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Abstract. In a hybrid dynamical system with multiple rigid bodies,
the relative motions of the contact points on two colliding bodies may
be classified as separating, sticking (moving together), or sliding. Given a
physical contact model, the active contact modes determine the dynamic
equations of motion. Analogously, the set of all possible (valid) contact
mode assignments enumerates the set of all possible dynamical flows of
the hybrid dynamical system at a given state. Naturally, queries about
the kinematics or dynamics of the system can be framed as computations
over the set of possible contact modes. This paper investigates efficient
ways to compute this set.

To that end, we have developed the first efficient 3D contact mode
enumeration algorithm. The algorithm is exponential in the degrees of
freedom of the system and polynomial in the number of contacts. The
exponential term is unavoidable and an example is provided. Prior work
in this area has only demonstrated efficient contact mode enumeration
in 2D for a single rigid body. We validated our algorithm on peg-in-hole,
boxes against walls, and a robot hand grasping an ellipse. Our experi-
mental results indicate real-time contact mode enumeration is possible
for small to medium sized systems. Finally, this paper concludes with
a discussion of possible related application areas for future work. Ulti-
mately, the goal of this paper is to provide a novel computational tool
for researchers to use to simulate, analyze, and control robotic systems
that make and break contact with the environment.

Keywords: Contact mode enumeration + Combinatorial geometry -
Dynamics - Kinematics

1 Introduction

When a moving robot contacts its environment, the points of the resulting con-
tact manifold may be sliding, sticking, or separating. Under the Coulomb model
of friction, the frictional force is either opposite to the velocity of a sliding contact
point, oriented in any direction for a sticking contact point, or zero for a sepa-
rating contact point. As each individual contact mode imparts complementary
dynamic equations, the set of all (valid) contact mode assignments enumerates
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the set of all possible flows for the system [13]. (Here, by valid we mean kinemat-
ically feasible, i.e. there exists a generalized velocity ¢ that generates the correct
mode at each contact point.) Given the one-to-one mapping between contact
modes and dynamics, we advocate that efficient contact mode enumeration will
be a useful tool for the simulation, analysis, and control of robotic systems that
make and break contact with the environment.

Our main contribution is to report the first efficient algorithm for contact
mode enumeration in 3D which is exponential in the number of degrees of free-
doms of the system and polynomial in the number of contact points. Letting
d and n be those two numbers, respectively, then our algorithm enumerates all
feasible contact modes in O(ndQ/ 2+2:5d) time. By efficient, we mean the first
algorithm that is polynomial in the number of contact points. The exponent in
d is unavoidable (see Sect. 6 for an example). Our algorithm can enumerate all
of the following;:

— contact modes that are contacting or separating,

— contact modes that are sticking or sliding in some set of directions,
— contact modes for linear and nonlinear friction cones,

contact modes involving multiple objects.

In this paper, we address the contact mode enumeration problem as a com-
binatorial geometry problem, and the key concern is to compute the combina-
torial structure of convex hulls and hyperplane arrangements. Leveraging the
rigid body kinematics, our method performs faster enumeration by dividing the
problem into two steps: contacting/separating enumeration and sliding/sticking
enumeration. The results obtained after the two steps are polyhedral convex
cones of valid object motions and their corresponding contact modes.

2 Related Work

This section discusses related work specific to contact mode enumeration and our
algorithm (for related work with respect to application areas refer to Sect. 7).
Mason [17] sketched an algorithm for contact mode enumeration in 2D for a single
rigid body which intersects the positive (negative) rotation centers on the pos-
itive (negative) oriented plane and intersects the rotation centers at infinity on
the equator. Though Mason [17] upper-bounded the number of modes at O(n?),
by our analysis, the algorithm’s runtime is actually O(nlogn) and the correct
number of modes is ©(n). Unfortunately, the oriented plane technique does not
generalize to contact mode enumeration in 3D. Later, Haas-Heger et al. [11]
independently published an algorithm for partial contact mode enumeration in
2D. There, they interpret the feasible modes as the regions of an arrangement of
hyperplanes in 3D. However, Haas-Heger et al. [11]’s algorithm is at least £2(n*)
and does not enumerate separating modes. The existence of an efficient contact
mode enumeration algorithm in 2D does not appear to wide-spread knowledge.
For instance, Greenfield et al. [10] used the exponential time algorithm for con-
tact mode enumeration in 2D. Disregarding these issues, Haas-Heger et al. [11]’s
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work inspired us to investigate hyperplane arrangements in higher dimensions
for our algorithm. To the best of our knowledge, our algorithm is the first method
for contact mode enumeration in 3D.

It is well known that frictional contact problems can be modeled as a com-
plementarity problem or equivalently, a variational inequality [8]. Within that
theory, it is known that the normal manifold (which is a linear hyperplane
arrangement) divides the solution space of an affine variational inequality [8].
Not surprisingly, we found related papers in other fields containing problems
that can be modeled as variational inequalities [9,21]. For example, in the study
of digital controllers and power electronics, Geyer et al. [9] proposed a mode
enumeration algorithm for compositional hybrid systems based on the reverse
search technique of Avis and Fukuda [1]. The contribution of our work (and
theirs) is in presenting the theory in an understandable manner for our field and
optimizing the relevant algorithms for our specific problem formulation.

3 Kinematics of Contact

3.1 Rigit Body Transformation

Let se(3) = {(v,w) : v € R3, w € R?} be the twist coordinates of the Euclidean
group SE(3). There is a mapping from £ € se(3) to g € SE(3) given by the
exponential map g = exp &, where the hat operator takes

0 —Ww3 W2

5636(3)—>Bg}, CER? - | w3 0 —wi|. (1)
—wy wp O

Note, the vee operator takes év — & oV — w. Let

= || e sm@), ad, = | TP eroe

be a transformation from frame b to frame a and the adjoint of that transforma-
tion, respectively. We define the instantaneous spatial velocity and body velocity
of gup as

Ve, = [daant] s Ve = 95 0a)” (3)

respectively, both of which are in se(3). The adjoint of Ad
spatial velocities linearly V5 = Ad,,, V5.

relates body and

Gab

3.2 Contact Normal Velocity

Let goe € SE(3) be the transformation from the contact frame to the object
frame. By convention, we fix the contact normal n € R3, also known as the
z-axis of g,c, to point in the direction opposite the object’s surface normal at
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Fig. 1. (a) Hyperplane arrangement H (V') and its associated zonotope Z(V') (the blue
dotted square). Red arrows are the normals of the hyperplanes. Gray shaded areas,
black rays and the origin are the faces of H(V'), correspondingly sharing the same sign
vectors with the vertices, lines and the interior of Z(V'). (b) The face lattice of Z(V),
which has the opposite structure with the face lattice of H(V).

the contact point poe. Let guwo € SE(3) and goc € SE(3) be the transformations
from the object frame to the world frame and the contact frame to the object
frame, respectively. Given an object body velocity V, € se(3), we can compute
the body velocity V. € se(3) of the contact frame using

- RY, ~RY p.
Ve=Ad;'V, = [ o }ggef’ } Vy. (4)

Let ¢ € R be the contact distance as measured along the contact normal, then
from (4) the separating velocity is

é = [77, *nﬁoc] Vo- (5)

Note that when ¢ is negative, the objects are penetrating. Similarly, Let ¢, € R?
and t,, € R? be the basis of contact tangent plane, the contact tangential velocity
V1is
ty —tep
Vt _ x x Aoc V.. 6
c |:ty _typoc:| o ( )

For a contact between two objects 01 and o2, the contact velocity is the relative
velocity of the contact on one object to the other. Without loss of generality, we
have V, = Ad ! Vo, — Ad, Vo,

3.3 Contact Tangent Velocity Approximation

In this paper, sliding modes identifies possible contact tangent velocity direc-
tions. We approximate infinite tangent velocity directions by dividing the tan-
gent plane into sectors of equal angles. Let the normals of n; dividing planes
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be written as T = [t1,- - -, tn,] Where t; = [cos ;—’:,sin %7 ], contact tangent
velocities can be classified into 4n, + 1 contact modes, specified by sign vectors
in {+1,0, —1}". Figure 1(b), which serves as an example of hyperplane arrange-
ment later in Sect. 4.1, can also be considered as a tangent plane division with
ny = 2.

The dividing planes of contact point p are transformed into the object frame
as [T, —Tp| through Eq. 6. With n. contacts, all the dividing planes transformed
into the object frame are a set of ng - n. hyperplanes that intersect at the origin
and divide the space of object velocity in R®. Moreover, this approximation is
essential to applications using linear approximations of the Coulomb friction
model [24]. For more fine grained approximations, we can use a larger n;.

4 Convex and Combinatorial Geometry

This section briefly introduces convex polytopes and hyperplane arrangements.
The normal velocity and tangent velocity equations define halfspaces which carve
R? into regions of valid object motions. Identifying and labeling these regions
are at heart combinatorial problems about convex polytopes and hyperplane
arrangements, respectively. Note that this section only gives the reader a minimal
review of this rich subject. One can refer to Ziegler [27] and Edelsbrunner [7] for
a comprehensive introduction.

4.1 Convex Polytopes

Let P C R be a convex set. This work primarily uses the following two classes of
convex sets. The H-polyhedron is an intersection of closed halfspaces H(A, z) =
{z € R? : Az < z}. The V-polytope is the convex hull of a finite point set
V(A) ={z € R : 2 = At,t > 0,1t = 1}. Let P C R? be a convex polyhedron.
Let a face of P be any set of the form

F={xeP:cx=cy} (7)

where cx < ¢q is true for all x € P. Suppose further that P is an H-polytope.
Then the sign of face F' with respect to a halfspace (a, 2) is

+1 if a-x<z
0 if a-z==z

sgn, (F) = { (®)

for any x € F. Naturally, the sign vector of a face is given by

sgna(F) = [sgng, (F), .., sen,, (F)]. (9)
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4.2 Hyperplane Arrangements

A hyperplane through the origin, i.e. a linear hyperplane, is the set H = {x €
R? : h -2 = 0} parameterized by the normal vector » € RY. In this work, we will
refer to a linear hyperplane by its normal vector h. Given a point p € RY, let
the sign of the point relative to a hyperplane h be

+1 if h-p>0
sgn,(p) =<0 if h-p=0 (10)
-1 if h-p<O

Let a hyperplane arrangement be defined as a set of linear hyperplanes A =
[h1, ..., h] which dissect R? into connected, polyhedral convex cones of different
dimensions. Let the sign of a point p with respect to the hyperplane arrangement
A be defined as

sgn 4 (p) = [sguy, (p), - -, sgny, ()] - (11)

The sign vectors of the points in R? define equivalence classes known as the faces
of A. That is, given a sign vector s € {+1,0, —1}*, the associated face is

F={peR":sgny(p) = s}. (12)

A simple example of a 2D linear hyperplane arrangement is given in Fig. 1a,
and the faces are annotated with their corresponding sign vectors: regions
have sign vectors (+1,+1), (+1,—1), (=1,+1), (=1, —1); rays have sign vec-
tors (+1,0), (0,+1), (—1,0), (0,—1); the origin has the sign vector (0, 0).

4.3 Face Lattice

We can define a partial ordering over the sign vectors of polytopes or hyperplane
arrangements. The face lattice L(P) of a polytope P (or arrangement .4) is a
partially ordered set over the sign vectors of the faces of P. Define the partial
order over the set of signs {+1,0,—1} to be

0<+1, 0<-1, +1| —1 (incomparable). (13)

Let u and v be two sign vectors. Then u < v if and only if u; < v; for all indices.
By convention, every face lattice is equipped with an unique maximal element
{P} (sometimes written {1}) and minimal element {&}. Figure 1b visualizes the
face lattice of the blue square in Fig. 1a.

The face lattice L(P) contains d+ 1 proper ranks. For k € [0,. .., d], the k-th
rank contains the faces of dimension k. The dimension of a face is defined as the
dimension of its affine hull dim(F) = dim(aff(F)), where aff (F) = {> a,a; :
x; € 8,> a; = 1}. The faces of dimensions 0, 1, dim(P) — 2, and dim(P) — 1
are called vertices, edges, ridges, and facets, respectively.
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4.4 Polarity
The polar polytope P* of a polytope P C R is defined by
P2 ={ceR?: 'z <1,Vz € P} CR? (14)

In this definition, we assume that O is in the interior of the polytope P without
loss of generality. Therefore, the polar of a V-polytope V(A) with 0 € intP is
the H-polytope H(A, 1), and vice versa. Polar polytopes are useful because P
and P? share the same combinatorial structure. Specifically, the face lattice of
the polar polytope P2 is the opposite of the face lattice of P:

L(P®) = L(P)” (15)
and there is a bijection between the faces

O +— P
vertices «<—— facets
. (16)
edges «—— ridges

4.5 Zonotopes

Zonotopes are a special type of polytope which are combinatorially equivalent to
linear hyperplane arrangements. Recall that the Minkowski sum of sets X and
Yisgiven by X®Y ={z+y:2 € X,y € Y}. We can define a zonotope as the
Minkowski sum of a set of line segments

Z(V) = [-or,01] © - - - © [, vk, (17)

where V' = [v1,...,v:] € Rk, We can map each face F of a zonotope to an
unique sign vector. Let p = > \jv; € intF (any interior point will do). Then the
sign with respect to v; is

+1 if N =+1
sgn, (F) =40 if —1<)\<1 (18)
—1 if A =1,

and the sign vector is sgn, (F) = [sgn,, (F), ..., sgn,, (F)]. From Corollary 7.17

in Ziegler [27], there is a bijection between the sign vectors of A(V') and Z(V).
We have the identification of face lattices

L(Z(V)) «— L(Z(V)®) «— L(A(V)). (19)

For example, there is a correspondence between the facets of Z(V'), the vertices
of Z(V)#, and the rays (unbounded edges) of A(V). Figure la shows a 2D
hyperplane arrangement and its associated zonotope.
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Algorithm 1. C/S Mode Enumeration

Input: Contact points: p1, ..., px; Contact normals: ni,...,ng
Output: Contacting/Separating Modes: M,

1: function CS-ENUMERATE(P, N)

2 A «— ADD-HYPERPLANES([n;, —n;p;]) for all contacts i € [1,..., k|
3 r < INTERIOR-POINT(H (A, 0))

4 A, r « PROJECT-TO-NULLSPACE(A, r)

5:  V(AT) « PoLAR(H(A,0),r)

6: AT «— PROJECT-TO-AFFINE-SUBSPACE(AT)
7. M « Conv-HuLr(V(AT))

8 L «— FACE-LATTICE(M)

9

0

1

: Mes, m — @, ]
10: for k € {0,...,d— 1} do > The face lattice has d proper ranks.
1 for f € Llk] do > Each face in L[k| as defined by its vertex (= constraint)
set.
12: m[f] —0 > A vertex v € f = sign of normal vel at that contact is 0
13: m[AT\ f] « 1> A vertex v ¢ f = sign of normal vel at that contact is
+1
14: Mes — Mes U {m}

15: return M.,

5 Contact Mode Enumeration in 3D

This section describes our algorithm for contact mode enumeration in 3D.
The algorithm is presented in three parts. The first subsection covers contact-
ing/separating mode enumeration. The second subsection covers sliding/sticking
mode enumeration given an assignment of contacting/separating modes. The
algorithm in this subsection constructs the hyperplane arrangement by incremen-
tally building the associated polar zonotope using the Minkowski sum. The third
subsection covers full mode enumeration by combining the previously stated
algorithms.

5.1 Contacting/Separating Mode Enumeration

The contacting/separating mode enumeration algorithm, or CS-Enumerate,
takes as input the normal velocity constraint equations A € R™*? (see Sect. 3)
and generates a list of valid contacting/separating sign vectors of the form
m € {0,+1}". The algorithm presented in this subsection is based on tak-
ing the convex hull in polar form of the polytope associated with the normal
velocity constraints. The pseudo-code is listed in Algorithm 1 and we provide
explanations for each of the steps below.

Find an Interior Point: The polar form P? of a polyhedron P is defined only
when 0 € relint(P). However, 0 is on the boundary of the polyhedral cone H(A, 0)
defined by our normal velocity constraints. Therefore, our first step is to find a
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point r € relint(H (A, 0)). This is a classical problem in linear programming, and
for our implementation, it amounts to solving the following linear program

r,C

. r
min [0 —1] - L] (20)
st. Ar+¢<0,¢c>0 (21)
[rfloe <1, (22)

where ||7||c < 1 constrains r to be within the hypercube in RY. Note that if the
solution to the linear program is r = 0, then the only valid mode is all-contacting
and the algorithm can terminate early. The above method was adapted from [22]
to handle cones.

Project to Contact Planes: If the interior point is on the boundary for a
subset of the normal velocity constraints, then that subset of contact points
must always be in contact (for example, a box sandwiched between two walls).
Let A, be the contacting normal velocity constraints and A, = A/A.. Then we
map A, into the nullspace of A., like so A, = A, - NULL(A,.), to reduce the
dimension of the problem. We also express the interior point as coordinates in
the null space.

Convert to Polar Form: Given a strictly interior point r, we translate the ori-
gin to r, resulting in the new H-polyhedron P = H(A, —Ar). Next we normalize
the inequalities so that P = H(A, 1) and obtain the polar polytope P2 = V(AT).

Project to Affine Subspace: The affine dimension of the polar polytope
dim aff P2 may not necessarily be equal to the dimension of the ambient space
R, In this situation, we project P4 into its affine subspace affP? = {ATv :
1Ty = 1} and further reduce the dimensionality of convex hull. Recall that
an affine space can also be expressed as a linear space plus a translate, i.e.
aff PA = {Vx + 2} for some V and z. If 0 ¢ aff P2, then z # 0 and we translate
the affine space until it contains the origin. Now that 0 € affP2, affP? is a
linear subspace and we project each point (column vector) in AT to coordinates
on the column space of AT

Get Facet-Vertex Incidence Matrix: Next, the algorithm constructs the
vertex-facet incidence matrix M of PA = V(AT) by using a convex-hull algo-
rithm. The vertex-facet incidence matrix is a matrix M € {0,1}"™*"f, where
n, and ny are the number of vertices and facets, respectively. We associate the
vertices and facets with the index sets Iy = {1,...,n,} and Ir = {1,...,ns},
so that m,; = 1 if facet f contains v and my, = 0 otherwise. The vertex-facet
incidence matrix is a standard return value from convex hull algorithms such as
ghull [3].
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Build Face Lattice: Given the facet-vertex incidence matrix M of P2, we can
construct the face lattice L(P4) using the algorithm of Kaibel and Pfetsch [14].
Their method is based on find the closed sets (=faces) with respect to a closure
map defined over vertex sets. Obviously, each face is uniquely represented by its
vertex set.

Convert Faces to Mode Strings: Finally, we construct contacting/separating
mode strings using the vertex sets associated with each face f in L(P4). By
polarity, each vertex in f corresponds to the hyperplane {z : ax = 0} defined
by a normal velocity constraint. Therefore, we can read off the mode string by
assigning contacting modes to every vertex in f and separating modes to every
vertex not in f.

Theorem 1. For a set of n contacts in a system of colliding bodies with d degrees
of freedom, Algorithm 1 enumerates the possible contacting and separating modes
in O(d - n®™1 +1(n,d)) time.

Proof. We analyze correctness first before complexity. The proof is simple and
relies on the combinatorial equivalences between

CS-MODES « L(H(A,0)) < L(H(Ain, 1)) < L(V(AL))). (23)

First, we show that H(A,0) and H(Ajnt, 1) are affinely isomorphic and thus,
combinatorially equivalent [27]. Two polytopes P and @ are affinely isomorphic
if there exists an affine map f : R¢ — R® that is a bijection between the vertices
of the two polytopes. By inspection, the operations PNaff(P) and P+r preserve
the extremal points (vertices). Finally, re-scaling the inequalities does not affect
the underlying polytope.

For this next paragraph, let us define P = H(Aiy, 1) and P2 = V(AL)).
Our aim is to show the first and third bijections in (23). Let F € L(P%) be
identified by its vertex set V(F) = {a: aNF # @,a € vert(P?)} and recall that
vert(P4) C col(AL ) = row(Aiy). (That is, each vertex of P4 corresponds to a
facet of P, i.e. a normal velocity constraint.) Then by Corollary 2.13 of Ziegler
[27], there is a bijection L(P?) < L(P) from F to F*° such that

F®={z: Az <1l,ax =1,VYa € V(F)} (24)

is a non-empty face of P. Because face lattice of a polytope is coatomic, we can
uniquely specify its proper elements as meets (intersections) a3 A ... A a of its
coatoms (facets). Therefore, for each F € L(P4), the vertex set V(F) maps
bijectively to a valid contacting/separating mode string, and L(P#) enumerates
the set of all valid contacting/separating modes.

The normal velocity constraint matrix A can be constructed in O(n-d) time.
The orthonormal basis and null space can be computed in O(min{n - d?,n? - d})
using SVD. An interior point can be computed in time O(I(n, d)), where i(n, d) is
the cost of linear programming. For a balanced problem like this one (every input
point is extremal), quick hull runs in O(f;_) = O(n%?). The number of k-faces
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Algorithm 2. S/S Mode Enumeration

Input: Contact points: p1, ..., pr; Contact normals: n1, ..., ng; Contact tangent divid-
ing planes: Th,...,Tk; Contact/Separating Mode: mecs

Output: Sliding Modes: M,

1: function SS-ENUMERATE(P, N, T, m)

2: H—o

H — ADpD-HYPERPLANES([n;, —n;p;]) for all separating contacts mﬁ? =1

H — App-HYPERPLANES([T;, —T;p;]) for all contacting contacts m&) = 0
H «— PROJECT-TO-NULLSPACE([n;, —n;p;]) for all contacting contacts m&) =
V, S < GET-ZONOTOPE-VERTICES(H )

L — FACE-LATTICE(V(V))
F «— F € L with positive signs {+1} for all separating contact hyperplanes
9: M,s +— GET-SIGN-VECTOR(F, S)
10: return M,
11: function GET-ZONOTOPE-VERTICES(H)
12: V, S —|0], &
13: for h € H do

14: vV, S8 —|], @

15: for v € V do

16: V'« ADD-POINTS(v + h,v — h)

17: 5" — ADD-SIGN-VECTORS((S(v), +1), (S(v), —1))
18: V « ConNvEX-HULL(V")

19: S — S'(V)

20: return V, S

in L(P) is bound by O(n%?). The combinatorial face enumeration algorithm
runs in time O(n - ZZ:O f2) = O(d - n®*1). Therefore, the total runtime is
O(d - n®! +1(n,d)).

5.2 Sticking/Sliding Mode Enumeration

This section describes our sliding/sticking mode enumeration algorithm, which
is listed in Algorithm 2. The inputs to this algorithm are the normal velocity
constraints, tangent velocity hyperplanes (see Sect. 3.3) and the specified con-
tacting/separating mode. The algorithm, SS-ENUMERATE, generates a list of
sliding/sticking sign vectors of the form mgs € {—1,0,4+1}™, where n; is the
total number of tangent velocity hyperplanes. As before we provide explanations
for each of the steps below.

Partition the Hyperplanes: The goal of our algorithm is to enumerate slid-
ing/ sticking modes for the “contacting” contacts. Given a contacting/separating
mode m.s, the normal velocity constraints on the object velocity x are

Hoa =0, Hypr>0 (25)
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where Hyep, = [ns, —n;p;] for all separating contacts m =1, H, = [nj, —n;p;]

for all contacting contacts m¥) = 0. We have hyperplanes H,, = [T, —T;p;]

for all contacting contacts mgj) = 0. If we let H, = [Hgep, Hss), all valid slid-
ing/sticking modes can be written as

M, = {sgn(Hoz) : * € R Hyepr > 0, Hox = 0}. (26)

Our algorithm computes the combinatorial structure of the hyperplane arrange-
ment H, to get the sliding/sticking modes Ms;. To decrease the zonotope
construction cost, one may omit some separating hyperplanes from H, at the
expense of allowing some invalid sliding/sticking modes to slip through.

Project to Contact Planes: We project H, into halfspaces on the coordinate
of the null space H. to speed up computation. In Algorithm 2 step 3-5, the
projected hyperplanes are obtained by H = [Hsep -NULL(H.), Hgs - NULL(HC)].

Construct the Zonotope: From the set of hyperplanes H, we can identify the
vertices of its associated zonotope Z(H). From Eq. 17, zonotopes can be repre-
sented by the minkowski sum of line segments, which in this case are [hi, fhi] for
h; € H. Algorithm 2 Function GET-ZONOTOPE-VERTICES obtains zonotope ver-
tices V' through computing the minkowski sum iteratively for every h; € H. We
initialize the vertex set V' = [0], and at the i-th iteration we update V' with the
convex hull of Uyey{v—+h;,v—h;}. We are also able to get the sign vector for every
vertex according to Eq. 18: sgn(v+h;) = [sgn(v), +1], sgn(v—h;) = [sgn(v), —1].

Build the Face Lattice: Using the same method as describe in Sect. 5.1,
we construct the face lattice L(V) from the vertices V. Not every F' € L(V)
corresponds to a valid sliding/sticking contact mode. Only the faces that have
positive signs +1 with respect to normal velocity constraints for all separating
contacts are valid sliding/sticking contact modes. After building the face lattice
L(V), valid faces F are selected by ensuring their sign vectors with respect to
Hgep are all {+1}s:

F={FeLV):sgny (F)=[+1,...,+1]} (27)

The sign vectors of all faces in F with respect to H represent all valid slid-
ing/sticking contact modes for the given contact/separating mode.

Theorem 2. For a set of n contacts (modeled with k tangent planes) in a system
of colliding bodies with d degreeszof freedom, Algorithm 2 enumerates the possible
sliding/sticking modes in O(n% /2t2%) time for a given contacting/separating
mode.

Proof. As before, we first proceed with a proof of correctness. For a given con-
tacting/separating mode string mes, let H = [hg,, -+, hsy, Pty , -+, e, | be the
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input hyperplanes to our zonotope construction algorithm, where k is the num-
ber of separating hyperplanes and m is the number of tangent hyperplanes. We
incrementally construct the zonotope by using the fact that the Minkowski sum
of two polytopes is the convex hull of the sums of their vertices [6]. By Corollary
7.18 of [27], the face lattice of the zonotope constructed above is the opposite of
the face lattice of the hyperplane arrangement.

Next we analyze the complexity of our algorithm. The maximum number
of hyperplanes is kn. The number of vertices, i.e. fy, for a d-zonotope that is
the projection of a p-cube is of the order O(p?~!) [7]. Therefore, our zonotope
construction algorithm takes time

kn kn

o> ")) = 0> p%) = O((kn)¥). (28)

p=1 p=1

~—

We use Kaibel and Pfetsch [14] to construct the face lattice of the resulting
zonotope. As before, their algorithm runs in

O(kn -d- - (kn)¥1) = O(d(kn)*?), (29)

where a = kn - (kn)9~! in the worst case (when the zonotope is simple) [27].
2
The full complexity of SS-ENUMERATE is therefore O((kn)z T24).

5.3 Full Mode Enumeration

Theorem 3. For a set of n contacts (modeled with k tangent planes) in a system
of colliding bodies with d degrees of freedom, Algorithm 1 agd 2 can be combined
to enumerate the full set of valid contact modes is in O(n® /2+2:54) time.

Proof. From Theorem 1, we can enumerate contacting/separating modes in O(d-
n®*1 4 1(n,d)) and there are at most O(n%/?) such modes. From Theorem 2,
given a contacting/separating mode, we can enumerate sticking/sliding modes

in O((k‘n)%“d). Therefore, running the full mode enumeration takes at most
2
O(d - n™* 4 1(n,d) +nY? - (kn) T +2%) ~ O(n?"/2+254) (30)

Note that O(ndQ/ 2+2:5d) s the worst-case time complexity of our algorithm,
which only happens when the zonotope is simple [27]. Additionally, if we define
sliding and sticking for nonlinear friction cones as any non-zero tangent velocity
or zero tangent velocity, respectively, then it is clear our algorithm also enumer-
ates modes for non-linear friction cones.

6 Results

This section collects the results of running our algorithms (cs-mode-enum,
ss-mode-enum, all-modes) on the example scenarios described below. The exam-
ples were run on a computer with an Intel i7-7820x CPU (3.5 MHz, 16 threads).
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Table 1. Results of contact mode enumeration in 3D

n |d |cs-modes ss-modes
dagr | D fr | tip teonv Hattice | 2o f5° | tzono Hattice

Box-1 6| 2 10 | 2.66e—3 | 9.68e—5 | 1.39e—4 | 196 1.77e—2 | 8.38e—3
Box-2 6 | 4 46 | 3.25e—3 | 1.55e—4 | 1.69e—3 | 764 4.18e—2 | 3.73e—2
Box-3 12 6 5 190 | 3.18e—3 | 2.72e—4 | 1.53e—2 | 2386 1.56e—1 | 1.17e—1
Box-4 16 6 2 10 |2.67e—3 | 8.94e—5 | 1.34e—4 | 12 4.20e—2 | 9.73e—4
Box-5 20 6| 1 2 12.75e-3 |0 0 2 0 0
Peg-in-hole-4| 8 | 6 | 1 2.69e—3 | 0 0 9 4.60e—3 | 3.66e—4
Peg-in-hole-8 |16 | 6 | 1 1]2.89-3 0 0 9 9.80e—3 | 3.66e—4
Box-box-1 81 9| 2 10 |2.30e—3 | 8.56e—3 | 1.29¢—4 | 9945 1.21e—1 | 2.22e+1
Box-box-2 16| 9| 6 184 | 2.32e—3 | 1.99e—4 | 1.33e—2 | 168746 | 4.43e+0 | 9.87e+2
Hand-ball 12 |17 |11 | 4096 | 4.08e—3 |2.23e—4 | 7.0le—1 |- >1h >1h

Fig. 2. Visualization of some contact modes of a box enclosed by 2 walls. Given a con-
tact mode, we sampled object velocity and rendered it in the simulation. Yellow arrows:
velocities of contacting contacts. Purple arrows: velocities of separating contacts.

Box-#: This example simulates a box enclosed by # walls, 1 < # < 5. The
face contact between the box and a wall is modeled as four point contacts on
the corresponding vertices of the box. Constrained by one wall (the ground), the
box is free to separate with or move along the wall. As the constraints grow to 6
walls, the box becomes progressively more constrained. Figure 2 and 3 visualize
some of our results (Fig. 4).

Peg-in-hole-#: This example consists of a cylindrical peg sitting within a cube
with circular hole. The number # corresponds to the number of contact points
generated at each end of the peg. To demonstrate the generality of our system,
we simulate the peg with 6 degrees of freedom even though its constraints reduce
the effective DoF of the system to 2 (rotating or translating about the main axis).

Box-box-#: This example consists of a box with 6 DoF's sitting on a box with
3 DoF's (translation in # and y and rotation about z). As before, # is the number
of walls.
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contacting/separating

contacting/separating  sliding/sticking modes
= modes U

modes

Fig. 3. The contacting/separating modes  Fig. 4. A box in a hand. There are too
and sliding/sticking modes of a box on the ~ many contacting/separating modes so
table case. we only visualize them by layers.

Hand-Ball: This example simulates an anthropomorphic hand grabbing a foot-
ball (ellipsoid). The hand has 3 fingers and a thumb, with 3 (2) DoFs per finger
(thumb), and the football has 6 DoFs for a total of 17 DoF's in the system. The
football is posititioned so that when grasped, it contacts every link on the hand,
including the palm.

The above examples can be replicated ad infinitum (by adding more boxes
or fingers) to generate contact modes which grow exponentially with the sys-
tem dimension. Table 1 aggregates the results of running our algorithm on the
above examples. Selected videos of the examples are also provided as supple-
mentary material. From the results, it is clear that lattice construction takes the
most percentage of time. In the future, we intend to implement methods from
Edelsbrunner [7] which have better complexity.

7 Related Applications

Simulation: Friction contact dynamics have been modeled as complementarity
problems by many researchers [2,24]. Approaches for solving complementarity
problems may be broken into direct methods, such as Lemke’s algorithm, and
iterative methods, such as Projected Gauss Siedel [5,20]. The simulation research
community has focused on issues such as proving finite termination [24,26], sat-
isfying physical realism [23,25], and improving convergence speed [15]. By design
these algorithms find a single solution, when in reality, multiple solutions may
exist [24]. Moreover, users are not aware of this additional source of divergence.
However, our algorithm can allow the user to enumerate all possible solutions.
We believe this capability will be important for robotic systems which use sim-
ulation to reason about future actions.

Grasping and Dexterous Manipulation: Most grasping synthesis algo-
rithms [4,18,19] are designed to plan force-closure graspings. However, due to the
static indeterminacy problem, a force closure grasp does not imply a stable grasp
[17]. A typical way to address this problem is to enumerate all adjacent contact
modes and make sure they don’t have the same solution to the desired con-
tact mode. Our 3D contact enumeration method could provide fast computation
tools for stable grasps in 3D, which may help with real-time grasp planning for
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large scale objects. Similar approach can also be extended to dexterous manip-
ulation tasks, like pushing [16] and grasping using environment contacts [12],
where certain contact mode is desired during the task.

8 Conclusion

This paper introduced the first known algorithm for efficient contact mode enu-
meration in 3D. The algorithm partitions the problem into contacting/separating
mode enumeration and sliding/sticking mode enumeration. The algorithms are
based on convex hull and hyperplane arrangements, respectively. This paper
also presented results demonstrating real-time enumeration for small problems.
Finally, we highlighted related research areas to show that contact mode enu-
meration can be a useful tool for the simulation, analysis, and control of robotic
systems which make and break contact with the environment.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grants No. I1S-1909021, 11S-1813920, and I1S-1637908.
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