which reveal 
a dense concentration of disclinations. The motion of these disclinations is coupled to large-scale motion. A rough characterization of this coupling is shown 
by panel (b), which reveals an approximate power law scaling in the velocity spectrum at low wave numbers, indicating a transfer of energy across length 
scales in the system.

6. Concluding remarks

We developed a robust numerical method for simulating coarse-grained models of apolar particle suspensions with 
the Bingham closure. Unlike previous approaches, the closure map is constructed by solving for the Bingham distribution 
over the entire feasible domain of the second moment tensor D̃. By transforming this domain to a square domain, we 
were able to represent the mapping D̃ �→ S̃B by a Chebyshev interpolant for efficient use in simulations. This Chebyshev 
representation reconstructs the closure to near machine precision, with accuracy that can be finely controlled and balanced 
against cost by modifying the degree of the interpolant. We found accuracy of the closure map is essential for maintaining 
spatial convergence in the underlying discretization and resolving high wave number behavior, which was shown to be 
a consequence of the rotation-based approach. The simulations in Section 4.1 underscore the importance of this fact. In 
particular, defects in the director field correspond to points where the eigendecomposition of the second moment tensor 
is ill-defined and the rotation-based approach fails. Such states are fundamental to the underlying physics, and accurately 
resolving them is essential for retaining the overall structure and statistics of the physical system.

Using this method, we studied regimes of strong alignment and large system size. When alignment is strong, we found 
coupling between defects in the director field and fluid vorticity, which were consistent with the Landau-deGennes theory. 
This connection could be used to construct reduced models of defect systems, possibly describing defects in an analogous 
way to interacting point vortices or vortex filaments in the incompressible Euler equations [48]. We also analytically derived 
a scaling law �c ∝ ζ−1/2 for the defect length scale, which was confirmed through high resolution two-dimensional simu-
lations. In contrast, for large system size we found the dynamics were turbulent, exhibiting chaotic motion from the defect 
to system scales. Analyzing the velocity spectrum here revealed an approximate power law scaling at low wave numbers, 
which may reflect a transfer of energy across length scales in the system. Future work could characterize this transfer of 
energy more precisely, including its dependence on the system size, the nematic alignment strength, and the magnitude 
and sign of the active stress.

As formulated here, the Bingham closure only applies to apolar suspensions. In reality, many physical systems are in-
herently polar, such as microtubule and motor protein assemblies or collections of motile bacteria [45,4]. The Bingham 
distribution can be generalized to account for polarity, and we are working on similar methods to those developed here to 
accurately and efficiently construct the generalized closure map.

A significant property of the Bingham closure, which we proved in the Appendix, is that it preserves the evolution of the 
system entropy, where the entropy is approximated in terms of the Bingham distribution. Combined with the accuracy and 
efficiency of the method presented here, the Bingham closure could be used to study energetic properties of active systems, 
particularly in three dimensions, that are consistent with the kinetic theory.
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Appendix A. Calculation of the Bingham parameters

In the interpolation approach the Bingham distribution is never actually constructed, however its parameters may be 
needed to compute higher order moments or system statistics, such as the conformational entropy. Here we show how to 
construct the Bingham parameter B analytically from the second and fourth moments D and SB . First, we computeˆ

|p|=1

p∇p�B dp =
ˆ

|p|=1

(pI− ppp) · ∂p�B dp

= 2
ˆ

|p|=1

[(pI − ppp) · (B · p)]�B dp

= 2
ˆ

|p|=1

(pp · B− pppp : B)�B dp

= 2(D · B− SB : B).

Integrating by parts givesˆ

|p|=1

p∇p�B dp = −
ˆ

|p|=1

∇pp �B dp

= −
ˆ

|p|=1

(I− dpp)�B dp

= cI− dD,

which implies

D · B− SB : B = d

2
(D− (c/d)I) . (A.1)

With D and SB known, this system can be inverted for B. Higher order moments can similarly be determined analytically 
by integrating by parts with higher order products of p.

Appendix B. Entropy production

Here we show the Bingham closure satisfies the same energy identity as the kinetic theory [33], with the entropy repre-
sented in terms of the Bingham distribution. For simplicity we assume the concentration is uniform c(x, t) = 1. Throughout 
we denote ∇ as the spatial gradient and ∇p = (I − pp) · ∂p as the gradient operator on the unit sphere.

The steric contribution D(t) = ´ (D − I/d) : (D − I/d) dx is only represented in coarse-grained variables which, based on 
the evolution equation (11), automatically satisfies the same equation for D′(t) in both the Bingham closure and the kinetic 
theory. After some standard manipulations we can show

D′(t) = −4ddR

ˆ
(D − I/d) : (D− I/d) dx + 8ζ

ˆ
D : (D ·D− SB : D) dx

+ 4
ˆ

E : (D · D− SB : D) dx− 2dT

ˆ
|∇D|2 dx.

Now let �B(x, p, t) = eγ (x,t)+B(x,t):pp be the Bingham distribution, where γ (x, t) = − log Z(x, t) is a normalization factor 
enforcing 

´
�Bdp = 1. In terms of �B the conformational entropy S(t) = ´ ´ (�/�0) log(�/�0) dpdx is
|p|=1 |p|=1
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S(t) = 1

�0

ˆ
(γ − γ0) + B : D dx,

where γ0 = log�0 with �0 = dπ being the isotropic distribution function. Differentiating the constraint 
´ ´

|p|=1 �B dpdx =
V in time gives 

´
γt + Bt : D dx = 0, which implies

S ′(t) = 1

�0

ˆ
B : Dt dx.

Using Equation (11) for Dt we get

B : Dt = −B : u · ∇D + B : (∇u ·D +D · ∇uT ) − 2B : (SB : E)

+ 4ζB : (D ·D− SB : D) + dTB : �D− 2ddR(D − I/d).

Contracting the integration by parts identity (A.1) against E and D, respectively, gives

B : (∇u ·D+D · ∇uT ) − 2B : (SB : E) = dD : E
and

B : (D ·D− SB : D) = d

2
(D : (D− I/d))

= d

2
((D− I/d) : (D− I/d)) ,

so that

B : Dt = −B : u · ∇D + dD : E+ 2dζ(D− I/d) : (D− I/d) + dTB : �D− 2ddR(D − I/d).

From the condition 
´ ∇ · (uc) dx = 0 we have 

´
u ·∇γ dx = − ́ u · (∇B : D) dx which, after a few integrations by parts, gives

ˆ
B : (u · ∇D) dx = 0.

So far the evolution of the conformational entropy is

�0S ′(t) = d

ˆ
D : E dx + 2dζ

ˆ
(D− I/d) : (D− I/d) dx+ dT

ˆ
B : �D dx− 2ddR

ˆ
B : (D− I/d) dx,

which we want to write in terms of definitely signed quantities. Multiplying the Stokes equation (9) by E and integrating 
by parts gives

2
ˆ

E : E dx = −
ˆ

E : �B dx,

which implies

2
ˆ

E : E dx = −α

ˆ
D : E dx − β

ˆ
E : SB : E dx + 2ζβ

ˆ
E : (D ·D− SB : D) dx.

We can use this to solve for 
´
D : E dx,

�0S ′(t) = d

α

(
−2
ˆ

E : E dx − β

ˆ
E : SB : E dx + 2ζβ

ˆ
E : (D · D− SB : D) dx

)

+ 2dζ
ˆ

(D− I/d) : (D − I/d) dx+ dT

ˆ
B : �D dx− 2ddR

ˆ
B : (D− I/d) dx.

It is then left to showˆ
B : �D dx = −

ˆ ˆ

|p|=1

|∇ log�|2�B dpdx

and ˆ
B : (D − I/d) dx =

ˆ ˆ
|∇p log�|2�B dpdx.
|p|=1
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For the first term, differentiating in space gives |∇ log�B |2�B = |∇γ + ∇B : pp|2�B . Using the condition 
´ ∇ · (∇c) dx = 0, 

we find

0 =
ˆ ˆ

|p|=1

∇ · ∇�B dpdx

=
ˆ ˆ

|p|=1

∇ · [(∇γ + ∇B : pp)�B ] dpdx

=
ˆ ˆ

|p|=1

(�γ + �B : pp)�B + |∇γ + ∇B : pp|2�B dpdx,

so that 
´

�γ + �B : D dx = − ́ 〈|∇γ + ∇B : pp|2〉 dx, which, after two integrations by parts, gives 
´
B : �D dx =

− ́
´
|p|=1 |∇ log�B |2�B dpdx as desired. For the second term, we have |∇p log�B |2 = |2(I − pp) · B · p|2 so that
ˆ ˆ

|p|=1

|∇p log�B |2�B dpdx = 4
ˆ

B : (B ·D) − B : (SB : B) dx

= 2d
ˆ

B : (D− I/d) dx,

where we used the same integration by parts identity (A.1). Finally, incorporating the expression for D′(t), we have

E ′(t) = − d

α�0

(ˆ
2E : E+ βE : SB : E dx

)
+ (2dζ/�0 − 4ddRκ)

ˆ
(D− I/d) : (D − I/d) dx

+ 8κζ

ˆ
D : (D ·D− SB : D) dx − 2κdT

ˆ
|∇D|2 dx

−
⎡
⎢⎣dT

ˆ ˆ

|p|=1

�B |∇ log�B |2 dpdx + dR

ˆ ˆ

|p|=1

�B |∇p log�B |2 dpdx

⎤
⎥⎦ ,

which is the desired expression. (Note that κ = −dζβ/2�0α > 0 is chosen so that the contribution from 
´
E : (D · D − SB :

D) dx vanishes.)

Appendix C. Chebyshev coefficients μ1 �→ S̃1111

0 1 2 3 4 5 6 7 8 9

0 0.662433067815903 0.305096697570660 0.022661293663811 0.006929073516477 0.002508696495226 0.000651686393991 0.000003149067870 -0.000146501968392 -0.000116594835353 -0.000052333302979
10 -0.000005876267519 0.000014375002152 0.000016332739170 0.000010270338585 0.000003367708799 -0.000001122818696 -0.000002764227720 -0.000002463455278 -0.000001369444354 -0.000000311420682
20 0.000000333432499 0.000000536642052 0.000000445442150 0.000000238673323 0.000000046766023 -0.000000069897867 -0.000000107035811 -0.000000090051728 -0.000000050610698 -0.000000012725701
30 0.000000011666027 0.000000020862528 0.000000019015530 0.000000011929798 0.000000004355589 -0.000000001058379 -0.000000003616565 -0.000000003863898 -0.000000002815955 -0.000000001409792
40 -0.000000000245577 0.000000000439389 0.000000000669175 0.000000000594818 0.000000000385800 0.000000000169018 0.000000000011082 -0.000000000071943 -0.000000000094069 -0.000000000079964
50 -0.000000000052121 -0.000000000025272 -0.000000000006080 0.000000000004532 0.000000000008540 0.000000000008620 0.000000000006960 0.000000000004899 0.000000000003050 0.000000000001588
60 0.000000000000502 -0.000000000000256 -0.000000000000728 -0.000000000000942 -0.000000000000940 -0.000000000000779 -0.000000000000531 -0.000000000000267 -0.000000000000040 0.000000000000116
70 0.000000000000195 0.000000000000207 0.000000000000173 0.000000000000118 0.000000000000060 0.000000000000013 -0.000000000000019 -0.000000000000035 -0.000000000000038 -0.000000000000032
80 -0.000000000000023 -0.000000000000013 -0.000000000000005 0.000000000000001 0.000000000000004 0.000000000000006 0.000000000000006 0.000000000000004 0.000000000000003 0.000000000000002
90 0.000000000000001 -0.000000000000000 -0.000000000000001 -0.000000000000001 -0.000000000000001 -0.000000000000001 -0.000000000000001 -0.000000000000000 -0.000000000000000 -0.000000000000000

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2021.110937.
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