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Abstract

In real-world applications of machine learning, reliable and safe systems must con-
sider measures of performance beyond standard test set accuracy. These other goals
include out-of-distribution (OOD) robustness, prediction consistency, resilience to
adversaries, calibrated uncertainty estimates, and the ability to detect anomalous
inputs. However, improving performance towards these goals is often a balancing
act that today’s methods cannot achieve without sacrificing performance on other
safety axes. For instance, adversarial training improves adversarial robustness
but sharply degrades other classifier performance metrics. Similarly, strong data
augmentation and regularization techniques often improve OOD robustness but
harm anomaly detection, raising the question of whether a Pareto improvement on
all existing safety measures is possible. To meet this challenge, we design a new
data augmentation strategy utilizing the natural structural complexity of pictures
such as fractals, which outperforms numerous baselines, is near Pareto-optimal,
and comprehensively improves safety measures.

1 Introduction

A central challenge in machine learning is building models that are reliable and safe in the real
world. In addition to performing well on the training distribution, deployed models should be
robust to distribution shifts, consistent in their predictions, resilient to adversaries, calibrated in their
uncertainty estimates, and capable of identifying anomalous inputs. Numerous prior works have
tackled each of these problems separately (Madry et al., 2018; Hendrycks and Dietterich, 2019; Guo
et al., 2017; Emmott et al., 2015), but they can also be grouped together as various aspects of safety
engineering for machine learning (Hendrycks et al., 2021b). Consequently, the properties listed above
can be thought of as safety measures.

Ideally, models deployed in real-world settings would perform well on multiple safety measures.
Unfortunately, prior work has shown that optimizing for some desirable properties often comes
at the cost of others. For example, adversarial training only improves adversarial robustness and
degrades classification performance (Tsipras et al., 2018). Similarly, inducing consistent predictions
on out-of-distribution (OOD) inputs seems to be at odds with better detecting these inputs, an intuition
supported by recent work (Chun et al., 2019) which finds that existing help with some safety metrics
but harm others. This raises the question of whether improving all safety measures is possible with a
single model.
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def pixmix(xorig, xmixing_pic, k=4, beta=3):
xpixmix = random.choice([augment(xorig), xorig])

# random count of mixing rounds
for i in range(random.choice([0,1,...,k])):

# mixing_pic is from the mixing set
# (e.g., fractal, natural image, etc.)
mix_image = random.choice([augment(xorig), xmixing_pic])
mix_op = random.choice([additive, multiplicative])

xpixmix = mix_op(xpixmix, mix_image, beta)

return xpixmix

def augment(x):
aug_op = random.choice([rotate, solarize, ..., posterize])
return aug_op(x)

Figure 2: Simplified code for PIXMIX, our proposed data augmentation method. Initial images are
mixed with a randomly selected image from our mixing set or augmentations of the clean image.
The mixing operations are selected at random, and the mixing set includes fractals and feature
visualization pictures.

3 Experiments

3.1 Tasks and Metrics

We compare PIXMIX to methods on five distinct ML Safety tasks. Individual methods are trained on
clean versions of CIFAR-10, CIFAR-100, and ImageNet. Then, they are evaluated on each of the
following tasks.

Corruptions. This task is to classify corrupted images from the CIFAR-10-C, CIFAR-100-C, and
ImageNet-C datasets. The metric is the mean corruption error (mCE) across all fifteen corruptions
and five severities for each corruption. Lower is better.

Consistency. This task is to consistently classify sequences of perturbed images from CIFAR-10-P,
CIFAR-100-P, and ImageNet-P. The main metric is the mean flip rate (mFR), which corresponds
to the probability that adjacent images in a temporal sequence have different predicted classes.
This can be written as Px∼S(f(xj) ̸= f(xj−1)), where xi is the ith image in a sequence. For
non-temporal sequences such as increasing noise values in a sequence S, the metric is modified to
Px∼S(f(xj) ̸= f(x1)). Lower is better.

Adversaries. This task is to classify images that have been adversarially perturbed by projected
gradient descent (Madry et al., 2018). For this task, we focus on untargeted perturbations on CIFAR-
10 and CIFAR-100 with an ℓ∞ budget of 2/255 and 20 steps of optimization. We do not display
results of ImageNet models against adversaries in our tables, as for all tested methods the accuracy
declines to zero with this budget. The metric is the classifier error rate. Lower is better.

Calibration. This task is to classify images with calibrated prediction probabilities, i.e. matching
the empirical frequency of correctness. For example, if a weather forecast predicts that it will rain with
70% probability on ten occasions, then we would like the model to be correct 7/10 times. Formally,
we want posteriors from a model f to satisfy P (Y = argmaxi f(X)i | maxi f(X)i = C) = C,
where X,Y are random variables representing the data distribution. The metric is RMS calibration

error (Hendrycks et al., 2019c), which is computed as

√

EC [(P(Y = Ŷ |C = c)− c)2] , where C

is the classifier’s confidence that its prediction Ŷ is correct. We use adaptive binning (Nguyen and
O’Connor, 2015b) to compute this metric. Lower is better.

Anomaly Detection. In this task we detect out-of-distribution (Hendrycks and Gimpel, 2017) or
out-of-class images from various unseen distributions. The anomaly distributions are Gaussian,
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Rademacher, Blobs, Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), LSUN (Yu et al.,
2015), Places69 (Zhou et al., 2017). We describe each in the Appendix and report average AUROC.
An AUROC of 50% is random chance and 100% is perfect detection. Higher is better.

3.2 Results on CIFAR-10/100 Tasks

Training Setup. In the following CIFAR experiments, we train a 40-4 Wide ResNet (Zagoruyko
and Komodakis, 2016) with a drop rate of 0.3 for 100 epochs. All experiments use an initial learning
rate of 0.1 which decays following a cosine learning rate schedule (Loshchilov and Hutter, 2016).
For PIXMIX experiments, we use k = 4, β = 3. Hyperparameter robustness is discussed in the
Appendix. Additionally, we use a weight decay of 0.0001 for Mixup and 0.0005 otherwise.

Results. In Table 1, we see that PIXMIX improves over the standard baseline method on all safety
measures. Moreover, all other methods decrease performance relative to the baseline for at least
one metric, while PIXMIX is the first method to improve performance in all settings. Results for all
other methods are in Table 2. PIXMIX obtains better performance than all methods on Corruptions,
Consistency, Adversaries, and Calibration. Notably, PIXMIX is far better than other methods for
improving confidence calibration, reaching acceptably low calibration error on CIFAR-10. For
corruption robustness, performance improvements on CIFAR-100 are especially large, with mCE on
the Corruptions task dropping by 4.9% compared to AugMix and 19.5% compared to the baseline.

In addition to robustness and calibration, PIXMIX also greatly improves anomaly detection. PIXMIX

nearly matches the anomaly detection performance of Outlier Exposure, the state-of-the-art anomaly
detection method, without requiring large quantities of diverse, known outliers. This is surprising,
as PIXMIX uses a standard cross-entropy loss, which makes the augmented images seem more
in-distribution. Hence, one might expect unseen corruptions to be harder to distinguish as well, but in
fact we observe the oppositeÐanomalies are easier to distinguish. Additional results and ablations
are in the Appendix.

Baseline Cutout Mixup CutMix
Auto

Augment
AugMix

Outlier
Exposure

PIXMIX

C
IF

A
R

-1
0 Corruptions 26.4 25.9 21.0 26.5 22.2 12.4 25.1 9.5

Consistency 3.4 3.7 2.9 3.5 3.6 1.7 3.4 1.7
Adversaries 91.3 96.0 93.3 92.1 95.1 86.8 92.9 82.1
Calibration 22.7 17.8 12.1 18.6 14.8 9.4 13.0 3.7
Anomaly Detection (↑) 91.9 91.4 88.2 92.0 93.2 89.2 98.4 97.0

C
IF

A
R

-1
0

0 Corruptions 50.0 51.5 48.0 51.5 47.0 35.4 51.5 30.5
Consistency 10.7 11.9 9.5 12.0 11.2 6.5 11.3 5.7
Adversaries 96.8 98.5 97.4 97.0 98.1 95.6 97.2 92.9
Calibration 31.2 31.1 13.0 29.3 24.9 18.8 15.2 8.1
Anomaly Detection (↑) 77.7 74.3 71.7 74.4 80.4 84.9 90.3 89.3

Table 2: On CIFAR-10 and CIFAR-100, PIXMIX outperforms state-of-the-art techniques on five
distinct safety metrics. Lower is better except for anomaly detection, and full results are in the
Supplementary Material.

4 Conclusion

We proposed PIXMIX, a simple and effective data augmentation technique for improving ML safety
measures. Unlike previous data augmentation techniques, PIXMIX introduces new complexity into
the training procedure by leveraging fractals and feature visualizations. We evaluated PIXMIX

on numerous distinct ML Safety tasks: corruption robustness, rendition robustness, prediction
consistency, adversarial robustness, confidence calibration, and anomaly detection. We found that
PIXMIX was the first method to provide substantial improvements over the baseline on all existing
safety metrics, and it obtained state-of-the-art performance in nearly all settings.
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(Mintun et al., 2021) and train AugMix without the Jensen-Shannon Divergence consistency loss,
which requires at least thrice the memory per batch. Outlier Exposure trains networks to be uncertain
on a training dataset of outliers, and these outliers are distinct from the out-of-distribution test sets
that we use during evaluation. For ImageNet experiments, we compare to several additional methods.
SIN trains networks on a mixture of clean images and images rendered using neural style transfer
(Geirhos et al., 2019). We opt for simple techniques that are widely used and do not evaluate all
possible techniques from each of the areas we consider. More methods are evaluated in the Appendix.

Robustness. Out-of-distribution robustness considers how to make ML models resistant to various
forms of data shift at test time. Geirhos et al., 2019 (Geirhos et al., 2019) uncover a texture bias in
convolutional networks and show that training on diverse stylized images can improve robustness
at test-time. The ImageNet-C(orruptions) benchmark (Hendrycks and Dietterich, 2019) consists of
diverse image corruptions known to track robustness on some real world data shifts (Hendrycks et al.,
2021a). ImageNet-C is used to test models that are trained on ImageNet (Deng et al., 2009) and is
used as a held-out, more difficult test set. They also introduce ImageNet-P(erturbations) for measuring
prediction consistency under various non-adversarial input perturbations. Others have introduced
additional corruptions for evaluation called ImageNet-C (Mintun et al., 2021). The ImageNet-
R(enditions) benchmark measures performance degradation under various renditions of objects
including paintings, cartoons, graffiti, embroidery, origami, sculptures, toys, and more (Hendrycks
et al., 2021a). In the similar setting of domain adaptation, Bashkirova et al., 2021 (Bashkirova et al.,
2021) consider evaluating test-time robustness of models and even anomaly detection (Emmott et al.,
2015; Liang et al., 2018; Ruff et al., 2021). Yin et al., 2019 (Yin et al., 2019) show that adversarial
training can substantially reduce robustness on some corruptions and argue that part of model fragility
is explained by overreliance on spurious cues (Sagawa et al., 2020; Koh et al., 2021).

Calibration. Calibrated prediction confidences are valuable for classification models in real-world
settings. Several works have investigated evaluating and improving the calibration of deep neural
networks (Nguyen and O’Connor, 2015a; Guo et al., 2017) through the use of validation sets. Others
have shown that calibration can be improved without a validation set through methods such as
ensembling (Lakshminarayanan et al., 2017) and pre-training (Hendrycks et al., 2019a). Ovadia et al.
(Ovadia et al., 2019) find that models are markedly less calibrated under distribution shift.

Anomaly Detection. Since models should ideally know what they do not know, they will need to
identify when an example is anomalous. Anomaly detection seeks to estimate whether an input is
out-of-distribution (OOD) with respect to a given training set. Hendrycks et al., 2017 (Hendrycks and
Gimpel, 2017) propose a simple baseline for detecting classifier errors and OOD inputs. Devries et
al., 2018 (Devries and Taylor, 2018) propose training classifiers with an additional confidence branch
for detecting OOD inputs. Lee et al., 2018 (Lee et al., 2018a) propose improving representations
used for detectors with near-distribution images generated by GANs. Lee et al., 2018 (Lee et al.,
2018b) also propose the Mahalanobis detector. Outlier Exposure (Hendrycks et al., 2019b) fine-tunes
classifiers with diverse, natural anomalies, and since it is the state-of-the-art for OOD detection, we
test this method in our paper.

Data Augmentation. Simulated and augmented inputs can help make ML systems more robust, and
this approach is used in real-world applications such as autonomous driving (Tesla, 2021; Anguelov,
2019). For state-of-the-art models, data augmentation can improve clean accuracy comparably to
a 10× increase in model size (Steiner et al., 2021). Further, data augmentation can improve out-of-
distribution robustness comparably to a 1,000× increase in labeled data (Hendrycks et al., 2021a).
Various augmentation techniques for image data have been proposed, including Cutout (Devries and
Taylor, 2017; Zhong et al., 2017), Mixup (Zhang et al., 2017; Tokozume et al., 2018), CutMix (Yun
et al., 2019; Takahashi et al., 2019), and AutoAugment (Cubuk et al., 2018; Yin et al., 2019). Lopes et
al., 2019 (Lopes et al., 2019) find that inserting random noise patches into training images improves
robustness. AugMix is a data augmentation technique that specifically improves OOD generalization
(Hendrycks et al., 2019e). Chun et al. (Chun et al., 2019) evaluates some of these techniques on
CIFAR-10-C, a variant of ImageNet-C for the CIFAR-10 dataset (Hendrycks and Dietterich, 2019).
They find that these data augmentation techniques can improve OOD generalization at the cost of
weaker OOD detection.

Analyzing Safety Goals Simultaneously. Recent works study how a given method influences
safety goals (Hendrycks et al., 2021b) simultaneously. Prior work has shown that Mixup, CutMix,
Cutout, ShakeDrop, adversarial training, Gaussian noise augmentation, and more have mixed effects
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on various safety metrics (Chun et al., 2019). Others have shown that different pretraining methods
can improve some safety metrics and hardly affect others, but the pretraining method must be modified
per task (Hendrycks et al., 2019a). Self-supervised learning methods can also be repurposed to help
with some safety goals, all while not affecting others, but to realize the benefit, each task requires
different self-supervised learning models (Hendrycks et al., 2019d). Thus, creating a single method
for improving performance across multiple safety metrics is an important next step.

Training on Complex Synthetic Images. Kataoka et al., 2020 (Kataoka et al., 2020) introduce
FractalDB, a dataset of black-and-white fractals, and they show that pretraining on these algorithmi-
cally generated fractal images can yield better downstream performance than pretraining on many
manually annotated natural datasets. Nakashima et al. (Nakashima et al., 2021) show that models
trained on a large variant of FractalDB can match ImageNet-1K pretraining on downstream tasks.
Baradad et al., 2021 (Baradad et al., 2021) find that, for self-supervised learning, other synthetic
datasets may be more effective than FractalDB, and they find that structural complexity and diversity
are key properties for good downstream transfer. We depart from this recent line of work and ask
whether structurally complex images can be repurposed for data augmentation instead of training from
scratch. While data augmentation techniques such as those that add Gaussian noise increase input
entropy, such noise has maximal descriptive complexity but introduce little structural complexity
(Lloyd, 2001). Since a popular definition of structural complexity is the fractal dimension (Lloyd,
2001), we turn to fractals and other structurally complex images for data augmentation.
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B Additional Results

Accuracy Robustness Consistency Calibration Anomaly Detection

Clean C C R ImageNet-P Clean C C R Out-of-Class Datasets
Error mCE Error Error mFR mT5D RMS RMS RMS RMS AUROC (↑) AUPR (↑)

Baseline 23.9 78.2 61.0 63.8 58.0 78.4 5.6 12.0 20.7 19.7 79.7 48.6
Cutout 22.6 76.9 60.2 64.8 57.9 75.2 3.8 11.1 17.1 14.6 81.7 49.6
Mixup 22.7 72.7 55.0 62.3 54.3 73.2 5.8 7.3 13.2 44.6 72.2 51.3
CutMix 22.9 77.8 59.8 66.5 60.3 76.6 6.2 9.1 15.3 43.5 78.4 47.9
AutoAugment 22.4 73.8 58.0 61.9 54.2 72.0 3.6 8.0 14.3 12.6 84.4 58.2
AugMix 22.8 71.0 56.5 61.7 52.7 70.9 4.5 9.2 15.0 13.2 84.2 61.1
SIN 25.4 70.9 57.6 58.5 54.4 71.8 4.2 6.5 14.0 16.2 84.8 62.3
PIXMIX 22.6 65.8 44.3 60.1 51.1 69.1 3.6 6.3 5.8 11.0 85.7 64.1

Table 3: On ImageNet, PIXMIX improves over state-of-the-art methods on a broad range of safety
metrics. Lower is better except for anomaly detection, and the full results are in the Supplementary
Material. Bold is best, and underline is second best. Across evaluation settings, PIXMIX is occasion-
ally second-best, but it is usually first, making it near Pareto-optimal.

B.1 Results on ImageNet Tasks

Training Setup. Since regularization methods may require a greater number of training epochs
to converge, we fine-tune a pre-trained ResNet-50 for 90 epochs. For PIXMIX experiments, we use
k = 4, β = 4. We use a batch size of 512 and an initial learning rate of 0.01 following a cosine decay
schedule.

Results. We show ImageNet results in Table 3. Compared to the standard augmentations of the
baseline, PIXMIX has higher performance on all safety measures. By contrast, other augmentation
methods have lower performance than the baseline (cropping and flipping) on some metrics. Thus,
PIXMIX is the first augmentation method with a Pareto improvement over the baseline on a broad
range of safety measures.

On corruption robustness, PIXMIX outperforms state-of-the-art augmentation methods such as
AugMix, improving mCE by 12.4% over the baseline and 5.1% over the mCE of the next-best
method. On rendition robustness, PIXMIX outperforms all other methods save for SIN. Note that
SIN is particularly well-suited to improving rendition robustness, as it trains on stylized ImageNet
data. However, SIN incurs a 2% loss to clean accuracy, while PIXMIX increases clean accuracy
by 1.3%. Maintaining strong performance on clean images is an important property for methods to
have, as practitioners may be unwilling to adopt methods that markedly reduce performance in ideal
conditions.

On calibration tasks, PIXMIX outperforms all methods. As Ovadia et al. (Ovadia et al., 2019) show,
models are markedly less calibrated under distribution shift. We find that PIXMIX cuts calibration
error in half on ImageNet-C compared to the baseline. On ImageNet-C, the improvement is even
larger, with a 14.9% reduction in absolute error. In Figure 4, we visualize how calibration error on
ImageNet-C and ImageNet-C varies as the corruption severities increase. Compared to the baseline,
PIXMIX calibration error increases much more slowly. Further uncertainty estimation results are in
the Appendix. For example, PIXMIX substantially improves anomaly detection performance with
Places365 as the in-distribution set.

B.2 Mixing Set Picture Source Ablations

While we provide a high-quality source of structural complexity with PIXMIX, our mixing pipeline
could be used with other mixing sets. In Table 4, we analyze the choice of mixing set on CIFAR-100
performance. We replace our Fractals and Feature Visualizations dataset (Fractals + FVis) with
several synthetic datasets developed for unsupervised representation learning (Baradad et al., 2021;
Kataoka et al., 2020). We also evaluate the 300K Random Images dataset of natural images used for
Outlier Exposure on CIFAR-10 and CIFAR-100 (Hendrycks et al., 2019c).

Compared to alternative sources of visual structure, the Fractals + FVis mixing set yields substantially
better results. This suggests that structural complexity in the mixing set is important. Indeed, the
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Noise-Based Augmentations. Since noise-based augmentations sometimes nearly overlap with
the test distribution and thereby may have an unfair advantage, we separately compare to several
additional baselines on ImageNet that use noise-based data augmentations. ANT trains networks on
inputs with adversarially transformed noise applied (Rusak et al., 2020). Speckle trains on inputs
with speckle noise added, which has been observed to improve robustness. EDSR and Noise2Net
inject noise using image-to-image neural networks with noisy parameters (Hendrycks et al., 2021a).
Adversarial trains networks with ℓ∞ perturbations of magnitude ε = 8/255 (Madry et al., 2017).

Results are in Tables 10. We find that ANT and Speckle have strong performance on ImageNet-P
overall, but this mostly comes from the Gaussian and shot noise categories. If we only consider
prediction stability on non-noise categories, PIXMIX exhibits the least volatility in predictions out of
all the methods considered.

Hyperparameter Sensitivity. In Table 13, we examine the hyperparameter sensitivity of PIXMIX

on corruption robustness for CIFAR-100. We vary the β and k hyperparameters and find that
performance is very stable across a range of hyperparameters.

Places365 Anomaly Detection. In Table 12, we show anomaly detection performance with
Places365 as the in-distribution data. For all methods, we use a ResNet-18 pre-trained on Places365.
PIXMIX and Outlier Exposure (OE) are fine-tuned for 10 epochs. We find that PIXMIX nearly
matches the state-of-the-art OE detector despite being a general data augmentation technique that
improves many other safety metrics.

C Outlier Datasets

For anomaly detection, we use a suite of out-of-distribution datasets and average metrics across all
OOD datasets in the main results. Gaussian noise is IID noise sampled from a normal distribution.
Rademacher Noise is noise with each pixel sampled from {−1, 1} with equal probability. Blobs are
algorithmically generated blobs. Textures are from the Describable Textures Dataset (Cimpoi et al.,
2014). SVHN has images of numbers from houses. Places69 contains 69 held-out classes.

D Broader Impacts

As PIXMIX differentially improves safety metrics, it could have various beneficial effects. Improved
robustness can result in more reliable machine learning systems deployed in safety-critical situations
(Hendrycks et al., 2021b), such as self-driving cars. Anomaly detection enables better human
oversight of machine learning systems and fallback policies in cases where systems encounter
inputs they were not designed to handle. At the same time, anomaly detection could be misused
as a surveillance tool, requiring careful consideration of individual use cases. Calibration enables
more meaningful predictions that increase trust with end users. Additionally, compared to other
methods for improving robustness, PIXMIX requires minimal modification of the training setup and
a low computational overhead, resulting in lower costs to machine learning practitioners and the
environment.

Accuracy Corruptions Consistency Adversaries Calibration Anomaly

Clean C CIFAR-P PGD C Detection
Error (↓) mCE (↓) mFR (↓) Error (↓) RMS (↓) AUROC (↑)

PIXMIX Original 20.3 30.5 5.7 92.9 8.1 89.3
Mix Input 19.9 34.1 6.4 96.7 15.5 86.5
Mix Aug 20.6 31.1 6.2 94.2 6.0 89.7
Iterative 21.1 31.4 5.6 90.6 12.7 86.7

Table 5: PIXMIX variations on CIFAR-100. Mix Input only mixes with augmented versions of
the clean image. Mix Aug only mixes with images from the mixing set (i.e. fractals and feature
visualizations). Iterative mixes with feature visualizations computed on the fly for the current network.
Using the mixing set alone is more effective than augmented images alone, and combining them can
further improve performance on several metrics.
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Accuracy Corruptions Consistency Adversaries Calibration Anomaly

Clean C C CIFAR-P PGD Clean C C Detection
Error mCE mCE mFR mT5D Error RMS RMS RMS AUROC (↑) AUPR (↑)

CutMix 20.3 51.5 49.6 12.0 3.0 97.0 12.2 29.3 26.5 74.4 32.3
PIXMIX 20.3 30.5 36.7 5.7 1.6 92.9 7.0 8.1 8.9 89.3 70.9
PIXMIX + CutMix 19.9 30.9 35.5 5.8 1.7 93.1 4.4 6.0 5.9 89.5 68.6

Table 6: Combining PIXMIX and CutMix on CIFAR-100. While PIXMIX is strong on its own,
combination with other data augmentation techniques can further improve performance.

Accuracy Corruptions Consistency Adversaries Calibration Anomaly

Clean C C CIFAR-P PGD Clean C C Detection
Error mCE mCE mFR mT5D Error RMS RMS RMS AUROC (↑) AUPR (↑)

Baseline 21.3 50.0 52.0 10.7 2.7 96.8 14.6 31.2 30.9 77.7 35.4
Cutout 19.9 51.5 50.2 11.9 2.7 98.5 11.4 31.1 29.4 74.3 31.3
Mixup 21.1 48.0 49.8 9.5 3.0 97.4 10.5 13.0 12.9 71.7 31.9
CutMix 20.3 51.5 49.6 12.0 3.0 97.0 12.2 29.3 26.5 74.4 32.3
AutoAugment 19.6 47.0 46.8 11.2 2.6 98.1 9.9 24.9 22.8 80.4 33.2
AugMix 20.6 35.4 41.2 6.5 1.9 95.6 12.5 18.8 22.5 84.9 53.8
OE 21.9 50.3 52.1 11.3 3.0 97.0 12.0 13.8 13.9 90.3 66.2
PIXMIX 20.3 30.5 36.7 5.7 1.6 92.9 7.0 8.1 8.9 89.3 70.9

Table 7: Full results for CIFAR-100. mT5D is an additional metric used for gauging prediction
consistency in ImageNet-P, which we adapt to CIFAR-100. Note PIXMIX can achieve 19.6% error
rate if it uses 300K Random Images as the Mixing Set, so PIXMIX can achieve the same accuracy as
AutoAugment yet also do better on safety metrics.

Accuracy Corruptions Consistency Adversaries Calibration Anomaly

Clean CIFAR-C C CIFAR-P PGD Clean CIFAR-C C Detection
Error mCE mCE mFR mT5D Error RMS RMS RMS AUROC (↑) AUPR (↑)

Baseline 4.4 26.4 26.4 3.4 1.7 91.3 6.4 22.7 22.4 91.9 70.9
Cutout 3.6 25.9 24.5 3.7 1.7 96.0 3.3 17.8 17.5 91.4 63.6
Mixup 4.2 21.0 22.1 2.9 2.1 93.3 12.5 12.1 10.9 88.2 67.1
CutMix 4.0 26.5 25.4 3.5 2.1 92.1 5.0 18.6 17.8 92.0 65.5
AutoAugment 3.9 22.2 24.4 3.6 1.7 95.1 4.0 14.8 16.6 93.2 64.6
AugMix 4.3 12.4 16.4 1.7 1.2 86.8 5.1 9.4 12.6 89.2 61.5
OE 4.6 25.1 26.1 3.4 1.9 92.9 6.9 13.0 13.2 98.4 92.5
PIXMIX 4.2 9.5 13.6 1.7 1.0 82.1 2.6 3.7 5.3 97.0 88.4

Table 8: Full results for CIFAR-10. mT5D is an additional metric used for gauging prediction
consistency in ImageNet-P, which we adapt to CIFAR-10.

Accuracy Robustness Consistency Calibration Anomaly

Clean C C R ImageNet-P Clean C C R Detection
Error mCE Error Error mFR mT5D RMS RMS RMS RMS AUROC (↑) AUPR (↑)

Baseline 23.9 78.2 61.0 63.8 58.0 78.4 5.6 12.0 20.7 19.7 79.7 48.6
Cutout 22.6 76.9 60.2 64.8 57.9 75.2 3.8 11.1 17.1 14.6 81.7 49.6
Mixup 22.7 72.7 55.0 62.3 54.3 73.2 5.8 7.3 13.2 44.6 72.2 51.3
CutMix 22.9 77.8 59.8 66.5 60.3 76.6 6.2 9.1 15.3 43.5 78.4 47.9
AutoAugment 22.4 73.8 58.0 61.9 54.2 72.0 3.6 8.0 14.3 12.6 84.4 58.2
AugMix 22.8 71.0 56.5 61.7 52.7 70.9 4.5 9.2 15.0 13.2 84.2 61.1
SIN 25.4 70.9 57.6 58.5 54.4 71.8 4.2 6.5 14.0 16.2 84.8 62.3
PIXMIX 22.6 65.8 44.3 60.1 51.1 69.1 3.6 6.3 5.8 11.0 85.7 64.1

Table 9: Full results for ImageNet. mT5D is an additional metric used for gauging prediction
consistency in ImageNet-P. Bold is best, and underline is second best.
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Accuracy Robustness Consistency Calibration Anomaly

Clean C C R ImageNet-P Clean C C R Detection
Error mCE Error Error mFR mT5D RMS RMS RMS RMS AUROC (↑) AUPR (↑)

Baseline 23.9 78.2 61.0 63.8 58.0 78.4 5.6 12.0 20.7 19.7 79.7 48.6
ANT 23.9 67.0 61.0 61.0 48.0 68.4 7.0 10.3 19.3 22.9 80.9 54.3
Speckle 24.2 72.7 62.1 62.1 51.2 70.6 5.6 11.6 19.8 20.9 79.7 53.3
Noise2Net 22.7 71.6 57.7 57.6 51.5 72.3 4.4 8.9 16.3 15.2 84.8 60.4
EDSR 23.5 65.4 54.7 60.3 44.6 63.3 4.5 8.4 15.7 16.7 71.7 36.3
ℓ∞ Adversarial 45.5 92.6 68.0 65.2 38.5 41.5 15.5 10.2 15.1 10.2 69.8 26.4
ℓ2 Adversarial 37.2 85.5 64.9 63.0 29.2 34.8 11.3 9.7 16.6 10.7 78.9 40.2

Table 10: While many noise-based augmentation methods often do well on ImageNet-C by targeting
the noise corruptions, they do not reliably improve performance across many safety metrics.

Noise Blur Weather Digital
Clean mFR Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale

Baseline 23.9 58.0 59 58 65 72 63 62 44 52 57 48
ANT 23.9 48.0 41 36 50 61 48 58 40 48 52 46
Speckle 24.2 51.2 38 28 60 67 58 65 43 51 54 48
Noise2Net 22.7 51.5 54 53 50 70 56 50 38 47 52 43
EDSR 23.5 44.6 37 35 48 56 46 56 38 44 44 43
ℓ∞ Adversarial 45.5 38.5 43 56 24 33 15 80 20 34 33 46
ℓ2 Adversarial 37.2 29.2 24 30 24 31 14 64 13 27 26 39

Table 11: ImageNet-P results. The mean flipping rate is the average of the flipping rates across all 10
perturbation types. Noise-based augmentation methods are less performant on non-noise distribution
shifts.

AUROC (↑) AUPR (↑)

Baseline OE PIXMIX Baseline OE PIXMIX

Gaussian Noise 72.2 93.5 100.0 23.5 54.1 100.0
Rademacher Noise 47.7 90.2 100.0 14.6 44.9 100.0
Blobs 41.9 100.0 100.0 13.0 99.4 100.0
Textures 66.6 91.4 80.3 24.6 75.7 56.2
SVHN 96.6 100.0 99.5 90.5 99.9 98.6
ImageNet 63.0 86.5 71.5 25.1 69.7 47.4
Places69 61.5 63.1 62.3 23.4 24.9 31.3

Average 64.2 89.2 87.6 30.7 66.9 76.2

Table 12: Out-of-Distribution detection results for a ResNet-18 pre-trained on Places365. PIXMIX

and OE are finetuned for 10 epochs. Despite being a general data augmentation technique, PIXMIX

is near the state-of-the-art in OOD detection.

k = 2 k = 3 k = 4

β = 5
20.2
31.6

20.0
31.1

20.1
30.8

β = 4
19.7
31.3

20.3
30.9

20.1
30.7

β = 3
20.3
31.2

20.2
30.7

20.3
30.5

Table 13: Performance is not strongly affected by hyperparameters. We include the CIFAR-100 test
set error and the CIFAR-100-C mCE for each hyperparameter setting.
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Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Baseline 23.9 78.2 78 80 80 79 90 81 80 80 78 69 62 75 88 76 78
Cutout 22.6 76.9 76 77 79 76 90 79 79 79 78 69 60 74 87 75 75
Mixup 22.7 72.7 69 72 73 76 90 77 78 73 68 62 59 64 86 71 73
CutMix 22.9 77.8 78 80 80 79 90 81 80 80 78 69 62 75 88 76 78
AutoAugment 22.4 73.8 71 72 75 75 90 78 79 73 74 64 55 68 87 73 71
AugMix 22.8 71.0 69 70 70 72 88 74 71 73 74 58 58 59 85 73 72
SIN 25.4 70.9 64 65 66 73 84 73 80 71 74 66 62 69 80 64 73
PIXMIX 22.6 65.8 53 52 51 73 88 77 77 62 64 58 56 53 85 69 70

Table 14: Clean Error, mCE, and Corruption Error (CE) values for various methods on ImageNet-C.
The mCE value is computed by averaging across per corruption CE values.

Clean C Error BSmpl Plsm Ckbd CSin SFreq Brown Perlin Sparkles ISparkle Refraction

Baseline 23.9 61.0 62 77 55 86 80 45 41 38 78 48
Cutout 22.6 60.2 64 77 49 85 80 45 41 36 77 47
Mixup 22.7 55.0 58 68 49 80 72 38 36 35 71 44
CutMix 22.9 59.8 64 77 47 85 80 46 41 35 75 47
AutoAugment 22.4 58.0 56 71 49 86 77 42 39 36 77 47
AugMix 22.8 56.5 51 71 48 83 76 42 38 36 75 45
SIN 25.4 57.6 53 72 54 81 68 41 41 41 79 47
PIXMIX 22.6 44.3 40 48 48 48 47 34 37 33 65 44

Table 15: Results for various methods on ImageNet-C.
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