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Robotic arc welding (RAW) has been an essential process in various assembly systems, such as automotive manufacturing. However, its implementations 
lack adaptivity to compensate for process variations.  This paper presents a data-driven process characterization and online adaptive control framework 
for RAW to automatically and efficiently achieve desired weld pool condition, given any initial conditions.  Based on optical imaging, pool width is 
characterized through a pixel-level image segmentation network and then used for determining the parameter adjustment for robotic execution through 
a gradient-based controller. Experiments demonstrate quick process convergence within 7 adjustment periods and an error band within 10.9%.   
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1. Introduction 

Welding robots have significantly advanced the state of 
automotive welding by improving operational efficiency and 
precision. However, robotic welding is not fully autonomous yet. 
Still relying heavily on preprogramed welding parameters, current 
welding robots cannot adaptively adjust parameters to 
compensate for task variability, material heterogeneity, and 
process uncertainty as skilled human welders do. The transition 
from preprogramed to adaptive robotic welding requires the 
seamless integration of in-situ perception and process 
characterization, process-quality relationship quantification, 
closed-loop control, and robotic execution (see Fig. 1). Prior efforts 
in this regard include optimizing welding sequences to reduce 
project cycle time [1], leveraging kinematic redundancy for 
efficient robot motion planning [2], determining optimal welding 
parameters using offline process simulation [3], etc. A fully 
functional adaptive process control solution is still lacking.    

 

 
 

Fig. 1 Transitioning from welding robots that require preprograming of 
parameters to intelligent robots that adaptively adjust parameters 

 
Early work on robotic arc welding control has used two cameras 

to capture the arc, weld pool, and solidified bead [4]. Subsequent 
to a few steps of image preprocessing and filtering, features such 
as pool area and pixel profiles were defined, from which defects 
could be detected for emergency stop of robots. Although no 
closed-loop process adjustment was made online to compensate 
for process instability, this work has established a foundation for 
feature engineering-based process monitoring and 
characterization. In the years that followed, sensing and modelling 

techniques have seen continuous improvement. In [3], laser 
welding was monitored through measuring temperature, visible 
light, and back-reflection by a photodiode sensor, and extracted 
features were then used to estimate the joint quality. Further work 
include a machine learning (ML)-based stochastic model that 
correlates process parameters with weld quality considering task 
variations [5].  The model was iteratively updated by in-process 
data, and used offline for selecting parameters that fit dynamic 
welding tasks.  

Despite progress, challenges remain to realize online adaptive 
robotic welding process control, including: 1) efficient sensing 
data processing for in-situ weld quality inference, and 2) relatively 
long stabilization period for process adjustment to take effect. 
Recent advancement in ML and reinforcement learning (RL) offers 
potential solutions to these challenges. Neural networks (NNs) 
were investigated on correlating in-situ sensing with arc welding 
quality (e.g., bead width), based on which a gradient-based 
controller was developed for online adjustment of welding speed 
and/or current [6-7]. An RL-based control framework was 
developed for laser welding [8], where an NN-based encoder was 
applied to mapping the radiation data to process adjustment, 
followed by another NN that detects the weld quality after the 
adjustment. The quality feedback was then used to generate either 
a reward or penalty to update the encoder. However, these 
solutions were either completely data-driven that lacks physics-
based causal reasoning, or were limited due to slow convergence 
(more than 10 adjustment periods) or large error band 
(approximately 20%) for online control. 

This paper presents an online adaptive control approach to 
robotic arc welding, where weld pool width is controlled in a 
closed-loop. From in-situ optical imaging, an efficient pixel-level 
image segmentation network is first developed to outline the pool 
area and estimate the pool width.  Then based on a perceptron that 
describes the dependence of pool width on parameters (i.e., 
welding speed, current, torch angle), an advanced gradient descent 
algorithm is investigated to backpropagate the needed pool 
geometry changes to parameter adjustments based on individual 
parameters’ contributions to pool status change, while minimizing 
the settling time and steady-state error band. The main 
contribution of this work lies in the following two areas:  
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• Efficiency: in-situ images can be processed within 
milliseconds, thus enabling sub-second periodical process 
adjustment. Also, the control algorithm greatly reduces the 
settling time of process adjustment.  

• Physical interpretation: no black-box mapping from pool 
state to action determination is involved, as compared to the 
RL approach. The outputs from the networks and controller 
can be readily interpreted and evaluated by humans.  

2. Online adaptive robotic welding control  

Online adaptive robotic welding control requires effective and 
efficient integration of perception, process characterization, 
process-quality modelling, adjustment, and robotic execution.  

Robotic perception, enabled by in-situ sensing, is to mimic how 
human welders observe the process dynamics. Skilled human 
welders adaptively manipulate the torch to control welding quality 
(e.g., weld penetration) by observing the weld pool. Accordingly, 
an optical camera is installed onto the robot to capture the 
spatiotemporal evolution of the weld pool. Previous studies have 
demonstrated a proportional relationship between the pool width, 
penetration, and back-side bead width [9]. Since internal residual 
stress in welding is proportional to the welding temperature [10], 
pool detection is meaningful for evaluation of weld residual stress. 
Therefore, weld pool is used as a critical indicator of weld quality 
and set as the control target. Compared to controlling other targets 
that need additional mappings from the measured pool 
information to control targets, controlling weld pool can avoid 
additional characterization errors. 

Process-quality modelling provides the causal reasoning basis 
for adaptive process adjustment. Since the welding processes are 
highly complex to model analytically, empirical knowledge is often 
relied on to provide a qualitative description of the process-quality 
relationships [11]. For example, if a split pool is detected during 
the welding process, it indicates that energy flux is less than 
needed and can be improved by slowing down the welding speed 
and/or increasing the current. However, such qualitative analysis 
guides only the directions not the magnitudes of the parameter 
adjustments. This issue gets more complicated when parameters 
have similar effects on the control target. Then if parameters are 
adjusted at the same pace (i.e., same percentage of delta changes), 
overcorrection and oscillation may occur. Data-driven modelling 
can complement the solution by providing a quantitative 
evaluation of individual parameters’ effects on quality, which are 
represented by the weights connecting parameters and quality in 
NNs. Then adjustments of parameters can be designed at different 
paces based on their respective effects, with the objective of 
minimizing oscillation, settling time, and error band.   

Attention also needs to be paid to the limits of robotic handling 
load, motion speed, rotating angle, etc. For example, while welding 
speed change can be readily realized by changing the translation 
speed of the robotic tip, change in the torch angle involves 
determining the rotation of the robotic joints. Large angle changes 
take a few seconds to realize. To realize sub-second adaptive 
control, it is necessary to set a tight bound for the angle change.  

3. Machine learning-based adaptive control 

In the developed online, closed-loop adaptive robotic control 
system (shown in Fig. 2), in-situ optical images are processed for 
estimation of the current pool width. The result is compared to the 
desired width to determine parameter adjustments, which are sent 
to the robot for execution, and then the next adjustment period 
starts. Three ML elements are included in the system.  
 
3.1 Pixel-level segmentation for weld pool characterization 
 

Accurate outlining of weld pool from optical images is 
challenging, as the images contain not only the pool but also the 
arc, bead, and spatter. Most parts of the pool are obscured by the 
bright arc, and spatter also causes interference occasionally. 
Standard image processing techniques (e.g., edge detection) 
cannot precisely outline the pool contour. Recent development in 
convolutional NN has advanced image processing [12] by enabling 
hierarchical extraction of abstract image representations.  

As shown in Fig. 2, a pixel-level image segmentation network, 
consisting of a convolutional encoder and a de-convolutional 
decoder, is developed to outline the weld pool. Under supervised 
learning, the convolutional and pooling operations in the encoder 
are trained to focus on weld pool-related features. The features are 
then transformed through deconvolutional and unpooling layers 
to a mask map (of the same size as the input image), which 
indicates the probability of each pixel being part of a weld pool. 
Pool width is then calculated based on the outlined pool contour. 
One advantage of setting the width of the weld pool as the control 
target is that the pool width is not skewed by the camera angle, and 
hence no calibration is needed. Since split weld pool needs specific 
control actions, its occurrence needs to be detected. Towards this, 
a classifier consisting of one convolutional and pooling layer and 
two fully connected layers is attached to further classify extracted 
features against single or split pools. Binary cross-entropy is used 
as the loss function for training the network and classifier. 

  
3.2 Perceptron for process-quality correlation 

Adjustment of welding parameters to minimize the difference 
between current and ideal pool width is based on the correlation 
between parameters and pool width, so that the width difference 

 
Fig. 2 Overall flowchart of the developed process characterization and adaptive control system 



can be reversely mapped through the correlation to deltas of 
parameters. Three critical parameters, welding speed (v), current 
(I), and torch angle (θ) are considered. Correlation among these 
variables is modelled by a three-layer perceptron: 

[ ]( )( )1 2, , TW v Iσ σ θ= ∗Φ ∗Φ  (1) 

where W is the predicted pool width, Φ1 and Φ2 are the weights 
connecting perceptron layers, * denotes the matrix multiplication, 
and σ is the Sigmoid function. The training data here does not 
include data associated with a split weld pool. When a split pool is 
detected, an arbitrary set of parameters would be implemented to 
generate a single weld pool, from which the developed control 
method as detailed below can be applied. 
 
3.3. Advanced gradient descent-based adaptive control 
 

Based on the established correlation shown in Eq. (1) and the 
estimated pool width at moment k-1, parameter adjustments can 
be obtained as the gradients of the difference between desired and 
estimated pool width regarding current parameters: 
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Since the gradients are calculated given the trained perceptron 
weights Φ1 and Φ2, gradients are evaluated in terms of individual 
parameters’ importance to pool width change. For example, if the 
connection from one parameter to pool width consists of more 
excitatory weights, it plays a more important role in changing the 
pool and hence a larger gradient would be generated through (2). 
The new set of parameters can be adjusted as [v, I, θ]k =  [v, I, θ]k-1 
– η[Δv, ΔI, Δθ] under gradient descent, where η is the learning rate 
that controls the process adjustment speed. 

Standard gradient descent directly uses the instantaneous 
gradients to generate the parameter adjustments. It is hence 
sensitive to process variation and measurement noise, leading to 
unnecessary correction and large steady-state error band  [13]. 
Adaptive moment adjustment, as an advanced gradient descent 
algorithm, normalizes the instantaneous gradients with respect to 
the mean and variance of the historical gradients. Then parameters 
are adjusted considering both instantaneous gradients and 
historical gradient variation, reducing unnecessary changes. Using 
welding speed as an example, it is periodically updated as:  
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where m and s are the mean and variance of historical gradients, 
calculated in a moving average. Parameters β1 and β2 control the 
temporal decay rate of moving average. Once the process is 
stabilized with the new parameters, measurements are taken and 
processed towards a new round of parameter adjustment. 

4. Experimental evaluation 

To experimentally evaluate the performance of the developed 
online adaptive control system, tests were conducted on a robotic 
Gas Tungsten Arc Welding testbed. A welding torch and an optical 
camera (with 60Hz sampling rate) were installed on a UR5 robot. 
The robot has a maximum payload of 5kg and positional accuracy 
of 0.1 mm. Its speed and angle adjustment were handled through 
the inverse dynamics in URScript.  Through an initial trial-and-
error test run, the exposure time of the camera was set to 0.1s, 
Gamma to 1.0, and sharpness to 3,000, to capture the highly 
reflective weld pool. Linear welding was performed to weld low-
carbon steel plates (3.18 mm thickness) together, and no shielding 
gas was applied.  Different welding speeds (2, 3, 4, 5 mm/s) and 
currents (130, 140, 150, 160 A) were tested. To evaluate the effect 
of torch angles on the weld pool (through pushing or pulling it), 

three angles (0, +10, -10 degrees) were evaluated in accordance 
with the commonly used torch angles in arc welding. This results 
in 4 x 4 x 3 = 48 trials of parameters, and each trial was run for 15 
seconds.  

A total of 10 steady-state images from individual trials were used 
for training the segmentation network and classifier, creating a 
training data pool of 10 images/trial * 48 trials = 480 images. Weld 
pool(s) were outlined manually to generate binary masks as labels. 
These 480 images, after random cropping, random brightness 
adjustment, and resizing, were split into 432 training and 
validation images and 48 testing images. Testing images were 
selected to ensure a representative number of split pools. To 
evaluate network performance variation due to the small training 
data size, five-fold cross-validation was conducted. Results from 
the testing data indicated a mean error of 5.06 ± 0.36 pixels 
(equivalent to 0.5 ± 0.04 mm) in generating the pool masks, and a 
100 ± 0% accuracy in identifying split pools. Fig. 3 shows samples 
of the generated pool masks. The network were coded in PyTorch, 
which took 75 ± 6 ms to process and generate masks for ten images 
on an Intel i9 @ 2.80 GHz. The computational efficiency is shown 
to be higher than needed for sub-second online process control.  

 

  
Fig. 3 Samples of generated pool masks (3rd column) by the network  

 
The estimated pool widths were then used for training the three-

layer perceptron. A number of 12 hidden neurons and a learning 
rate of 0.0085 were chosen from a grid testing of perceptron 
hyperparameters. The trained perceptron was able to strongly 
correlate process parameters to pool width, as shown in Fig. 4.  
 

 
Fig.4  Performance of perceptron in predicting weld pool width 

 
The trained networks were then applied to online adaptive 

robotic welding control. The adjustment period was set as 0.75 
seconds. The first 0.3 seconds were used to stabilize the process 
under new parameters. 18 images were then collected from the 
next 0.3 seconds and transmitted to the computer for processing. 
Correspondingly, 18 pool width values were obtained and 
averaged to represent the current process status. The final 0.15 
seconds were reserved for calculating and sending new 
parameters to the robot for a new round of process adjustment.   



If a split pool was detected, an arbitrary control policy would be 
invoked to enable sufficient heat flux to generate a single weld pool. 
In the first adjustment period, welding current and speed were set 
as 140 A and 4 mm/s. If a split pool was still detected, the current 
would be increased by 5 A and the speed decreased by 0.5 mm/s, 
until a single pool was detected. Then the process adjustment 
could be performed by the adaptive controller. To ensure that 
process adjustment using the new parameters can be stabilized in 
0.3 seconds, angle adjustment was capped to ±5 degrees.  

Two types of tests were conducted: one with an initial larger 
than desired pool (4.5 mm); the other with initial split pools. Both 
the standard and advanced gradient descent controllers were 
evaluated on these two testing scenarios. In the advanced 
controller, the two temporal decay rates were set as 0.1, and the 
learning rate was set as 0.1 with a 0.005 decay per adjustment 
period, to avoid large oscillation when the process entered a 
relatively stable stage. In the standard controller, the learning rate 
was set as 5 with a 0.25 decay per adjustment period. 

The experimental results (see Fig. 5) indicate that both 
controllers could quickly transit the pool from initial conditions to 
the desired range. The settling time by the advanced controller is 
below 6 seconds (i.e., 7 adjustment periods). It is seen that both 
controllers could decrease speed and increase current when pool 
width was below desired, and vice versa. Also, the percentage of 
speed change was larger than current, especially in the early stage 
of adjustment. This suggests that welding speed played a more 
important role in tuning the pool. Parameter adjustments in the 
advanced controller were more linked to pool variation (in terms 
of oscillation) than in the standard controller, as the former 
considered historical gradients for adjusting parameters. This also 
resulted in lower error bands by the advanced controller, with 48.7% 
and 40.1% improvements in the two testing scenarios, 
respectively. The reason why error bands in the initial large pool 
tests were larger than in split pool tests is that initial excessive heat 
flux preheated workpiece, which were unable to be completely 
compensated. The results confirmed the effectiveness and 
efficiency of the online adaptive robotic welding control system.  

5. Conclusions 

A data-driven adaptive robotic welding control system has been 
developed for online process parameters adjustment to achieve 
and maintain the desired weld pool width, irrespective of the 
initial process conditions. Experimental results indicate that the 

process can be adjusted within 7 adjustment periods to a less than 
11% error band, enabled by efficient image processing and 
advanced gradient descent-based control algorithm. Since weld 
pool status is a critical and measurable metric in all types of 
welding processes, choosing it as the control target enables direct 
physical interpretability and generalizability of the developed 
system. Assuming the welding path is known and preprogramed 
into the robotic motion path, the system can be readily transferred 
to other welding processes (e.g., gas metal arc welding) and 
application scenarios (e.g., curved welding). The developed system 
will be expanded by including more capabilities (e.g., sophisticated 
torch weave, real-time welding path calculation), and be also 
compared to manual welding as part of the future work.  
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Fig. 5 Performance of standard and advanced gradient descent-based controller for two initial conditions: split pool (left) and large pool (right) 
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