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We consider the problem of anomalous dissipation for
passive scalars advected by an incompressible flow.
We review known results on anomalous dissipation
from the point of view of the analysis of partial
differential equations, and present simple rigorous
examples of scalars that admit a Batchelor-type energy
spectrum and exhibit anomalous dissipation in the
limit of zero scalar diffusivity.

To Uriel Frisch, on the occasion of his 80th birthday.

1. Introduction

We consider the motion of a passive scalar in an
incompressible fluid. We confine ourselves to two space
dimensions, which impose more restrictions on the
motion of the fluid, but simplify the analysis somewhat.
Our results can be generalized to three space dimensions.

We are interested in anomalous dissipation, that is,
the scalar dissipation rate does not vanish in the limit
of zero scalar diffusivity. Anomalous dissipation has
been observed in experiments as well as in numerical
simulations of turbulent mixing (we refer to [1] and
references therein for a discussion of experimental and
numerical evidence).

We suppose the scalar 6 is advected by a given
divergence-free vector field and, at the same time,
diffuses. In turbulent mixing, it is commonly assumed
that the feedback of the scalar field onto the flow is
absent or negligible. The fluid flow is assumed turbulent,
and the corresponding velocity field is often modeled
as a random field satisfying certain prescribed statistics
and having spectra of a certain form. For isotropic,
homogeneous turbulence, we have the -celebrated
Kolmogorov’s theory in 3 space dimensions, and the
Kraichnan-Batchelor theory in 2 space dimensions (see
[2] for a comprehensive treatment).

In turbulent mixing, several regimes can be identified,
depending on the relative strength of the fluid viscosity
v and scalar diffusivity .
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This relative strength is encoded in the Schmidt number Sc:= K, which can vary several orders
K

of magnitude. We are interested here in the so-called viscous—convective range, where Sc>> 1. In
this range, a power law for the scalar spectrum FEy was derived by Bachelor from dynamical
arguments, assuming a stationary rate of strain for the flow [3]:

Ey(k)=Cpx ()21, (L1)

where k is the wavenumber, Cg is the Batchelor constant, and x is the mean scalar dissipation
rate. Evidence of the validity of this power law is somewhat mixed, especially the value of the
Batchelor constant (see again [1] and references therein), but we will assume it throughout.

There is an extensive literature on mixing in fluids. From a dynamical systems point of view,
we mention only the comprehensive reference [4]. There is also an important connection with
Rayleigh-Bénard convection, where the Schmidt number is replaced by the Prandtl number (see
e.g. [5, 6]). Mixing has been recognized as an important mechanism for stabilization in fluids, with
connections with phenomena such as inviscid damping for the Euler equations [7] and enhanced
dissipation [8]. Recently, several works have addressed rigorous bounds on mixing rates, utilizing
so-called mix-norms [9, 10, 11, 12], which allow for a quantitative approach [13, 14, 15, 16]. These
bounds have been shown to be sharp under various constraints on the flow, such as finite energy
or enstrophy, both in the deterministic setting [16, 17, 18, 19], as well as in the stochastic setting
[20]. All these results concern pure mixing and transport of the scalar field and can be considered
in the limit of infinite Schmidt number. There are significantly fewer works in pde/analysis
addressing mixing with diffusion and, in particular, bounds on the energy dissipation rate or
the spectrum for scalar turbulence at large, but finite, Schmidt number [21, 22, 23, 24]. In fact,
transport can both enhance as well as balance diffusion.

Historically, the Kraichnan model [25] has played an important role in the study of anomalous
diffusion and anomalous scaling (among the many references, we mention in particular [26,
27, 28, 29, 30], and the monograph [31]). In this model, the passive scalar is advected by
a random flow, generated by a Gaussian-in-space, white-in-time vector field. The velocity is
only Holder continuous and hence the Lagrangian trajectories are not unique. In this model,
anomalous dissipation can be established rigorously, using the results in [32, 33]. The non-
uniqueness of Lagrangian trajectories is a more general mechanisms for spontaneous stochasticity
(see [34, 35, 36, 37] and references therein).

The purpose of this work is to present simple deterministic examples of scalar fields and
advecting flows, compatible with the Batchelor scaling (1.1), for which anomalous dissipation
exists and it is a purely diffusive effect. The flows in these examples are exact solutions of the
incompressible Euler or Navier-Stokes equations, with a certain symmetry compatible with that
of the scalar. Their effect is purely kinematic and not dynamic.

2. Preliminaries

Throughout we denote the scalar field by 6%, where 6" (x, y, t) is the function of time ¢ and space
(z,y), a point in either R? or the torus T2. A function on the torus T2 will be assumed to be 1-
periodic for convenience, but any period can be considered. Our results can also be extended to
3 space dimensions, but 2 space dimensions is a natural setting for scalar mixing as it is the most
constrained, non-trivial dimension. In what follows, we use the shorthand notation for functions
of space and time

f@)(z,y) = f(z,y,t).
The scalar 6" will be assumed to satisfy the advection-diffusion equation in weak sense:

80" +u - VO =k AQ”, .1)

on R? x [0,00) or T? x [0, 00), where again & is the diffusivity of the scalar and u is a given
divergence-free vector field. The advecting field u will satisfy either the Navier-Stokes (v > 0) or
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the Euler equations (v = 0) for a certain pressure field p:

{Gtu+u~Vu—VAu+Vp, (22)

divu =0,

where v denotes the fluid viscosity and div= V- is the divergence operator. Since we will keep v
fixed, we do not explicitly indicate the dependence of u on v. We give the initial condition for (2.1)
as 0" (z,y,0) = 0p(z, y) and we take 0y independent of diffusivity « for reasons that will be clear
later. On the full plane R?, we will also impose that 6 be compactly supported. These conditions
on 6y can be relaxed.

In the viscous-convective regime at fixed viscosity v >0, we can assume that the flow is
regular, which makes it easier to treat pure transport. Formally as x — 0, 6 converges to a
solution ° of the linear transport equation:

9:60° +u-ve’ =0, (2.3)

with initial condition 6°(z, y, 0) = 8 (x, y). If u is sufficiently regular, at least Lipschitz continuous
in space uniformly in time, and 6y is a continuous function, we can solve (2.3) by the method of
characteristics:

0°(x,y,t) = 00(P; ' (x,9)),

where @ is the flow of the vector field u. The formula above still holds for a.a points (x,y) if
u has only Sobolev regularity and 6y is only essentially bounded. The Di Perna-Lions theory of
renormalized solutions [38] guarantees the existence of a unique weak solution of (2.3) on [0, T") for
0o € L"(R?), if u is bounded and u € L*((0, T'); W1P), where 1/p + 1/r =1, p > 1 (see [39] for an
important extension to the case p = 1). We use standard notation for Sobolev spaces, that is, for
1<p<oo,k€Z4,welet:

WHP(R?) = {f € LP(R?) | 8“f € LP(R?), |a| <k},

and similarly on the torus. We also set H* = W2 as customary. In the setting of the Di Perna-
Lions theory, the unique weak solution has a Lagrangian representation and can be obtained as
a limit of regularized solutions. In particular, §° can be obtained as a weak limit of solutions 6"
of (2.1). Since the flow preserves the Lebesgue measure if u is divergence free, all LP-norms of §°
are preserved.

3. The scalar spectrum and scalar dissipation

We next discuss the spectrum and the dissipation rate for solutions of (2.1). As long as u
is uniformly bounded and divergence free and 6y € L?, there exists a unique weak solution
0% € C([0,00); L) N L%((0,00); HY) of (2.1).

Then a simple energy estimate shows that, for 0 < s <t,

t
0% ()1Z> — 107 (5172 = 2w J IV6™(r)|1Z> dr. 3.1)

The term on the right-hand side of (3.1), starting at s = 0, is the rate of scalar dissipation

t
X = XE(0%) =25 JO V0% (7|22 dr.
We say that there is anomalous dissipation if

liminf x"® = x > 0.

K—04
This is the analog for scalar turbulence of anomalous energy dissipation in turbulence. Given that
the mean is preserved under the time evolution for weak solutions of both (2.1) and (2.3), one can
reduce to consider mean-free scalar fields for which the L?-norm squared can be interpreted as
the covariance in the tracer field and y is a measure of decay of correlations.
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A related concept is that of the scalar spectrum Eg~ (k,t), which is akin to the energy spectrum
Eu(k,t) for turbulence. For a given ¢ > 0, it is the density function in the wavenumber & € [0, co)
with respect to the 1D Lebesgue measure such that:

o0
J Ege (k, t) dk = J (0" (@, 1) da dy. (3.2)
0 R
On the torus T?, we replace the integral by a sum over all integer wavenumbers. We consider the
spectrum as a function of time, as in decaying turbulence. In the turbulence literature, the average
with respect to an invariant measure or the long-time average, assuming ergodicity, Eg~ (k) is
typically used.

For technical reasons, we will utilize the Littlewood-Paley (LP) spectrum instead [40], which is
defined as:

1 . .
EQLNP(()::ZHAJ‘O,@HQL%W), 2 <<t 3.3)

where j € Z and 4; is a Littlewood-Paley operator at frequency 27 which is defined as follows.
We use ” to denote the Fourier Transform and ~ to denote its inverse as customary. Let ¢; be
a smooth bump function supported on the dyadic shell D; = {¢; 27 < |¢| <2/}, j€Z4, in
frequency space, and let )_; be a smooth bump function supported on the unit ball. We can
choose (&) = ¥o(27 £), radially symmetric, positive, and such that {¥j}52_1 form a dyadic
partition of unity (this is standard construction, see e.g. [41]). Then,

ST U O FE©)=F6),  €=(61.&).

j=-1
in the sense of distributions, for any locally integrable function f on R2. Finally, we let
Ajh(z,y) = * h(z,y).

and we set (= |£|. It can be shown that the spectrum and the Littlewood-Paley spectrum
are comparable, but the Littlewood-Paley spectrum can be defined for functions that are not
necessarily square integrable. For functions on the torus, we can define 4A; in a similar fashion
by restricting frequencies to D; N 72 (see [42]). We also recall that, if a function h is compactly
supported on the unit cube, it can be viewed as a function on the torus T? via its one-periodic
extension h, and then the Fourier coefficients of & are given by h(k), k € Z>.

As a consequence of the Di Perna-Lions theory, no anomalous dissipation exists if gy € ?
and u is sufficiently regular. Therefore, mathematically there are two possible scenarios for scalar
anomalous dissipation in the regime we consider:

(1) the advecting field u is not regular enough for the Di Perna-Lions theory to apply;
(2) the initial data 6 is not square integrable, but 0" (t) € L? for t > 0.

Case (1) may arise if the advecting flow is a turbulent flow at very high Reynolds number.
In the so-called inertial-convective range, the Schmidt number is taken to be of order one, so this
regime covers the simultaneous limit v — 0 and & — 0. In the inertial-convective range, the scalar
spectrum and dissipation were investigated by Obukhov [43] and Corrsin [44], who derived the
power law for the averaged spectrum by dimensional considerations:

g (k) =Cop xek™?,

where € is the (averaged) energy dissipation rate in the fluid and Cpp is the Obukhov-Corrsin
constant. In this derivation, both the (averaged) spectrum dissipation rate ¥ and € are assumed
independent of x and v respectively. By Onsager’s conjecture [45], which has been rigorously
established now (we refer to [46, 47, 48] and references therein), the flow u can only be Holder
continuous of exponent 1/3 for anomalous energy dissipation to occur. The Obukhov-Corrsin
theory also predicts the scaling of structure functions, if the fluid flow obeys Kolmogorov’s scaling
of fully developed isotropic, homogeneous turbulence.
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Anomalous scalar dissipation for fluid velocities with Holder regularity was recently
investigated in [24]. They gave sufficient conditions for anomalous dissipation in terms of the
mixing rates of the advecting flow. They showed that for any initial data 8y € H2(T?), given T’ > 0,
a€[0,1), there exists a velocity field u e C*([0,T) x T2) N L1([0, T]; C*(T?)) and a constant
Xa > 0 such that

2
X" > xa l00llz2-

In their example, u and o depends on T, and 6, but are independent of «. The velocity
is constructed out of alternating shear flows with a smooth, approximately linear profile. We
will also utilize shear flows for our example on the torus. The authors of [24] observe that
the Obukhov-Corrsin scaling argument can be generalized to predict that, in the limit v,x —0
with k = O(v), if u is Holder continuous of exponent at most « € (0, 1), then 8" can be Holder
continuous of exponent at most S = (1 — a/2). They show that this result is sharp in the sense
that no anomalous scalar dissipation can occur if > (1 —«a)/2 or if = (1 —«a)/2 and, in
addition, u € Llloc([O, T); W1°°(T?)). Their example of anomalous dissipation corresponds to the
borderline case aw = 1_. We also mention the recent preprint [49], where the authors also consider
the advection-diffusion equation (2.1) with rough advecting field and study in particular the
vanishing viscosity limit. They prove that, if 6y € L?(T?), as long as u e L((0,T); W1 (T?)),
then no anomalous dissipation is possible, because the limit solutions are Lagrangian.

Case (2) is compatible with the Batchelor scaling of the spectrum (1.1). In [22], a modified LP
spectrum, which uses the L! norm of A ;0" instead of the L? norm was studied. An upper bound
of order k~! for its decay in a suitable weighted long-time average was obtained, assuming the
velocity field u is in the Sobolev space H?, s € [0, 1], uniformly in time. The case s = 1 is within the
Di Perna-Lions theory. The Batchelor scaling was recently investigated in the stochastic setting in
[23]. This setting is a mathematical model for the viscous-convective range in scalar turbulence.
The scalar 6" is assumed to satisfy (2.1) with a source term, which is smooth in space and white
noise in time, while u is assumed to satisfy the 2D Navier-Stokes equations at fixed viscosity
with a non-degenerate stochastic forcing that is sufficiently regular in space (the case of the 3D
hyperviscous Navier-Stokes equations was also considered) . The authors establish rigorously
that the averaged cumulative spectrum up to wavenumber ko decays like log kg with constants
uniform in . This result is slightly weaker than (1.1), and follows from results on the mixing
properties of the flow of u, which was shown to be almost surely exponential mixing by the same
authors in [20], using some deep dynamical systems tools.

If one assumes that the energy spectrum or the LP spectrum decay like k™!, then one can
conclude that 6" belongs to the Besov space Bgyoo. For s € R, 1 <p, ¢ < oo, the inhomogeneous
Besov space B, is defined as follows:

By o(R?):={f €S (R®) | |Ifllzs, = 12"14; fllLr(r2)ller <o}, (3.4)

with a similar definition on the torus T2 [42]. These are Banach spaces and the dual (Bf,yq)/ =
B};)Sq, for 1< p,q < co, where p/, ¢’ are the conjugate exponents to p, g. Above, S’(R?) denotes
the space of tempered distributions, the dual to the space S(R?) of smooth, rapidly decreasing
functions.

The significance of the space Bgoo in turbulence was already noted by Eyink [50] in the context
of the Kraichnan-Batchelor theory of 2D turbulence. In fact, if u solves the two-dimensional
Navier-Stokes (respectively Euler) equations, then its (scalar) vorticity w = curl u satisfies (2.1)
(respectively (2.3)). The Navier-Stokes and Euler equations in vorticity-velocity formulation have
active transport, since u depends on w via the Biot-Savart law (for recent results on renomalizing
certain active transport equations we refer to [51]). We recall that the enstrophy is defined as
the L?-norm squared of vorticity, so formally the problem of anomalous enstrophy dissipation
is equivalent to the problem of anomalous scalar dissipation. Assuming the Kraichnan scaling
O(k™3) for the energy spectrum of u, associated to the forward enstrophy cascade, implies that
wE Bg 00"
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We next address the well-posedness of (2.1)-(2.3) in the space Bg oo- We discuss only the case
of the whole space R?, the case of the torus T? is similar. Uniqueness of solutions in the periodic
case holds for mean-free initial data. We recall that we are interested in the regime where the fluid
viscosity is fixed and the flow can be assumed to be regular. We hence impose that u is bounded
in space and time, and u € L*((0, T); W1>° n H?).

The existence of a weak solution for both (2.1) and (2.3) follows via a suitable regularization
by standard methods [52]. The key point is whether solutions remain in ngo for ¢ >0 and
estimates on derivatives in the case £ > 0. Obtaining bounds on the Besov norm is rather delicate,
as the norm in Bg,m is not rearrangement invariant. Indeed, the solutions constructed in [23] are
not known to be in Bg’oo uniformly in x, even though they satisfy a uniform estimate on the
cumulative spectrum.

We introduce certain spaces of functions of time close to L? spaces [53]. Given 0 < T' < oo, for
seR,1<qg< o0, welet:

L0, 7): Bio) =41 €8 | Nl g o.1y5m5,) = 599 14,00 L0q0ryim <00} (35)
500 in
One has that
L"((0,7); B3 o) € LY((0,T); B3 o) C L™ ((0,T); B3 o), m<q<r. (3.6)
Then the following bounds hold.

Theorem 3.1. Let ue L' ((0,T); W N H?). Let 6% be a weak solution of (2.1) on [0, T) with initial
data 0y € B%oo. Then, there exists a universal constant o > 0 such that

1/4
HQHHZoc((O’T);Bg,OO) +ak / ||0,‘i - A—laﬁHil((o’T);Bgm) <C ||90|‘Bg’007 (3.7)
where C depends on w and T, but is independent of k and 0. In particular the weak solution is unique.

For a proof of this result we refer to Proposition 2.1 in [54].
Since applying the operator A; destroys the identity

J (u-V)0" 0" dxdy=0
R2

that gives the energy estimate (3.1), it is not clear that energy dissipation can be defined for such
solutions. We note, however, that by (3.7), 0 (t) € B%,oo C L for a. a. t > 0. Hence, by uniqueness
of the weak solution, 6* has finite energy for positive times.

Theorem 3.2. Let u € L((0,T); W N H?) and bounded. Let 0° be a weak solution of (2.3) on [0,T)
with initial data 6 € Bgyoo. Then

Heonfoc((oj);Bg,oc) SCN’HQOHB‘Q{OO: (3.8)

where C depends on wand T, but is independent of 0. In particular, the weak solution is unique.

For a proof of this result we refer to Theorem 3.18 and Theorem 3.19 in [52].

In both cases, the solutions belongs to Ci ([0, T7; Bg,oo), which is the space of continuous
functions in time into Bg oo, endowed with the weaks topology.

We next discuss whether the weak solution of (2.3) with initial data in Bg,oo can be obtained
in the limit of vanishing diffusivity. We follow the approach in [50] for the Euler equations. From
(3.6) and (3.7), we have a uniform bound

Sup 16Ol Lr(0,1):88 ) <9 (3.9)

for some constant ¢ > 0, which may depend on the initial data, on 1 <r < oo, and T'> 0, but is
independent of .
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Proposition 3.1. Let 6 and u satisfies the hypotheses of Theorems 3.1 and 3.2. Let 0" and 6° be the weak
solutions of (2.1) and (2.3), respectively, with initial data 6q. Then

0" ~0°, ask—0,

weakly* in L*((0,T); B(Z),oo)’

Proof. From (3.9), the family {6"}o< <, is uniformly bounded in « in L%((0,T); BS_’OO). Hence
there is a uniform bound in s on the time derivative 9;0" in H~1((0,T); BS)OO), and in
L2((0,7); B %) by duality. Consequently, there exists a sequence 6" converging weakly™ to
some ¥ € L2((0,T); Bgoo), such that 3;0"" converges weakly* to 8;9 in L2((0,T); BQ_&) by weak
continuity of the derivatives. By linearity, pairing (2.1) with a suitable test function and passing
to a weak limit gives that ¢ is a weak solution of (2.3). Weak convergence of the time derivative
implies convergence in C([0, T7; By ), € > 0, so that 9(0) = 6. By uniqueness of weak solutions,
¥ = 6°. Hence any weakly convergent sequence in the family {6*} converges to 6 as k —0. [

4. Examples of anomalous dissipation

In this section, we present two simple examples of anomalous scalar dissipation, one on the whole
plane R?, the second one on the torus T2.

The first example is a simple adaptation of an example of enstrophy dissipation for solutions
of the 2D Navier-Stokes equations in vorticity-velocity formulation, obtained by the author, M. C.
Lopes, and H. J. Nussenzveig-Lopes in [55].

Let u be any circularly symmetric velocity field:

LG B} 4.1)

T

u(z,y,t) =

”
where u(r,t) = % J ow(o,t)do and w is a given function. We take w regular enough so that u
satisfies the hypotheses on the flow in Section 3. Then, if w is independent of time, u is an exact
steady solution of the 2D Euler equations with radial scalar vorticity w, and if w solves the 2D heat
equation, then u is an exact solution of the 2D Navier-Stokes equations with radial scalar vorticity
w. A circularly symmetric flow models a coherent vortex, such as a Rankine vortex, a hallmark of
2D turbulence.

We make the simple observation that, if 6 is any radial function in R?, thenu - V6o = 0. Hence,
0o is a steady solution of (2.3), while if 6" solves the 2D heat equation with initial data ¢y and
diffusion coefficient «, then 6” is the unique solution of (2.1) with initial data 6y.

Let now ¢ € C2°(RR?) be a radial, smooth bump function supported on the unit disk in R? and

set:
1

/22 + 42

We have that 6y € LP(RQ) N Bgﬁoc(R?) for all 1 <p< 2, that 6%, 0 <k < kg for some fixed ko,
satisfies (3.9) and that 8" — 6y weakly™ in L°°((0,T); Bg,m) for all T > 0 [55, Proposition 4]. In
fact, since the heat semigroup is strongly continuous in Bgyoo and the limit x — 04 for fixed
t >0 is equivalent to the limit ¢ — 04 for fixed « in this case, §" converges strongly to 6y in
C([0,T); B o).

From [55, Theorem 5], we have the following result.

00('1:, y) = ¢($7 y) ('7;7 y) o (07 O) (42)

Theorem 4.1. Let 0 be as in (4.2) and let u be as in (4.1). Let 0% be the solution of (2.1) with initial data
0o. Then, for each t > 0,

3
lim & J VO™ (z,y, 1) dedy = an”
R2

K—04 t
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In particular,

liminf/ﬁj V0" (z,y,t)|? dzdy > 0.

K—04

In fact, Theorem 5 in [55] establishes a stronger result, namely, that

4 3
K |[VO5 ()| — % 5o, ask—0,

in the sense of distributions, for ¢ > 0 fixed , where dj is the Dirac measure at the origin.
We modify this construction for the torus T2. We let u be any shear flow, without loss of
generality we take a horizontal shear flow:

u(x,y, t) = (u(y7 t),0)7 (43)

with v a 1-periodic function in y. If u is time independent, u is a steady solution of the Euler
equations in T? with constant pressure, while if u solves the 1D heat equation on [~1/2,1/2]
with periodic boundary conditions, u is an exact solution of the 2D Navier-Stokes equation with
constant pressure (we exclude pressure-driven shear flows, such as Poiseuille flow, for which the
pressure is not a periodic function necessarily). Again, we take u sufficiently regular so that u
satisfies the regularity assumptions in Section 3.

We take the initial data for the scalar field in the form:

1

where ¢ € C2°(—1/2,1/2) is a bump function supported on (—1/4,1/4). It is immediate to see
that 6y € LP(T?), 1 < p < 2. We can choose ¢ even and so that 6 has average zero.

Let 6 be any function on T? of the form 6(z,y,t) = ¥(y,t), with ¥ a 1-periodic function in y.
We observe that, if u is the shear flow in (4.3), then u- V0 = u(y)9,9 =0, and that the 2D heat
equation on T? preserves the symmetry of . Hence, if 0y (z, y) = 99 (y) and " solves the 2D heat
equation in T2 with diffusion coefficient x and initial data 0o, then 6% solves (2.1), while 6 is
a steady solution of (2.3), and 0" (z,y,t) = 9" (y, t) with 9" solution of the 1D heat equation on
[—1/2,1/2] with initial data 99 and periodic boundary conditions.

Lemma 4.1. Let 0y be as in (4.4), then Oy € Bgm(l’g) N LP(T?), 0 < p < 2. Let 0" be the solution of
(2.1) with u as in (4.3) and initial data 0. Then, for any T > 0, 0 satisfies the uniform bound (3.9) and
0" converges to the unique solution of (2.3) with initial data 6y in C ([0, T); ngoo N LP).

Proof. We compute the Fourier coefficients of 6, 670(k), k = (k1, ko) € Z2. We note that
(9A0(l~::17 ko) =0 for k1 #0 and GAO(O7 ko) = 1/9\0(14:2). Since ¥ is compactly supported on (—1/2,1/2),
we can compute its Fourier Transform 1/98 (&), £ €R, and evaluate it at integers £ = ko to get
the Fourier coefficients. Since ¥ is the product of ¢ with ly|~*/2, which has Fourier Transform
l€|71/2, and ¢ is even, 158({) = (¢ * | - |/?)(—=¢) in the sense of distributions. But ¢ € S(R), so the
convolution can be written as an integral:

5o (6) :LR Je— ol ac.

As in [55], we define an auxiliary function e(§) := |¢] 1/2 [90(§)| — 1, and study its behavior under
dilations. Let s > 0 and write { =r o, with 0 = £1 and r = |¢|. Then

e(s€) = |s|'/ 2!/

1 -~
JR |C|1/2 ¢(—sro — () d(’ -1

1
-1, e Ao =)

U \c/\l/z%r( —¢hdd’| -
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where we made the change of variables ¢ = sr¢’. Above, ¢A>t (y)=t $(t y), which is uniformly
bounded in ¢ and rapidly decreasing in y and ¢. So, the function e is bounded uniformly in both s
and &. We show next that e(s§) — 0 as s — co. Let 7 be a smooth cut-off function supported in the
interval [—2, 2] and equal to 1 on the interval [-1/2,1/2]. Next,

1

gy O =+

+] =)

Since ¢ is rapidly decreasing, for any fixed y and for any N € N |$sr(y)| <lsr| TN *Ly =N =0
as s — co. The rest of the integrand in I; is in L' (R), so by the Dominated Convergence Theorem
I1 — 0 as s = co. We turn to Io. Using the support properties of the cut-off function, we have

—~ 9 ~
B < | Berllp -2y | G+ |, el

1/2<¢<2 ¢

where in the second integral we used that | — o — ('|_1/2 <1if|¢'|>2,as 0 =+1.. Again. the
rapid decrease of ¢ gives that ||¢sr|| o ([—2,2)¢) — 0 as s — oo, and for a similar reason the second
integral vanishes as well. We can therefore conclude that |1/98 © =21+ e(¢ )), where e(§) —
0 as & — oo, and consequently:

~ 1
000, k2)* = T (L+ g(k2)),  glka) >0, ko = cc. 45)

We now have:

|eo||23g,xs||oo|%lm)+,sup( > |e%<k1,kz>|2>

J2=1 \ i1« <2941

2 = 2 2
S OollZr(rey + sup > 00(0, k2)|” | <10l (2) + sup 4 <oo,
3271 \2i-1< iy | <2941 7=t

since there are O(27) frequencies ks in each dyadic shells and the largest term in the sum if of
order 21 77 by (4.5).

The uniform bound (3.9) follows from the fact that the symbol of e , is uniformly
bounded in  and ¢ in L°°. Lastly, the convergence of 6* to 6y, which is the unique solution of
the transport equation with data 6y is a direct consequence of the strong continuity of the heat
semigroup in LP N Bg,oo. O

Kt A —kt|Kk|?
7

e

We turn to showing that anomalous dissipation holds for 6%.
Theorem 4.2. In the hypotheses of Lemma 4.1, for each t > 0, there exists a constant 7 > 0 such that

lim &J |V9K(a:,y,t)|2d:rdy:
T2

k=04

[ 2]

In particular,

lim inf J |VO" (z,y,t)|* dedy > 0.
’H‘Q

Ii~>0+
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Proof. By Plancherel’s identity we can write:
_ 2~ _ 2~
HJ,Z V0" (z,y, )P dedy=r > k> e 10107 =k D7 kol e 2 R0 1050, ko) 2.
T kezZ? k2€7
From (4.5), |5E)(O, k2)|?|ka| =1 + g(k2), with g(k2) — 0 as kg — co. Hence,

2 2kt |ka|? |5 2_ 1 —2kt ko> | 1 —2st ka2
> klkal’e 1 160(0, k)" = < > trlko| e Bl > trlke| g(ks)e ?
koE€Z ko€Z ko €Z

=51 + 5o,

where we have multiplied and divided each term in both sums by ¢ > 0. For S1, we estimate the
sum by the Euler-McLaurin’s formula and conclude that

Slw%, as k — 04,

for some constant 7 > 0, since by making the change of variables w = v/tx z,

o0

2
J m|z|e‘2t” dzZQJ
R 0

We estimate S in a similar way and obtain that

—2w? 1
dw=~.
we w B

So—0, ask—04,

given that
J tr |z g(z) e 2t “dz=2 JOO wg(L)672w2 dw — 0,
R 0 Vitk k—04
which follows from the Dominated Convergence Theorem and the pointwise convergence
w
——) —>0ask—04. O
9( ) +

5. Conclusion

In this note, we discuss anomalous dissipation in the limit of zero diffusivity from an analytic
point of view, motivated by the viscous-convective range in scalar turbulence. After a brief review
of the literature, we discuss the well-posedness of the advection-diffusion and the transport
equations assuming only the Batchelor scaling for the scalar spectrum. Our main contribution is
to present two simple examples of scalar fields, satisfying the Batchelor scaling for the spectrum,
which exhibit anomalous dissipation as a purely diffusive effect. As already observed in [55], this
scaling for the spectrum is consistent with an infinite reservoir of covariance for the scalar field, if
all scales are taken into consideration. In this situation, diffusion alone can sustain anomalous
dissipation. In scalar turbulence, a minimal characteristic length scale, the Batchelor scale, is
observed, which is determined by a balance between stirring by the fluid and diffusion.
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