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Abstract. We study the Kuramoto-Sivashinsky equation (KSE) in scalar form on the two-dimensional torus
with and without advection by an incompressible vector field. We prove local existence of mild solutions
for arbitrary data in L2. We then study the issue of global existence. We prove global existence for the
KSE in the presence of advection for arbitrary data, provided the advecting velocity field v satisfies certain
conditions that ensure the dissipation time of the associated hyperdi�usion-advection equation is su�ciently
small. In the absence of advection, global existence can be shown only if the linearized operator does not
admit any growing mode and for su�ciently small initial data.

1. Introduction
We consider the Kuramoto-Sivashinsky equation (KSE for short) with and without advection on a two-

dimensional torus T2 = [0, L1] ◊ [0, L2] with periodic boundary conditions. The KSE arises in combustion
and is a model for di�usive instabilities of flame fronts and, more generally, for phenomena with large-scale
instabilities. (We refer to [27] for a more in-depth discussion and historical perspective on its derivation.)

Two forms of the equation go under the name KSE, a scalar form for a potential function „ and a vector,
di�erentiated form for its gradient u = Ò„, defined in any space dimension d. In the scalar form, the KSE is
the following hyperviscous semilinear equation:

ˆt„ + 1
2 |Ò„|2 = ≠�2„ ≠ �„.(1.1)

In the di�erentiated form, the KSE becomes:

ˆtu + 1
2Ò|u|2 = ≠�2u ≠ �u,(1.2)

and, owing to the fact u is curl free, the non-linearity can be written in advection form as u · Òu, as in
Burger’s equation. We will confine to the scalar form, since we will consider the addition of transport by a
given, incompressible flow:

ˆt„ + v · Ò„ + 1
2 |Ò„|2 = ≠�2„ ≠ �„,(1.3)

where v is a given, time-dependent, divergence-free vector field. The KSE with advection has been used to
model passive flame propagation in premixed-combustion for example [13].

In this work, we are concerned with the long-time existence of solutions to (1.1) and (implicitly) of (1.3).
A main di�culty in proving global existence is the lack of a maximum principle for the KSE, due to the
presence of the biharmonic operator. In dimension d = 1, it is possible to obtain an a priori estimate on the
L2 norm of u due to the special structure of the non-linearity in (1.2) , which can be written in divergence
form. The L2 control allows to prove global existence by a standard continuation argument [41]. The stability
of the zero solution has also been established [22], [36]. Di�erently than for the incompressible Navier-Stokes
or Euler equations, this is no longer the case in dimension d > 1. For d > 1, the issue of global existence
of solutions to the KSE is still open. We only consider the classical form of KSE, and not the modified or
generalized KSE, for which more results are known (see e.g. [17,35]).

Department of Mathematics, Penn State University, University Park, PA 16802, USA
E-mail addresses: yzf58@psu.edu, alm24@psu.edu.
2010 Mathematics Subject Classification. 35K25, 35K58, 76E06, 76F25.
Key words and phrases. Two dimension, Kuramoto-Sivashinsky, mixing, global existence, mild solutions, enhanced di�usion,

di�usion time.
1



2 GLOBAL EXISTENCE FOR THE ADVECTIVE KSE

There is an extensive literature concerning the KSE in dimension d = 1, concerning also analyticity of
solutions (see [9, 24] and references therein), and optimal bounds on the growth of the L2 norm as a function
of the period L [7, 19–21,37] (see also [40]). There are a few results for the two and multi-dimensional KSE.
Short time existence and analyticity is known to hold in the full space with data in certain Lp spaces for
(1.1) [6] (see also [28]). There are fewer results dealing with global existence. For d = 2, global existence
holds for thin domains [5,39] (for the best result to date in terms of size of the domain and conditions on the
data see [32]), and for the anisotropically reduced KSE [33]. In [36], the size of the attractor and the number
of determining modes were studied, assuming a global bound in a higher Sobolev norm that ensures global
existence. In [2], the second author and Ambrose studied the di�erentiated form (1.2) on T2 and proved
short-time existence and analyticity with a bound on the analyticity radius for data in L2 and in the Wiener
algebra. They established global existence of mild solutions for mean-free data u(0) su�ciently small in L2

and in the Wiener algebra, but only in the absence of growing modes, which happens when L1, L2 < 2fi.
Here, we extend the results in [2] in two ways. We prove existence of mild solutions for su�ciently small

data „(0) in L2 on an arbitrary interval of time [0, T ] (that is, u0 small in the homogeneous Sobolev space
Ḣ≠1) for the scalar form (1.1) of KSE in the absence of growing modes, which requires more refined semigroup
estimates than for (1.2), given the more singular nature of the non-linearity. The mean of the solution is not
preserved by the forward evolution as for (1.2), but it can be controlled.

Our main result for KSE is the following theorem.

Main Theorem 1. Let L1 , L2 < 2fi and let „0 œ L2(T2). Let „̄0 denote the mean of „0 over T2
. There

exists ” > 0 such that if Î„0 ≠ „̄0ÎL2 < ”, then for every 0 < T < Œ there exists a unique mild and weak

solution „ œ C([0, T ); L2(T2)) fl L2([0, T ]; H2(T2)) of (1.1) with initial data „0.

The proof is by Banach Contraction Mapping Theorem in suitable adapted space after projecting out
the mean. Data in negative Sobolev spaces could be considered, at least for short-time well-posedness (see
Remark 2.5).

We also consider the KSE with linear advection and prove that global existence can be achieved in the
presence of growing modes and for arbitrary data, if the advecting field v is dissipation enhancing with
su�ciently small dissipation time. An example of such a flow is an exponentially mixing flow with su�ciently
large amplitude. Informally, given a dissipative system, we define its dissipation time ·ú as the time it
takes the system to dissipate a fixed amount of its initial energy (for a precise definition, see Definition 2.10.
Starting with the seminal work of Constatin et Al. [10] (see also [12,16]), it has been recognized that fast
advection can have a regularizing e�ect. Such an e�ect has been used to prevent blow-up in a number of
physical models, such as aggregation models [25,26,29,30] and reactive flows [11]. There is also an important
connection with inviscid damping for incompressible fluids, which we do not discuss in detail (see [4, 18,23]
and references therein). We should mention that there are other known mechanisms for stabilization in
dissipative equations, such as fast rotation and dispersive e�ects (see the recent work [31] and references
therein). In [15], the first author, Feng, Iyer, and Thi�eault studied the e�ect of mixing on phase separation
in binary mixtures modeled by the Cahn-Hilliard equation, which has the same linear part as the KSE. There
they established enhanced dissipation for the advection-hyperdi�usion operator ≠�2 ≠ v · Ò, when v is a
strongly mixing incompressible flow. Our main result for the KSE with advection is the following theorem.

Main Theorem 2. Let „0 œ T2
and let v œ LŒ([0, Œ); L2(T2)). There exists Ÿ > 0, depending on L1, L2 and

Î„0ÎL2 such that, if the dissipation time ·ú
of the evolution system generated by �2+v·Ò satisfies ·ú < Ÿ, then

for every 0 < T < Œ there exists a unique mild and weak solution „ œ C([0, T ); L2(T2)) fl L2([0, T ]; H2(T2))
of (1.1) with initial data „0.

The result follows by a continuation principle in L2, showing that the L2 norm of the solution remains
bounded under the hypotheses of the theorem. Informally, the bound follows from a dichotomy: either the
dissipation is large and then dissipation alone can control the L2 norm )(Lemma 2.14), or the dissipation is
small and then the dissipation time ·ú must be small enough to control the L2 norm by means of enhanced
dissipation (Lemma 2.15).

We confine ourselves to the two-dimensional KSE to avoid being overly technical and to exemplify the
e�ects of advection and mixing, but we expect that similar results hold for the three-dimensional KSE as well.
One and two space dimensions are also the most physically justified setting as the KSE models interfacial
dynamics.
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Throughout the paper, we use standard notation to represent function spaces. In particular, Hs(T2), s œ R,
is the standard L2-based Sobolev space, and C([0, Œ)) is the space of continuous and bounded functions on
[0, Œ) with the sup norm. C denotes a generic constant that may change from line to line and depend on
L1, L2. If X is a function space on T2, X̊ will denote the subspace of all mean-free functions belonging to X.

We close the Introduction with an outline of the paper. In Section 2, we study the KSE with advection
in the presence of growing modes. We first prove short-time existence of mild solution for arbitrary data
in L2, and then show that such solution can be continued for all times, provided the advecting velocity
field v satisfies certain conditions that ensure the dissipation time of the associated hyperdi�usion-advection
equation is su�ciently small. In Section 3, we contrast this result with global existence for KSE without
advection, which we can establish only in the absence of growing modes for su�ciently small initial data.
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2. The KSE with advection
In this section we study the KSE in scalar form with advection (1.3) on the torus T2. We do not impose

any restriction on the periods, and consequently the linearized operator exhibits exponentially growing
modes. For local existence, we need to assume only that the advecting field v œ LŒ((0, Œ); L2(T2), and that
div v = 0 in distributional sense. To study global existence, we will assume that v is Lipschitz continuous in
space uniformly in time.

Given a function f œ Lp(T2), p > 1, we denote by ‚f(k) the Fourier coe�cient of f at frequency k œ Z2. For
notational ease as in [2], we let Âk := 2fi

!
k1
L1

, k2
L2

"
, where k = (k1, k2) œ Z2, so Âk œ ÂZ2 := 2fiL≠1

1 Z ◊ 2fiL≠1
2 Z.

We also set Ÿ := |Âk|.
With slight abuse of notation we denote the k-th Fourier coe�cient of f œ L2(T2) by ‚f(Âk). Then, we can

define equivalent norms in the Sobolev space Hs(T2) and in the homogeneous Sobolev space Ḣs(T2), s œ R,
by

ÎfÎ2
Hs =

ÿ

ÂkœÂZ2

(1 + |Âk|2)s | ‚f(Âk)|2 = Î(I ≠ �)s/2 fÎ2
L2 ,(2.1)

ÎfÎ2
Ḣs =

ÿ

ÂkœÂZ2,Âk ”=0

|Âk|2s | ‚f(Âk)|2 = Î(≠�)s/2 fÎ2
L2 ,(2.2)

where (≠�)s/2 agrees with the Fourier Multiplier with symbol Ÿs, Ÿ ”= 0 and I is the identity operator. We
observe that f œ Hs … f œ Ḣs, if f œ L2 and s > 0.

Given f œ Lp(T2), p > 1, we define the projection P onto the space of mean-zero functions over the torus,
that is:

‰P(f)(0) = 0,

and let „̄ denote the average of „ over the torus. This projection is orthogonal on L2, bounded on the Sobolev
space Hs(T2) for s > 0, and commutes with any Fourier multiplier. We then set

(2.3) L̊2(T2) = P(L2(T2)), H̊s(T2) = P(Hs(T2)), s > 0.

The norm in H̊s(T2) is equivalent to the seminorm in the homogeneous Sobolev spaces Ḣs(T2).
We begin by recalling the notion of mild and weak solutions, which we adapt to our setting, and introduce

some short-hand notation that will be used throughout the paper. We define L = �2 + �, an operator on L2

with domain H4(T2), and denote with e≠tL the semigroup generated by L on L2, which is explicitly given by:

e≠tLf = F≠1(e≠t(|Âk|4≠|Âk|2) ‚f) = F≠1(e≠t ‡(Âk) ‚f),

where F denotes the Fourier Transform on T2 and

‡(Âk) := |Âk|4 ≠ |Âk|2 = Ÿ4 ≠ Ÿ2.
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It was shown in [2] that e≠tL generates a C0 and analytic semigroup on L2(T2), and the following operator
norm bounds hold:

(2.4)
Î(≠�)s/2e≠tLfÎL2(T2) 6 C e

t
2 max

!
1, t≠ s

4
"

Îe≠ t
2 LfÎL2(T2)

6 C et max
!
1, t≠ s+1

4

"
ÎfÎL1(T2), s > 0, t > 0,

where C = C(L1, L2, s). We briefly recall the simple proof of this estimate below in Lemma 2.2 and 2.3 for
completeness, and as a starting point for more refined estimates done in Section 3.

We also formally set:

(2.5) B(„1, „2) := ≠1
2

ˆ
t

0
e≠(t≠·)LÒ„1(·) · Ò„2(·) d·,

and

(2.6) L(„) := ≠
ˆ

t

0
e≠(t≠·)L(v(·) · Ò„(·)) d·.

Lastly, „(t) means the function of x, „(t)(x) = „(t, x).

Definition 2.1. A function „ : C([0, T ]; L2(T2)), 0 < T 6 Œ, such that Ò„ is locally integrable, is called a
mild solution of (1.3) on [0, T ] with initial data „0 œ L2(T2), if it satisfies

„(t) = N („)(t) := e≠tL„0 ≠ 1
2

ˆ
t

0
e≠(t≠·)L|Ò„(·)|2 d· ≠

ˆ
t

0
e≠(t≠·)L(v · Ò„) d·

= e≠tL„0 + B(„, „)(t) + L(„)(t), 0 6 t 6 T,(2.7)

pointwise in time with values in L2, where the integral is intended in the Böchner sense (see e.g. [38]).
A function „ œ LŒ([0, T ]; L2(T2)) fl L2([0, T ]; H2(T2)) is called a weak solution of (1.3) on [0, T ) with initial
value „(0) = „0 œ L2(T2) if, for all Ï œ CŒ

c
([0, T ) ◊ T2),ˆ

T2
„0Ï(0) dx+

ˆ
T

0

ˆ
T2

„ ˆtÏ dx dt =
ˆ

T

0

ˆ
T2

�„ �Ï dx dt ≠
ˆ

T

0

ˆ
T2

Ò„ ÒÏ dx dt

+ 1
2

ˆ
T

0

ˆ
T2

|Ò„|2 Ï dx dt +
ˆ

T

0

ˆ
T2

Ï v · Ò„ dx dt ,(2.8)

and ˆt„ œ L2([0, T ]; H≠2(T2)).

Mild solutions are formally fixed points of the non-linear map N , and (2.7) is in the form of a Volterra
integral equation. A standard way to obtain mild solutions is therefore to apply the Banach Contraction
Mapping Theorem.

2.1. Short-time existence with data in L2. We establish the existence of solutions to (2.7) on a small
time interval [0, T ], 0 < T 6 1, for arbitrary initial data „0 œ L2(T2), by proving that the map N is a
contraction in a suitable adapted Banach space X̃T . Because of the presence of growing modes, one does
not obtain global existence for small data by this method. We need to introduce an adapted space, among
other reasons, to make sense of the nonlinearity, which requires Ò„ to be locally integrable (with or without
advection). By contrast, in the vector form (1.2) of the KSE, the non-linearity is a well-defined distribution
if u(t) is in L2(T2) pointwise in time, and one can prove local existence of solutions just using the space
C([0, T ]; L2) for the contraction argument (cf. [2]).

Given 0 < T < 1, we define the space

XT := {„ : T2 ◊ R+ æ R | sup
0<t6T

t
1
4 ÎÒ„ÎL2 < Œ} ,(2.9)

and let
(2.10) ÂXT := C([0, T ]; L2(T2)) fl XT ,

which is a Banach space equipped with the norm:

Î„Î ÂXT
= max( sup

06t6T

Î„ÎL2 , sup
0<t6T

t
1
4 ÎÒ„ÎL2).(2.11)
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We will verify that N is a contraction map on a ball in ÂXT , using the bounds on the semigroup e≠tL.
For completeness, we briefly recall the proof of the two needed estimates, which we will refine in Section
3 to obtain global existence for (1.1) in the absence of growing modes. We define the set S = {Âk œ Z̃2 |
|Âk|2 > 1

2 |Âk|4}, then S is a finite set. When Âk œ S , we have |Âk| 6 c0 and ‡(Âk) > ≠1/4. Otherwise, it holds
that ‡(Âk) > |Âk|4/2.

Lemma 2.2. For any 0 < t < 1, there exists a constant C = C(L1, L2) such that

Îe≠tLfÎL2 6 Ct≠ 1
4 ÎfÎL1 .(2.12)

Proof. By definition and Plancherel’s identity, we have

Îe≠tLfÎ2
L2 =

ÿ

ÂkœZ̃2

e≠2t ‡(Âk) |f̂(Âk)|2 6 ( sup
ÂkœZ̃2

| ‚f(Âk)|)2
ÿ

ÂkœZ̃2

e≠2t ‡(Âk)

6 C ÎfÎ2
L1(

ÿ

ÂkœS

e≠2t ‡(Âk) +
ÿ

ÂkœZ̃2\S

e≠2t ‡(Âk)) 6 C ÎfÎ2
L1(et/2 +

ˆ
R2

e≠t|x|4
dx)

6 C ÎfÎ2
L1(et/2 + t≠1/2) 6 C t≠1/2ÎfÎ2

L1 .

⇤
Lemma 2.3. For any s > 0 and 0 < t < 1, there exists a constant C = C(L1, L2) such that

Î(≠�)s/2e≠tLfÎL2 6 C t≠s/4 ÎfÎL2 .(2.13)

Proof. Again, by Plancherel’s identity:

Î(≠�)s/2e≠tLfÎ2
L2 =

ÿ

ÂkœS

|Âk|2se≠2t‡(Âk)| ‚f(Âk)|2 +
ÿ

ÂkœZ̃2\S

|Âk|2se≠2t‡(Âk)| ‚f(Âk)|2

6 C

Q

caet/2
ÿ

ÂkœS

| ‚f(Âk)|2 +
ÿ

ÂkœZ̃2\S

|Âk|2s e≠t|Âk|4
| ‚f(Âk)|2

R

db

6 C

S

Uet/2
ÿ

ÂkœS

|f̂(Âk)|2 +
1

sup
xœR+

e≠tx
4
x2s

2 ÿ

ÂkœZ̃2≠S

| ‚f(Âk)|2
T

V

6 C
1

et/2 + t≠s/2
2

ÎfÎ2
L2 6 C t≠s/2 ÎfÎ2

L2 .

⇤
We now state the main result of this section.

Theorem 2.4. Let „0 œ L2(T2) and let v œ LŒ(R+; L2(T2)). There exists 0 < T 6 1 depending on L1, L2,

sup
t>0 ÎvÎL2 , and on Î„0ÎL2 such that (1.3) admits a mild solution „ on [0, T ], which is unique in ÂXT .

Remark 2.5. We work with data in L2(T2) as this space well-adapted to exploit enhanced dissipation to
establish global existence. However, in Rd short-time existence holds in larger negative Sobolev spaces (see [6]).
In fact, one expect that the critical Sobolev space to be the homogeneous space Ḣd/2≠2(Rd). Although the
Kuramoto-Sivanshinsky equation is not scale invariant, since �2 and � scale di�erently, � is not relevant for
the short-time dynamics. If neglected, the resulting equation has the following invariance under rescaling.
Given ⁄ > 0, if „ is a solution of (1.1)on Rd, then „⁄ is also a solution, where

„⁄(x, t) := ⁄2 „(⁄4t, ⁄x).

We split the proof in several parts.

Lemma 2.6. Let 0 < T 6 1. The map N : ÂXT æ ÂXT and there exists C = C(L1, L2) > 0, such that

(2.14) ÎN („)Î ÂXT
6 C

1
Î„0ÎL2 + T 1/4 Î„Î2

ÂXT
+ T 1/2 ÎvÎLŒ(R+;L2) Î„Î ÂXT

2
.

Proof. The proof follows by establishing the following two claims:
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Claim 1. If „ œ ÂXT , then N („) œ C([0, T ]; L2(T2)).
Claim 2. If „ œ ÂXT , then sup0<t6T

t1/4ÎÒ(N („))ÎL2 < Œ.
First, we observe that the fact that e≠tL generates a strongly continuous semigroup and the norm estimates in
Lemma 2.2 and 2.3 imply that e≠tL„0 is in ÂXT for any fixed T > 0. Next, from the definition and properties
of the Böchner integral (see e.g. [38]), the integral on the right-hand side of (2.7) is well defined and belongs
to C([0, T ]; L2(T2)) provided the L2(T2) norm of the terms under the integral sign belongs to L1((0, T )). For
any 0 < t 6 T , we have, in fact, again from the semigroup estimates:

ÎN („)(t)ÎL2 6 C

3
Î„0ÎL2 +

ˆ
t

0
Îe≠(t≠·)L (|Ò„(·)|2 + v(·) · Ò„(·))ÎL2 d·

4

6 C

3
Î„0ÎL2 +

ˆ
t

0
(t ≠ ·)≠1/4Î|Ò„(·)|2 + v(·) · Ò„(·)ÎL1 d·

4

6 C

3
Î„0ÎL2 +

ˆ
t

0
(t ≠ ·)≠1/4·≠1/2(·1/4ÎÒ„(·)ÎL2)2 d·

+
ˆ

t

0
(t ≠ ·)≠1/4 ·≠1/4Îv(·)ÎL2(·1/4 ÎÒ„(·)ÎL2) d·

4

6 C

3
Î„0ÎL2 + t1/4

ˆ 1

0
(1 ≠ ·̄)≠1/4·̄≠1/2Î„Î2

ÂXT
d·̄

+t1/2
ˆ 1

0
(1 ≠ ·̄)≠1/4 ·̄≠1/4ÎvÎLŒ(R+;L2) Î„Î ÂXT

) d·̄

4

6 C
1

Î„0ÎL2 + t1/4Î„Î2
ÂXT

+ t1/2ÎvÎLŒ(R+;L2) Î„Î ÂXT

2
,

where ·̄ = ·/t. This proves Claim 1 taking the supremum over t.
Similarly, from the properties of the semigroup generated by L, we have:

ÎÒ(N („))(t)ÎL2 6 Îe≠tLÒ„0ÎL2 + 1
2

ˆ
t

0
ÎÒe≠ t≠·

2 LÎL2æL2 Îe≠ t≠·
2 L|Ò„(·)|2ÎL2 d·

+
ˆ

t

0
ÎÒe≠ t≠·

2 LÎL2æL2 Îe≠ t≠·
2 L (v(·) · Ò„(·))ÎL2 d·

6 C t≠1/4 Î„0ÎL2 + C

ˆ
t

0
(t ≠ ·)≠1/2 ·≠1/2(·1/4ÎÒ„(·)ÎL2)2 d·

+ C

ˆ
t

0
(t ≠ ·)≠1/2 ·≠1/4Îv(·)ÎL2(·1/4ÎÒ„(·)ÎL2) d·

6 C t≠1/4 Î„0ÎL2 + C

3ˆ 1

0
(1 ≠ ·̄)≠1/2 ·̄≠1/2 d·̄

4
Î„Î2

ÂXT

+ C

3
t1/4
ˆ 1

0
(1 ≠ ·̄)≠1/2 ·̄≠1/4 d·̄

4
ÎvÎLŒ(R+;L2)Î„Î ÂXT

6 C
1

t≠1/4 Î„0ÎL2 + Î„Î2
ÂXT

+ t1/4ÎvÎLŒ(R+;L2)Î„Î ÂXT

2
,

where ·̄ = ·/t. Consequently

(2.15) sup
0<t6T

t1/4ÎÒ(N („))ÎL2 6 CÎ„0ÎL2 + CT 1/4Î„Î2
ÂXT

+ CT 1/2ÎvÎLŒ(R+;L2)Î„Î ÂXT
.

This proves Claim 2 and thus concludes the proof of this lemma. ⇤

Next, we prove that the map N is Lipschitz on ÂXT with a constant that depends on T .

Lemma 2.7. Let 0 < T 6 1. There exists a constant C = C(L1, L2) such that, for any „1, „2 œ ÂXT ,

(2.16)
ÎN („1)≠N („2)Î ÂXT

6
C T 1/4 !

Î„1Î ÂXT
+ Î„2Î ÂXT

+ T 1/4 ÎvÎLŒ(R+;L2)
"

Î„1 ≠ „2Î ÂXT
.



GLOBAL EXISTENCE FOR THE ADVECTIVE KSE 7

Proof. The proof is similar to that of Lemma 2.6, and follows again from the following two claims. Let
„i œ ÂXT , i = 1, 2. For all 0 6 t 6 T :

Claim 1.

(2.17) ÎN („1)(t) ≠ N („2)(t)ÎL2 6
C t1/4 (Î„1Î ÂXT

+ Î„2Î ÂXT
+ t1/4ÎvÎLŒ(R+;L2)) Î„1 ≠ „2Î ÂXT

;

Claim 2.

(2.18) t1/4 ÎÒN („1)(t) ≠ ÒN („2)(t)ÎL2 6
C t1/4 (Î„1Î ÂXT

+ Î„2Î ÂXT
+ t1/4ÎvÎLŒ(R+;L2)) Î„1 ≠ „2Î ÂXT

.

Since B(·, ·) is bilinear and using the properties of the semigroup e≠tL, we have:

ÎN („1)(t) ≠ N („2)(t)ÎL2 6 C

ˆ
t

0
(t ≠ ·)≠1/4 (Î(Ò„1(·) ≠ Ò„2(·)) · Ò„1(·)ÎL1

+Î(Ò„1(·) ≠ Ò„2(·)) · Ò„2(·)ÎL1 + Îv(·) · (Ò„1(·) ≠ Ò„2(·))ÎL1) d·

6 C

3ˆ
t

0
(t ≠ ·)≠1/4 ·≠1/2 d·

4 Ë
Î„1Î ÂXT

+ Î„2Î ÂXT

È
Î„1 ≠ „2Î ÂXT

+ C

3ˆ
t

0
(t ≠ ·)≠1/4 ·≠1/4 d·

4
ÎvÎLŒ(R+;L2) Î„1 ≠ „2Î ÂXT

6 C t1/4 !
Î„1Î ÂXT

+ Î„2Î ÂXT
+ t1/4ÎvÎLŒ(R+;L2)

"
Î„1 ≠ „2Î ÂXT

where we used the change of variable ·̄ = ·/t. Claim 1 now follows immediately.
Similarly:

ÎÒN („1)(t) ≠ ÒN („2)(t)ÎL2

6 C

ˆ
t

0
(t ≠ ·)≠1/2 (Î(Ò„1(·) ≠ Ò„2(·)) · Ò„1(·)ÎL1

+Î(Ò„1(·) ≠ Ò„2(·)) · Ò„2(·)ÎL1 + Îv(·) · (Ò„1(·) ≠ Ò„2(·))ÎL1) d·

6 C

3ˆ
t

0
(t ≠ ·)≠1/2 ·≠1/2 d·

4
Î„1 ≠ „2Î ÂXT

Ë
Î„1Î ÂXT

+ Î„2Î ÂXT

È

+ C

3ˆ
t

0
(t ≠ ·)≠1/2 ·≠1/4 d·

4
ÎvÎLŒ(R+;L2) Î„1 ≠ „2Î ÂXT

6 C
!
Î„1Î ÂXT

+ Î„2Î ÂXT
+ t1/4ÎvÎLŒ(R+;L2)

"
Î„1 ≠ „2Î ÂXT

,

where the last inequality follows by making again the change of variable ·̄ = ·/t. Claim 2 now follows, We
conclude the proof by taking the supremum over 0 < t 6 T in both claims. ⇤

Now we are ready to use the Banach Fixed Point Theorem to prove the local existence of a mild solution.

Proof of Theorem 2.4. We denote by B(0, M) the closed ball in ÂXT with center the origin. We let M =
2CÎ„0ÎL2 , where C is the maximum of the constants appearing in (2.14) and (2.16), and assume that

T 6 min
1

1,
1

16(CM + CÎvÎLŒ(R+;L2))4

2
.(2.19)

Then, Lemma 2.6 implies that
ÎN („)Î ÂXT

6 M, ’„ œ B(0, M) .(2.20)

We can further check that with, such such choice of T , Lemma 2.7 gives
ÎN („) ≠ N (Â)Î ÂXT

6 qÎ„ ≠ ÂÎ ÂXT
,(2.21)

where

q =
2M + ÎvÎLŒ(R+;L2)

2M + 2ÎvÎLŒ(R+;L2)
< 1 .(2.22)
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By the Banach Contraction Mapping Theorem, there is a unique fixed point of N in B(0, M). By Definition
2.1, „ is a mild solution of (1.3) with initial data „(0) = „0, which is unique in ÂXT . Indeed, if there is another
mild solution „̃ in B(0, M̃) with M̃ > M , then „̃ = „ in B(0, M) µ B(0, M̃). ⇤

Corollary 2.8. Under the hypothesis of Theorem 2.4, if T ú
is the maximal time of existence of the mild

solution Â, then

lim sup
tæT

ú
≠

Î„(t)ÎL2(T2)) = Œ.

Otherwise, T ú = Œ.

Proof. If T ú < Œ and lim sup
tæT

ú
≠

Î„(t)ÎL2(T2)) = “ < Œ, then there exists t0 < T ú such that for all
t0 < t̄ < T ú, Î„(t̄)ÎL2(T2)) 6 3“/2. Let T satisfy

T 6 min
1

1,
1

16(3C2“ + CÎvÎLŒ(R+;L2))4

2
,

where C is as in (2.19). Choose t̄ such that T > T ú ≠ t̄. Then, by Theorem 2.4, there exists a mild solution „̃
on [t̄, t̄ + T ] with initial data „(t̄) and „ = „̃ on [t̄, T Õ] for all t̄ < T Õ < T ú, by uniqueness of mild solutions
(since, if „ is a mild solution on [0, T Õ] for all T Õ < T ú, then sup

t̄<t<T Õ(t ≠ t̄)1/4 ÎÒ„(t)ÎL2 < Œ). Hence, the
solution can be continued past T ú, which gives a contradiction. ⇤

We close by showing that the local-in-time mild solution we constructed is actually also a weak solution
on [0, T ].

Proposition 2.9. Let „ be the mild solution on [0, T ] given in Theorem 2.4. Then, „ is a weak solution of

(1.3) on [0, T ], and satisfies the energy identity for any 0 6 t < T :

(2.23) Î„(t)Î2
L2 + 2

ˆ
t

0
Î�„(s)Î2

L2 ds = Î„0Î2
L2

+ 2
ˆ

t

0
ÎÒ„(s)Î2

L2 ds ≠
ˆ

t

0

ˆ
T2

„(s) |Ò„(s)|2 dx ds.

Proof. We first show that the mild solution „(t) can be represented as follows for 0 < Á 6 t 6 T :

(2.24) „(t) = e≠(t≠Á)L „(Á) ≠
ˆ

t

Á

e≠(t≠·) L
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
d·,

with equality as functions in C([Á, T ]; L2(T2)). Indeed, by the semigroup property, from (2.7) it follows that:

„(t)≠„(Á) = (e≠(t≠Á)L ≠ I)
5
e≠ÁL „0 ≠

ˆ
Á

0
e≠(Á≠·) L

3
1
2 |Ò„|2 + v · Ò„

4
(·) d·

6

≠
ˆ

t

Á

e≠(t≠·) L
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
d·

= (e≠(t≠Á)L ≠ I) „(Á) ≠
ˆ

t

Á

e≠(t≠·) L
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
d·,

where I is the identity map. Next, we show that „ œ L2([Á, T ]; H2(T2)). Since „ œ C([0, T ]; L2(T2)), it is
enough to show that �„ œ L2([Á, T ] ◊ T2). We apply � to (2.24), and use (2.4) with s = 2, using also that
„ œ ÂXT on [Á, T ]:

Î�„(t)ÎL2 6 C

5
(t ≠ Á)≠1/4 Î„(Á)ÎH1 +

3ˆ
t

Á

(t ≠ ·)≠3/4 ·≠1/2 d·

4
Î„Î2

ÂXT

+
3ˆ

t

Á

(t ≠ ·)≠3/4 ·≠1/4 d·

4
ÎvÎLŒ(R+;L2) Î„Î ÂXT

6

6 C (t ≠ Á)≠1/4
Ë!

Á≠1/4 + (t ≠ Á)1/4 ÎvÎLŒ(R+;L2)
"

Î„Î ÂXT
+ Î„Î2

ÂXT

È
,
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which gives the desired estimate. Given that �„ is square integrable on [Á, T ] ◊T2, 1
2 |Ò„(t)|2 + v(t) · Ò„(t) œ

L1([Á, T ] ◊ T2). Let Ï œ CŒ([Á, T ] ◊ T2) and consider the L2 pairing of Ï with „. By Plancherel, e≠tL is a
self-adjoint operator on L2, so that

(2.25)
ˆ
T2

Ï(t) „(t) dx =
ˆ
T2

e≠(t≠Á)LÏ(t)„(Á) dx

≠
ˆ

t

Á

ˆ
T2

e≠(t≠·)LÏ(t)
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
dx d·,

where we have used Fubini-Tonelli’s Theorem to exchange the order of integration. Now, Ï(t) is in the domain
of L for all t œ [Á, T ] by hypothesis and L generates an analytic semigroup, hence di�erentiable. Therefore,
strongly in L2(T2),

lim
hæ0

e≠(t+h≠Á)LÏ(t) ≠ e≠(t≠Á)LÏ(t)
h

= ≠e≠(t≠Á)LLÏ(t),

given that LÏ(t) œ L2(T2) and that that d

dt
e≠tLf = ≠L e≠tLf = ≠e≠tL Lf for all t > 0, if f is in the domain

of L. Similarly, strongly in L2(T2),

lim
hæ0

e≠(t≠Á)LÏ(t + h) ≠ e≠(t≠Á)LÏ(t)
h

= e≠(t≠Á)LˆtÏ(t),

by the smoothness of Ï. Since e≠t L is a strongly continuous semigroup on L2(T2) it follows that d

dt
e≠(t≠Á)LÏ(t) œ

C([Á, T ]; L2(T2)) and the Leibniz rule applies:

d

dt
e≠(t≠Á)LÏ(t) = ( d

dt
e≠(t≠Á)L)Ï(t)

+ e≠(t≠Á)LˆtÏ(t) = e≠(t≠Á)LˆtÏ(t) ≠ L e≠(t≠Á)LÏ(t).

In particular, the pairing of e≠(t≠Á)LÏ(t) with any function g(t) that is absolutely continuous in t œ [Á, T ]
with values in L2(T2), is di�erentiable a.e. in t, the derivative is integrable in time, and

(2.26) d

dt

ˆ
T2

e≠(t≠Á)LÏ(t) g(t) dx =
ˆ
T2

1
e≠(t≠Á)LˆtÏ(t)g(t) ≠ L e≠(t≠Á)LÏ(t) g(t)

+e≠(t≠Á)LÏ(t) gÕ(t)
2

dx.

We are using here the property that, if a Banach space X is separable and reflexive (X = L2(T2) here),
then absolute continuity of X-valued functions of time is equivalent to the existence of a weak derivative,
which belongs to X, for a.e. times, and which is integrable in the Böchner sense. From (2.25), by (2.26) with
g(t) = „(Á) and g(t) =

´
t

Á
e≠(t≠·)LÏ(t)

! 1
2 |Ò„(·)|2 + v(·) · Ò„(·)

"
d· , using again Fubini-Tonelli, it follows

that
d

dt

ˆ
T2

Ï(t) „(t) dx =
ˆ
T2

1
e≠(t≠Á)LˆtÏ(t) ≠ L e≠(t≠Á)LÏ(t)

2
„(Á) dx

≠
ˆ
T2

ˆ
t

Á

1
e≠(t≠·)LˆtÏ(t) ≠ L e≠(t≠·)LÏ(t)

2 3
1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
d· dx

≠
ˆ
T2

Ï(t)
3

1
2 |Ò„(t)|2 + v(t) · Ò„(t)

4
dx.

Consequently,
d

dt

ˆ
T2

Ï(t) „(t) dx =

=
ˆ
T2

ˆtÏ(t)
5
e≠(t≠Á)L „(Á) ≠

ˆ
t

Á

e≠(t≠·)L
3

1
2 |Ò„|2 + v · Ò„

4
(·) d·

6
dx

≠
ˆ
T2

L Ï(t)
5
e≠(t≠Á)L „(Á) ≠

ˆ
t

Á

e≠(t≠·)L
3

1
2 |Ò„|2 + v · Ò„

4
(·) d·

6
dx

≠
ˆ
T2

Ï(t)
3

1
2 |Ò„(t)|2 + v(t) · Ò„(t)

4
dx(2.27)
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=
ˆ
T2

(ˆtÏ(t) ≠ L Ï(t)) „(t) dx ≠
ˆ
T2

Ï(t)
3

1
2 |Ò„(t)|2 + v(t) · Ò„(t)

4
dx.

We integrate the above expression over (Á, t) for any Á < t < T , and then integrate by parts over T2 twice:ˆ
T2

Ï(t) „(t) dx ≠
ˆ
T2

Ï(Á) „(Á) dx =
ˆ

t

Á

ˆ
T2

ˆtÏ(·) „(·) dx d·

≠
ˆ

t

Á

ˆ
T2

�Ï(·) �„(·) dx d· +
ˆ

t

Á

ˆ
T2

ÒÏ(·) · Ò„(·) dx d·

≠
ˆ

t

Á

ˆ
T2

Ï(·)
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
dx d·,(2.28)

which is justified, since „ œ L2((Á, T ); H2)flC([0, T ]; L2). From (2.28), we conclude that ˆt„ œ L2([Á, T ]; H≠2)
by density. In fact, all terms in (2.28) are well defined for Ï œ H1((Á, T ); H2). Here, by H1(I, X), where
I µ R is an interval and X is a Banach space, we mean the space of all functions Ï œ L2(I; X) with weak
derivative ˆtÏ œ L2(I; X).

Since „ œ L2((Á, T ); H2)flH1((Á, T ); H≠2), there exists a sequence {Ïn} µ C1([Á, T ]; H2) such that Ïn æ „
strongly in C([Á, T ]; L2) fl L2((Á, T ); H2) as n æ Œ and such that ˆtÏn æ ˆt„ weakly in L2((Á, T ); H≠2)
(this can be shown by suitably extending „ in t to R and mollifying in time). By the Sobolev Embedding
Theorem, Ïn æ „ strongly in L2((Á, T ); L4). By Hölder’s inequality then,
----
ˆ

t

Á

ˆ
T2

(Ïn ≠ „)
3

1
2 |Ò„|2 + v · Ò„

4
dx d·

---- 6 ÎÏn ≠ „ÎLŒ((Á,T ),L2) ÎÒ„Î2
L2((Á,T );L4)

+ ÎÏn ≠ „ÎL2((Á,T ),L4) ÎvÎLŒ(R+;L2) ÎÒ„ÎL2((Á,T );L4),

We take Ïn as test function in (2.28). We can then pass to the limit n æ Œ in every term of the resulting
expression. In particular:

Î„(t)Î2
L2 ≠ Î„(Á)Î2

L2 =
ˆ

t

Á

ˆ
T2

„(·) ˆt„(·) dx d· ≠
ˆ

t

Á

Î�„(·)Î2
L2 d·(2.29)

+
ˆ

t

Á

ÎÒ„(·)Î2
L2 d· ≠

ˆ
t

Á

ˆ
T2

„(·)
3

1
2 |Ò„(·)|2 + v(·) · Ò„(·)

4
dx d·.

Since „ œ L2((Á, T ); H2) with ˆt„ œ L2((Á, T ); H≠2), the mapping t æ Î„(t)Î2
L2(T2) is absolutely continuous

and the Fundamental Theorem of Calculus applies:ˆ
t

Á

ˆ
T2

„(t)ˆt„(t) dt = 1
2

ˆ
t

Á

d

dt
Î„Î2

L2(T2)

= 1
2

!
Î„(t)Î2

L2 ≠ Î„(Á)Î2
L2

"
, Á < t < T.

Therefore, we have from (2.29):

(2.30) Î„(t)Î2
L2 ≠ Î„(Á)Î2

L2 + 2
ˆ

t

Á

Î�„(·)Î2
L2 d· = 2

ˆ
t

Á

ÎÒ„(·)Î2
L2 d·

≠
ˆ

t

Á

ˆ
T2

„ |Ò„|2dx d· .

The term with v vanishes identically, as v is divergence free.
Next, we show that we can take Á æ 0 in (2.30), obtaining an energy inequality valid on [0, T ). First, by

the Gagliardo-Nirenberg and Young’s inequalities,
---
ˆ

t

Á

ˆ
T2

„ |Ò„|2dx d·
--- 6 C

ˆ
t

Á

Î„(·)Î3/2
L2 Î�„(·)Î3/2

L2 + Î„Î3
L2 d·

6
ˆ

t

Á

Î�„(·)Î2
L2 d· + C

ˆ
t

Á

Î„(·)Î6
L2 + Î„(·)Î3

L2 d· ,

where we used that „ is a mild solution in ÂXT , so the left-hand side is well defined. Utilizing this inequality
in (2.30), we get



GLOBAL EXISTENCE FOR THE ADVECTIVE KSE 11

ˆ
t

Á

Î�„(·)Î2
L2 d· 6 Î„(Á)Î2

L2 ≠ Î„(t)Î2
L2 + 2

ˆ
t

Á

ÎÒ„(·)Î2
L2 d·

+ C

ˆ
t

Á

Î„(·)Î6
L2 + Î„(·)Î3

L2 d· .

Since „ œ C([0, T ], L2), Î„(Á)ÎL2 æ Î„0ÎL2 as Á æ 0, so that the right hand side in the expression above
is bounded above uniformly in Á. By the Monotone Convergence Theorem, „ œ L2((0, T ); H2) and (2.23)
is recovered by sending Á æ 0 in (2.30). Similarly, since „ œ L2((0, T ); H2), the right-hand side of (2.28)
with Ï œ L2((0, T ); H2) is uniformly bounded in Á, so the left-hand side is, which implies that (ˆt„) ‰[Á,T )
converges weakly to ˆt„ in L2((0, T ); H≠2). Therefore, by the Dominated Convergence Theorem, we can
pass to the limit Á æ 0 in (2.28), taking the test function Ï œ CŒ

c
([0, T ] ◊ T2) with support in [0, T ). In the

limit, we recover the weak formulation (2.8). Hence „ is a weak solution on [0, T ]. ⇤
2.2. Global existence with advecting flows of small dissipation time. In this section, we tackle the
issue of global existence for solutions of (1.3). Here, we make stronger assumptions on the advecting velocity,
namely, we assume that v is Lipschitz continuous in space uniformly in time, v œ LŒ([0, Œ), W 1,Œ(T2)) and
continue to assume that v is divergence free.

Let Ss,t, 0 6 s 6 t, be the solution operator of the advection-hyperdi�usion equation
ˆtf + v · Òf + �2f = 0.(2.31)

That is, Ss,t maps the solution of the above equation at time s to the solution at time t > s. The solution
operator satisfies the semiflow property and form an evolution system (cf. [34]).

We introduce the concept of dissipation time for (2.31) (see [15]). Informally, it is the time it takes the
system to reduce the energy, i.e., the norm of the solution in L2(T2), by half. We give the precise definition
below.
Definition 2.10. The number 0 < ·ú < Œ, where

·ú = inf
)

t Ø 0
-- ÎSs,s+tÎL̊2æL̊2 6 1

2 , for all s > 0
*

,(2.32)

is called the dissipation time associated to the system Ss,t, 0 6 s 6 t. With slight abuse of notation, we will
also refer to ·ú as the dissipation time of v.

We will show that the mild solution constructed in Section 2.1 can be continued for any time t > T ,
provided the flow generated by the velocity field v induces a su�ciently small dissipation time. Indeed, the
proof of Theorem (2.4) shows that, given the initial data for the problem, the time of existence of the mild
solution depends only on the L2-norm of the initial data.
Remark 2.11. When v is more regular, v œ LŒ([0, Œ), C2(T2)), ·ú can become arbitrarily small, provided the
amplitude of v is large enough and v is weakly mixing (see [15, Proposition 1.4, Definition 3.1]). While there
are no known explicit examples of optimal mixing flows with C2 regularity in two dimensions (for an example
in the Lipschitz class, we refer to [1], see also [14]), many examples can be given using probabilistic methods [3].
Generally, v is called dissipation enhancing if ·ú æ 0 as the amplitude of v tends to infinity. When the vector
field v is time independent, enhanced dissipation for the Laplacian implies enhanced dissipation with the
bi-Laplacian, a result which follows from the characterization of relaxation enhancing flows in [10]. For the
case of a general time-dependent vector field v, the relationship between the dissipation time corresponding
to the Laplacian and that corresponding to the bi-Laplacian was studied in [15]. Their results, which might
not be optimal, do not imply that dissipation enhancement holds for the bi-harmonic if it holds for Laplace’s
operator. In [29], the authors proved that for the advection-di�usion equation an arbitrarily small dissipation
time can be achieved by means of a suitable cellular flow. However, it is unknown whether the same result is
true for the hyperdi�usion-advection equation (2.31).

In the definition of ·ú we have implicitly used the fact that the projection P onto mean-free functions
commutes with Ss,t. To control the L2-norm of „(t), we employ energy estimates, after we project onto the
subspace of mean-free elements, as in general the mean is not preserved by the forward evolution. We denote
the mean of „ œ L2(T2) by „̄ = 1

|T2|
´
T2 „(x) dx and set Â = P„ = „ ≠ „̄ œ L̊2(T2), then „̄ formally satisfies

d

dt
„̄ = ≠ 1

2|T2|ÎÒ„Î2
L2 = ≠ 1

2|T2|ÎÒÂÎ2
L2 ,(2.33)
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and Â formally satisfies

ˆtÂ + v · ÒÂ + 1
2P(|ÒÂ|2) + �2Â + �Â = 0 .(2.34)

Recall that the mild solution „ satisfies sup0<t<T
t1/4 ÎÒ„(t)ÎL2 < Œ. Therefore, ÎÒ„(t)Î2

L2 is integrable in
(0, T ), so that (2.33) holds at least a.e. in (0, T ) and a simple Grönwall’s estimate give that „̄(t) is uniformly
bounded on [0, T ]. One could also estimate directly the L2 norm of ÒÂ on [0, T ] from Duhamel’s formula.

We begin by deriving a priori energy estimates for Â. Let N(Â) = 1
2P(|ÒÂ|2) + �Â. Then (2.34) becomes

ˆtÂ + v · ÒÂ + �2Â + N(Â) = 0 .(2.35)

2.2.1. Bounds on the non-linear operator N . We observe that the following estimates hold for the operator
N .

(1) For any Â œ H̊2(T2), there exists a constant C = C(L1, L2) such that
---
ˆ
T2

ÂN(Â) dx
--- 6 1

2Î�ÂÎ2
L2 + CÎÂÎ2

L2 + CÎÂÎ6
L2 .(2.36)

In fact, we first have by Cauchy’s inequality with Á and by Hölder’s inequality:
---
ˆ
T2

ÂN(Â) dx
--- 6 1

2ÎÂÎL2ÎP(|ÒÂ|2)ÎL2 + ÎÂÎL2Î�ÂÎL2

6 1
2ÎÂÎL2ÎÒÂÎ2

L4 + ÎÂÎL2Î�ÂÎL2 .

We then use the Gagliardo-Nirenberg interpolation inequality

ÎÒÂÎL4 6 CÎ�ÂÎ3/4
L2 ÎÂÎ1/4

L2 ,

and Young’s inequality with Á to get the desired result.
(2) For any Â œ H̊2(T2), there exists a constant C = C(L1, L2) such that

ÎN(Â)ÎL2 6 CÎ�ÂÎ2
L2 + CÎ�ÂÎL2 .(2.37)

Indeed, Poincaré inequality, interpolation, and other standard inequalities give:

ÎN(Â)ÎL2 6 1
2ÎP(|ÒÂ|2)ÎL2 + Î�ÂÎL2 6 1

2Î|ÒÂ|2ÎL2 + Î�ÂÎL2

6 1
2Î�ÂÎ2

L4 + CÎ�ÂÎL2 6 CÎ�ÂÎ2
L2 + CÎ�ÂÎL2 .

Remark 2.12. The proof of short-time existence of mild solutions follows a well-established approach for
abstract evolution equations. Our proof in fact can be adapted to a large class of non-linearities N(Â), for which
Lemma 2.6 and Lemma 2.7 still hold, for instance, N(„) = |„|– with a suitable exponent – > 2. Concerning
global existence, conditions on the non-linear term leading to global existence for the corresponding standard
di�usion-advection equation via enhanced dissipation were given in [29]. For the case of hyper-di�usion, these
conditions read:

(1) For any Â œ H̊2(T2), there exist Á0 œ (0, 1] and an increasing continuous nonnegative function F ,
such that

---
ˆ
T2

ÂN(Â) dx
--- 6 (1 ≠ Á0)Î�ÂÎ2

L2 + F (ÎÂÎL2) .

(2) For any Â œ H̊2(T2), there exist a nonnegative constant C0 and an increasing continuous nonnegative
function G, such that

ÎN(Â)ÎL2 6 C0Î�ÂÎ2
L2 + G(ÎÂÎL2) .

If the function F and G satisfy

lim sup
yæ0+


F (y) + G(y)

y
< Œ ,(2.38)

then a global-in-time bound on the L2 norm of the solution for equation (2.35) holds. We note that conditions
(1)-(2) essentially imply that the non-linearity is quadratic. It would be interesting to investigate whether
global existence can be extended to higher-order nonlinearities.
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Exploiting these estimates, we establish that the L2 norm of Â will not double within a certain interval of
time.

Lemma 2.13. For any B > 0, let

T0(B) =
ˆ 4B

2

B2

1
Cy + Cy3 dy,(2.39)

where C = C(L1, L2) is the constant in (2.36)-(2.37). Let Â = P„, where „ is a mild solution of (1.3) on

[0, T ]. If ÎÂ(t0)ÎL2 6 B, then for any t0 6 t 6 t0 + T0(B), 0 6 t0 6 T , it holds

ÎÂ(t)ÎL2 6 2ÎÂ(t0)ÎL2 .(2.40)

Proof. By the energy identity for „, we derive an energy identity for Â:
1
2

d

dt
ÎÂÎ2

L2 = ≠Î�ÂÎ2
L2 +

ˆ
Â N(Â) dx .

Applying (2.36), we have

d

dt
ÎÂÎ2

L2 6 ≠Î�ÂÎ2
L2 + CÎÂÎ2

L2 + CÎÂÎ6
L2 6 CÎÂÎ2

L2 + CÎÂÎ6
L2 .(2.41)

By Grönwall’s inequality, ÎÂÎ2
L2 can at most grow as the solution of the following ode

d

dt
y = Cy + Cy3 , y(t0) = ÎÂ(t0)Î2

L2 .(2.42)

which implies

ÎÂ(t)ÎL2 6 2ÎÂ(t0)ÎL2 , t0 6 t 6 t0 + T0(ÎÂ(t0)ÎL2),

where T0(ÎÂ(t0)ÎL2) is defined as in (2.39) with B = ÎÂ(t0)ÎL2 . Finally, since T0(B) is a decreasing function
in B, T0(B) 6 T0(ÎÂ(t0)ÎL2) as long as ÎÂ(t0)ÎL2 6 B. Thus (2.40) is proved. ⇤

In the previous Lemma, we neglected the action of hyperdi�usion, which is encoded in the integral of
Î�Â(t)Î2

L2 . Next, we examine the case when this term is large on time intervals of the order of T0(B),
showing in Lemma 2.14 that then hyperdi�usion alone can overcome the growth of the norm of Â. When
this term is small, instead, in Lemma 2.15 we will gain decay by enhanced dissipation for the operator Ss,t,
provided v satisfies some conditions (cf. Remark 2.11). The decay of the norm of Â then implies a uniform
bound on the L2 norm of „, and hence global existence follows by the continuation principle.

Lemma 2.14. Let µ > 0. Given B > 0, if Â satisfies ÎÂ(t0)ÎL2 6 B, and if for 0 < · < T0(B),

1
·

ˆ
t0+·

t0

Î�Â(t)Î2
L2 dt Ø 2µÎÂ(t0)Î2

L2 + 4CÎÂ(t0)Î2
L2 + 64CÎÂ(t0)Î6

L2 ,(2.43)

where C = C(L1, L2) is the constant in (2.36)-(2.37), then

ÎÂ(t0 + ·)ÎL2 6 e≠µ· ÎÂ(t0)ÎL2 .(2.44)

Proof. First, Lemma 2.13 gives

ÎÂ(t0 + t)ÎL2 6 2ÎÂ(t0)ÎL2 , ’ 0 < t 6 T0(B) .

Hence, ÎÂ(t)ÎL2 is uniformly bounded in the interval [t0, t0 + T0(B)]. Integrating the energy estimate (2.41)
over the interval [t0, t0 + · ] µ [t0, t0 + T0(B)] and using this bound, we have

ÎÂ(t0 + ·)Î2
L2 6 ÎÂ(t0)Î2

L2 ≠
ˆ

t0+·

t0

Î�Â(t)Î2
L2 dt + 4C·ÎÂ(t0)Î2

L2

+ 64C·ÎÂ(t0)Î6
L2 6 (1 ≠ 2µ·)ÎÂ(t0)Î2

L2 6 e≠2µ· ÎÂ(t0)Î2
L2 ,

where the inequalities on the last line follows by applying hypothesis (2.43). ⇤
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Lemma 2.15. Let µ > 0. Given B > 0, let T1(B) be defined by

T1(B) = 1
4C(2µ + 4C + 64CB4)B + 4C(2µ + 4C + 64CB4)1/2 ,(2.45)

where C = C(L1, L2) is the constant in (2.36)-(2.37). If ÎÂ(t0)ÎL2 6 B and the dissipation time of v, ·ú
,

satisfies

·ú 6 min
1

T0(B), T1(B), 1
4µ

2
,(2.46)

then (2.44) holds, even when

1
·ú

ˆ
t0+·

ú

t0

Î�Â(t)Î2
L2 dt 6 2µÎÂ(t0)Î2

L2 + 4CÎÂ(t0)Î2
L2 + 64CÎÂ(t0)Î6

L2 .(2.47)

Proof. Since Â is a mild and weak solution of (2.34) on the interval [t0, t0 + ·ú],

Â(t0 + ·ú) = St0,·úÂ(t0) +
ˆ

·
ú

0
St0+t,t0+·úN(Â(t0 + t)) dt ,(2.48)

and, by (2.37) and the definition of ·ú,

ÎÂ(t0+·ú)ÎL2 6 1
2ÎÂ(t0)ÎL2 +

ˆ
·

ú

0
ÎN(Â(t0 + t))ÎL2 dt

6 1
2ÎÂ(t0)ÎL2 + C

ˆ
t0+·

ú

t0

(Î�ÂÎ2
L2 + Î�ÂÎL2) dt

6 1
2ÎÂ(t0)ÎL2 + C

ˆ
t0+·

ú

t0

Î�ÂÎ2
L2 dt + C

1ˆ t0+·
ú

t0

Î�ÂÎ2
L2 dt

21/2Ô
·ú .

Next, from the definition of T1 it follows that T1(B) 6 T1(ÎÂ(t0)ÎL2). Hence ·ú 6 T1(ÎÂ(t0)ÎL2) and
using (2.47) we get

ÎÂ(t0 + ·ú)ÎL2 6 1
2ÎÂ(t0)ÎL2 + 1

4ÎÂ(t0)ÎL2 6

6 (1 ≠ µ·ú)ÎÂ(t0)ÎL2 6 e≠µ·
ú
ÎÂ(t0)ÎL2 ,

where we used ·ú 6 1
4µ

in the second to last inequality. ⇤
Our main result is an exponential decay estimate for Â, which implies global existence for the mild solution

Â.

Theorem 2.16. Let µ > 0. Let Â be a mild solution of (2.34) on [0, T ]. For 0 6 t0 6 T , let ÎÂ(t0)ÎL2 =
B > 0. If the dissipation time of v, ·ú

, satisfies (2.46), then there exists a constant C0, such that for t > 0,

ÎÂ(t0 + t)ÎL2 6 C0e≠µtÎÂ(t0)ÎL2 .(2.49)

Proof. Take · = ·ú, if (2.43) holds, then applying Lemma 2.14, we get
ÎÂ(t0 + ·ú)ÎL2 6 e≠µ·

ú
ÎÂ(t0)ÎL2 .(2.50)

Otherwise, we apply Lemma 2.15 and the above estimate still holds. Iterating this estimate, we obtain
ÎÂ(t0 + n·ú)ÎL2 6 e≠µn·

ú
ÎÂ(t0)ÎL2 .(2.51)

For any t > 0, there exists n œ N such that t œ [n·ú, (n + 1)·ú). Then it holds that
ÎÂ(t0 + t)ÎL2 6 e≠µn·

ú
ÎÂ(t0)ÎL2 6 e≠µ(t≠·

ú)ÎÂ(t0)ÎL2 6 C0e≠µtÎÂ(t0)ÎL2 ,(2.52)

where C0 can be taken as e1/4. ⇤
Our goal is to prove that Î„(t)ÎL2 is uniformly bounded in t.

Theorem 2.17. Let „ be the solution of (1.3) with initial data „(0) = „0 œ L2(T2). Then, the a priori bound

Î„(t)ÎL2 6 C1,(2.53)
holds for t > 0 with C1 > 0 depending on the data, but not on t.
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Proof. We first bound the mean of „ over T2, „̄. From (2.33), we have:

|„̄(t) ≠ „̄0| 6 1
2|T2|

ˆ
t

0
ÎÒÂ(s)Î2

L2 ds 6 1
2|T2|⁄1

ˆ
t

0
Î�Â(s)Î2

L2 ds,(2.54)

where ⁄1 is the first eigenvalue of ≠� on T2. Estimate (2.50) gives that ÎÂ(t)ÎL2 decays exponentially from
ÎÂ0ÎL2 , where Â0 = „0 ≠ „̄0. Therefore, the energy estimates (2.41) and (2.49) imply thatˆ

t

0
Î�Â(s)Î2

L2 ds 6 ÎÂ0Î2
L2 + C

ˆ
t

0
ÎÂ(s)Î2

L2 ds + C

ˆ
t

0
ÎÂ(s)Î6

L2 ds

6 CÎÂ0Î2
L2 + CÎÂ0Î6

L2 ,

From (2.54) it follows that

|„̄(t)| 6 |„̄(t) ≠ „̄0| + |„̄0| 6 C(ÎÂ0Î2
L2 + ÎÂ0Î6

L2)
2L1L2⁄1

+ |„̄0|.

We recall that „(t) = Â(t) + „̄(t). Then by the triangle inequality and (2.49) again, we get

Î„(t)ÎL2 6 ÎÂ(t)ÎL2 + Î„̄(t)ÎL2 = ÎÂ(t)ÎL2 + L1L2 sup
t>0

|„̄(t)|

6 C0e≠µtÎÂ0ÎL2 +
C(ÎÂ0Î2

L2 + ÎÂ0Î6
L2)

2⁄1
+ L1L2|„̄0| ,

which completes the proof. ⇤
Applying Corollary 2.8, we obtain global existence of mild solutions from Theorem 2.16.

Corollary 2.18. Under the hypothesis of Theorem 2.16, the mild solution „ of the advective KSE (1.3) exists

on [0, Œ).

3. Global existence without advection
In this section, we consider the standard scalar form of the KSE without advection. We prove global

existence of mild solutions for small enough initial data in L2 in the absence of growing modes for the
linearized operator L. Global existence in L2 for the di�erentiated form of KSE without growing modes,
which corresponds to small data „0 œ H1, was established by one of the authors and David Ambrose in [2].
The proof in the scalar case is mode delicate, since the non-linearity is more singular. Furthermore, the
spatial average of the solution is not preserved by the time evolution as for the di�erentiated form.

We assume that the size of the periodic box T2 is small:
(3.1) L1 < 2fi, L2 < 2fi,

so that
(3.2) ‡(Âk) = |Âk|4 ≠ |Âk|2 > 0, for all Âk ”= (0, 0),

since |Âk| > 1 by condition (3.1) .
We let again Â = P„. Using (2.33), it is enough to prove that Â exists globally in time and ÎÒ„(t)Î2

L2 =
ÎÒÂ(t)Î2

L2 in integrable on any fixed time interval. To this end, we apply P to the KSE:

(3.3) ˆtÂ = ≠�2Â ≠ �Â ≠ 1
2P(|ÒÂ|2).

Formally integrating in time, we obtain the mild form of the projected KSE:

(3.4) Â(t) = e≠tLÂ0 ≠
ˆ

t

0
e≠(t≠·)L 1

2P(|ÒÂ|2)(·) d· =: T (Â),

where e≠tL denotes again the semigroup generated by the operator L, Â0 = Â(0), and the integral is intended
in the Böchner sense.

We will construct a global mild solution to the KSE as a fixed point of the non-linear map T in a suitable
adapted Banach space. To this end, we introduce the global analog of the space XT :

XŒ := {f : [0, Œ) ◊ T2 | sup
t>0

t1/4ÎÒfÎL2 < Œ},
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and let ÂXŒ = C([0, Œ); L̊2) fl XŒ with the induced norm:
ÎfÎ ÂXŒ

. := Max(sup
t>0

ÎfÎL2 , sup
t>0

t1/4ÎÒfÎL2).

The main result of this section is the following.

Theorem 3.1. Let L1, L2 < 2fi and Â0 œ L̊2(T2). There exists ” > 0 such that, if ÎÂ0Î
L̊2 < ”, there exists a

mild solution Â of (3.3) in ÂXŒ such that Â(0) = Â0.

Similarly to what done in Section 2, one can show that the mild solution of the projected equation is
unique in ÂXŒ and that it is a weak solution on [0, Œ).

Corollary 3.2. Under the condition of Theorem 3.1, if „0 œ L2(T2) and P„0 is such that ÎP„0ÎL2 < ”, for

any T > 0 there exists a mild solution of KSE with initial data „0 on [0, T ].

We will prove both results at the end of this section. For notational ease, we use the symbol . to mean
6 c, where the positive constant c may depend on L1 and L2 or a regularity index s, but not on t.

3.1. Semigroup estimates. A main ingredient in the proof of Theorem 3.1 is operator estimates for e≠tL,
valid for t œ (0, Œ), which improves on the bounds obtained in [2] and recalled in Lemma 2.2 and 2.3.

In what follows, we let Âk0 denote the non-zero elements on the lattice Z̃2 of minimal distance Ÿ0 to the
origin. We note that Âk0 depends only on L1 and L2 and Ÿ0 > 1.

Lemma 3.3. For any T1 > 0, there exists constants “1, — > 0 depending on L1, L2 < 2fi and T1 such that

for all f œ L1(T2) with mean zero and for all t > 0,

(3.5) Îe≠tLfÎL2 6 “1 h1(t) ÎfÎL1 .

where

h1(t) =
I

t≠1/4, 0 < t 6 T1,

t≠1/2 e≠—t, t > T1.

Proof. We proceed as in Lemma 2.2. By Plancherel’s theorem:

Îe≠t‡(Âk) ‚f(Âk)Î¸2 . ÎfÎL1 Îe≠t‡(Âk)Î¸2 .

By McLaurin’s formula,

Îe≠t‡(Âk)Î2
¸2 .

ˆ
R2≠B(0,Ÿ0)

e≠2t‡(Âk) dÂk .
ˆ Œ

Ÿ0

Ÿ e≠2tŸ
2(Ÿ

2≠1) dŸ

.
ˆ Œ

Ÿ0

Ÿ e≠2tŸ
2(Ÿ

2
0≠1) dŸ . 1

t
e≠2—t,

where — = Ÿ2
0(Ÿ2

0 ≠ 1).
Next, we observe that for 0 < t 6 T1:

Îe≠t‡(Âk)Î2
¸2 .

ˆ
R2≠B(0,Ÿ0)

e≠2t‡(Âk) dÂk .
ˆ Œ

Ÿ0

Ÿ e≠2tŸ
2(Ÿ

2≠1) dŸ

. 1
t1/2

ˆ Œ

t1/4Ÿ0

Ÿ̄ e≠2Ÿ̄
2(Ÿ̄

2≠t
1/2) dŸ̄ . 1

t1/2

ˆ Œ

t1/4Ÿ0

Ÿ̄ e≠2Ÿ̄
2(Ÿ̄

2≠T
1/2
1 ) dŸ̄

. 1
t1/2

ˆ Œ

0
Ÿ̄ e≠2Ÿ̄

2(Ÿ̄
2≠T

1/2
1 ) dŸ̄ . t≠1/2.

⇤
Lemma 3.4. There exists constants “2, T2 > 0 depending on s, L1, L2 < 2fi such that for all f œ L̊2(T2) and

for all t > 0,

(3.6) Îe≠tLfÎ
H̊s 6 “2h2(t) ÎfÎL2 .

where

h2(t) =
I

t≠s/4, 0 < t 6 T2,

e≠—t, t > T2.
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Proof. We proceed as in Lemma 2.3. By Plancherel’s theorem:

Îe≠tLfÎ2
H̊s .

A
sup

ÂkœZ̃2,Âk ”=0
|Âk|2s e≠2t‡(Âk)

B
ÎfÎ2

L2(T2)

.
3

max
ŸœR+

Ÿ2s e≠2t(Ÿ
4≠Ÿ

2)
4

ÎfÎ2
L2(T2).

Now, we simply observe that the maximum of the function g(Ÿ) := Ÿ2s e≠2t(Ÿ
4≠Ÿ

2) occurs at Ÿ̄2 = (


1 + 4s/t+
1)/4. Let t = T2 be such that Ÿ̄ 6 Ÿ0 (which occurs for T2 large enough). Then for 0 < t 6 T2, g(Ÿ) . t≠s/2

for all Ÿ œ R+, while for t > T2, the maximum of g occurs at Ÿ0 for Ÿ > Ÿ0, so g(Ÿ) . e≠2—t, where — = Ÿ4
0 ≠Ÿ2

0
as in Lemma 3.3. Therefore:

Îe≠tLfÎ2
H̊s .

I
t≠s/2ÎfÎ2

L2(T2), 0 < t 6 T2,

e≠2—tÎfÎ2
L2(T2), t > T2.

⇤
3.1.1. Proofs. We proceed with the proof of Theorem 3.1. We find it convenient to use the following version
of the Banach Contraction Mapping Theorem (see e.g. [8]).

Proposition 3.5. Let X be a Banach space equipped with norm Î · Î, and let B : X ◊ X æ X denote a

bounded bilinear operator such that for some ÷ > 0,

(3.7) ÎB(x1, x2)Î 6 ÷ Îx1Î Îx2Î, ’x1, x2 œ X.

Then, for all y œ X with ÎyÎ < 1/(4÷), the equation

x = y + B(x, x)
has a solution x̄ œ X satisfying Îx̄Î 6 2 ÎyÎ. Such solution is unique among those for which ÎxÎ 6 1/(2÷).

We apply this proposition with X = ÂXŒ, y = e≠tLÂ0, and B(Â1, Â2) = ≠ 1
2
´

t

0 e≠(t≠·)LP(ÒÂ1(·) ·
ÒÂ2(·)) d· , so that T (Â) = y + B(Â, Â). From Lemma 3.3 and 3.4, it follows immediately that y œ ÂXŒ.

We next show that B is well defined and bounded.

Lemma 3.6. B : ÂXŒ ◊ ÂXŒ æ C([0, Œ); L̊2) and there exists ÷1 > 0 such that:

ÎB(Â1, Â2)(t)Î
L̊2 6 ÷1 ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ
,

for all t > 0 and for all Âi œ ÂXŒ, i = 1, 2.

Proof. We first observe that, in view of the definition of the Böchner integral, it is enough to show that
Îe≠(t≠·)LP(ÒÂ1(·) · ÒÂ2(·))Î

L̊2 œ L1((0, t)) uniformly in t. We set T0 := max(T1, T2) as in lemmas 3.3
and 3.4, and distinguish two cases.

(a) 0 < t 6 T0: by Lemma 3.3,
h1(t) = t≠1/4, 0 < t < T0 .

Hence:
ÎB(Â1, Â2)(t)Î

L̊2 6 “1
2

ˆ
t

0

1
(t ≠ ·)1/4 Î(ÒÂ1(·) · ÒÂ2(·))ÎL1 d·

6 “1
2

3ˆ
t

0

1
(t ≠ ·)1/4

1
·1/2 d·

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

6 “̃ t1/4 ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

,

where the last inequality is obtained by making the change of variable ◊ = ·/t in the integral.
(b) t > T0: we split the time integration into two parts:

B(Â1, Â2)(t) = 1
2

ˆ
t≠T0

0
e≠(t≠·)LP(ÒÂ1(·) · ÒÂ2(·)) d·

+ 1
2

ˆ
t

t≠T0

e≠(t≠·)LP(ÒÂ1(·) · ÒÂ2(·)) d· =: I1 + I2.
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Since in I1, t ≠ · > T0, from Lemma 3.3

ÎI1Î
L̊2 6 “1

2

ˆ
t≠T0

0
(t ≠ ·)≠1/2 e≠—(t≠·) ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·

.
Aˆ

t≠T0

0
(t ≠ ·)≠1/2 ·≠1/2 e≠—(t≠·) d·

B
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
3ˆ

t

0
(t ≠ ·)≠1/2 ·≠1/2 d·

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

6 “̄ ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

again by making a change of variables in the last integral. We next bound I2. Since in I2, t ≠ · < T0,
as in Case (a),

ÎI2Î
L̊2 6 “1

2

ˆ
t

t≠T0

1
(t ≠ ·)1/4 ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·

.
3ˆ

t

t≠T0

1
(t ≠ ·)1/4 ·1/2 d·

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
Aˆ

T0

0

1
·̄1/4 (t ≠ ·̄)1/2 d·̄

B
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

6 “̊ T 1/4
0 ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

where ·̄ = t ≠ · and the last inequality follows by making the change of variables in the integral
◊ = ·̄/T0.

The desired estimate now follows by taking the supremum over t in both cases and setting ÷1 = max(“̃ T 1/4
0 , “̄, “̊ T 1/4

0 ).
⇤

Lemma 3.7. There exists ÷2 > 0 such that:

t1/4 ÎB(Â1, Â2)(t)Î
H̊1 6 ÷2 ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ
,

for all t > 0 and for all Âi œ ÂXŒ, i = 1, 2.

Proof. We again distinguish two cases and use the notation in the proof of Lemma 3.6.
(c) 0 < t 6 T0: we note first that

ÎB(Â1, Â2)(t)Î
H̊1 6 1

2

ˆ
t

0
Îe≠ (t≠·)

2 LÎ
L2≠>H̊1

Îe
≠(t≠·)

2 LÎL1≠>L2ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·.

As in Case (a),
h1(t) = h2(t) = t≠1/4, 0 < t < T0,

where h1, h2 are the functions in Lemmas 3.3 and 3.4. We then have the bound:

ÎB(Â1, Â2)(t)Î
H̊1 6 “1“2Ô

2

ˆ
t

0

1
(t ≠ ·)1/2 ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·

6 “1“2Ô
2

3ˆ
t

0

1
(t ≠ ·)1/2

1
·1/2 d·

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

6 ‚“ ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

,

again by making the change of variables ◊ = ·/t in the last integral. Therefore, for 0 < t 6 T0:

t1/4 ÎB(Â1, Â2)(t)Î
H̊1 6 ‚“ T 1/4

0 ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

.
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(d) t > T0: again we split the integral into two parts:

ÒB(Â1, Â2)(t) = 1
2

ˆ
t≠T0

0
Òe≠(t≠·)LP(ÒÂ1(·) · ÒÂ2(·)) d·

+ 1
2

ˆ
t

t≠T0

Òe≠(t≠·)LP(ÒÂ1(·) · ÒÂ2(·)) d· =: Ĩ1 + Ĩ2.

Since in Ĩ1, t ≠ · > T0, from Lemma 3.3-3.4 with s = 1,

t1/4ÎĨ1Î
L̊2 6 t1/4·

·
ˆ

t≠T0

0
Îe≠ (t≠·)

2 LÎ
L2æH̊1Îe≠ (t≠·)

2 LÎL1æL2ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·

.
A

t1/4
ˆ

t≠T0

0

e≠—(t≠·)

(t ≠ ·)1/2 ·1/2 d·

B
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
3

t1/4
ˆ

t

T0

e≠—·̄

(t ≠ ·̄)1/2 ·̄1/2 d·̄

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
3

t1/4
ˆ

t

0

e≠—·̄

(t ≠ ·̄)1/2 ·̄1/2 d·̄

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
3

t1/4
ˆ 1

0

e≠—t◊

(1 ≠ ◊)1/2 ◊1/2 d◊

4
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

.
1

t1/4e≠—t/2 I0(—t/2)
2

ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

,

where ·̄ = t≠· , ◊ = ·̄/t, and I0 is the modified Bessel function of the first kind. Since I0(t) = O(et/
Ô

t)
for large t, we conclude that sup

t>T0 t1/4e≠—t/2 I0(—t/2) 6 c(L1, L2), so that

sup
t>T0

t1/4 ÎĨ1ÎL2 6 –1(L1, L2) ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

.

We next turn to the second integral. Since in Ĩ2, t ≠ · < T0, from Lemma 3.3-3.4 with s = 1,

t1/4 ÎI2Î
L̊2 6 “1“2Ô

2
t1/4
ˆ

t

t≠T0

1
(t ≠ ·)1/2 ÎÒÂ1(·) · ÒÂ2(·)ÎL1 d·

. t1/4

Aˆ
T0

0

1
(t ≠ ·̄)1/2 ·̄1/2 d·̄

B
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

. t1/4

Aˆ
T0/t

0

1
(1 ≠ ◊)1/2◊1/2 d◊

B
ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ

. t1/4 arcsin
1

T0/t
2

ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

,

where we used the same notation as for Ĩ1 and that 0 < T0/t < 1. Since arcsin(x) = O(x) as x æ 0,
we conclude that sup

t>T0 t1/4 arcsin
1

T0/t
2

< c(L1, L2), so that

sup
t>T0

t1/4 ÎĨ2ÎL2 6 –2(L1, L2) ÎÂ1Î ÂXŒ
ÎÂ2Î ÂXŒ

.

We finally obtain the desired estimate by setting ÷2 = max(‚“ T 1/4
0 , –1, –2). ⇤

Proof of Theorem 3.1. From Lemma 3.6 and 3.7, it follows that B : ÂXŒ ◊ ÂXŒ æ ÂXŒ and that

(3.8) ÎB(Â1, Â2)Î ÂXŒ
6 ÷ ÎÂ1Î ÂXŒ

ÎÂ2Î ÂXŒ
,

for all Âi œ ÂXŒ, i = 1, 2, where ÷ = max(÷1, ÷2). Next, Lemma 3.4 gives that Îe≠tLÂ0Î ÂXŒ
< 1/(4÷) provided

ÎÂ0Î
L̊2 < ” with ” su�ciently small. We conclude the proof by applying Proposition 3.5, observing that T (Â)

is continuous in t in L̊2 so that Â(0) = T (Â)(0) = Â0. ⇤
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Proof of Corollary 3.2. Let Â0 = P„0. Let Â be the mild solution obtained in Theorem 3.1. Fix T > 0
arbitrary. Then, Â œ C([0, T ]; L̊2) fl ÂXT is a mild solution of the projected equation (3.3) on [0, T ]. Let „̄(t)
be the unique solution of

ˆ„̄

ˆt
= ≠ÎÒÂÎ2

L2 , 0 < t < T,

with „̄(0) = „̄0 and let „ = Â + „̄. Then, „ œ C([0, T ]; L2) fl ÂXT and „̄ solves (2.33), consequently „ is a mild
solution of KSE on [0, T ]. ⇤
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