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Anomalous Convective Flows Carve Pinnacles and Scallops in Melting Ice

Scott Weady ! Joshua Tong % Alexandra Zidovska®,” and Leif Ristroph
1Applied Math Lab, Courant Institute, New York University, New York, New York 10012, USA
2Department of Physics, New York University, New York, New York 10003, USA

® (Received 13 August 2021; revised 30 November 2021; accepted 23 December 2021; published 28 January 2022)

We report on the shape dynamics of ice suspended in cold fresh water and subject to the natural

convective flows generated during melting. Experiments reveal shape motifs for increasing far-field

temperature: Sharp pinnacles directed downward at low temperatures, scalloped waves for intermediate

temperatures between 5°C and 7 °C, and upward pointing pinnacles at higher temperatures. Phase-field

simulations reproduce these morphologies, which are closely linked to the anomalous density-temperature
profile of liquid water. Boundary layer flows yield pinnacles that sharpen with accelerating growth of tip
curvature while scallops emerge from a Kelvin-Helmholtz-like instability caused by counterflowing

currents that roll up to form vortex arrays. By linking the molecular-scale effects underlying water’s density

anomaly to the macroscale flows that imprint the surface, these results show that the morphology of melted

ice is a sensitive indicator of ambient temperature.
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The shape of a landform or landscape holds clues to its
history and the environmental conditions under which it
developed. However, interpreting geological morphologies
is challenging due to the complex multiscale and interactive
processes involved, such as erosion and deposition, dis-
solution and solidification, and melting and freezing [1-6].
The latter yield examples across scales, including rippled
icicles, pinnacle shaped icebergs, textured ice caves, and
larger icescapes [7-12]. Understanding how to interpret
such forms and the physical mechanisms behind them is all
the more important due to the increasing melt rate of the
Earth’s ice reserves [13,14].

Melting is an example of a Stefan problem, which
classically seeks to determine interface motion induced
by a phase transition [15]. Here the solid-liquid interface
recedes due to temperature gradients normal to the surface,
and the energy released during phase change in turn
modifies the temperature field in the fluid. In many
situations, these temperature changes cause density varia-
tions that drive gravitational convective flows, which also
feed back on the interface motion [16,17]. This convective
Stefan problem has recently been studied in the related
context of solids dissolving into liquids, where the effects
of flows due to solutal convection can be seen in fine-scale
surface features and overall forms [18-20].

Convective flows are well studied in heat transfer
problems involving fixed boundaries [21,22], but the
effects of shape-flow coupling are less understood. The
problem is uniquely complex for melting ice due to the
unusual effect of temperature on liquid water’s density,
which displays a maximum at about 4 °C. This so-called
density anomaly, while ultimately a molecular-scale effect
that leads to relative density differences on the order of
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0.01% [23], nonetheless strongly affects convective flows,
heat transfer characteristics, and hydrodynamic instabilities
across a wide range of scales [24-32].

Here we show that the density anomaly and consequent
flows are imprinted onto the shape of melting ice. We
consider the highly simplified context of ice submerged
within fresh water while subject to the convective flows
generated during melting. Reporting first on experiments,

FIG. 1. Representative morphologies formed by melting ice in
laboratory experiments. (a) For sufficiently cold ambient temper-
atures T, < 5°C, the ice tapers from below to form an inverted
pinnacle. (b) For intermediate temperatures 5°C <7, <7°C,
scalloped patterns form on the surface. (c) Upright pinnacles form
for warmer temperatures T, 2 7°C. Photographs capture the
late-stage ice removed from water and under diffuse lighting.
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FIG. 2. Flow velocity (arrows) and temperature (color) fields from phase-field simulations for (a) T, = 4 °C, (b) 5.6 °C, and (c) 8 °C at
early (left) and late (right) times. Curves show the flow speed (yellow) and density (pink) profiles at early times. Melting in cold water is
associated with upward flow and downwards tapering of the ice as in (a), whereas warmer temperatures involve downwards flow and
tapering at the top as in (c). Intermediate temperatures yield shear flows involving rising fluid near the surface and sinking outer flows,

driving an instability that later patterns the surface.

we manufacture clear ice using a directional freezing
method [33,34], and immerse it in water of fixed far-field
temperature T, € [2, 10] °C. We focus on cylindrical initial
forms that are sized, supported, and oriented vertically to
allow for observation of the long-time shape dynamics. The
ice is rigidly supported underwater on a plastic base that is
located either at the top or bottom of the ice depending on
the ambient water temperature. Using a large tank in a cold
room facility, the far-field water temperature is controlled
and systematically varied to assess its impact on shape
development, as captured by time-lapse photography. Prior
to melting in water, nearly uniform internal temperature of
0°C is achieved by leaving the ice in room temperature air
for at least 30 min, which is long compared to the timescale
of thermal diffusion. Experimental details are available as
Supplemental Material [35].

We first present some motivating observations from
experiments, which reveal three distinct morphologies that
arise for specific intervals of the far-field temperature.
Representative photographs are shown in Fig. 1. For
sufficiently low temperatures 7, < 5 °C, the ice becomes
tapered at its lower end to form an inverted pinnacle with its
apex pointing downward, as shown in panel (a). For such
conditions, the base is at the top of the ice, which avoids
interference with the upward boundary layer flows to be
discussed below. At higher temperatures 7, = 7°C, a
similarly shaped but upright pinnacle forms, shown in
(c), where the base is at the bottom of the ice. For
intermediate temperatures 5°C ST, <7°C, intricate
wavy and scalloped features pattern the ice surface, as
shown in (b).

The sensitive dependence of shape on temperature
evokes water’s anomalous density-temperature profile,
whose peak at T, ~4°C suggests distinct scenarios cat-
egorized by the far-field temperature 7. For sufficiently
warm temperatures, the cold liquid near the surface is
uniformly denser than that in the far-field and is expected to

sink. For cold temperatures, however, the density anomaly
upends intuition: Cold liquid near the surface is less dense
and will rise. Intermediate temperatures are more subtle,
since the coldest fluid near the surface is less dense than
that in the far field, while fluid slightly further away must
be at or near 7', and is thus more dense. The resulting flows
are not easily inferred.

To more clearly interpret the observed morphologies, we
formulate and implement simulations of the shape dynam-
ics coupled to the natural convective flows. Here we use the
phase-field model [36,37], which has proven successful for
moving boundary problems with natural convection [38-
40]. In this model, material is implicitly represented by a
continuous phase parameter ¢(x,?), which takes values
¢ = 0 in the solid phase and ¢ = 1 in the liquid, with the
interface defined as the level set ¢ = 1/2. This phase
parameter is then used to describe energy contributions
from phase change and to approximate the no-slip boun-
dary condition on the ice, while admitting numerical
discretization on a Cartesian grid. Introducing the quadratic
equation of state p(T) = p,[1 — (T —T,)?] as a basic
model for the density anomaly [24,26], the fluid motion is
described by the Navier-Stokes equation in the Boussinesq

approximation
Du 24 )
i Pr(—Vp + Au + Ra6’%) — (1 — ¢p)*u, (1)

V.u=0, (2)

where u(x, 7) is the velocity, p(x, ) is the pressure, and
0(x,t) = [T(x,t) = T,]/(Te —Ty) is the dimensionless
temperature. Parameters include the Rayleigh number
Ra = gf(T, — Ty)*H?/vky, which compares buoyant
and viscous forces, and the Prandtl number Pr = v/kp,
which assesses viscous and thermal diffusivities. Here ¢ is
acceleration due to gravity, H is the initial height of the ice,
v is the fluid viscosity, and k7 is the thermal diffusivity. The
last term in (1) is a Brinkman penalization force that models
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(a) 4°C exp.

(b) 4°C sim.

(c) 8°C exp.

(d) 8°C sim.
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Dynamics of pinnacle formation. Panels (a)-(d) show interfaces for T, = 4°C and T, = 8 °C extracted over time (dark to

light blue) in experiments and simulations. The corresponding tip curvatures are plotted in (e), which exhibit rapid sharpening to
microscales. At early times, all data follow the scaling law i (¢) = x(0)(1 — #/t,)~*/3, as shown in (f) by the linear behavior 1 — ¢/, of

the transformed quantity [R(¢/1,)]™>/* = [ko(t/t,)/x0(0)] 75/

the ice as a porous medium, in which the velocity vanishes
for large resistivity 7> 1 [41].

Following thermodynamic derivations [38], the temper-
ature and phase fields satisfy the evolution equations

Do 1 df 8¢

op m(e—eo)ﬁ_ﬂ@
o "Mt T e ag W

The last term in Eq. (3) captures energy contributions from
phase change, the magnitude of which is controlled by the
Stefan number St = c,(T —Ty)/L, with ¢, the heat
capacity and £ the latent heat of fusion. In Eq. (4), m is
a regularization parameter, 6 is an effective interface
thickness, 8y = (To — T.)/(T — Ty) is the dimensionless
melting temperature, and the functions f(¢) = ¢*(10 —
15¢ +5¢*) and g(¢) = ¢*(1 — ¢)* are potentials that
ensure no phase change occurs away from the interface.
In the limit 6 — 0 and 5 — o0, the system (1)—(4) recovers
the Navier-Stokes equations with no-slip boundary con-
ditions on the ice and the Stefan condition for the interface
velocity V,, = Stdf/0n, where the temperature is assumed
to be Ty throughout the solid [38].

For comparison with the cylindrical geometries in
experiments, we solve the system of equations (1)-(4)
on an axisymmetric domain sufficiently wide such that the
far-field temperature remains constant to within 0.1°C.
Estimated from the experimental parameters, we take Pr =
12 and Ra/T2 = 2.5 x 10°(°C)~2. The selected Stefan

number St/T, = 0.05(°C)~! is larger than the experimen-
tal value St/T, = 0.012(°C)~!, which reduces simulation
run time while having negligible effect on the shape
dynamics. Upon initialization, the temperature in the solid
phase is set to Ty while the temperature in the liquid is 7.
See the Supplemental Material for implementation details
[35], including spatial and temporal discretization [42].

Figure 2 shows the interfaces at early and late times for
three representative values of 7. Also shown are the flow
velocity and temperature fields as well as curves represent-
ing the density and velocity profiles along a horizontal
transect at early times, the latter substantiating our infer-
ences based on the density anomaly. For the case T, =
4°C of (a), an upward boundary layer flow persists for all
times. This flow is fed by warmer outer fluid that is
continuously entrained from the sides and bottom, offering
a mechanism for the enhanced melt rate that tapers the ice
from below. For T, = 8 °C, shown in (c), the situation is
similar but inverted: A downward boundary layer flow
tapers the top of the ice to form an upright pinnacle. For the
intermediate case T, = 5.6°C of (b), early times are
marked by a thin region of upward flow near the surface
surrounded by a broader region of downward flow. This
shear flow eventually destabilizes and forms recirculating
vortices that entrain the warmer outer fluid and carve
scallop-shaped indentations. Across all cases, stagnation
points of the flow are associated with sharp features of the
surface, including the apexes of the pinnacles and cusped
crests of the scalloped waves.
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(a) 5.6°C exp.

(b) 5.6°C sim.
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FIG. 4. Dynamics of scallop formation. Panels (a) and (b) show extracted interfaces over time for T, = 5.6 °C in experiment and
simulation, respectively. Panel (c) plots the cusp-to-cusp wavelength of the scallops versus their vertical location or height, confirming
the scaling 1 ~ h=3/* predicted by an analysis of the viscous Kelvin-Helmholtz instability. Additional simulations (filled squares) for a
taller body and thus higher Ra confirm the trend over wider ranges of the variables.

Further analysis of the experiments and simulations
provides insight into the mathematical structure of the
shape dynamics. Considering first the pinnacles observed
for sufficiently low or high T, we show in Figs. 3(a)-3(d)
comparisons of the shape progression as measured in
experiments and computed in simulations for T, = 4°C
and 8 °C. The strong agreement across all times serves as a
cross-validation of the simulations and experiments and
demonstrates the robustness of the pinnacle form. These
pinnacles are reminiscent of those recently observed for
bodies dissolving in natural convective flows [6,17-19], for
which a boundary layer theory analysis predicts that the
pinnacle apex sharpens via a power law growth of curva-
ture: ko (1) = ko(0)(1 — t/£,)™*/3 [19,22]. Here x,(0) is the
initial tip curvature and ¢, is the blow-up time for the
predicted singular dynamics, which were shown to accu-
rately describe the initial stages of sharpening [19].

To test this law, we extract the interfaces over time from
experiments and simulations and evaluate the apex curva-
ture by fitting and differentiating a fourth-order polynomial
for the tip height as a function of radius. Strikingly, the tip
curvature k,(¢), shown in Fig. 3(e), exhibits steep and
seemingly unbounded growth. The radius of curvature
reaches values smaller than 100 ym, as fine as a human
hair and approaching the resolutions of the experiments and
simulations. In panel 3(f) we plot the rescaled quantity
[Ro(t/t)] 7% = [ko(2/1,)/K0(0)]7>/4, where ¢, is treated as
a fitting parameter based on the predicted power law.
Remarkably, all data collapse to the predicted linear form
1 — t/t, (dashed line) for early times, indicating a mecha-
nism shared with dissolution for the formation of ultrasharp
structures. The curvature continues to grow at later times

but falls off the singular pace, an effect also observed for
dissolution pinnacles and which is the subject of recent
studies [19,43].

Experiments and simulations are also in agreement for
intermediate temperatures, yielding scallops of comparable
scales as seen in Figs. 4(a) and 4(b) for T, = 5.6 °C. Some
disparities are expected as the simulations are axisymmetric
while the patterns are three dimensional in experiments,
with the images of Fig. 4(a) representing cross-sectional
views. Nonetheless, the wavelike structures common to
both are indicative of a hydrodynamic instability. Shear
flows of the form observed in Fig. 2(b) are known to
undergo the Kelvin-Helmholtz instability, the classic analy-
sis of which involves counterflowing layers of inviscid fluid
[44,45]. Such flows are unstable, with the smallest wave-
lengths growing at the fastest rates. Viscosity, however,
suppresses high frequency modes, yielding a most unstable
wavelength 1 ~ Re™!/2, where Re is the Reynolds number
[46,47]. While Re is somewhat poorly defined since the
flows accelerate along the surface, scaling arguments
predict Re ~Ra'/? for Ra> 1 [48], with experimental
evidence suggesting an exponent slightly below 1/2
[49,50]. Observing that Ra ~ /®, where h is the vertical
distance from the bottom of the ice, we predict the wave-
length decreases up the surface of the ice as A ~ h™3/4.

This scaling law can be used to test the hypothesis that
the maximally unstable wavelength of the shear flow is
imprinted on the ice in the form of scalloped waves. We
determine the locations of the wave crests at early times and
identify the wavelength A with differences between
successive crests and the height 4 with their midpoint.
Figure 4(c) shows results from experiments (open circles)
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and simulations (open squares) at 7', = 5.6 °C. Here, £ is
normalized by the total height and 4 by its value at 4 = 1,
and the location of & = 0 is treated as a fitting parameter
due to the ambiguous location of the lowest scallop. The
uppermost scallop, whose longer wavelength seems to arise
from the top boundary conditions, is excluded from this
analysis. Over the few wavelengths present, the data indeed
follow the —3/4 scaling law. Additional simulations of
taller ice (filled squares), details of which are given in the
Supplemental Material [35], yield more wavelengths and
correspondingly more convincing agreement.

These findings show that the shape of ice is a sensitive
indicator of the ambient temperature at which it melted.
Sharply pointed pinnacles directed downwards for 7T <
5°C and upwards for T, 2 7°C are formed by persistent
and unidirectional boundary layer flows that rise in the
former case and sink in the latter. This latter case parallels
the upright pinnacles carved by downward flows
observed during dissolution [6,17-20], which is expected
by the analogous mathematical descriptions of thermal
and solutal convection. It remains for future studies to
determine if the shape dynamics are quantitatively differ-
ent for melting and dissolving due to the differences in
their microscale physics. The scalloped waves observed
here for 5°C < T, <7°C have their origin in bidirec-
tional flows due to the buoyant rise of cold water near the
surface and the sinking of warmer water further outward
in the boundary layer. The resulting shear flows undergo
a Kelvin-Helmholtz instability and roll up into vortices
that carve pits in the surface.

Pinnacles are commonly observed on icebergs and have
been qualitatively attributed to buoyancy-driven flows
[11,51,52]. However, they have not previously been repro-
duced in laboratory experiments, nor validated through
fluid dynamical models or simulations. Scalloped patterns
on icebergs, ice shelves, and bore holes are generally
attributed to instabilities due to externally driven flows
[7,53,54]. In contrast, the mechanism revealed here is
rooted in the intrinsic flows generated by water’s anoma-
lous density characteristics, and scallops formed in this way
can be distinguished by their increasing wavelength with
depth. While our results pertain strictly to fresh water, the
identified shape motifs may persist in saltwater solutions up
to the critical concentration above which the anomaly is lost
and density decreases monotonically with temperature [25].
Future studies that vary both far-field temperature and
salinity should assess how the long-time shape dynamics is
impacted by the associated double-diffusive proc-
esses [25,55].
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