Journal of Computational Physics 457 (2022) 110937

Contents lists available at ScienceDirect Fﬂ;"s?'"““"""
CS,

Journal of Computational Physics

www.elsevier.com/locate/jcp

A fast Chebyshev method for the Bingham closure with
application to active nematic suspensions

Check for
updates

Scott Weady **, Michael J. Shelley ®", David B. Stein”

4 Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
b Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA

ARTICLE INFO ABSTRACT
Article history: Continuum kinetic theories provide an important tool for the analysis and simulation
Received 25 June 2021 of particle suspensions. When those particles are anisotropic, the addition of a particle

Received in revised form 27 October 2021
Accepted 17 November 2021
Available online 12 February 2022

orientation vector to the Kkinetic description yields a 2d — 1 dimensional theory which
becomes intractable to simulate, especially in three dimensions or near states where
the particles are highly aligned. Coarse-grained theories that track only moments of the
particle distribution functions provide a more efficient simulation framework, but require

{gﬁfﬁgspemions closure assumptions. For the particular case where the particles are apolar, the Bingham
Continuum kinetic theory closure has been found to agree well with the underlying kinetic theory; yet the closure
Closure model is non-trivial to compute, requiring the solution of an often nearly-singular nonlinear
Active matter equation at every spatial discretization point at every timestep. In this paper, we present a

robust, accurate, and efficient numerical scheme for evaluating the Bingham closure, with
a controllable error/efficiency tradeoff. To demonstrate the utility of the method, we carry
out high-resolution simulations of a coarse-grained continuum model for a suspension of
active particles in parameter regimes inaccessible to kinetic theories. Analysis of these
simulations reveals that inaccurately computing the closure can act to effectively limit
spatial resolution in the coarse-grained fields. Pushing these simulations to the high spatial
resolutions enabled by our method reveals a coupling between vorticity and topological
defects in the suspension director field, as well as signatures of energy transfer between
scales in this active fluid model.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Suspensions of rod-like particles form a broad class of complex fluids. Liquid crystal polymer solutions are one such
example, where passive elongated particles, like the tobacco mosaic virus [1], are translated and reoriented by the fluid,
modifying its rheological properties [2,3]. In more recent settings however, the suspended particles generate active stresses
through propulsive mechanisms [4,5], chemically induced surface flows [6,7], or active cross-linking [8-10]. Such active
suspensions can exhibit collective flows at scales orders of magnitude larger than those of the constitutive particles. These
large-scale flows, sometimes called active turbulence, are characterized by unsteady, roiling states filled with jets, vortices,
and topological defects [11-14]. These compelling non-equilibrium structures have motivated various theoretical models
ranging from the particle to continuum levels [15-19].

* Corresponding author.
E-mail address: scott.weady@nyu.edu (S. Weady).

https://doi.org/10.1016/j.jcp.2021.110937
0021-9991/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jcp.2021.110937
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110937&domain=pdf
mailto:scott.weady@nyu.edu
https://doi.org/10.1016/j.jcp.2021.110937

S. Weady, M.J. Shelley and D.B. Stein Journal of Computational Physics 457 (2022) 110937

Particle-based models provide detailed information but are computationally intractable when the number of particles
is large. Continuum Kkinetic theories provide a powerful alternative to discrete models in the large particle number limit.
Here the suspension is represented by means of a particle distribution function which evolves through a nonlinear partial
differential equation (PDE) - a Fokker-Planck equation - allowing the use of well-established analytical tools and numerical
methods [18,20]. Its coefficients are usually grounded in modeling of the microscopic physics. Though less demanding than
discrete models, kinetic theories are not immune from computational challenges. Typically the distribution function depends
on both particle position and orientation as independent variables, meaning there are 2d — 1 degrees of freedom, with d
the spatial dimension. This cost can be reduced by coarse-graining, in which the suspension is represented by macroscopic
fields derived from the distribution function. However, the equations of motion for the coarse-grained fields depend on
unknown fields which must be approximated through a closure model. Constructing an accurate closure model is therefore
essential for preserving the multi-scale dynamics and capturing the correct physics [21].

Closures have long been used for computational models in rheology [22], many-particle systems [23], and classical tur-
bulence [24], and have more recently been applied to active fluids [25-28]. Not only do these models provide efficient
computational frameworks, but they can also offer alternative analytical approaches [29,30]. This paper is concerned with
a specific closure model for apolar suspensions called the Bingham closure, originally introduced by Chaubal and Leal in the
context of liquid crystal polymers [31]. In this context, only the zeroth and second moments, with respect to the orientation
variables, of the distribution function are evolved in time. The fourth moment, which appears in the corresponding evo-
lution equations, is then approximated as the fourth moment of the Bingham distribution on the unit sphere [32], whose
parameters are computed at each point in space by constraining the zeroth and second moments. (Because the system we
consider here is apolar, odd moments do not occur in the dynamics, however other theories may include such moments.)
The Bingham closure demonstrates excellent analytical and numerical agreement with the underlying kinetic theory, cap-
turing the same linear instabilities and topological properties of the director field [33]. Accurately computing the closure is
essential for maintaining these features, however previous approaches lack robust methods for doing so.

Existing methods for computing the Bingham closure typically use low order polynomial interpolants from the second
to fourth moment tensors, whose coefficients are fit from sample values over the physically feasible domain of the second
moment tensor. While these methods are fast, they have limited accuracy. In this paper, we propose a fast Chebyshev
method for computing the Bingham closure which maintains the efficiency of polynomial interpolation while achieving
near machine precision. The method relies on transforming the domain of eigenvalues of the second moment tensor to
a square domain, where the sample points can be chosen on a Chebyshev grid. We numerically compute the Bingham
distribution from the second moment tensor on this Chebyshev grid and integrate to obtain the fourth moment tensor. Here
we combine spectrally accurate quadrature for the moments with asymptotics to resolve the nearly-singular distribution
function at strongly aligned states.

We first restate and coarse-grain a continuum kinetic model for an active suspension and describe how the Bingham
closure arises from the coarse-grained theory. We discuss some analytical properties of the closure model, including a
proof that it preserves the evolution of the system entropy. We then describe the numerical method for both two- and
three-dimensional systems, and evaluate its accuracy and efficiency. This analysis shows that inaccurate computation of the
closure reduces the effective spatial resolution, limiting stability and convergence of the underlying numerical method as
well as the accessible parameter regimes. Analytical arguments quantify the computational savings of the Bingham closure
versus the kinetic theory, which shows impractically high cost for the kinetic theory at strong nematic alignment. Though
we focus on a particular active fluid model, the methods and analyses here equally apply to other apolar kinetic theories,
such as those for passive liquid crystal polymer solutions. We conclude with high resolution two- and three-dimensional
simulations, focusing on limits of strong steric interactions and large system size. These simulations reveal novel features
in the dynamics, including a length scale determination by the steric alignment parameter as well as connections between
fluid vorticity and topological defects.

2. Model formulation

Here we outline a basic model of an active nematic, a more detailed derivation of which can be found in References
[20] and [33]. Consider a collection of N rod-like particles of length ¢ and thickness b such that the aspect ratio is large,
r=1¢£/b> 1. Each particle generates a surface flow of the form U(s) = sign(s)uop, where —¢/2 <s < £/2 is the signed
arclength along the rod center-line, ug is the signed surface speed, and p is the particle’s orientation. Because the surface
flow is anti-symmetric across s = 0, the surface flow generates no motion of the particle itself. That is, the particles are
immotile and the system is said to be apolar.

We assume the particles are immersed in a Stokes fluid having linear dimension L and volume V = LY, where d is the
spatial dimension. If the number of particles is large, the suspension can be represented by means of a distribution function
(X, p, t), which describes the density of particles at center of mass x with orientation p. Because the number of particles
is conserved, this distribution function satisfies a Fokker-Planck equation,

v ) .
§+V-(xw)+vp-(pw)=0, (1)
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where V is the spatial gradient and V, = (I — pp) - 3/9p is the gradient operator projected onto the unit sphere. The
conformational fluxes X and p in the equation above describe each particle’s translational and angular velocities, re-
spectively, and typically depend on the mean field velocity u(x,t) and moments of the distribution function. Defining
(g(p)) = flp\=1 g(p)V dp, the relevant moments are the particle concentration c(x,t) = (1) and the second-moment tensor
D(x, t) = (pp), where pp denotes the outer product. The conformational fluxes are then given by

X=u—DrVliogV, (2)
p=(>1-pp)  (Vu+2;D) -p—DrVplogV, (3)

where Dt and Dy are the translational and rotational diffusion coefficients. The translational flux (2) simply says particles
move at the local fluid velocity and diffuse, while the rotational flux (3) represents torques acting on the particles and
their rotational diffusion. The torque is generated by the mean-field quantity Vu+ 2¢oD, which consists of Jeffery’s equation
modeling particle rotation due to local velocity gradients [34], and steric interactions from Maier-Saupe theory, which causes
particles to align with the principal axis of D [35]. The parameter ¢y describes the strength of steric interactions, though its
value does not have a precise physical interpretation.

The biological active fluids we consider typically have small length and velocity scales, so the fluid is well-approximated
by the Stokes equation,

—nAu+vq=V.%X,

V.-u=0, “)

where 7 is the viscosity, q(x,t) is the fluid pressure, and X(x,t) is the so-called extra stress tensor. The extra stress has
three contributions coming from the dipolar active stress due to the surface flow, stress due to particle density and rigidity,
and stress caused by steric interactions. Defining the symmetric rate of strain tensor E(X, t) = (Vu+ Vu’)/2 and the fourth
moment tensor S(Xx, t) = (pppp), the total stress is given by

Y =0D+0S:E—0sD-D—S:D), (5)

where o, = —mwnf?ug/2log(2r) is the dipole strength, o. = mn¢3/6log(2r) arises from particle rigidity, and o5 =
wne3co/31log(2r) is the strength of steric interactions. Note that the dipole strength o, has the opposite sign of the im-
posed surface flow ug. For ug > 0 the stress is said to be extensile, like that produced by pusher particles, and for ug <0
the stress is contractile, like that produced by puller particles. As demonstrated in several studies, the sign of the dipole
strength has considerable effects on the system’s structure and stability [18,20].

2.1. Non-dimensionalization

Defining the mean number density n = N/V, we choose a reference length £. = 1/n¢?, velocity scale |ug|, stress scale
n|uol/€c, and normalize the distribution function so that (1/V) ff\P dpdx = 1. In this case the conformational fluxes take
the dimensionless form,

X=u-—drVliogVy, (6)
p=>U-pp) - (Vu+2;D)-p—drV,log¥, (7)

and the stress becomes

T =aD+BS:E—2¢8(D-D—S:D). (8)

Here o = o,/n|ugl¢? is the dimensionless dipole strength, ¢ = ¢o/|ug|¢? is the strength of steric interactions, g =
ne3 /61log(2r) characterizes the density of particles, and dr = (n¢2/|ug|)Dr and dg = (1/n€2|ug|)Dy are the dimension-
less translation and rotational diffusion coefficients. The conservation equation (1) keeps the same form, and the Stokes
equation becomes

—Au+Vqg=V.-%,

V.-u=0. (9)

The system of equations (1) and (6)-(9) is now a closed system which we call the kinetic theory.

3
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2.2. Moment equations

The full kinetic theory is complex and high dimensional which makes it expensive to simulate. By taking moments of
the Fokker-Planck equation (1), we can instead represent the dynamics in terms of coarse-grained fields which depend only
on space [11]. Integrating (1) over the unit sphere in orientation space {p: |p| = 1} leads to an advection-diffusion equation
for the particle concentration c,

ac
E—i—ch:dTAc. (10)
Similarly, multiplying by pp and integrating yields an evolution equation for the tensor D,
c
DV+2$:E:4§(D~D—S:D)—i—dTAD—deR(D—al), (11)

where DY = 9D/dt+u-VD— (Vu-D+D-VuT) is the upper-convected time derivative, with the convention (Vw);j = 0u;/9x;.
The second-moment tensor can be used as a quantifier of local alignment. This is more precisely measured by the scalar
orientational order parameter,

d(pur(x,t) —1/d)

d-—1 ’
where 1 is the largest eigenvalue of the normalized second-moment tensor Q(x, t) = D(X, t)/c(x, t), often called the tensor
orientational order parameter. Notably, the scalar order parameter is zero in an isotropic state @1 = 1/d and unity in a
strongly aligned state w1 = 1. The eigenvector m(X, t) corresponding to the eigenvalue i is called the director, which
can be interpreted as the mean particle orientation. Note that the director is only defined up to sign, and, moreover, is
ill-defined in an isotropic state D/c =1/d.

Now the PDE (11) depends on the fourth-moment tensor S = (pppp) which so far lacks a dynamical equation. One
resolution is to take the fourth moment of the Fokker-Planck equation, however this yields an equation that depends on the
sixth-moment tensor (pppppp), posing the same issue. Alternatively, we can approximate S in terms of the known lower
order moments ¢ and D through a closure model.

s(x, t) = (12)

2.3. The Bingham closure

The kinetic theory, being rooted in microscopic modeling, is similar to the classical Doi-Onsager theories for liquid crystal
polymers [36]. Various closures have been proposed for such theories, a detailed summary of which can be found in [21],
however most are not based on self-consistent solutions for the distribution function, but rather on asymptotic or ad-hoc
approximations. As a result, such closures fail to reproduce essential properties of the microscopic model.

Chaubal and Leal introduced a parametric closure scheme for the Doi-Onsager theory which is not only self-consistent,
but also yields exact results in the relevant asymptotic regimes [31]. Specifically, they assume the distribution function takes
the form of the Bingham distribution on the unit sphere [32],

Wp(x,p,t) = Z7 ' (x, t)eBXOPP, (13)

where B is a traceless symmetric tensor and Z is a scalar normalization constant. (Note that, because I: pp = 1, translations
of the form B+ B+ yI only affect the normalization constant Z, hence it is sufficient to take tr(B) = 0 in which case B
is unique [30].) The parameters B and Z can be computed by imposing the moment constraints ¢ = (1)g and D = (pp)3s,
where (-)p denotes moments of the Bingham distribution. The Bingham closure then consists of an intermediate mapping
D — B[D], after which the distribution function W3 is integrated to obtain the fourth moment tensor,

Sp[D]=Z"" / pppp eBP1PP gp, (14)
|p|=1

Since Sp is a function of D, we can re-express the dynamics of our coarse-grained model as a closed system in terms of ¢
and D, with

c
DY +2S3[D]:E= 4;(D-D —Sg[D]: D) +dr AD — 2ddg (D — al) , (15)
and the Stokes equation (9) forced by the extra stress

Y5 =aD+ BSz[D]: E—2¢8(D-D — Sg[D] : D). (16)

The Bingham closure has several analytical properties that make it a natural modeling choice. First, the Bingham distri-
bution has a clear physical interpretation, being the unique minimizer of the entropy

4
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8(t)=/ / (¥/Wo) log(¥/Wo) dpdx
vV Ipl=1

subject to the constraints ¢ = (1) and D = (pp) [37], where Wy = 1/dm is the isotropic distribution function. Moreover, it
satisfies the same evolution identity for the system entropy £(t) = S(t) + kD(t),

d c c
/ _ . . . _ _ . _
&)= o /2E.E+ﬂE.sB (Edx | + (2d¢ /%o 4ddRK)/(D dl) : (D dl) dx
v v

+8K§/D:(D-D—SB:D)dx—ZKdT/|VD|2dx 17
14 \%

— dT/ / lIJB|Vlog\IJB|2dpdx+dR/ / Wp|V, log Wp|? dpdx |,
vV Ipl=1 V |p|=1

where x = —d¢B/2¥px and D(t) = f(D — (c/d)I) : (D — (c/d)I) dx (see the Appendix for a detailed proof). Importantly, this
implies the sources of entropy production and dissipation are equivalent in both models. Further, the Bingham distribution
yields exact solutions for both the isotropic and nematic base states, and the linear stability of these base states is in good
agreement with the kinetic theory [33]. Finally, coupled with the evolution equation (15), the Bingham closure preserves
the physical trace condition tr(D) = ¢, which can be shown by contracting equation (15) with the identity matrix. Accurately
computing the closure is essential for preserving these analytical properties, which is the main objective of the following
section.

3. Numerical method

The Bingham closure can be posed as an inverse problem that consists of determining the parameters B and Z such that
the following constraints are satisfied at each point in space,

cx,t)=Z"1(x,t) / eBOPP gy (18)
[pl=1

D(x, 1) =Z"'(x,1) / pp eB*DPP gp, (19)
[pl=1

As written, this is a d(d + 1)/2 4+ 1 nonlinear system for the upper triangular components of the symmetric tensor B and
the normalization constant Z. We can use the first equation (18) to solve for Z so that the nonlinear system can be written

D(X,t)  Jipj—1 PP " PP dp

= 20
c(X, t) f\p\:l eB(x,t):pp dp (20)

Further, by rotating into the diagonal frame of D and using the trace conditions tr(D) = ¢ and tr(B) = 0, this can be reduced
to a mapping from the largest (d — 1) eigenvalues of D/c to the largest (d — 1) eigenvalues of B, which is a (d — 1)-
dimensional nonlinear system [31]. For ease of notation, in the following we assume D and Sp are normalized by c; the
argument can be followed identically by replacing D +— D/c and Sg — Sg/c.

3.1. Diagonalization

Because D is symmetric, it has an eigendecomposition of the form D = D7, where € is an orthonormal matrix and
D= diag{pd,-}?:1 is a diagonal matrix consisting of the ordered eigenvalues of D with Z?Zl i = 1. Conjugating the constraint
(19) by 2, we get

b / @) @"p) W dp

[pI=1 1)

- / pp’ W5 dp.
pl=1

where p = Tp and Uy = Z-1eB:(®BP 2 Note that because € is orthonormal, the transformation p > p is simply a
re-parameterization of the unit sphere.
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A sufficient condition for the off-diagonal terms in the integral above to be zero is that the matrix B is also diagonalized
by €, which is a consequence of the off-diagonal moments being odd in at least one component of the orientation vector
pi. (In fact, because B is unique, this is also a necessary condition.) Under this condition the Bingham distribution takes the
diagonal form ¥y = Z~ 1B’ where B= {*i}_, is the diagonal matrix of the eigenvalues of B. Using the condition |p| = 1
and tracelessness of B, we can write

d—1
W =Zlexp (Ad + ZALp,%) ,
k=1

d—1
i=1"

which yields d — 1 equations for the parameters {A; = A; — Aq}
2 d—1 2
f|p|=1 p; €xp (Zkzl MJ’k) dp
d—1 2
f\p\:] €Xp (Zkzl kLplc) dp

where we've canceled the common factor e*@ and dropped tildes in the integrals.
After solving for the Ag, the rotated fourth-moment tensor (Sg)ijke = 2mi2nj2pk2q¢Smnpg can be computed from

i=

i=1,...,d—1, (22)

) Jipi=1 PiP;PkPeexp (Zﬂ;} M(p,%) dp
ijke = A1,/ 2
Jipi=1 €xp (Zkzl )‘LPk) dp

Because the diagonalized distribution function is even in each p;, only terms of the form §,~,-jj (which we refer to as the
diagonal terms of Sp) and their permutations are nonzero. We can further simplify computations by taking advantage of the
trace identity

. i ke=1,....d. (23)

d
> Siikk = Dii = ui, (24)
k=1

the last equality of which holds because D is diagonalized, so that only 2d — 3 entries of S need to be computed. After
computing §B, we can determine the contractions Sg : D and Sp : E using the transformation €2, which we later describe in
more detail.

Solving the nonlinear system (22) requires the computation of several integrals on the (d — 1)-dimensional unit sphere at
each point in the domain. Moreover, as i1 — 1, which corresponds to the strongly aligned state W(x, p, t) = c(X, £)3(p — X),
the system becomes ill-conditioned; in fact A1 — co as w1 — 1. As an alternative, we can compute the bounded mapping
D — Sg in advance and interpolate at each time step. Chaubal and Leal proposed cubic interpolants for these mappings.
However, their interpolants only agree to about 3 digits, with less accuracy near the aligned states [31]. Here we construct
Chebyshev interpolants which resolve the mapping to near machine precision while maintaining low computational cost.

3.2. Two-dimensional Bingham map

Here we detail the construction of the two-dimensional Bingham map. Because (1 + (2 = 1, we only need to consider
values where the maximum eigenvalue w1 is in the interval [1/2,1]. In this case the nonlinear system (18)-(19) for the
largest eigenvalue A1 = A of the Bingham parameter B becomes

fOZFT cos2 He* 05260 g

2
fO T orcos20 dg

where we’ve converted the integrals in Equation (22) to polar coordinates with p = (cosf, sinf). Note that we've used
A1 = —Xy to simplify the exponent.
The integrals in equation (25) can be computed analytically using the identity

M1 = (25)

2
/ cos(2n6)e* % do = 27 1, (2.),
0
where I;()) is the nth modified Bessel function of the first kind. We can then write equation (25) as

1 I1 (A
F(A;Ml):zz(l—i—%)—/u:O, with1/2 < puq <1. (26)
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Given w1 € [1/2, 1], we solve this equation for A(w1) with Newton’s method, where the Jacobian can similarly be expressed
in terms of Bessel functions,

OFGy 1) 1 1_2(11@))2 PRE)
an 4 To(A) Tow) )
Once A(w1) has been computed, we evaluate S1111 (p1) using the formula

I3 (A (1)) _}_12(%(/11)))
Io(i(p1)) — To((p1)) )

Because the off-diagonal terms of S are zero, the physical-frame tensor Sg can be completely determined by 51111, the trace
identity (24), and the rotation matrix £, so we only need to compute ®1 — S1111-

~ 1
51111(M1)=§(3 +4 (27)

3.2.1. Asymptotics near the aligned state 1 — 1

Towards the aligned state (11 — 1 we find A — oo for which evaluating the Bessel functions is ill-conditioned. However,
only ratios of Bessel functions occur which are bounded for all A. To evaluate the ratios when A > 0, we make use of the
series expansion

et = (=Dkap(n)
Iy(A) ~ s 28
W~ o2 (28)
where
k 2 12
ak(n)znzzo(‘l” Q-1

8kk!
The ratios can then be stably computed by canceling the leading coefficient e* /+/27 A in (28),

In() = (—Dkag(n) = (—Dkay(0)
Io(A) (Z Ak )/(Z Ak ) (29)

k=0 k=0

We use this asymptotic form whenever A > 700, retaining terms up to order 1/2* where the remainder is found to be
0(10~15). Finally, at the limiting point xq = 1, we set S1117 = 1, which is easily shown by taking the limit A — co in the
expressions (27) and (29).

3.2.2. Interpolation
We represent the mapping (1 — S1111 in a Chebyshev basis

M
St~ Y e Tm(dje1 —3), (30)

m=0

where Tp;(v) is the mth Chebyshev polynomial. To compute the coefficients, we solve equation (26) for A(w1) on a Cheby-
shev grid w1 x = [cos((2k — 1)7r /2n) + 3]1/4, and evaluate S1111 (1) = S1111(A (1)) with equation (27), using asymptotics
when relevant as described above. We then use the MATLAB package chebfun [38] to compute the coefficients c¢p. To
efficiently evaluate this interpolant in practice, we take advantage of the recurrence relation Ty41 (V) = 2T (v) — Ti—1(V)
[39].

Fig. 1 shows the intermediate map 11 — A and the closure map pq +— Sq111 along with the magnitude of its Chebyshev
coefficients. We find about 100 modes are needed to resolve the closure map to near machine precision. In Fig. 1(b), we
compare this mapping with two common closures [11]. These are the linear closure, 51111 = 3/8 + (u1 — 1/2), which is the
linear approximation about the isotropic state g7 = 1/2, and the quadratic closure S1117 = p,l, which is the correct form
in the strongly aligned limit ;1 = 1. As expected, the Bingham closure produces exact results in both limits, matching not
only point-wise values but also derivatives.

3.3. Three-dimensional Bingham map

In three dimensions, the physically meaningful domain of the pair of two largest eigenvalues (it1, (o) is determined by
the constraints (1 + (2 + 3 =1 and 0 < u3 < Uy < uq <1, which forms a triangle T with corners (1/3,1/3), (1/2,1/2)
and (1, 0). These corners correspond to the fully isotropic state (u; = 1/3), the planar isotropic state (3 = 0), and the
perfectly aligned state (w1 = 1). From the constraints the boundaries of T are w1 = uy, 2 = (3, and w1 + w2 =1, the last
of which reflects alignment within a plane.
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Fig. 1. Two-dimensional Bingham map. Panel (a) shows the parameter A(x1) of the diagonalized Bingham distribution. As @1 — 1, the parameter rapidly
increases to infinity which makes inverting equation (25) ill-conditioned. Panel (b) shows the better-conditioned Bingham map ft1 — S1117 with compari-
son to the linear (- -) and quadratic (-.) closures from [11]. The Bingham map is consistent with each map in their correct limits, matching both pointwise
values and first derivatives. Panel (c) shows the corresponding Chebyshev coefficients from Equation (30), where we find approximately 100 modes are
needed to resolve the map to near machine precision. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

In order to construct a Chebyshev interpolant, we must map T to the square domain C = {(v1, v2): —1 <vq, vy <1}. One
such mapping can be constructed by composing the linear transformation

_ H1— K2
A(ur, u2) = <2M1 + 4, _2)
with the nonlinear transformation
2(uy + ph) =1

/ /
G(uy, wy) = W=
MYy

The resultant H=Go A is an invertible mapping from the triangle T to the square C. The inverse of this map is simply given
by H-' =A-10 G, where

1 +v)(A+vo)
G (v, )= ( (1+v1)j(1—vz) )

and

1 (2] /34 v /6+1/3
A (V1’V2)_<—v{/3+v§/6+1/3 .

The image of a separable Chebyshev grid over C under the map H~! is shown in Fig. 2. The points are well-distributed
across T, with clustering near the isotropic, planar aligned, and strongly aligned states. In terms of this transformation, the
nonlinear system we need to solve for each (vq, v2) € C is

2 2
flp|=] p%e}qp] +)~2P2 dp

—H{'(v1,10) =0,
Sipiz €171 +42P2dp !
p:

Fi(A1,A2;v1,12) =

X X (31)
Jpi=1 P3€M P P2dp
Fa(A1,A2;V1,V2) = e —H; (v1,v2) =0.
f|p\:] eMPy 2p2dp
Given (v1, v2) € C, we solve this system with Newton’s method. Here the Jacobian is
I(F1, F2) _ ((P1P1P1p1)3 —{(p1p1)B{(P1P1)B (P1P1P2DP2)B — (p1P1)B(p2p2)B> (32)
(A1, A2) (p1p1p2p2)8 — (P1P1)B(P2P2)B (P2P2P2P2)B — (P2P2)B(P2D2)B )’

where as before (g(p))g = f\plzl g(p)VYp dp denotes moments of the Bingham distribution. Note that the Jacobian contains
S1111 = (P1P1P1P1)B. S1122 = (P1P1P2P2)8, and Szzp = (p2p2p2p2)p at the converged value. As before, since the off-

diagonal terms of S are zero, we can completely determine Sz from these three values, the trace identity (24), and the
rotation matrix .
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Fig. 2. Mapping H~! (v, 1) from the two-dimensional Chebyshev grid C = {(v1, v2) : =1 < v1, V3 < 1} to the feasible domain of eigenvalues T = {1, m2):
Mm1+ 2+ p3=1and 0 <pus < puy <pp <1}. Panel (b) shows the image of the vertical and horizontal contours on the Chebyshev grid, which are well
distributed with a tendency to cluster near the isotropic (; = 1/3), planar aligned (i1 + 2 = 1), and strongly aligned (1 = 1) states.

3.3.1. Quadrature

Unlike the two-dimensional case, there is no clear analytical form for the integrals involved in the nonlinear solve.
Instead, we compute them numerically in a spherical coordinate system p = (cos6, sin¢ sinf, cos¢ sinf) where (¢, 0) €
[0,27] x [0, ;r], using the spectrally-accurate trapezoidal rule in ¢ and Gauss quadrature in 6. Note that we’ve permuted
p1 and ps from the usual choice of spherical coordinates so that the quadrature nodes cluster at p; = =1, which is where
the Bingham distribution has its peaks in the diagonal coordinate system. For the maps computed here, we used 1024
equispaced nodes in ¢ and 4096 Gauss nodes in 6. To avoid overflow for large values of A1 and A, we subtract A; from the
exponent when numerically evaluating the exponential in the integrand e*PI+R2P3—21 | Because only ratios of the integrals
occur, the common factor e=*1 vanishes and so this does not change the computed moments.

3.3.2. Asymptotics at the planar aligned state 1 + 2 =1

The nonlinear system (31) becomes increasingly ill-conditioned as we approach the boundary i + w2 =1, or us
0. Using the standard spherical coordinate system p = (cos¢ siné, sin¢siné, cosf) and noting that integrand for ps =
(cos?0)p is strictly positive, at this limit the distribution function must take the form of a §-function in 6,

Wy = 7= 1M cos? ¢ sin® 0+ sin? ¢ sin® 98(9 —7/2). (33)
Integrating then gives

027r foﬂ cos? ¢ sin> 0e*1°9520 59 — 77 /2) depdd B fOZn cos? et 0520 g
S [T sinoeti ©5205(6 — 1 /2) dpdo [T <0526 dg

M1=

which is the same as the equation for the two-dimensional Bingham map (25) in the unknown A} = X1 — A, and can be
solved as described before. Because of the constraint 11 + u2 = 1, solving for A} here is sufficient to determine the full

distribution function (33). Once we have )J], we integrate using the same representation (33) to obtain §1m, §1122, and
S2222. In the precomputations, this asymptotic form is used to determine values of the closure map along the boundary
w1t p2=1.

3.3.3. Interpolation
We represent the maps (vq, v2) = Sjjjj in a separable Chebyshev basis,

Sijj(v1.v2)~ Y Coart Ty (V) Ty (02). (34)
my+my<M

As before, T (V) is the mth Chebyshev polynomial, and €9 is the (M + 1) x (M + 1) matrix of coefficients. To compute
the expansion, we solve equation (31) over a two-dimensional Chebyshev grid (v k, v2¢) = (cos((2k — 1)7r /2n), cos((2¢ —
1) /2n)), after which the coefficients are computed using the extension of chebfun in two-dimensions [40]. Note that in



S. Weady, M J. Shelley and D.B. Stein Journal of Computational Physics 457 (2022) 110937

0.2 0.375
L

100

104

1078

<‘Cm1,mz|>

10712

1079 () (e) (f)

0 50 100 150 50 100 150 0 50 100 150
degree, m degree, m degree, m

(=)

Fig. 3. Three-dimensional Bingham map (vi, v2) > (S1111, S1122, S2222). Panels (a)-(c) show the computed maps over the transformed domain (vq, vy) =
H(/t1, ;£2). The magnitude of the corresponding Chebyshev coefficients, averaged over each term of degree m, are shown below in panels (d)-(f). The
coefficients decay near-exponentially, reaching near machine precision at approximately m = 100.

practice we must first map the eigenvalues of D to the transformed domain H(u1, u2) = (v1, v2), and then evaluate the
interpolant in terms of vy and v.

Fig. 3 shows the closure maps (vi, V) — (51111,31122,32222) over the transformed domain, along with the magni-
tude of their coefficients, averaged over each term with degree m. Similar to the two-dimensional map, about 100 modes
are needed to resolve each map to near machine precision. We again make use of the recurrence relation Tp4q(v) =
2T (V) — Tm—1(v) to efficiently evaluate Tp, (v1) and Tpm,(v2), each of which only needs to be done once to compute

S1111(v1, 12), S1122 (1, v2), and S2222(v1, 12).
3.4. Eigendecomposition

The diagonal formulation requires an eigendecomposition of the matrix D at every grid point. Although each matrix is
only d x d, computing large numbers of such small decompositions using calls to external routines (e.g. LAPACK) carries
significant overhead and complicates efficient parallelization. Here we provide a simple yet robust method to compute the
eigendecomposition of D without external routines in both two and three dimensions.

3.4.1. Two dimensions
It's straightforward to show the largest eigenvalue w1 of D is given by 241 =1+ +/2(D:D) — 1, and the corresponding
rotation matrix € is

Q- (Cosw — sinw
" \sinw cosw )’
with 2w = arctan[2D12/(2D11 — 1)]. Note that the eigenvectors must be arranged as 2 = (v; v2) in descending order.
3.4.2. Three dimensions

Rather than use explicit formulas for the eigenvalues, which are numerically unstable to evaluate, we instead numerically
solve for the roots of the characteristic polynomial of D, which is given by

pp(2) =2° — 2% + a1z + ay,

10
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where a; = —1/2[1 —tr(D?)] and ao = — det(D). (As the eigenvalues are bounded between 0 and 1, this is a well-conditioned
problem.) This equation is quickly solved with a few iterations of Newton’s method. Once we have one solution pp, we can
analytically compute the others via

_ —(o =D& (ko — D? — 4(@1 + po(po — 1))
: :

Finally, we sort po and p+ so that pq > w2 > 3. From the eigenvalues, we can compute the eigenvectors by taking
advantage of orthogonality of € [41]. To be concrete, the ith eigenvector v; with eigenvalue u; satisfies (D — w;lI) - v; = 0.
Dotting this with the jth basis vector e; gives v,.T -(dj — pniej) =0, where d; is the jth column of D. Notably, this means v;
is orthogonal to d; — u;e; for each j, which implies

M+

vi=(dy — piey) x (dy — niex), i=1,2. (35)

Since the eigenvectors are orthogonal, we can get the final eigenvector by computing the cross product v3 =v; x v,. Com-
putationally, especially near the isotropic state D ~ I/3, the formula (35) yields eigenvectors that are not orthogonal to
machine precision, which can result in numerical instability. To stabilize this, we simply redefine v, = vy x v3 at each point.
Finally, we normalize and arrange the eigenvectors in descending order to get the transformation € = (vi v v3).!

3.5. Rotating to the physical frame

The fourth-moment tensor Sg has many independent components which makes it expensive to store, especially in three
dimensions. Fortunately, we only need contractions of S with rank two tensors, that is, Sg : D and Sp : E. This storage can
be further reduced by observing that Equations (5) and (11) only depend on the symmetric rank-two tensor Sp : T with
T :=E + 2¢D. Moreover, we can utilize the rotation-based framework to efficiently compute this contraction. Specifically,
write Sp as the rotation

Sijklﬁ = QimanQkpQZqunpq, (36)

where repeated indices denote summation. We then have

(Sp : D)ij = (Qim R jn p g Smnpg) Tke
= (Qim2jn Smnpq) (Rup g Tke)
= Qiman(gmnpq qu)
= Qim2jn(Sp : Dimn,

or in matrix notation, Sg : T= Sl(§B :T)SZT with T = QTTR. Since only the diagonal elements of Sp are nonzero, this requires
far fewer operations than the explicit rotation formula (36).

3.6. Summary of the closure

The method described here has several important features. Most significantly, Chebyshev interpolation preserves the
accuracy of a direct nonlinear solve of equation (22) at relatively low cost. This interpolation, rather than directly solving
the nonlinear system, is essential for efficiency and numerical stability near the aligned state p; — 1. Further, explicit
calculation of the rotations bypasses overhead from eigenvalue routines, which admits efficient parallelization. Lastly, storing
and rotating the contraction Sg : T = 2(Sg : T)®T substantially reduces memory requirements and the number of floating
point operations. To summarize, the algorithm consists of the following steps:

(1) At each spatial discretization point, compute the eigendecomposition of the second-moment tensor D = D7 using
the method described in Section 3.4.

(2) Evaluate the Chebyshev interpolants ft1 — S1111 in 2D or (i1, i2) — (S1111, S1122, S2222) in 3D, and use the trace
identities (24) to compute the remaining elements of Sg.

(3) Rotate T= Q7 (E + 2¢D)®, and compute and store the tensor Sg : T= (S : QT

1 At the perfectly isotropic state D =1I/3, the method above results in divide by zero errors when normalizing the eigenvectors. We avoid this by
perturbing the off-diagonal terms of D by 10716 in all cases.

11



S. Weady, M.J. Shelley and D.B. Stein Journal of Computational Physics 457 (2022) 110937

10° - T T T
\ M=5

—_ =
o o
& L
T T

._.

S
L
V)

velocity spectrum, (|0|)

10716 " " N
0 32 64 96 128

wave number, k

Fig. 4. Convergence in the velocity spectrum (|l |), averaged over wave number |k| =k, with the degree M of the Chebyshev interpolant. The gray dashed
line indicates the third-order interpolant of Chaubal and Leal (C & L), for which the velocity is resolved to about 108, This approximately agrees with the
fully resolved M = 80 interpolant up to k ~ 32, indicating effectively a fourth of the Fourier expansion is used.

4. Numerical tests

In this section, we evaluate the cost and accuracy of our numerical implementation. We restrict our discussion to the
three-dimensional case, finding similar results in two dimensions. The numerical method is based on a pseudo-spectral
discretization of Eqns (9), (15), and (16) with the 2/3 anti-aliasing rule, along with a second-order implicit-explicit back-
ward differentiation time-stepping scheme (SBDF2), where the linear terms are handled implicitly and the nonlinear terms
explicitly. Both our two- and three-dimensional codes are written in C++ and use OpenMP to parallelize computations. All
computations in this section were done on a grid of 256% Fourier modes with a time step At = 0.05.

For the following tests we set the dimensionless parameters to be « = —1, 8 =0.8, and ¢ = 1, with box size L =15 and
diffusion coefficients dt = dg = 0.1. This choice of parameters ensures the isotropic and nematic base states are unstable
[20], driving persistent chaotic flows, but also guarantees length and time scales are highly resolved for the chosen grid
and time-step. In each simulation we initialize D with a plane-wave perturbation about the isotropic state Dg =1/3 such
that tr(D) =1 and take the concentration to be uniform, c(x,t) = 1. Based on the evolution equation (10), this means the
concentration stays uniform for all time.

4.1. Spatial convergence

An important and somewhat surprising feature of the Bingham closure is that the accuracy of the entire method is
limited by that of the mapping from D to Sg. To demonstrate this, for our initial data and for a fixed value of M of the
Chebyshev expansion (34), we run the simulation to a statistical steady state (t = 50). Fig. 4 shows the resulting velocity
spectra (|t;|) averaged over spherical shells in the wave number |K| = k. As we increase the degree M of the Chebyshev
interpolant the dynamical range expands, reaching near machine precision with M = 80. For the interpolant of Chaubal and
Leal [31], the spectrum deviates from the full expansion at wave number k = 32 and plateaus, indicating that effectively
only a fourth of the potential resolution is used. To be sure this is not an artifact of the eigendecomposition approach in
Section 3.4, we performed equivalent calculations in two dimensions using MATLAB’s eig function and found the same
results.

The inaccuracy in the velocity field when using a low order interpolant is a consequence of the rotation-based approach
in Section 3.1. To be precise, close to aligned states where the second moment tensor D has repeated eigenvalues, the eigen-
decomposition of D is ill-defined which results in spatial discontinuities in the rotation matrix (X, t). In exact arithmetic,
these discontinuities are canceled when rotating back to the original frame. However, if the interpolation is not computed
accurately, the discontinuities will carry through the inverse rotation. This error becomes even more pronounced in the
velocity field due to derivatives of Sg occurring in the active force V - X. Note that this problem could be avoided by
computing Sg in the original frame. However, in this case the nonlinear system (22) is five-dimensional and defined over
an irregular grid, which is not only more expensive and less stable, but also poses further challenges for interpolation.

4.2. Computational cost

Representing the closure maps in a Chebyshev series allows us to explicitly balance cost with accuracy. We characterize
the cost in Fig. 5, which shows the fraction of each time step taken by computing the Bingham closure for interpolants of

12
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Fig. 5. Fraction of each time step taken by computing the Bingham closure. In serial, the cost between the Bingham closure and the rest of the loop is
comparable for M = 40. For a fixed degree, the fraction decreases with the number of cores, taking less than half of each time step when the number of
cores exceeds 16 for each value of M tested.

increasing degree. In serial, we find that when M = 40 the cost of the Bingham closure is comparable to the remaining cost
of each time step. Increasing the number of cores decreases the relative cost, with the Bingham closure taking less than half
of a time step for all values of M explored when the number of cores exceeds 16.

It is also useful to compare the cost of evaluating the Bingham closure through Chebyshev interpolation with that of
a direct inversion of equation (22). The interpolation has a fixed O((M + 1)?~1) cost where M is at most 100, while the
nonlinear solve is O (N9~1), where N is the number of quadrature points in each dimension. We can get an estimate on the
number of quadrature points required using the analytical form of the Bingham distribution. Here we make use of identity
(A1) from the Appendix,

d
D-B—Sp :Bzi(D—l/d).
Conjugating this equation by € gives
- o~ o~ o~ dy/~
D-B-S;:B= (D—I/d),

which, because D, B and Sp are diagonalized in the same frame, is a diagonal system of equations. Restricting to the two-
dimensional case d = 2, the first of these equations is

pir1 — (S1111r1 + S112242) = 1 — 1/2.
Using the fact that B is trace-free A2 = —A1 and the trace condition 31111 + 31122 = 1, we can solve this equation for Aq,
o M2
2(1 — S1111)
This gives an expression for the standard deviation of the Bingham distribution about p = (1, 0),

_ M1—§1111
V owi—1/2°

As an estimate, we demand at least 10 quadrature nodes within one standard deviation, which, assuming the trapezoidal
rule in polar coordinates p = (cos6, sinf), yields

—-1/2
N~ 407 | P12 (37)
M1 —S11m

For example, when @i = 0.99, which regularly occurs when the alignment strength & = 2¢/dgr is within the physically
relevant regime, this estimates N ~ 345. In practice, when directly inverting equation (22) in a simulation rather than using
interpolation, these integrals need to be evaluated several times at every point in space, which may be reasonable in 2D,
but is inaccessible with the equivalent estimate in 3D. Moreover, using Sy111 &~ 12 as 01 — 1, we find N ~ (1 — pu1)~1/2

13
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Fig. 6. Snapshot of a two-dimensional simulation with alignment strength ¢ = 64 and box size L = 30. Panel (a) shows the vorticity field, which consists
of isolated vortex dipoles and hexapoles and large regions of nearly constant vorticity. A close up of the vorticity and scalar order fields, indicated by the
small box outlined in red in panel (a), shows a matching of symmetry between the dipoles/hexapoles and the +1/2 disclinations. (Movies of this and the
following simulation(s) can be found in the supplementary material.)

so that approaching the aligned state requires prohibitive increases in resolution. The estimate (37) equally applies to the
number of discretization points in orientation when simulating the kinetic theory, giving us a rigorous characterization of
the savings gained by the closure model. We note that the cost of quadrature can be mitigated by adaptive methods or
asymptotic approximations to the moment integrals [42], however such methods are still subject to ill-conditioning of the
nonlinear system near the aligned state.

5. Numerical simulations

In this section we use the Bingham closure to study two- and three-dimensional suspensions of active extensile parti-
cles in the regimes of strong steric interactions and large system size. The Bingham closure is particular useful here as it
yields accurate solutions near the isotropic and aligned states which both frequently occur in these regimes. As before, the
discretization is pseudo-spectral and we use the implicit-explicit SBDF2 time-stepping scheme, where we use a 40962 grid
in two dimensions and a 5123 grid in three dimensions, with degree M = 80 Chebyshev interpolants in all cases.

5.1. Strongly aligned dynamics

Active nematic suspensions exhibit rich topological structures that are an intrinsic part of the system’s dynamics [43-
45,33,13]. The primary features are called disclinations, or defects, which refer to points of low orientational order (i.e.
the scalar order parameter s, defined in equation (12), is approximately zero) at which the director field is ill-defined. In
two dimensions, the characteristic topological features are +1/2 defects, which correspond to a clockwise/counterclockwise
rotation of the director about a point of isotropy s = 0, respectively. Simulations of a phenomenological Landau-deGennes
Q -tensor theory have found equivalent features in three dimensions that are closed disclination lines and rings along
which the director undergoes various types of three-dimensional rotations [14]. Here we find and examine these topological
features using the Bingham closure for the case of strong alignment ¢ >> 1 in both two and three dimensions. The remaining
dimensionless parameters are fixed at « = —1, 8 =0.8, dr =dg =0.05, and L = 30.

Fig. 6 shows a snapshot of a two-dimensional simulation at a late time for £ = 64 where the time step is At =107%. The
vorticity field, shown in panel (a), consists of isolated vortices which trail shock-like structures in the global field. Close ups
of the scalar order and vorticity fields near two defects are shown in panels (b) and (c), which show dipole and hexapole
structures whose 1- and 3-fold symmetries are inherited by the £1/2 sign of the defect, respectively.

A three-dimensional simulation is shown in Fig. 7 for ¢ = 8, where the time step is At = 0.0025. We find the scalar
order field, shown in panel (a), consists primarily of long tubes of low orientational order, which is consistent with simu-
lations of the Landau-deGennes theory [14]. The three-dimensional vortex field lines, shown near isolated disclination lines
in panel (b), wind around the axis of the disclination. Such intertwining structures are observed in vorticity in classical
three-dimensional turbulence, and are the analogous extension of the dipoles observed in the previous two-dimensional
simulation.
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Fig. 7. Three-dimensional simulation with alignment strength ¢ =8 and box size L = 30. Panel (a) shows three-dimensional contours of the scalar order
field, which reveal relatively isolated disclination lines and loops. A close up of these disclinations is shown in panel (b), with example vortex field lines
(white) superimposed. The vortex lines wind around the disclinations, similar to mutual interactions between vortex lines in Navier-Stokes turbulence.
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Fig. 8. Characterization of the vortex length scale at strong alignment. Panel (a) shows the squared magnitude of the vorticity spectra for several values of
¢. The oscillations reveal a length scale which can be associated with the radius of decay of the vortex dipoles and hexapoles generated by disclinations in
the director field. Panel (b) shows the onset wavenumber k. of the oscillations (identified by the squares in panel (a)) against the alignment strength, in
which we find a ki oc ¢1/? scaling, which is consistent with analytical predictions.

These and further simulations show that the vortex structures above exhibit length scales that are strongly coupled
to the alignhment parameter {. We can get an analytical estimate on these length scales by rescaling the coarse-grained
equations (8)-(11). Defining t’ = ¢t, X' = ¢'/2x and w’ = ¢ ~"/2u, we find

AU +V'q=V.Y,
V' .u' =0,
and
DY 4+25:E =4(D-D—S:D)+drA'D— 2ddgc ! (D— 21),
where the rescaled stress is
¥ =a; 'D+BS:E —28(D-D—S:D).

In the limit 2dg/¢ < 1 and /¢ < 1, this system of equations becomes independent of ¢ so that the characteristic length
£c must scale as £¢ o« ¢ ~1/2, regardless of the spatial dimension.
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Fig. 9. (a) Scalar order and (b) vorticity fields from a two-dimensional simulation with box size L =500 and alignment strength ¢ = 1. The scalar order
field consists of many regions of low orientational order connected with topological defects in the director field. In comparison with panel (b), we find the
vorticity rapidly changes sign across the bands of low orientational order generating patch-like patterns.

To assess this asymptotic regime, we run several two-dimensional simulations with successively doubled values of ¢
and compare the vorticity spectra at a late time. As shown in Fig. 8a, the instantaneous spectra exhibit regular oscillations
that increase in amplitude and width as ¢ increases. Notably, the spectra reveal a length scale corresponding to the onset
wave number k, at which the oscillations begin. Fig. 8b shows this onset wavenumber as a function of ¢, which indicates
a ky o< £1/2 scaling, in agreement with the analytical prediction as the wave number has units of inverse length. Taken
with the predicted characteristic time scale t. o ¢ 1, this scaling could also be used to characterize the number and rate of
creation of defects, as well as their typical velocities [44].

5.2. Turbulent dynamics

A peculiar property of the continuum kinetic model is that linear stability analysis in periodic geometries predicts the
smallest wavenumbers are the most unstable [20]. Because of this, the linear theory does not predict a characteristic length
scale. Nonlinear simulations, however, can provide insight into characteristic length scales in the system and the transfer of
energy across them. Here we simulate the coarse-grained model with the Bingham closure to study this nonlinear behavior
for large box sizes. Large box simulations allow for more unstable low wave numbers in the system, which we expect to
drive increasingly turbulent dynamics. The precise statistics of this so-called active turbulence has been the focus of several
recent studies with Landau-deGennes type theories [46,47], and our formulation allows us to study these statistics with a
first-principles approach. For the following simulations we fix the dimensionless parameters « = —1, 8 =0.8, ¢ =1, and
dr =dg =0.05, and vary the linear dimension L.

Fig. 9 shows a snapshot of the scalar order and vorticity fields from a two-dimensional simulation with box size L = 500.
In contrast to the simulations with strong alignment in Section 5.1, the scalar order field is densely packed with topological
defects that undergo rapid nucleation and annihilation events. These defects do not seem to create strong vortex dipoles,
rather the bands of low orientational order connecting them generate small patches of nearly constant vorticity. In three
dimensions, with L =200, we find the scalar order field also consists of fine-scale defect structures, shown in Fig. 10a, with
many intertwining disclination loops and tubes which also undergo frequent nucleation and annihilation events.

In both of these simulations the dense defect structures drive large scale motion. This transfer across scales is often
observed in turbulent fluids and can be characterized by analyzing the squared velocity spectrum, which in classical turbu-
lence reflects kinetic energy. (Note that due to the low Reynolds number the kinetic energy of our system has no relevance.
However, based on the entropy identity (17), velocity gradients characterize entropy production or dissipation as they would
in classical turbulence.) Panel (b) in Fig. 10 shows the computed velocity spectrum (|t |*) summed over spherical shells in
the wave number |k| = k. Unlike the strongly aligned case the spectrum does not exhibit oscillations, rather, at lower wave
numbers we observe an approximate power law between k=* and k>, which transitions to a more rapid decay at k ~ 80.
This transition wave number may indicate a characteristic turbulent length scale, whose precise interpretation is the subject
of future investigation.
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Fig. 10. Three-dimensional simulation with box size L =200 and alignment strength ¢ = 1. Panel (a) shows contours of the scalar order field, which reveal
a dense concentration of disclinations. The motion of these disclinations is coupled to large-scale motion. A rough characterization of this coupling is shown
by panel (b), which reveals an approximate power law scaling in the velocity spectrum at low wave numbers, indicating a transfer of energy across length
scales in the system.
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6. Concluding remarks

We developed a robust numerical method for simulating coarse-grained models of apolar particle suspensions with
the Bingham closure. Unlike previous approaches, the closure map is constructed by solving for the Bingham distribution
over the entire feasible domain of the second moment tensor D. By transforming this domain to a square domain, we
were able to represent the mapping D — Sg by a Chebyshev interpolant for efficient use in simulations. This Chebyshev
representation reconstructs the closure to near machine precision, with accuracy that can be finely controlled and balanced
against cost by modifying the degree of the interpolant. We found accuracy of the closure map is essential for maintaining
spatial convergence in the underlying discretization and resolving high wave number behavior, which was shown to be
a consequence of the rotation-based approach. The simulations in Section 4.1 underscore the importance of this fact. In
particular, defects in the director field correspond to points where the eigendecomposition of the second moment tensor
is ill-defined and the rotation-based approach fails. Such states are fundamental to the underlying physics, and accurately
resolving them is essential for retaining the overall structure and statistics of the physical system.

Using this method, we studied regimes of strong alignment and large system size. When alignment is strong, we found
coupling between defects in the director field and fluid vorticity, which were consistent with the Landau-deGennes theory.
This connection could be used to construct reduced models of defect systems, possibly describing defects in an analogous
way to interacting point vortices or vortex filaments in the incompressible Euler equations [48]. We also analytically derived
a scaling law ¢; o ¢ ~1/2 for the defect length scale, which was confirmed through high resolution two-dimensional simu-
lations. In contrast, for large system size we found the dynamics were turbulent, exhibiting chaotic motion from the defect
to system scales. Analyzing the velocity spectrum here revealed an approximate power law scaling at low wave numbers,
which may reflect a transfer of energy across length scales in the system. Future work could characterize this transfer of
energy more precisely, including its dependence on the system size, the nematic alignment strength, and the magnitude
and sign of the active stress.

As formulated here, the Bingham closure only applies to apolar suspensions. In reality, many physical systems are in-
herently polar, such as microtubule and motor protein assemblies or collections of motile bacteria [45,4]. The Bingham
distribution can be generalized to account for polarity, and we are working on similar methods to those developed here to
accurately and efficiently construct the generalized closure map.

A significant property of the Bingham closure, which we proved in the Appendix, is that it preserves the evolution of the
system entropy, where the entropy is approximated in terms of the Bingham distribution. Combined with the accuracy and
efficiency of the method presented here, the Bingham closure could be used to study energetic properties of active systems,
particularly in three dimensions, that are consistent with the kinetic theory.
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Appendix A. Calculation of the Bingham parameters

In the interpolation approach the Bingham distribution is never actually constructed, however its parameters may be
needed to compute higher order moments or system statistics, such as the conformational entropy. Here we show how to
construct the Bingham parameter B analytically from the second and fourth moments D and Sg. First, we compute

/ pVyVpdp= / (pI—ppp) - 5p ¥ dp
Ipi=1 Ipi=1
=2 / [(pI—ppp) - (B-p)]¥p dp
Ipl=1
~2 [ b B ppop:B)Va dp
lpI=1
=2(D-B—Sp:B).

Integrating by parts gives

/ pVpyWpdp=— / Vpp Vg dp
Ipl=1 Ipi=1
=— / (I—dpp)Wp dp

[pI=1
=cIl —dD,

which implies
d
D-B—SB:BZE(D—(c/d)l). (A1)

With D and S known, this system can be inverted for B. Higher order moments can similarly be determined analytically
by integrating by parts with higher order products of p.

Appendix B. Entropy production

Here we show the Bingham closure satisfies the same energy identity as the kinetic theory [33], with the entropy repre-
sented in terms of the Bingham distribution. For simplicity we assume the concentration is uniform c(x, t) = 1. Throughout
we denote V as the spatial gradient and V, = (I — pp) - dp as the gradient operator on the unit sphere.

The steric contribution D(t) = f (D—1/d): (D—1/d) dx is only represented in coarse-grained variables which, based on
the evolution equation (11), automatically satisfies the same equation for D’(t) in both the Bingham closure and the kinetic
theory. After some standard manipulations we can show

D’(t):—4ddR/(D—l/d):(D—I/d)dx+8§/D:(D-D—SB:D)dx

+4/E:(D-D—SB:D)dx—2dr/|VD|2dx.

Now let Wg(x,p,t) = e? ®D+BXDPP he the Bingham distribution, where y (x,t) = —log Z(x,t) is a normalization factor
enforcing f|p|=1 Wpdp = 1. In terms of Wy the conformational entropy S(t) = ff\p|=1 (¥/Wp) log(W/ W) dpdx is

18



S. Weady, M.J. Shelley and D.B. Stein Journal of Computational Physics 457 (2022) 110937

1
S(t)z\yfo/(y—VoHB:Ddx,

where yg =log Wy with Wo =dm being the isotropic distribution function. Differentiating the constraint [ f\p\:l Vg dpdx =
V in time gives [y + B, : D dx =0, which implies

1
S'(t)=— [ B:D;dx.
0= [BeD:
Using Equation (11) for D; we get

B:D;=—-B:u-VD+B:(Vu-D+D.-Vu’) —2B:(Sg:E)
+4¢B:(D-D—Sp:D)+drB: AD —2ddr(D —1/d).

Contracting the integration by parts identity (A.1) against E and D, respectively, gives
B:(Vu-D+D-Vu')—2B: (S :E)=dD:E

and
d
B:(D-D—-S; :D):E(D:(D—l/d))
d
=3 (D —1/d): (D—1/d)),
so that
B:Di=—-B:u-VD+dD:E+2d¢(D—1/d): (D—1/d)+drB: AD — 2ddg(D —1/d).
From the condition [ V- (uc) dx =0 we have [u-Vy dx=— [u-(VB:D) dx which, after a few integrations by parts, gives
/B:(u-VD)dx:O.
So far the evolution of the conformational entropy is
WoS'(£) :d/D:de—}-Zd; /(D—I/d) :(D—1/d)dx+dr /B:ADdx—deR/B: (D —1/d) dx,

which we want to write in terms of definitely signed quantities. Multiplying the Stokes equation (9) by E and integrating
by parts gives

Z/E:de:—/E:):de,

which implies

Z/E:de:—a/D:de—ﬂ/E:SB:de+2§ﬂ/E:(D-D—SB:D)dx.

We can use this to solve for fD :E dx,
d
\IJOS’(t):a<—2/E:de—,3/E:SB:de+2§‘/3/E:(D~D—SB:D)dx)

+2d;/(D—l/d):(D—I/d)dx+dT/B:ADdx—deR/B:(D—I/d)dx.
It is then left to show
/B:ADdx:—/ / |V log ¥|>Wp dpdx
Ipi=1
and
/B:(D—I/d) dx:/ / |V, log W|?Wg dpdx.
Ipl=1
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For the first term, differentiating in space gives |V log Wp|?Wg = [Vy + VB : pp|*Wp. Using the condition [V (Vo) dx=0,
we find

0:/ / V - Vg dpdx
[pI=1
:/ / V- [(Vy + VB:pp)¥;] dpdx
[pI=1
:/ / (Ay + AB:pp)¥; + |Vy + VB : pp|* Wp dpdx,
[pI=1

so that [Ay + AB:D dx = — [(|Vy + VB : pp|?) dx, which, after two integrations by parts, gives [B: AD dx =
~ [ fipj=11V1Iog Wi |2Wp dpdx as desired. For the second term, we have |V, log Wg|? =|2(1— pp) - B- p|? so that

// |Vplog\IJB|Z\D3dpdx=4/B:(B-D)—B:(SB:B)dx
[pl=1

=2d/B:(D—l/d)dx,

where we used the same integration by parts identity (A.1). Finally, incorporating the expression for D’(t), we have
d
&)= e </2E :E+BE:Sp :de> + (2d¢ /Yo —4ddR/<)/(D —1I/d): (D—1/d) dx
0

+8K§/D:(D-D—SB:D)dx—ZKdT/|VD|2dx

— dT/ / \IIB|Vlog\D3|2dpdx+dR/ / \Ilglvploglll3|2dpdx ,
IpI=1 [pl=1

which is the desired expression. (Note that x = —d{B/2Wpa > 0 is chosen so that the contribution from [E:(D-D —Sg:
D) dx vanishes.)

Appendix C. Chebyshev coefficients 1 — S

0 1 2 3 4 5 6 7 8 9

0 0.662433067815903 0.305096697570660 0.022661293663811 0.006929073516477 0.002508696495226 0.000651686393991 0.000003149067870 -0.000146501968392  -0.000116594835353 -0.000052333302979
10 -0.000005876267519  0.000014375002152 0.000016332739170 0.000010270338585 0.000003367708799 -0.000001122818696  -0.000002764227720  -0.000002463455278  -0.000001369444354  -0.000000311420682

20 0.000000333432499 0.000000536642052 0.000000445442150 0.0000002386733 0.0 66023 -0. 86 -0.000000107035811  -0.000000090051728  -0.000000050610698  -0.000000012725701
30  0.000000011666027 0.000000020862528 0.000000019015530 0.000000011929798 0.000000004355589 -0.000000001058379  -0. 16565 0. 3863898  -0.000000002815955 -0.000000001409792
40 -0 45577 0. 39389 0. 175 0. 4818 0. 5800 0. 169018 0. 1082 -0. 1943 -0. -0. '9964
50 -0 121 -0. 5) -0. 0. 14532 0. A 0. 0. 0. 0. 0 0. 1588
60 O -0 6 -0, s -0, 2 -0, -0 9 -0, 1 67 -0, 0. 116
70 0. 1 0. 0. 1 0. 18 0. 0. 1 -0. 19 -0 -0. 8 -0

80 -0, 3 -0 3 -0 0. 1 0 0. 0. 0 4 0. 0.

90 o 1 -0 -0. -0. 1 -0 1 -0 1 -0 1 -0 0. -0.

Appendix D. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcp.2021.110937.
References

[1] S. Fraden, G. Maret, D. Caspar, R.B. Meyer, Isotropic-nematic phase transition and angular correlations in isotropic suspensions of tobacco mosaic virus,
Phys. Rev. Lett. 63 (1989) 2068.

[2] J. Feng, L.G. Leal, Pressure-driven channel flows of a model liquid-crystalline polymer, Phys. Fluids 11 (1999) 2821-2835.

[3] G. Sgalari, G. Leal, J. Feng, The shear flow behavior of lcps based on a generalized doi model with distortional elasticity, ]. Non-Newton. Fluid Mech. 102
(2002) 361-382, A Collection of Papers Dedicated to Professor Andreas Acrivos on the Occasion of his Retirement from the Benjamin Levich Institute
for Physiochemical Hydrodynamics and the City College of the CUNY.

[4] C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett.
93 (2004) 098103.

[5] A. Sokolov, LS. Aranson, J.0. Kessler, R.E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett. 98
(2007) 158102.

20


https://doi.org/10.1016/j.jcp.2021.110937
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib4FF93E37C3584A294126F34BCA46282Es1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib4FF93E37C3584A294126F34BCA46282Es1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibA2288FA137BD3E80B8C417BBC45E4B2Ds1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib0BF275E88EC526924EDE5B361A5AFF37s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib0BF275E88EC526924EDE5B361A5AFF37s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib0BF275E88EC526924EDE5B361A5AFF37s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibAD45798E7D07681FD1FC0D6098C7F8B8s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibAD45798E7D07681FD1FC0D6098C7F8B8s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib95E4302A8CD692A0468432B97955A7D9s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib95E4302A8CD692A0468432B97955A7D9s1

S. Weady, M. Shelley and D.B. Stein Journal of Computational Physics 457 (2022) 110937

[6] W. Wang, W. Duan, S. Ahmed, A. Sen, T.E. Mallouk, From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors,
Acc. Chem. Res. 48 (2015) 1938-1946.
[7] M.S. Davies Wykes, ]. Palacci, T. Adachi, L. Ristroph, X. Zhong, M.D. Ward, ]. Zhang, M.J. Shelley, Dynamic self-assembly of microscale rotors and
swimmers, Soft Matter 12 (2016) 4584-4589.
[8] M.L. Gardel, J.H. Shin, F.C. MacKintosh, L. Mahadevan, P. Matsudaira, D.A. Weitz, Elastic behavior of cross-linked and bundled actin networks, Science
304 (2004) 1301-1305.
[9] G.H. Koenderink, Z. Dogic, F. Nakamura, P.M. Bendix, F.C. MacKintosh, J.H. Hartwig, T.P. Stossel, D.A. Weitz, An active biopolymer network controlled by
molecular motors, Proc. Natl. Acad. Sci. 106 (2009) 15192-15197.
[10] S. Kohler, V. Schaller, A.R. Bausch, Structure formation in active networks, Nat. Mater. 10 (2011) 462-468.
[11] D. Saintillan, MJ. Shelley, Active suspensions and their nonlinear models, C. R. Phys. 14 (2013).
[12] S. Thampi, J. Yeomans, Active turbulence in active nematics, Eur. Phys. J. Spec. Top. 225 (2016).
[13] A. Doostmohammadji, J. Ignés-Mullol, ].M. Yeomans, F. Sagués, Active nematics, Nat. Commun. 9 (2018).
[14] G. Duclos, R. Adkins, D. Banerjee, M.S.E. Peterson, M. Varghese, 1. Kolvin, A. Baskaran, R.A. Pelcovits, T.R. Powers, A. Baskaran, F. Toschi, M.F. Hagan, S.].
Streichan, V. Vitelli, D.A. Beller, Z. Dogic, Topological structure and dynamics of three-dimensional active nematics, Science 367 (2020) 1120-1124.
[15] R. Simha, S. Ramaswamy, Statistical hydrodynamics of ordered suspensions of self-propelled particles: waves, giant number fluctuations and insta-
bilities, Physica A: Statistical Mechanics and its Applications 306 (2002) 262-269, Invited Papers from the 21th IUPAP International Conference on
Statistical Physics.
[16] J.P. Hernandez-Ortiz, C.G. Stoltz, M.D. Graham, Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett. 95
(2005) 204501.
[17] D. Saintillan, MJ. Shelley, Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett. 99 (2007) 058102.
[18] D. Saintillan, M.J. Shelley, Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids 20 (2008) 123304.
[19] A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions, Proc. Natl. Acad. Sci. 106 (2009) 15567-15572.
[20] B. Ezhilan, M.J. Shelley, D. Saintillan, Instabilities and nonlinear dynamics of concentrated active suspensions, Phys. Fluids 25 (2013) 070607.
[21] J. Feng, C.V. Chaubal, L.G. Leal, Closure approximations for the doi theory: which to use in simulating complex flows of liquid-crystalline polymers? J.
Rheol. 42 (1998) 1095-1119.
[22] H.C. Ottinger, On the stupendous beauty of closure, ]. Rheol. 53 (2009) 1285-1304.
[23] C.D. Levermore, Entropy-based moment closures for kinetic equations, Transp. Theory Stat. Phys. 26 (1997) 591-606.
[24] P.A. Durbin, Some recent developments in turbulence closure modeling, Annu. Rev. Fluid Mech. 50 (2018) 77-103.
[25] EG. Woodhouse, R.E. Goldstein, Spontaneous circulation of confined active suspensions, Phys. Rev. Lett. 109 (2012) 168105.
[26] T. Gao, Z. Li, Self-driven droplet powered by active nematics, Phys. Rev. Lett. 119 (2017) 108002.
[27] S. Chen, P. Gao, T. Gao, Dynamics and structure of an apolar active suspension in an annulus, J. Fluid Mech. 835 (2018) 393-405.
[28] M. Theillard, D. Saintillan, Computational mean-field modeling of confined active fluids, J. Comput. Phys. 397 (2019) 108841.
[29] J. Han, Y. Luo, W. Wang, P. Zhang, Z. Zhang, From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals, Arch.
Ration. Mech. Anal. 215 (2015) 741-809.
[30] S. Li, W. Wang, P. Zhang, Local well-posedness and small deborah limit of a molecule-based g-tensor system, Discrete Contin. Dyn. Syst., Ser. B 20
(2015) 2611.
[31] C.V. Chaubal, L.G. Leal, A closure approximation for liquid-crystalline polymer models based on parametric density estimation, J. Rheol. 42 (1998)
177-201.
[32] C. Bingham, An antipodally symmetric distribution on the sphere, Ann. Stat. 2 (1974) 1201-1225.
[33] T. Gao, M.D. Betterton, A.-S. Jhang, M.J. Shelley, Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid, Phys. Rev.
Fluids 2 (2017).
[34] G.B. Jeffery, L.N.G. Filon, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character
102 (1922) 161-179.
[35] W. Maier, A. Saupe, Eine einfache molekulare Theorie des nematischen kristallinfliissigen Zustandes, Z. Naturforsch. Teil A 13 (1958) 564-566.
[36] M. doi, S. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, UK, 1986.
[37] H. Yu, G. Ji, P. Zhang, A nonhomogeneous kinetic model of liquid crystal polymers and its thermodynamic closure approximation, Commun. Comput.
Phys. 7 (2010) 383-402.
[38] Z. Battles, L.N. Trefethen, An extension of matlab to continuous functions and operators, SIAM ]. Sci. Comput. 25 (2004) 1743-1770.
[39] R. Broucke, Algorithm: ten subroutines for the manipulation of Chebyshev series, Commun. ACM 16 (1973) 254-256.
[40] A. Townsend, L.N. Trefethen, An extension of chebfun to two dimensions, SIAM J. Sci. Comput. 35 (2013) C495-C518.
[41] ]J. Kopp, Efficient numerical diagonalization of Hermitian 3 x 3 matrices, Int. J. Mod. Phys. C 19 (2008) 523-548.
[42] Y. Luo, J. Xu, P. Zhang, A fast algorithm for moments of the Bingham distribution, J. Sci. Comput. 75 (2018) 1337-1350.
[43] L. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Defect annihilation and proliferation in active nematics, Phys. Rev. Lett. 110 (2013) 228101.
[44] S.P. Thampi, R. Golestanian, J.M. Yeomans, Vorticity, defects and correlations in active turbulence, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 372
(2014) 20130366.
[45] T. Gao, R. Blackwell, M.A. Glaser, M.D. Betterton, M. Shelley, Multiscale polar theory of microtubule and motor-protein assemblies, Phys. Rev. Lett. 114
(2015) 048101.
[46] R. Alert, ]. Joanny, Universal scaling of active nematic turbulence, Nat. Phys. 16 (2020) 682-688.
[47] LN. Carenza, L. Biferale, G. Gonnella, Cascade or not cascade? Energy transfer and elastic effects in active nematics, Europhys. Lett. 132 (2020) 44003.
[48] G.-H. Cottet, P.D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, UK, 2000.
[49] S. Jiang, H. Yu, Efficient spectral methods for quasi-equilibrium closure approximations of symmetric problems on unit circle and sphere, J. Sci. Comput.
89 (2021).

21


http://refhub.elsevier.com/S0021-9991(21)00832-9/bib872E5E067762F570006F320A09513920s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib872E5E067762F570006F320A09513920s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibFBCF42D4169330C2A714929C25953A92s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibFBCF42D4169330C2A714929C25953A92s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9F2D889732CEC1D04183E35CD04EB8D5s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9F2D889732CEC1D04183E35CD04EB8D5s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib7F315961845A2EB4E28196FCEE808082s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib7F315961845A2EB4E28196FCEE808082s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib35108ED6D4686B67A2A0ADADF2B24B16s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib66AFD23DF71606C2BC9591B400C8D36Fs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib1526CC9632C3275DAD25D33EE8F20B36s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib73FBC12630238785E340F9B6B67D174Cs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib4502ED08527A4CC7417367F45D60196Es1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib4502ED08527A4CC7417367F45D60196Es1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib8147FA0B2C187F2E0E4BD7DD42C65A58s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib8147FA0B2C187F2E0E4BD7DD42C65A58s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib8147FA0B2C187F2E0E4BD7DD42C65A58s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib2D259F7EBB0EC28C4ADB87630074C966s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib2D259F7EBB0EC28C4ADB87630074C966s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib15FF49B9410F59814AF1FA7A69B4CA1Bs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib93DE052B5ADFE6D0871FC197EC99C6CFs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib7DE77C5324424195850FB9BD16D6B8E8s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibC39514AF9CA198BBE7CE90ED3A8B72F8s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibDFAB33837D8DEA4B9D4E60DE5F3F1FF3s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibDFAB33837D8DEA4B9D4E60DE5F3F1FF3s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib1B1E69CA7A77EC02099AF92476FF8764s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib49095AB2E67EEF98D5031A20ACCA5291s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib2C2F7BE6BBEEF6984C81C1F0FE2B9089s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib50B7265F27444777304FB0ED8F60EC0Cs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib7F5305E8B1B15326D7A399E3B6596FDBs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibF381DF9AF9001361FAB5625AFD0408F3s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibF17719A1A6F6493187B43796012E7FD0s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib6EB854BE7D94CFB9E83F73D775CCFB7Cs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib6EB854BE7D94CFB9E83F73D775CCFB7Cs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib06D5CAB2BE369D339119E2D621A40CCAs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib06D5CAB2BE369D339119E2D621A40CCAs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib897C9077BF0B68C735A2D8E0998433F4s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib897C9077BF0B68C735A2D8E0998433F4s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibC33A0C97FDA779F059CAAB96E3828510s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibEA68B0774435C6E962E5A4C812C69363s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibEA68B0774435C6E962E5A4C812C69363s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9C579CA9855BAC8DE624AFFBB47FA649s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9C579CA9855BAC8DE624AFFBB47FA649s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib53D72A8FD872ACE3378E24FE780AEC2Cs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibB45CD6C18D1C5FA63CA2D06D61D758DAs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibB0042238ADF71DC57EFE3010666AF57Bs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibB0042238ADF71DC57EFE3010666AF57Bs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib32BA1BF71488FBEF69077D9B036489F8s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib81246C2485084D04EE2BB055E599CE87s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibDD9C8DBAE3294DB633461CC16DCE3304s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibBB4D1DF696735BD8FE3FF2C641E63971s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibF35B5D65808FBA112462313CCC4B01AEs1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib2F950F24F4CA1C1E6502426D41CA3830s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib1CD2D088885A94C6C3692DE3A8EAA031s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib1CD2D088885A94C6C3692DE3A8EAA031s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibC7A40BEDEFDB11DE90646B845F5A0D18s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibC7A40BEDEFDB11DE90646B845F5A0D18s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib88992BE9B299BE0CA2C1778FB4AD5C25s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bibDCC7D2AA70165CF73184DF6CBD63DAB0s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib0182BDE7116386C755A13DD25269E116s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9747D0DD1908515B09BFB1E5939D84C6s1
http://refhub.elsevier.com/S0021-9991(21)00832-9/bib9747D0DD1908515B09BFB1E5939D84C6s1

	A fast Chebyshev method for the Bingham closure with application to active nematic suspensions
	1 Introduction
	2 Model formulation
	2.1 Non-dimensionalization
	2.2 Moment equations
	2.3 The Bingham closure

	3 Numerical method
	3.1 Diagonalization
	3.2 Two-dimensional Bingham map
	3.2.1 Asymptotics near the aligned state μ1→1
	3.2.2 Interpolation

	3.3 Three-dimensional Bingham map
	3.3.1 Quadrature
	3.3.2 Asymptotics at the planar aligned state μ1+μ2=1
	3.3.3 Interpolation

	3.4 Eigendecomposition
	3.4.1 Two dimensions
	3.4.2 Three dimensions

	3.5 Rotating to the physical frame
	3.6 Summary of the closure

	4 Numerical tests
	4.1 Spatial convergence
	4.2 Computational cost

	5 Numerical simulations
	5.1 Strongly aligned dynamics
	5.2 Turbulent dynamics

	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Calculation of the Bingham parameters
	Appendix B Entropy production
	Appendix C Chebyshev coefficients μ1→S̃1111
	Appendix D Supplementary material
	References


