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Abstract
We show that the existence of a “good” coupling w.r.t. Hamming distance for any local Markov
chain on a discrete product space implies rapid mixing of the Glauber dynamics in a blackbox
fashion. More specifically, we only require the expected distance between successive iterates under
the coupling to be summable, as opposed to being one-step contractive in the worst case. Combined
with recent local-to-global arguments [16], we establish asymptotically optimal lower bounds on
the standard and modified log-Sobolev constants for the Glauber dynamics for sampling from spin
systems on bounded-degree graphs when a curvature condition [44] is satisfied. To achieve this, we
use Stein’s method for Markov chains [10, 46] to show that a “good” coupling for a local Markov
chain yields strong bounds on the spectral independence of the distribution in the sense of [6].

Our primary application is to sampling proper list-colorings on bounded-degree graphs. In
particular, combining the coupling for the flip dynamics given by [49, 13] with our techniques,
we show optimal O(n log n) mixing for the Glauber dynamics for sampling proper list-colorings
on any bounded-degree graph with maximum degree � whenever the size of the color lists are
at least

! 11
6 ≠ ‘

"
�, where ‘ ¥ 10≠5 is small constant. While O(n2) mixing was already known

before, our approach additionally yields Cherno�-type concentration bounds for Hamming Lipschitz
functions in this regime, which was not known before. Our approach is markedly di�erent from prior
works establishing spectral independence for spin systems using spatial mixing [6, 14, 15, 30], which
crucially is still open in this regime for proper list-colorings.
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1 Introduction

Given a probability distribution µ on a collection of subsets of a finite universe U with a fixed
size n, one would like to generate (approximate) samples from µ. This problem is widely
encountered in machine learning, statistical physics, and theoretical computer science, and
encompasses many problems as special cases, including distributions over bases of matroids,
discrete probabilistic graphical models, etc. A popular approach used in practice is to run
a Markov chain on supp(µ) whose stationary distribution in µ. The main question then
becomes how quickly does the distribution of the Markov chain converge to stationarity, i.e.
does it mix rapidly?

A particularly natural Markov chain known as the “down-up walk” (or “high-order
walk”) originally studied in the high-dimensional expander community [39, 21, 40, 45, 1] has
recently received a lot of attention due to applications to sampling from discrete log-concave
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32:2 Coupling to Spectral Independence

distributions [4, 18, 3, 5] and spin systems in statistical physics [1, 6, 14, 15, 30, 2, 16]. For
sampling bases of matroids, the down-up walk recovers exactly the bases exchange walk
first studied in [29, 43], and for sampling from discrete graphical models, the down-up walk
recovers exactly the classical Glauber dynamics. One of the main insights in this area is that
to prove rapid mixing of the down-up walk, it su�ces to look only at pairwise correlations
between elements, albeit for all conditional distributions of µ (see Definition 13). One
additional advantage behind this approach is that one can prove local-to-global results not
just for the spectral gap [40, 1], but also for the rate of entropy decay [18, 34, 16] and even
for the rate of decay for arbitrary f -divergences [2]. This has led to asymptotically optimal
mixing times for many problems [18, 5, 16] as well as Cherno�-type concentration bounds
for Lipschitz functions.

However, establishing su�ciently strong bounds on pairwise correlations (or, more pre-
cisely, pairwise influences; see Definition 13), remains a challenging problem. Prior works
typically rely on one of three techniques: Oppenheim’s trickle-down theorem [45, 4], spatial
mixing (or correlation decay) [6, 14, 15, 30, 16], or the absence of roots for the multivariate
generating polynomial of µ in a su�ciently large region of the complex plane [2, 17]. However,
there are settings, such as proper list-colorings when the number of colors is less than twice
the maximum degree of the graph, where the trickle-down theorem fails, and where spatial
mixing and the existence of a nice root-free region are not known.

In this work, we show that the classical technique of (path) coupling can be used to
bound these pairwise correlations. In fact, we will show that the existence of a “good”
coupling for any su�ciently “local” dynamics with stationary distribution µ implies spectral
independence for µ in the sense of [6], and hence, rapid mixing of the down-up walk. Hence,
one can view our main result as a blackbox comparison result between any local Markov
chain and the down-up walk.

As our main concrete application, we use the variable-length path coupling devised by
[13] for the flip dynamics, building o� work of Vigoda [49], to show O(n log n) mixing of the
Glauber dynamics for sampling proper list-colorings on graphs of maximum degree � Æ O(1)
whenever the number of available colors is at least

!
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�, where ‘ ¥ 10≠5 is a small

constant. This mixing time is asymptotically optimal [36]. While O(n2) mixing was known
earlier [31] (see also [49, 13]) by using a spectral gap comparison argument [19], our approach
yields optimal bounds on the rate of entropy decay as well as Cherno�-type concentration
inequalities. As mentioned earlier, strong spatial mixing and the existence of su�ciently
large root-free regions are not known in this regime for proper list-colorings. Along the
way, we make an additional conceptual contribution by answering the natural question of if
Dobrushin-type mixing conditions imply spectral independence.

1.1 Our Contributions

To state our blackbox comparison result, let us first define the down-up walk for sampling from
distributions over homogeneous set systems. We eschew the use of much of the terminology
of high-dimensional expanders so as to simplify the exposition. Let µ be a distribution over!U

n

"
= {S ™ U : |S| = n} for a finite set U and a positive integer n Ø 11. The down-up walk

1 One can view µ as being a distribution over the facets of a “pure simplicial complex” weighted by µ.
These are a generalization of usual graphs which are studied in geometry, topology, and combinatorics.
The notion of spectral independence (Definition 13) was derived from a high-dimensional notion of
“expansion” for simplicial complexes known as “local spectral expansion” first discovered by [21, 40, 45].
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is described by the following two-step process. If the current state of the chain is S
(t), then

we select the next state S
(t+1) as follows:

1. Select a uniformly random element i œ S.
2. Sample a set S œ supp(µ) satisfying S ´ S

(t) \ {i} with probability proportional to µ(S)
and transition to S

(t+1) = S.
As special cases, this class of Markov chains includes the bases exchange walk for matroids
[43] and the Glauber dynamics for distributions over discrete product spaces.

We also define our notion of a “good” coupling and locality precisely here.

I Definition 1 (Amortized Convergent Coupling). Fix an irreducible transition probability

matrix P which is reversible w.r.t. a distribution fi on a finite state space �. Further endow �
with a metric d(·, ·). We say a coupling of two faithful copies of the chain (X(t))tØ0, (Y (t))tØ0

is C-amortized convergent w.r.t. d(·, ·) if the following holds for all x, y œ �:

Œÿ

t=0

EX(t),Y (t)

Ë
d(X(t)

, Y
(t)) | X(0)

=x
Y (0)

=y

È
Æ C · d(x, y).

I Definition 2 (Locality of Dynamics). Fix an irreducible transition probability matrix P

which is reversible w.r.t. a distribution fi on a finite state space �. Further endow � with

a metric d(·, ·). For a positive real number ¸ > 0, we say the dynamics P is ¸-local w.r.t.
d(·, ·) if

max
x,yœ�:P (x,y)>0

d(x, y) Æ ¸.

Throughout the paper, unless stated otherwise, we work with Hamming distance. With these
notions in hand, we now state our blackbox comparison result.

I Theorem 3 (Blackbox Comparison with Down-Up Walk). Let µ be a distribution on
!U

n

"
,

where U is a finite universe and n Ø 1 is a positive integer. For each A ™ U with |A| Æ n ≠ 2
and A ™ S for some S œ supp(µ), let Pµ|A be some Markov chain on supp(µ | A) with

stationary distribution µ | A. Assume the family of Markov chains {Pµ|A} satisfy the

following:

1. Locality: For some ¸ Ø 0, Pµ|A is ¸-local w.r.t. Hamming distance for all A.

2. Good Coupling: For some Cn≠k > 0, Pµ|A admits a Cn≠k-amortized convergent coupling

w.r.t. Hamming distance for all k and A with |A| = k.

3. Bounded Di�erences Between Chains: For some C
Õ
n≠k > 0, we have the bound

max
Sœsupp(µ|(Afii))

Y
]

[
ÿ

T ”=S

--Pµ|A(S æ T ) ≠ Pµ|(Afii)(S æ T )
--

Z
^

\ Æ C
Õ
n≠k,

for all k, i and A with |A| = k.

If ¸ · Cn≠k · C
Õ
n≠k Æ O(1) for all k, then the down-up walk has spectral gap at least n

≠O(1)
. If,

in addition, µ is the Gibbs distribution of a spin system (see Section 2.1) on a bounded-degree

graph, then the spectral gap, standard and modified log-Sobolev constants Equation (4) for

the down-up walk are all �(1/n).

We refer the reader to Section A and references therein for the importance of lower bounding
the spectral gap, standard and modified log-Sobolev constants, and in particular, their
relation to mixing and concentration.

APPROX/RANDOM 2021



32:4 Coupling to Spectral Independence

I Remark 4. While initially it may seem inconvenient to first build an entire family of
Markov chains, one for each conditional distribution, this is very natural for many classes
of distributions, in particular those which are closed under conditioning. As we will see, in
practice, it is easy to obtain bounded di�erences between chains with C

Õ
n≠k . 1

n≠k simply
via brute force calculation. While Cn≠k & n ≠ k is often unavoidable, particularly for ¸-local
chains with ¸ Æ O(1), we will see that in many settings, we have Cn≠k . n ≠ k as well. If
additionally our dynamics are ¸-local with ¸ Æ O(1), then the above yields a n

≠O(1) spectral
gap for the down-up walk. It will turn out that our notion of ¸-locality can also be relaxed;
see Remark 10.

Our primary concrete application is to sampling proper list-colorings on graphs via the
Glauber dynamics, which may be realized as a down-up walk. In this setting, we compare
with another useful Markov chain known as the flip dynamics. The flip dynamics is ¸-local
w.r.t. unweighted Hamming distance with ¸ Æ 12, and was analyzed in [49], who gave
a greedy coupling which is one-step contractive whenever the number of available colors
is at least 11

6
�, implying it is C-amortized convergent with C Æ O(n). [13] tweaked the

parameters of the flip dynamics slightly while preserving locality, and further constructed
a variable-length coupling which contracts by a constant factor every expected O(n) steps
whenever the number of available colors is at least

!
11

6
≠ ‘

"
� for a small constant ‘ ¥ 10≠5.

We will show this variable-length coupling is also C-amortized convergent with C Æ O(n),
and deduce optimal mixing for list-colorings in this regime.

I Theorem 5. Let (G, L) be a list-coloring instance where G = (V, E) is a graph of maximum

degree � Æ O(1) and L = (L(v))vœV is a collection of color lists. Then for some absolute

constant ‘ ¥ 10≠5
, if |L(v)| Ø

!
11

6
≠ ‘

"
� for all v œ V , then the uniform distribution over

proper list-colorings for (G, L) is (÷0, . . . , ÷n≠2)-spectrally independent where ÷k Æ O(1) for

all k. Furthermore, the spectral gap, standard and modified log-Sobolev constants Equation (4)
for the Glauber dynamics are all �(1/n), and the mixing time is O(n log n).

I Remark 6. Our running time dependence on � is roughly �O(�
c
) for a mild constant

c, which is rather poor. The main bottleneck in improving this dependence lies in the
local-to-global result of [16], although our spectral independence bound, which depends
polynomially on �, can also be significantly improved.

To prove Theorem 3, we leverage recent local-to-global results [1, 16] (see Theorems 14
and 15 for formal statements), which show that if one has su�ciently strong upper bounds
on the total pairwise correlation

q
jœU

--PrS≥µ[j œ S] ≠ PrS≥µ|i[j œ S]
--, then one can deduce

rapid mixing for the down-up walk [39, 21, 40, 45]. To upper bound these correlations, we
considerably generalize a result simultaneously due to [10, 46], which was discovered in the
context of bounding the Wasserstein 1-distance between Ising models, or more generally, two
measures on the discrete hypercube {≠1, +1}n. More specifically, we extend their results in
several di�erent directions:
1. We replace the Glauber dynamics by any local dynamics.
2. We allow the dynamics to admit a coupling which in a sense “contracts on average”, as

opposed to a step-wise contraction in the worst-case.

I Theorem 7. Let µ be a distribution on
!U

n

"
, where U is some finite universe and n Ø 1 is

a positive integer. Fix an arbitrary i œ U . Let Pµ (resp. Pµ|i) be the transition kernel of any

irreducible Markov chain on supp(µ) (resp. supp(µ | i)) which is reversible w.r.t. µ (resp.

supp(µ | i)). Suppose that Pµ is ¸-local and admits a C-amortized convergent coupling, both
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w.r.t. the Hamming metric dH(·, ·). Then we have the bound

ÿ

jœU

---- Pr
S≥µ

[j œ S] ≠ Pr
S≥µ|i

[j œ S]
---- Æ C · ¸ · max

Sœsupp(µ|i)

Y
]

[
ÿ

T ”=S

--Pµ(S æ T ) ≠ Pµ|i(S æ T )
--

Z
^

\ .

1.2 Main Technical Result
We now state our main technical result, which provides the most general bound on the
di�erence between marginals of two distributions µ, ‹. We immediately use it to deduce
Theorem 7.

I Theorem 8 (Main Technical). Let µ, ‹ be any two distributions on 2U
for a finite set U

with supp(‹) ™ supp(µ), where U is a finite universe and n Ø 1 is a positive integer. Further,

let Pµ (resp. P‹) be the transition kernel of any Markov chain on supp(µ) (resp. supp(‹))
with stationary distribution µ (resp. ‹). Assume Pµ is irreducible and reversible w.r.t. µ.

Then we may bound both
q

jœU |PrS≥µ[j œ S] ≠ PrS≥‹ [j œ S]| and the 1-Wasserstein distance

W1(µ, ‹) (see Definition 11) by the following quantity:

ES≥‹

S

U
ÿ

T ”=S

|Pµ(S æ T ) ≠ P‹(S æ T )| ·
Œÿ

t=0

EX(t),Y (t)

Ë
dH(X(t)

, Y
(t)) | X(0)

=S
Y (0)

=T

È
T

V ,

where (X(t)
, Y

(t))Œ
t=0

is a coupling of the Markov chain Pµ.

I Remark 9. The technical condition supp(‹) ™ supp(µ) is just for convenience, as it ensures
the transition probability Pµ(S æ T ) also makes sense when S ≥ ‹. This assumption is
certainly satisfied in our application where ‹ is a conditional distribution of µ.

Proof of Theorem 7. We use Theorem 8 with ‹ = µ | i to obtain the upper bound

ES≥µ|i

S

U
ÿ

T ”=S

--Pµ(S æ T ) ≠ Pµ|i(S æ T )
-- ·

Œÿ

t=0

EX(t),Y (t)

Ë
dH(X(t)

, Y
(t)) | X(0)

=S
Y (0)

=T

È
T

V

Æ max
Sœsupp(µ|i)

Y
]

[
ÿ

T ”=S

--Pµ(S æ T ) ≠ Pµ|i(S æ T )
--

Z
^

\

· ES≥µ|i

C
max

T :Pµ(SæT )>0

Œÿ

t=0

EX(t),Y (t)

Ë
dH(X(t)

, Y
(t)) | X(0)

=S
Y (0)

=T

ÈD

¸ ˚˙ ˝
(ú)

.

It su�ces to bound (ú) by C · ¸. Since Pµ admits a C-amortized convergent coupling, we
have that

Œÿ

t=0

EX(t),Y (t)

Ë
dH(X(t)

, Y
(t)) | X(0)

=S
Y (0)

=T

È
Æ C · dH(S, T ).

Hence,

(ú) Æ C · ES≥µ|i

5
max

T :Pµ(SæT )>0

dH(S, T )
6

Æ C · ¸. J

APPROX/RANDOM 2021



32:6 Coupling to Spectral Independence

I Remark 10. One can see from the proof that we only needed that

ES≥µ|i

5
max

T :Pµ(SæT )

dH(S, T )
6

Æ ¸,

as opposed to the stronger notion of ¸-locality, where we have maxS,T :Pµ(SæT ) dH(S, T ) Æ ¸.
Thus, in some sense, we only need the dynamics to make local moves “on average”. We leave
it to future work to exploit this additional flexibility.

1.3 Independent Work
The results we obtain here were also independently discovered in [7].

1.4 Organization of the Paper
We state preliminaries on spin systems, spectral independence, etc. in Section 2. We then
move to the proof of our main technical result (Theorem 8) in Section 3. In Section 4, we
apply our techniques to distributions on discrete product spaces. In Section 5, we combine
our techniques with couplings constructed in prior works to obtain spectral independence for
proper list-colorings.

2 Preliminaries

For a positive integer n Ø 1, we write [n] = {1, . . . , n}. For a distribution µ on some finite
state space �, we write supp(µ) = {x œ � : µ(x) > 0} for the support of µ. For a matrix A,
we write ÎAÎŒ = maxi

q
j |A(i, j)| for the maximum absolute row sum, and if A has real

eigenvalues, we write ⁄max(A) for the largest eigenvalue of A.
Throughout, we write G = (V, E) for an undirected graph, and we will write � for the

maximum degree of G. For a finite universe U and S ™ U , we write IS for the {0, 1}-indicator
function of S; for an element j œ U , we write Ij as opposed to I{j}. If µ is a distribution over!U

n

"
and S ™ U , then we write µ | S for the conditional distribution of µ on

! U\S
n≠|S|

"
, where

(µ | S)(T ) Ã µ(S fi T ) whenever S fi T œ supp(µ), S fl T = ÿ, and (µ | S)(T ) = 0 otherwise.
We will measure convergence of our Markov chains using total variation distance, defined

as

dTV(µ, ‹) = 1
2

ÿ

x

|µ(x) ≠ ‹(x)| = sup
S™�

|µ(S) ≠ ‹(S)|

for two distributions µ, ‹ on a common state space �. We define the ‘-mixing time of a
Markov chain P on a state space � with stationary distribution fi as

tmix(‘) def= max
xœ�

min{t Ø 0 : dTV(IxP
t
, fi) Æ ‘}.

The mixing time of the chain is defined as tmix(1/4). For the reader’s convenience, in
Section A, we record the relation between mixing, spectral gap, modified and standard
log-Sobolev constants. Finally, we also define the 1-Wasserstein distance.

I Definition 11 (1-Wasserstein Distance). Given two probability measures µ, ‹ on a common

state space � endowed with a metric d(·, ·), we define the 1-Wasserstein distance W1(µ, ‹)
w.r.t. d(·, ·) by

W1(µ, ‹) = sup
f

|Eµf ≠ E‹f | ,

where the supremum is over functions f : � æ R which are 1-Lipschitz w.r.t. d(·, ·) (i.e.

|f(x) ≠ f(y)| Æ d(x, y) for all x, y œ �).
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I Remark 12. By Kantorovich duality, one may equivalently define the 1-Wasserstein distance
as

W1(µ, ‹) = inf
“

E(x,y)≥“ [d(x, y)],

where the infimum is overall couplings “ of µ, ‹ on � ◊ �.

2.1 Spin Systems
Fix an undirected graph G = (V, E), and a positive integer q Ø 2. We view [q] as a collection
of possible “spin assignments” for the vertices of G. We also fix a symmetric nonnegative
matrix A œ Rq◊q

Ø0
of “edge interaction activities” and a positive vector h œ Rq

>0
of “external

fields”. The Gibbs distribution of the spin system on G = (V, E) with parameters A, h is the
distribution µ = µG,A,h over configurations ‡ : V æ [q] given by

µ(‡) Ã
Ÿ

{u,v}œE

A(‡(u), ‡(v))
Ÿ

vœV

h(‡(v)),

where the constant of proportionality is the partition function of the system, given by

ZG(A, h) =
ÿ

‡:V æ[q]

Ÿ

{u,v}œE

A(‡(u), ‡(v))
Ÿ

vœV

h(‡(v)).

Many classical models in statistical physics as well as distributions over often-studied
combinatorial objects on graphs may be found as special cases. Notable examples include the
Ising model on cuts, the hardcore gas model on independent sets, the monomer-dimer model
on matchings, and the zero-temperature antiferromagnetic Potts model on proper colorings.

We call a configuration ‡ : V æ [q] feasible if µ(‡) > 0. For instance, if A has all positive
entries, then all configurations ‡ : V æ [q] are feasible. We call a partial configuration
› : S æ [q], where S ™ V is a subset of vertices, a boundary condition. For such a boundary
condition, we write µ | › for the conditional Gibbs distribution on V \ S given by taking µ

and conditioning on the event that the sampled ‡ ≥ µ satisfies ‡(v) = ›(v) for all v œ S.

2.2 Discrete Product Spaces and Homogeneous Set Systems
Fix a collection of finite sets (�(v))vœV , where V is some finite index set with |V | = n, and
consider a measure µ on the product space

r
vœV �(v). For instance, if �(v) = {≠1, +1} for

each v œ V , then µ is just a measure on the discrete hypercube {≠1, +1}V . An important
subclass of examples which we will discuss at length include discrete probabilistic graphical
models, where the index set V is the set of vertices of a (hyper)graph, and the measure µ

designed in such a way that the (hyper)edges represent local interactions between vertices of
the model; see Section 2.1 for more details.

As done in [6, 14, 15, 30], we view µ as a measure on
!U

n

"
where

U = {(v, Ê(v)) : v œ V, Ê(v) œ �(v)}.

Note the usual Hamming distance dH(·, ·) on
!U

n

"
is twice the usual Hamming distance

typically associated with a discrete product space.
We will often write a single vertex-assignment pair (v, c), where v œ V and c œ �(v), as

simply vc. Here, each configuration ‡ œ
r

vœV �(v) corresponds to the set {(v, ‡(v)) : v œ V }.
In this setting, the down-up walk is precisely the Glauber dynamics (or Gibbs sampler)
for sampling from µ. For each configuration ‡ œ

r
vœV �(v), we transition to the next

configuration by the following process:

APPROX/RANDOM 2021



32:8 Coupling to Spectral Independence

1. Select a uniformly random coordinate v œ V .
2. Resample ‡(v) according to µ conditioned on ‡≠v.
Let us make this more concrete. For each ‡ œ

r
vœV �(v) and v œ V , we write ‡≠v for the

partial subconfiguration of ‡ which only excludes ‡(v). For c œ �(v), we also write ‡vc for
the configuration obtained by flipping the coordinate of v from ‡(v) to c. We may then write
µ

v(· | ‡≠v) for the marginal distribution of ‡(v) under µ conditioned on ‡≠v. The transition
kernel of the Glauber dynamics may then be written as

Pµ(‡ æ ‡vc) = 1
n

· µ
v(c | ‡≠v).

2.3 Spectral Independence and The Down-Up Walk
Here, we formalize spectral independence and its connection with rapid mixing of the down-
up walk. Throughout the paper, we will assume the following connectivity/nondegeneracy
condition. Assuming Theorem 7 holds, we will also give a proof of Theorem 3.

Assumption: The down-up walk for µ and all of its conditional distributions is connected.
In the context of spin systems, this condition is guaranteed by “total connectivity” of the
system parameters (A, h) [16]. For instance, this is satisfied by all “soft-constraint” models
(i.e. those with A > 0), and many “hard-constraint” models such as the hardcore model and
the uniform distribution over proper colorings when q Ø � + 2.

Let us now formalize spectral independence.

I Definition 13 (Pairwise Influence and Spectral Independence [6]). Fix a finite universe U

and a positive integer n Ø 1. Fix a distribution µ on
!U

n

"
= {S ™ U : |S| = n}. We define

the pairwise influence of an element i on another element j by

Iµ(i æ j) def= Pr
S≥µ

[j œ S | i œ S] ≠ Pr
S≥µ

[j œ S].

We write Iµ œ RU◊U
defined by Iµ(i, j) = Iµ(i æ j) for the pairwise influence matrix of

µ. We say the distribution µ is ÷-spectrally independent if ⁄max(Iµ) Æ ÷ + 1. We say the

distribution µ is (÷0, . . . , ÷n≠2)-spectrally independent if µ is ÷0-spectrally independent,

µ | i is ÷1-spectrally independent for all i œ U , and so on.

Often in practice, and in this paper, instead of bounding ⁄max(Iµ), we will bound

ÎIµÎŒ = max
iœU

ÿ

jœU

|Iµ(i æ j)| ,

which is su�cient since it is well-known that ⁄max(A) Æ ÎAÎŒ for any matrix A with real
eigenvalues. The main usefulness of spectral independence is that it implies rapid mixing of
the down-up walk, while only requiring bounds on pairwise correlations. We state the main
local-to-global results most relevant to us here. In the most general setting, we may deduce
an inverse polynomial spectral gap from su�ciently strong spectral independence [21, 40, 1].

I Theorem 14 ([1], [6]). Let U be a finite universe, and n Ø 1 a positive integer. Let µ be a

distribution on
!U

n

"
which is (÷0, . . . , ÷n≠2)-spectrally independence. Then the down-up walk

on
!U

n

"
for sampling from µ has spectral gap at least

1
n

n≠2Ÿ

k=0

3
1 ≠ ÷k

n ≠ k ≠ 1

4
.

In particular, if ÷k Æ O(1) for all k = 0, . . . , n ≠ 2, then we have n
O(1)

-mixing of the down-up

walk.
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Subject to a certain mild technical condition on the marginals of the distribution µ, one
can transfer spectral independence bounds to “local entropy decay” bounds, and then
employ versions of the local-to-global result for entropy decay [34, 16, 2]. In the setting of
spin systems, one can further take advantage of the bounded-degree assumption to obtain
O(n log n) mixing time upper bounds [16], which are asymptotically optimal [36]. We state
the current state-of-the-art for spin systems on bounded-degree graphs here, as we will need
it in our application to proper list-colorings.

I Theorem 15 ([16]). Let (A, h) be the parameters of a spin system, and let G = (V, E) be

a graph with maximum degree at most � Æ O(1). If the Gibbs distribution µ = µG,A,h is

(÷0, . . . , ÷n≠2)-spectrally independent where ÷k Æ O(1) for all k, then both the standard and

modified log-Sobolev constants of the Glauber dynamics (i.e. the down-up walk) for sampling

from µ are at least �(1/n).

We conclude this section with a proof of Theorem 3.

Proof of Theorem 3. By Theorems 14 and 15, it su�ces to establish (÷0, . . . , ÷n≠2)-spectral
independence for ÷k Æ O(1) for all k. Fix an arbitrary A ™ U with |A| = k Æ n ≠ 2 and
A ™ S for some S œ supp(µ). With the locality and coupling assumptions, Theorem 7 shows
that for each i œ U , the absolute row sum of Iµ|A for row i is upper bounded by

¸ · Cn≠k · max
Sœsupp(µ|i)

Y
]

[
ÿ

T ”=S

--Pµ(S æ T ) ≠ Pµ|i(S æ T )
--

Z
^

\ .

Bounded di�erences between chains then yields the upper bound ⁄max(Iµ|A) Æ
..Iµ|A

..
Œ Æ

¸ · Cn≠k · C
Õ
n≠k, which is O(1) by assumption. As this holds for all such A, it follows that

÷k Æ O(1). J

3 Stein’s Method for Markov Chains

Our goal in this section is to prove Theorem 8. We follow [10, 46], using what is known as
Stein’s method for Markov chains. Historically, Stein’s method [48] was developed as
a method to bound distances between probability measures, with the primary motivation
being to prove quantitative central limit theorems. [10, 46] adapted this method to bound
the distance between two probability measures µ, ‹ on the discrete hypercube {≠1, +1}n

assuming the Glauber dynamics of either measure admits a contractive coupling. Our main
intuition lies in viewing spectral independence (see Definition 13) as a measure of distance
between di�erent conditionings of the same distribution. Thus, one can try to apply this
method to bound the spectral independence of a distribution. Let us now elucidate this
method.

For a fixed function f : � æ R, we will construct an auxiliary function h : � æ R which
satisfies the Poisson equation

h ≠ Pµh = f ≠ Eµf.

Questions concerning Eµf may then be studied by looking at Pµh. The following lemma
constructs h more explicitly.

I Lemma 16 (see Lemma 2.1 [10], Lemma 2.3 [46]). Fix an irreducible transition probability

matrix P which is reversible w.r.t. a distribution fi on a finite state space �. Let (X(t))Œ
t=0

be the Markov chain generated by P , and for a fixed function f : � æ R, define h : � æ R by

h(x) =
Œÿ

t=0

E
Ë
f(X(t)) ≠ Efif | X

(0) = x

È
.

APPROX/RANDOM 2021
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Then h is well-defined as a function, and further satisfies the Poisson equation

h ≠ Ph = f ≠ Efif.

With this lemma in hand, we can immediately prove Theorem 8.

Proof of Theorem 8. Fix a function f : 2U æ R, and let h be the solution to the Poisson
equation h ≠ Pµh = f ≠ Eµf given in Lemma 16. Then since ‹ is stationary w.r.t. P‹ , we
have E‹P‹h = E‹h, so that using the Poisson equation yields

E‹(P‹ ≠ Pµ)h = E‹h ≠ E‹ [h ≠ f + Eµf ] = E‹f ≠ Eµf.

Hence, by the Triangle Inequality, we have that |Eµf ≠ E‹f | Æ E‹ |(P‹ ≠ Pµ)h|.
Now, let us bound |(P‹ ≠ Pµ)h| entrywise. For each S œ supp(‹), using that Pµ(S æ

S) = 1 ≠
q

T ”=S Pµ(S æ T ) (and analogously for P‹),

(P‹ ≠ Pµ)h(S)

=
ÿ

T

(P‹(S æ T ) ≠ Pµ(S æ T )) · h(T )

=
ÿ

T ”=S

(P‹(S æ T ) ≠ Pµ(S æ T )) · (h(T ) ≠ h(S))

=
ÿ

T ”=S

(P‹(S æ T ) ≠ Pµ(S æ T )) ·
Œÿ

t=0

EX(t),Y (t)

Ë
f(Y (t)) ≠ f(X(t)) | X(0)

=S
Y (0)

=T

È
.

(Lemma 16)

It follows by the Triangle Inequality that

|(P‹ ≠ Pµ)h(S)| Æ
ÿ

T ”=S

|Pµ(S æ T ) ≠ P‹(S æ T )|

·
Œÿ

t=0

EX(t),Y (t)

Ë---f(X(t)) ≠ f(Y (t))
--- | X(0)

=S
Y (0)

=T

È
. (1)

Taking expectations w.r.t. ‹ finally yields a bound on |Eµf ≠ E‹f |. The bound on the
1-Wasserstein distance follows immediately by taking f to be an arbitrary function which
is 1-Lipschitz the metric dH(·, ·). To obtain the bound on the total di�erence between
marginals

q
jœU |PrS≥µ[j œ S] ≠ PrS≥‹ [j œ S]|, we apply the above inequality to f = Ij

for each j œ U and sum over all j œ U , noting that dH(S, T ) =
q

jœU |Ij(S) ≠ Ij(T )| and
Eµf = EµIj = PrS≥µ[j œ S] (and analogously for ‹). J

4 Discrete Ricci Curvature on Product Spaces

In this section, we discuss applications of our results to general distributions on discrete
product spaces. We show that the existence of a contractive coupling w.r.t. Hamming
distance for the Glauber dynamics implies O(1)-spectral independence. Such a condition is
known as a discrete Ricci curvature condition for the dynamics in the sense of [44]. This also
shows that the Dobrushin uniqueness condition implies O(1)-spectral independence. When
combined with the local-to-global result of [16], we resolve an unpublished conjecture due
Peres and Tetali for spin systems on bounded-degree graphs; see [28] and references therein
for recent progress on this conjecture on general graphs. We also give an alternative proof of
the �(1/n) lower bound on the standard and modified log-Sobolev constants of the Glauber
dynamics in this setting when a Dobrushin-type condition is satisfied, recovering a result
of [42].
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Classical work on Dobrushin-type conditions [25, 22, 23, 24, 35, 26] yield relatively simple
and direct criteria for rapid mixing of the Glauber dynamics [11, 12]. The main idea here
is intuitively similar to that of spectral independence (although the notion of Dobrushin
influence here historically precedes spectral independence): so long as some measure of
“total influence” is small, then µ is close in some sense to a product distribution, for which
rapid mixing holds. However, prior to our work, the precise relationship between Dobrushin
influence and the notion of pairwise influence used in spectral independence was unclear.
This is an additional conceptual contribution of our work.

I Definition 17 (Discrete Ricci Curvature [44]). Fix an irreducible transition probability

matrix P which is reversible w.r.t. a distribution fi on a finite state space �. Further, endow

� with a metric d(·, ·). We define the discrete Ricci curvature of the Markov chain P

w.r.t. the metric space (�, d) by

– = inf
x,yœ�:x”=y

;
1 ≠ W1(P (x æ ·), P (y æ ·))

d(x, y)

<
,

where W1(·, ·) is again the 1-Wasserstein distance w.r.t. d(·, ·). In other words, for every

pair x, y œ �, there is a coupling of the transitions P (x æ ·), P (y æ ·) such that the expected

distance d(·, ·) under the coupling contracts by a (1 ≠ –)-multiplicative factor. In this case,

we will say P admits a (1 ≠ –)-contractive coupling w.r.t. d(·, ·).

I Fact 18. Suppose P admits a (1 ≠ –)-contractive coupling w.r.t. d(·, ·). Then this coupling

is C-amortized convergent with C = 1

– .

The following is an immediate application of Theorem 7, and yields a positive resolution
to the Peres-Tetali conjecture for spin systems on bounded-degree graphs.

I Theorem 19 (Curvature Implies Spectral Independence on Product Spaces). Let µ be a

measure on a discrete product space � =
r

vœV �(v), where V is a finite index set and

�(v) is finite for all v œ V . Endow � with the Hamming metric dH(·, ·), and let – be the

discrete Ricci curvature of the Glauber dynamics w.r.t. (�, dH). Then, the distribution is

(÷0, . . . , ÷n≠2)-spectrally independent where ÷k Æ 4

–n ≠1 for all k. In particular, if – Ø �(1/n),
then the Glauber dynamics has spectral gap n

≠O(1)
. If additionally the measure µ is the Gibbs

distribution of a spin system on a bounded-degree graph, then the spectral gap, standard and

modified log-Sobolev constants for the Glauber dynamics are all �(1/n).

Note that since the Glauber dynamics only updates the assignment to a single v œ V in each
step, it must be that – Æ O(1/n). Theorem 19 follows almost immediately from Fact 18 and
a straightforward calculation involving the entries of the transition matrix of the Glauber
dynamics. In the interest of space, we provide the proof in Section B.

4.1 Dobrushin Uniqueness and Spectral Independence
We now use Theorem 19 to show that Dobrushin’s uniqueness condition implies spectral
independence.

I Definition 20 (Dobrushin Influence). Fix a probability measure on a finite product spacer
vœV �(v), where V is a finite indexing set. For each u œ V , let Du be the collection of

pairs ·, ‡ œ
r

vœV �(v) such that ·≠u = ‡≠u while ·(u) ”= ‡(u). For distinct u, v œ V , we

may then define the Dobrushin influence of u on v by

flµ(u æ v) = max
(·,‡)œDu

dTV(µv(· | ·≠v), µ
v(· | ‡≠v)).
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We write flµ = (flµ(u æ v))u,v œ RV ◊V
for the Dobrushin influence matrix. We say the

distribution µ satisfies the Dobrushin uniqueness condition if

ÎflµÎ
1

def= max
uœV

ÿ

vœV

flµ(u æ v) < 1.

A straightforward application of the path coupling technique of [11, 12] shows that if
ÎflµÎ

1
< 1, then there is a coupling for the Glauber dynamics which is one-step contractive

w.r.t. Hamming distance. We state this well-known implication formally here, and refer to
[26] for the proof.

I Fact 21. Let µ be a distribution on some finite product space
r

vœV �(v), where V is a

finite index set. If ÎflµÎ
1

Æ “ < 1, then the Glauber dynamics is (1 ≠ –)-contractive w.r.t.

Hamming distance with – = 1

n (1 ≠ “).

In particular, combining Theorem 19 and Fact 21 immediately yields spectral independence
under the Dobrushin uniqueness condition. Combined with Theorem 15, this additionally
recovers a version of a result due to [42], which says that a weaker ¸2-version of the Dobrushin
uniqueness condition (see also [35, 26]) implies a �(1/n) log-Sobolev constant for the Glauber
dynamics.

I Corollary 22 (Dobrushin Uniqueness Implies Spectral Independence). Let µ be a distribution

on some finite product space
r

vœV �(v), where V is a finite index set. If ÎflµÎ
1

Æ “ < 1,

then µ is (÷0, . . . , ÷n≠2)-spectrally independent with ÷k Æ 4

1≠“ ≠ 1 for all k. If additionally

the measure µ is the Gibbs distribution of a spin system on a bounded-degree graph, then the

spectral gap, standard and modified log-Sobolev constants for the Glauber dynamics are all

�(1/n).

5 Spectral Independence for Proper List-Colorings

We now specialize to the setting of proper list-colorings of a graph. Formally, we fix a graph
G = (V, E), a collection of color lists (L(v))vœV . We call a configuration ‡ œ

r
vœV L(v)

a list-coloring of G. We say a list-coloring ‡ is proper if ‡(u) ”= ‡(v) whenever u ”= v are
neighbors. Throughout, we will let � denote the maximum degree of G, and we assume
� Æ O(1). We also assume there is a positive integer q Ø � + 2 such that L(v) ™ [q] for all
v œ V .

A well-known result due to [38] using path coupling shows that if |L(v)| > 2� for all
v œ V , then there is a contractive one-step coupling for the Glauber dynamics which yields
O(n log n) mixing. As noted in [16], one can adapt the argument of [32] to obtain strong
spatial mixing when |L(v)| > 2�, and use the arguments of [15, 30] to deduce spectral
independence in this regime. However, it is still open whether one can obtain strong spatial
mixing below the 2� threshold; see [32, 27] for results going below 2� on special classes of
graphs.

In the seminal work of Vigoda [49], it was shown that there is a contractive one-step
coupling for a di�erent local Markov chain known as the flip dynamics whenever |L(v)| Ø 11

6
�.

This threshold was further improved to |L(v)| Ø
!

11

6
≠ ‘

"
� in a recent breakthrough by [13],

this time using a more sophisticated variable-length coupling. Both works further showed
that Glauber dynamics mixes in O(n2) time in this regime using a spectral gap comparison
argument [19].

Our goal is to use these coupling results along with Theorem 7 to obtain spectral
independence for the uniform distribution over proper list-colorings in the regime |L(v)| Ø
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!
11

6
≠ ‘

"
�. Combined with Theorem 15, we improve the previous O(n2) mixing time bound

to the optimal O(n log n), as well as show Cherno�-type concentration bounds for Lipschitz
functions, which were not known before.

5.1 The Flip Dynamics
We follow the presentation in [13], which generalizes the flip dynamics analyzed in [49] to
list-colorings. Fix a list-coloring ‡. We say a path u = w1, . . . , w¸ = v in G is an alternating
path from u to v using colors ‡(u), c if for all i, we have ‡wi œ {‡(u), c} and ‡wi ”= ‡wi+1 .
For a fixed list-coloring ‡, v œ V and color c, we define the Kempe component for ‡, v, c
by the following subset of vertices.

S‡(u, c) =
Ó

v œ V : ÷ alternating path from u
to v using ‡(u),c

Ô
.

Given ‡ and a Kempe component S = S‡(u, c), we define ‡S to be the coloring obtained by
“flipping” the color assigned to vertices in {v œ S : ‡(v) = ‡(u)} to c, and the color assigned
to vertices in {v œ S : ‡(v) = c} to ‡(u). Note that ‡S need not be a proper list-coloring; we
say a Kempe component S = S‡(u, c) is flippable if the coloring ‡S is a proper list-coloring.

For each j œ N, let 0 Æ pj Æ 1 be a tunable parameter to be determined later. We define
the flip dynamics with flip parameters {pj}jœN for sampling proper list-colorings as follows:
Given the current list-coloring ‡

(t≠1), we generate the next list-coloring ‡
(t) by the following

two-step process:
1. Select a uniformly random vertex v

(t) œ V , and a uniformly random color c
(t) œ L(v(t)).

2. If the Kempe component S = S‡(t≠1)(v(t)
, c

(t)) is flippable, set ‡
(t) = ‡

(t≠1)

S with
probability pj

j and ‡
(t) = ‡

(t≠1) otherwise, where j = |S|.
We write Pµ,flip for the transition probability matrix of the flip dynamics. It is straightforward
to verify that the stationary distribution of the flip dynamics is uniform over proper list-
colorings, regardless of the choice of the flip parameters. One can recover the Wang-Swendsen-
Koteck˝ Markov chain by setting pj = j for all j œ N [50].

[49] showed that with flip parameters

p1 = 1 p2 = 13
42 p3 = 1

6 p4 = 2
21 p5 = 1

21 p6 = 1
84 pj = 0, ’j Ø 7, (2)

there is a one-step coupling which is contractive w.r.t. Hamming distance whenever |L(v)| Ø
11

6
�. [13] showed using linear programming arguments that this is optimal in the sense that

when |L(v)| <
11

6
, there is no choice of the flip parameters which has a one-step contractive

coupling w.r.t. Hamming distance. They additionally construct an explicit family of hard
instances witnessing optimality.

One of the key insights of [13] is that the optimal choice of flip parameters comes out
of the solution to a linear program, with the objective value of the program governing the
contraction properties of the coupling. By solving this linear program, they show that for
the following choice of flip parameters

p̂1 = 1 p̂2 ¥ 0.296706 p̂3 ¥ 0.166762 p̂4 ¥ 0.101790
p̂5 ¥ 0.058475 p̂6 = 0.025989 pj = 0, ’j Ø 7, (3)

there is a variable-length coupling such that the Hamming distance contracts by a constant
factor every O(n) steps in expectation. One can thus expect that the coupling is C-amortized
convergent with C Æ O(n).

We formalize their main coupling result in the following subsection. For the moment, we
state two intermediate lemmas, and show how they imply Theorem 5.
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I Lemma 23. Assume the input graph G = (V, E) has maximum degree � Æ O(1). Then,

the flip dynamics with parameters given in Equation (3) satisfy the following:

max
·œsupp(µ|uc)

Y
]

[
ÿ

‡ ”=·

--Pµ,flip(· æ ‡) ≠ Pµ|uc,flip(· æ ‡)
--

Z
^

\ Æ O(1/n).

I Lemma 24. Let (G, L) be a list-coloring instance, where � Æ O(1) and |L(v)| Ø ⁄
ú� for

all v œ V , where ⁄
ú = 11

6
≠ ‘ and ‘ ¥ 10≠5

is a small constant. Then the flip dynamics with

parameters given in Equation (3) admits a C-amortized convergent coupling w.r.t. Hamming

distance where C Æ O(n).

Proof of Theorem 5. The flip dynamics is clearly O(1)-local w.r.t. Hamming distance since
only Kempe components of size at most 6 can be flipped. (÷0, . . . , ÷n≠2)-spectral independence
where ÷k Æ O(1) for all k then follows immediately by combining Lemma 23 and Lemma 24
with Theorem 3. The lower bounds on the spectral gap, standard and modified log-Sobolev
constants then follow from Theorem 15. J

We provide the proof of Lemma 23 in Section B. At this point, all that remains is to
prove Lemma 24, which we do using the variable-length path coupling constructed in [13].

5.2 Variable-Length Path Coupling: Proof of Lemma 24
To begin, we first define the notion of variable-length coupling following [37, 13].

I Definition 25 (Path-Generating Set). For a finite state space �, a path generating set is

a subset S ™
!

�

2

"
such that the undirected graph (�, S) is connected. We let dS(·, ·) denote

the induced shortest-path metric on �, and write d(·, ·) when the path generating set S is

clear from context. We also write x ≥ y whenever {x, y} œ S.

I Definition 26 (Variable-Length Path Coupling [37]). Fix an irreducible transition probability

matrix P which is reversible w.r.t. a distribution fi on a finite state space �, and let d(·, ·) be

a metric on � induced by a path generating set S ™
!

�

2

"
. For every pair of starting states

x
(0)

, y
(0) œ � with x

(0) ≥ y
(0)

, we let (x, y, T ) = (x(x(0)
, y

(0)), y(x(0)
, y

(0)), T (x(0)
, y

(0)))
denote a random variable where T is a (potentially random) nonnegative integer and x =
(x(0)

, x
(1)

, . . . , x
(T )), y = (y(0)

, y
(1)

, . . . , y
(T )) are length-T sequences of states in �.

For every integer t Ø 0 and every pair of neighboring states x
(0) ≥ y

(0)
, define random

variables xt, yt by the following experiment. Sample (x, y, T ), and set xt = x
(t)

, yt = y
(t)

if t Æ
T , and sample xt ≥ P

t≠T (x(T )
, ·), yt ≥ P

t≠T (y(T )
, ·) if t > T . We say the random variable

(x, y, T ) is a variable-length path coupling for P if xt ≥ P
t(x(0)

, ·), yt ≥ P
t(y(0)

, ·) for

every integer t Ø 0 and every pair of neighboring states x
(0) ≥ y

(0)
. In this case, we say

that x, y are individually faithful copies. If T = t with probability 1 for some nonnegative

integer t Ø 0, we say that (x, y, T ) is a t-step path coupling.

I Remark 27. In our application to colorings, the random time T will be a stopping time in
the sense that its value only depends on the past, i.e. x

(0)
, y

(0)
, . . . , x

(t)
, y

(t) for t Æ T .

Given a variable-length path coupling, [37] showed one can construct a full coupling, general-
izing the original path coupling theorem of [11, 12]. Furthermore, the contraction properties
of the full coupling are inherited from the path coupling. While the original statement in
[37] merely states rapid mixing given a variable-length path coupling, its proof implies the
following.
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I Theorem 28 (Proof of Corollary 4 from [37]). Let (x, y, T ) be a variable-length path coupling

w.r.t. a path generating set S for a reversible Markov chain P on a state space � with

stationary distribution fi. Let

–
def= 1 ≠ max

{x(0),y(0)}œS
E[dH(x(T )

, y
(T ))]

W
def= max

{x(0),y(0)}œS,tÆT
dH(x(t)

, y
(t))

—
def= max

{x(0),y(0)}œS
E[T ].

Assume 0 < – < 1. Then there is a full M -step coupling with M = Á 2—W
– Ë such that for all

pairs x
(0)

, y
(0)

, which need not be neighbors in S, we have the inequality

E[dH(x(M)
, y

(M)) | x
(0)

, y
(0)] Æ

1
1 ≠ –

2

2
· dH(x(0)

, y
(0)).

Given this, all we need now is a good variable-length path coupling. This is given by the
following result due to [13].

I Theorem 29 ([13]). Let (G, L) be a list-coloring instance, where G = (V, E) is a graph

with maximum degree � Æ O(1), and L = (L(v))vœV is a collection of color lists. Let

the path generating set S be given by the set of pairs {·, ‡} such that ·, ‡ di�er on the

coloring of exactly one vertex. Assume |L(v)| Ø ⁄
ú� for all v œ V where ⁄

ú = 11

6
≠ ‘ for an

absolute constant ‘ ¥ 10≠5
. Then there exists a variable-length path coupling (· , ‡, T ) for

the flip dynamics w.r.t. S with flip parameters given in Equation (3), where T is the first

time such that the Hamming distance changes, such that – = q≠⁄ú
�

q≠�≠2
= �(1), W = 13 and

— Æ qn
q≠�≠2

Æ O(n)

With these tools in hand, we may now finally prove Lemma 24 and complete the proof of
Theorem 5.

Proof of Lemma 24. First, note that the path generating set S generates the Hamming
metric dH(·, ·) on proper list-colorings. Now, given the variable-length path coupling furnished
by Theorem 29, we use Theorem 28 to construct an M -step coupling with M = Á 2—W

– Ë Æ O(n)
which contracts with rate 1 ≠ – every M steps, where – is is a constant independent of n.
Under this coupling, for every k = 0, . . . , M ≠ 1 and every positive integer j, we have that

E·(jM+k),‡(jM+k)

Ë
dH(· (jM+k)

, ‡
(jM+k)) | ·

(k)
, ‡

(k)

È

Æ
1

1 ≠ –

2

2
E·((j≠1)M+k),‡((j≠1)M+k)

Ë
dH(· ((j≠1)M+k)

, ‡
((j≠1)M+k)) | ·

(k)
, ‡

(k)

È

Æ . . .

Æ
1

1 ≠ –

2

2j
· dH(· (k)

, ‡
(k)),

where ·
(0) = ·, ‡

(0) = ‡ are arbitrary starting states, which need not be neighbors under S.
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It follows that
Œÿ

t=0

E·(t),‡(t)

Ë
dH(· (t)

, ‡
(t)) | ·(0)

=·
‡(0)

=‡

È

Æ
M≠1ÿ

k=0

Œÿ

j=0

E·(jM+k),‡(jM+k)

Ë
dH(· (jM+k)

, ‡
(jM+k)) | ·

(k)
, ‡

(k)

È

Æ
M≠1ÿ

k=0

E
Ë
dH(· (k)

, ‡
(k)) | ·

(0)
, ‡

(0)

È Œÿ

j=0

1
1 ≠ –

2

2j

= 2
–

M≠1ÿ

k=0

E
Ë
dH(· (k)

, ‡
(k)) | ·

(0)
, ‡

(0)

È

Æ 2M

–
dH(· (0)

, ‡
(0)) (ú)

Æ O(n) · dH(· (0)
, ‡

(0)).

To justify (ú), note that T is the first time the Hamming distance changes, and that each
time the Hamming distance changes, the expected Hamming distance contracts by a factor
of 1 ≠ –. J

6 Future Directions

Two concrete open problems are to bring down the required number of colors from
!

11

6
≠ ‘

"
�

to � + 2, and to remove the bounded-degree assumption, both in this work and in [16].
Another interesting question is if spectral independence implies any useful notion of correlation
decay, such as strong spatial mixing, or the absence of zeros for partition function in a
large region. This is relevant particularly for proper list-colorings, where we showed spectral
independence when q Ø

!
11

6
≠ ‘

"
�, but correlation decay and absence of zeros are both open

in general when number of colors is below 2�.
We also reiterate that one feature of our approach which we haven’t exploited is that in

order to obtain O(1)-spectral independence, it su�ces for the Markov chain admitting the
nice coupling to merely update O(1)-coordinates in a single move “on average”, as opposed
to the worst-case starting state; see Remark 10. We leave it to future work to see if this can
be exploited.
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A Variance and Entropy Decay

While we primarily use prior results on the spectral gap, and standard and modified log-
Sobolev constants as blackboxes, to keep this paper self-contained, we define these constants
here, and state their relevance to mixing and concentration. Fix a Markov kernel P on a
finite state space � which reversible w.r.t. a distribution fi. We may define an inner product
using fi by Èf, gÍfi = Efi[fg]. This inner product together with the kernel P induces a positive
semidefinite quadratic form known as the Dirichlet form, defined as EP (f, g) = Èf, (I ≠ P )gÍfi.
The variance of a function f : � æ R is given by Varfi(f) = Efi(f2) ≠ Efi(f)2, while the
entropy of a function f : � æ RØ0 is given by Entfi(f) = Efi(f log f) ≠ Efi(f) logEfi(f).

With these notions in hand, we may now define the following constants:

(Spectral Gap) ⁄(P ) def= inf
f ”=0

E(f, f)
Varfi(f)

(Modified Log-Sobolev Constant) fl(P ) def= inf
fØ0

E(f, log f)
Entfi(f)

(Standard Log-Sobolev Constant) Ÿ(P ) def= inf
fØ0

E(
Ô

f,
Ô

f)
Entfi(f) . (4)

It is known that 4Ÿ(P ) Æ fl(P ) Æ 2⁄(P ) [8], with lower bounds on Ÿ(P ) being the most
di�cult to establish. For the reader’s convenience, we collect some well-known relations
between these constants, mixing, and concentration.

I Proposition 30 (Mixing and Concentration). We have the following bounds on the mixing

time of a Markov chain with transition probability matrix P and stationary distribution fi.

tmix(‘) Æ 1
⁄(P )

3
1
2 log 1

fimin

+ log 1
2‘

4
[41]

tmix(‘) Æ 1
fl(P )

3
log log 1

fimin

+ log 1
2‘2

4
[8]

tmix(‘) Æ 1
4Ÿ(P )

3
log log 1

fimin

+ log 1
2‘2

4
. [20]
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Furthermore, for every function f : � æ R which is 1-Lipschitz w.r.t. graph distance under

P , we have the following Cherno�-type concentration inequalities [33, 47, 9].

Pr[f Ø Efi(f) + ‘] Æ exp
3

≠fl(P )‘2

2v(f)

4

Pr[f Ø Efi(f) + ‘] Æ exp
3

≠Ÿ(P )‘2

2v(f)

4
,

where

v(f) def= max
xœ�

Y
]

[
ÿ

yœ�

P (x æ y) · (f(x) ≠ f(y))2

Z
^

\ .

B Missing Proofs

Proof of Theorem 19. We show that ÷0 Æ 4

–n ≠ 1. The bound ÷k Æ 4

–n ≠ 1 follows by the
same argument by instead considering the Glauber dynamics for the conditional distributions
µ | A of µ. Because the Glauber dynamics only updates at most one coordinate in each
step, it is 2-local w.r.t. dH(·, ·). By Fact 18, we also have there is a C-amortized convergent
coupling with C = 1

– . It follows from Theorem 7 that

ÿ

vœV

ÿ

cÕœ�(v)

---- Pr
‡≥µ

[‡(v) = c
Õ | ‡(u) = c] ≠ Pr

‡≥µ
[‡(v) = c

Õ]
----

Æ 2
–

max
‡œsupp(µ|uc)

ÿ

· ”=‡

--Pµ(‡ æ ·) ≠ Pµ|uc(‡ æ ·)
-- .

Now, by the definition of the Glauber dynamics, for each ‡ œ supp(µ | uc), we have
ÿ

· ”=‡

--Pµ(‡ æ ·) ≠ Pµ|uc(‡ æ ·)
--

=
ÿ

vœV

ÿ

cÕœL(v):cÕ ”=‡(v)

----
1
n

µ
v(cÕ | ‡≠v) ≠ 1

n ≠ 1µ
v
uc(cÕ | ‡≠v)

----

=
ÿ

vœV :v ”=u

ÿ

cÕœL(v):cÕ ”=‡(v)

3
1

n ≠ 1 ≠ 1
n

4
µ

v(cÕ | ‡≠v) +
ÿ

cÕœL(u):cÕ ”=c

1
n

µ
v(cÕ | ‡≠v)

Æ 2
n

.

The claim for the spectral gap in the case – Ø �(1/n) follows by combining with Theorem 14.
The final claim for spin systems on bounded-degree graphs follows by combining with
Theorem 15. J

Proof of Lemma 23. The main detail one must be careful of is that the flip dynamics for
sampling from µ | uc always leaves the color for u fixed to c. Hence, flipping any Kempe
component containing u leads to potentially di�erent list-colorings under Pµ,flip versus
Pµ|uc,flip. However, since we only flip components of O(1)-size, this isn’t an issue for us.

Fix a · with ·(u) = c, and let B(u, 6) denote the set of vertices of shortest path distance
at most 6 away from u in G. Since we only flip Kempe components of size at most 6, we
have that for any v œ V \ B(u, 6) and c œ L(u), the flippable Kempe component S· (v, c

Õ)
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does not contain u, and hence, flipping it leads to the same list-coloring under Pµ,flip and
Pµ|vc,flip. Hence, we have

ÿ

‡ ”=·

--Pµ,flip(· æ ‡) ≠ Pµ|uc,flip(· æ ‡)
--

=
ÿ

vœV :v /œB(u,6)

ÿ

cÕœL(v)

1
|L(v)| ·

3
1
n

≠ 1
n ≠ 1

4
· p|S· (v,cÕ)|

+
ÿ

vœB(u,6)

ÿ

cÕœ[q]

--Pµ,flip(· æ ‡) ≠ Pµ|uc,flip(· æ ‡)
--

Æ n ≠ |B(u, 6)|
n(n ≠ 1) + |B(u, 6)|

n

Æ |B(u, 6)| + 1
n

. �6

n

Æ O(1/n). (Bounded-degree assumption)

J

I Remark 31. As one can see in the proof from the factor of �6, we have made no attempt
to optimize constants.
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