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Abstract

In many areas of science, the ability to use computers to process, analyze, and visualize

large data sets has become essential. The mismatch between the ability to generate large

data sets and the computing skill to analyze them is arguably the most striking within the life

sciences. The Digital Image and Vision Applications in Science (DIVAS) project describes a

scaffolded series of interventions implemented over the span of a year to build the coding

and computing skill of undergraduate students majoring primarily in the natural sciences.

The program is designed as a community of practice, providing support within a network of

learners. The program focus, images as data, provides a compelling ‘hook’ for participating

scholars. Scholars begin the program with a one-credit spring semester seminar where they

are exposed to image analysis. The program continues in the summer with a one-week,

intensive Python and image processing workshop. From there, scholars tackle image analy-

sis problems using a pair programming approach and can finish the summer with indepen-

dent research. Finally, scholars participate in a follow-up seminar the subsequent spring

and help onramp the next cohort of incoming scholars. We observed promising growth in

participant self-efficacy in computing that was maintained throughout the project as well as

significant growth in key computational skills. DIVAS program funding was able to support

seventeen DIVAS over three years, with 76% of DIVAS scholars identifying as women and

14% of scholars identifying as members of an underrepresented minority group. Most schol-

ars (82%) entered the program as first year students, with 94% of DIVAS scholars retained

for the duration of the program and 100% of scholars remaining a STEM major one year

after completing the program. The outcomes of the DIVAS project support the efficacy of

building computational skill through repeated exposure of scholars to relevant applications

over an extended period within a community of practice.
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Introduction

Science, technology, engineering, and mathematics (STEM) professions, even those not tradi-

tionally steeped in quantitative models and data analysis, increasingly require computational

competence [1]. In particular, the natural sciences have experienced significant increases in

the amount of data generated by increased computing power, cheaper and more rapid

sequencing technologies, and the rise of interdisciplinary fields such as personalized medicine,

phenomics, digital agriculture, and climate science. Computation has become so ubiquitous

and necessary across the natural and physical sciences that it has been referred to as the “third

pillar of the scientific method,” along with theory and experimentation [2]. A career in the nat-

ural sciences increasingly requires that professionals are comfortable with basic computational

skills and quantitative analysis [3–5]. Beyond this, modern scientific exploration may require

the design of new software by developers with both specific content knowledge and computa-

tional skills. As a potential "end user", a biologist, chemist, physicist, etc. has the content

knowledge, but may need computational skills training [6, 7]. Across the broad range of STEM

disciplines, too few students are being trained in computational and quantitative skills that

would enable them to develop useful software. In particular, undergraduate students in the life

sciences may be resistant to developing quantitative or computational skills due to previous

negative experiences or a perception that they “aren’t good at” mathematics or computers [8].

The result of these factors is a mismatch between the skills needed for success in research or

industry positions and the skills possessed by graduates and young professionals starting these

positions.

To address this mismatch, we conceived of the Digital Imaging and Vision Applications in

Science (DIVAS) Project. This year-long program was designed as a guided ‘onramp’ to

develop computational skills within a community of practice that would contribute to partici-

pants’ STEM career success. The overall goal of the DIVAS project is to develop, utilize, and

test interventions that will engage and train STEM undergraduate students in computing—

especially students that do not traditionally participate in computer science curriculum.

DIVAS interventions present students with visually-appealing image-based problems relevant

to the disciplines they are majoring in, thereby making the skills we aim to develop eminently

practical. Importantly, it is relatively easy to capture images with high spatial, temporal, and

spectral resolution, with images being increasingly used as data in scientific, clinical, and engi-

neering settings [9–12]. While images are relatively easy to obtain, extracting useful informa-

tion from them commonly presents technical barriers that lead to processing bottlenecks.

Although the collection of large datasets has become rather commonplace, scientists of various

career stages may lack the computational skills to analyze these data independently or may

have limited access to productive collaborations with computer scientists or other specialists.

Early introduction to computational approaches, along with frequent practice, enables a per-

son new to computing to take advantage of training resources to develop critical skills and to

form effective collaborations [13–15]. Studies of computer science courses that present

instructional concepts in the context of digital images, videos, or music—i.e. “media computa-

tion” [16]—contributes to higher retention of women and non-computer science majors in

these courses [13, 17, 18].

Just as computation-in-context supports student gains, so do communities of practice and

learning communities. Both types of communities, which can be quite distinct depending on

their specific model [19], are often used interchangeably to describe a community for sharing,

developing, and/or maintaining knowledge, skills, and practices within which membership

ranges from novices to seasoned experts. For students, participation in such communities has

been shown to boost academic performance, self-efficacy, sense of belonging, STEM identity,
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retention, and graduation rates [20–23]. In the DIVAS Project, cohorts of novices work side-

by-side with faculty mentors, and their more experienced student peers, to themselves become

more advanced practitioners via legitimate peripheral participation [24]. Importantly, the

DIVAS Project models the reality of the modern computational work environment, which is

soundly a team-based endeavor. This counters the stereotype that such work is largely solitary.

The general hypothesis of the DIVAS Project is that gradual, scaffolded exposure to—and

practice with—computational tools, centered on accessible and relevant applications, and

implemented in both simulated and authentic supportive professional environments, will

impact student self-efficacy, computational competency, and career path interest and knowl-

edge. We have taken the approach of emphasizing growth in self-efficacy toward computing as

the first necessary indicator of growth in computational skill [25–27]. We also posit that as par-

ticipants become more familiar with computational tools, they will additionally show more

interest in career paths that would utilize said tools. Though our pilot program was restricted

in size, its positive impact on participants suggests that DIVAS program elements are well-

suited to our broader goals of fostering computation skills within a community of practice. We

describe our approach here both as a guide and an invitation. We hope to form new DIVAS

partnerships to broaden the DIVAS community and enable additional study on the efficacy of

the approach we have taken.

DIVAS program elements

To explore our hypothesis, a pathway of interventions was designed that comprise our pro-

grammatic ‘onramp’ (Fig 1). Each cohort of DIVAS scholars was introduced to our commu-

nity of practice via a one-credit, spring semester seminar (DIVAS Seminar I) and engagement

with the DIVAS Slack team. Work continued in the summer with a week-long coding work-

shop, followed by a four-week long paired-programming session that allows DIVAS scholars

to put their recently acquired skills to use. DIVAS scholars can participate in an additional

three weeks of research with DIVAS faculty to conclude their summer activities. In the fall

semester, DIVAS scholars returning to research—or starting new computing projects—con-

tinue engaging with community members using our Slack team. During the following spring,

the cohort takes DIVAS Seminar II. As with other team science endeavors, the DIVAS com-

munity is offline and online, with Slack and Zoom playing significant roles in communication,

project management, co-working sessions, team meetings, etc. In the sections that follow, the

basic design of each intervention is detailed below and intervention resources can be found in

S1–S17 Files.

DIVAS Seminar I and II. DIVAS Seminar I and II are both one-credit seminars offered

in the spring semester. DIVAS Seminar I is offered to new scholars before the summer coding

workshop and projects. DIVAS Seminar II is offered to scholars in the spring after they have

completed the summer interventions. DIVAS Seminar I is designed to introduce students to

Fig 1. Interventions comprising the computational ‘onramp’ of the DIVAS program.

https://doi.org/10.1371/journal.pone.0241946.g001
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images as data and basic coding concepts, as well as allow them to meet professionals who use

coding in their everyday work and explore computing careers. Students complete a photo jour-

nal project where they identify a question or problem of interest, collect a series of images to

address that question or problem, then use ImageJ to conduct simple image processing. In the

first iteration of DIVAS Seminar II, scholars organized their project code repositories, devel-

oped online portfolios regarding their DIVAS experiences, and gave a local conference presen-

tation. Based on student feedback, the next year’s Seminar II was modified to include more

challenging academic content. Students learned the basics of parallel programming using

Python and OpenMPI, creating a “Burning Ship” fractal image [28] using the DU supercom-

puter, Onyx. The third year, DIVAS Seminar II walked a line between the first two iterations;

students worked on cleaning the previous summer’s code and keeping the code repository up

to date in addition to helping test the new version of the image processing workshop that used

the scikit-image processing libraries instead of OpenCV. DIVAS Seminar II was taught by the

same instructor each year and scheduled at the same time as DIVAS Seminar I. This schedul-

ing arrangement made it easier to promote interactions between the cohorts in each class. Fur-

ther developing peer mentorship opportunities, the DIVAS faculty created a “writing center

for computing” on campus called the Center for Computing in the Liberal Arts (CCLA) in

year two of the project [29]. The center was led by a staff person hired, in part, to serve this

role. Upon creation of the CCLA, several DIVAS scholars signed up to serve as peer mentors,

assisting in the creation of training materials and participating in center activities.

Coding workshop. Short courses, such as those run by The Carpentries, have become a

popular way to build coding and data analysis skills [30]. On average, participants report

increased self-efficacy in coding and coding skills, based on pre- and post-workshop surveys

and on longitudinal surveys [30, 31]. However, workshops like those offered through The Car-

pentries are not targeted towards, nor significantly attended by, undergraduate students [30].

We designed a one-week coding workshop that includes two days of basic coding in Python

and three days of image processing using OpenCV libraries. The two-day introduction to

Python was modeled on an existing Carpentries workshop and can be found at GitHub [32].

The overall design of the three-day image processing workshop was informed by Adrian

Rosebrook’s 2016 book on the topic [33]. To keep students engaged with Python basics, exam-

ples used during this section of the workshop were tailored toward image processing projects.

Students were also presented with two authentic and “solvable” research problems at the

beginning of the image processing portion of the workshop. For the first problem, participants

were asked to count bacterial colonies on a plate image. For the second, participants were

asked to track the progress of an acid-base titration captured on video. Our workshop design

provides students an opportunity to immediately apply their recently acquired Python skills to

write code that performs analysis tasks to address these two authentic problems. The image

processing portion of the workshop was adopted by The Carpentries in 2019 [31, 34]. At the

same time, the image processing operations were translated into Scikit-image, which is much

easier to install and implement across a wide range of hardware, software, and network envi-

ronments. Workshop materials are available at its Data Carpentry site [31].

Pair programming projects. Pair programming is a practice used in the software devel-

opment industry in which two programmers work together, with one person assuming the

role of the “driver” who writes the code, and the other taking the role of “observer” who

reviews the code and makes suggestions. In introductory computer science courses, the use of

pair programming results in higher quality code, increased student enjoyment, improved pass

rates for courses, and improved retention in computer science majors for both men and

women [17, 35–37]. Also, pair programming has been shown to increase the confidence of

women in the programming solutions they produce [35]. We designed the DIVAS program so
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that participants would transition from the coding workshop to pair programming work,

applying knowledge gained in the workshop to the completion of two consecutive two-week

pair programming projects. Each year, one project was morphometric in nature while the

other was colorimetric. Image data sets were found from public repositories or from the

research of the faculty team. The project was presented by a faculty member at the beginning

of each project. Pairs were determined by the faculty facilitators. One pair was composed of

the SEU scholar and a DU scholar. For this pair, pair programming was conducted virtually

using Zoom. A significant amount of project management was done via the DIVAS Slack

team. To promote a community of practice, scholars participated in daily “stand-up” meetings

where they gave brief progress reports and set goals for the day. Issues were also shared and

discussed. Pairs worked on code for the remainder of the day. A formal code review was con-

ducted each week by the DIVAS community of practice, with community members joining

both in-person and virtually. All participants were to have copied and annotated the code of

the other teams prior to the review to prepare for discussion. At the conclusion of the review

meeting, the group identified major goals for the following week or final items to wrap up the

project. The process was repeated with a second project with different partners in the following

two weeks. An example of a pair programming project is provided in S8 File.

Independent research. In year one, scholars were required to conduct 3–4 weeks of inde-

pendent research after completing pair programming. Projects were based on the existing

research of the faculty team as well as being informed by student interest (Table 1). Students

generally worked independently, but met with their faculty advisor for daily check-ins and to

troubleshoot any problems that arose. Participating in DIVAS research was optional in years

two and three to better accommodate student schedules, e.g. participation in a Research Expe-

rience for Undergraduates (REU) program, study abroad, etc.

Within the DIVAS Project framework, several questions were explored: 1) How do pro-

gram interventions impact participant self-efficacy toward computation? 2) How do program

interventions impact participant career interest and knowledge? 3) How do program interven-

tions and their ability to demonstrate effective computational thinking?

The overall objectives of the DIVAS project are to:

1. Explore the effectiveness of coding workshops on student attitudes toward computation

and their ability to demonstrate effective computational thinking.

2. Measure impacts of paired programming projects, independent research, and professional

development seminars on self-efficacy and ability to apply computational skills.

3. Investigate the impact of interventions in computation on student career interest and

knowledge.

Table 1. Example pair programming and independent research projects.

1. Detection of breaks in veterinary x-ray images

2. Detection and quantification of standards printed onto a solid surface

3. Calculating the endpoint of a titration from a movie of the reaction

4. Counting plaques on an agar plate

5. Quantifying chemotaxis of bacteria toward potential attractants

6. Measuring growth of maize seedlings over time

7. Automatically analyzing and solving images of printed Sudoku problems

8. Improving script performance by converting code from python to C to improve script performance

https://doi.org/10.1371/journal.pone.0241946.t001
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Materials and methods

Study context and overview

The DIVAS program was administered at Doane University (DU) and St. Edward’s University

(SEU). Both DU and SEU are private liberal arts institutions. DU is a rural residential under-

graduate campus in Crete, Nebraska. SEU is an urban campus in Austin, Texas with designa-

tions as both a minority serving institution and Hispanic serving institution. At the time of the

study, DU had approximately 1,070 undergraduates with 45% identifying as women, 17%

identifying as a member of an underrepresented minority (URM; African Americans, Ameri-

can Indians including Native Alaskans, Hispanics and Native Pacific Islanders) group, 34%

identifying as first-generation university students, and 30% of students being Pell-eligible. The

undergraduate population at SEU was approximately 3,445, with 62% identifying as women,

55% identifying as a member of an URM group, 33% identifying as first-generation university

students, and 38% of students being Pell-eligible.

For each year of the DIVAS program, up to six scholars were selected. Participant number

was limited due to budget constraints. Every effort was made to include each student who

completed an application in the DIVAS program. A total of 17 scholars were selected to com-

plete all program interventions and a participant overview is provided in Table 2. One scholar

majoring in a chemistry-related field was recruited from SEU each year. One student from DU

majoring in computer science (CS) was recruited each year to further build the community of

practice by creating additional types of peer interactions. Faculty, students, and staff at the

hosting institution were invited to participate in the annual coding workshop. An additional

15 students (47% of whom identified as women) participated in this way and completed pre-

and post-surveys.

Baseline scores in self-efficacy of DIVAS scholars (non-CS majors) were compared to two

other groups of students. CS majors were excluded due to their higher baseline self-efficacy

and because they were not represented in our comparison groups. The first comparison group

(comparison group 1) was taken from students enrolled in an introductory chemistry course

at DU (CHM 125). CHM 125 is one of the courses DIVAS scholars were recruited from. One

section of the course was surveyed each fall. A total of 67 students in CHM 125 completed

these surveys, 49% of whom identified as women. The second comparison group (comparison

group 2) consisted of 15 additional non-scholar students who participated in the coding work-

shop and completed pre- and post-assessments, as mentioned in the previous paragraph.

These students had elected to conduct research over the summer and participated in the work-

shop to gain computational skills beneficial to their projects.

Each of the three years of the study, the DIVAS program was advertised using flyers (digital

and paper), online and social media posts, and visits by faculty and existing scholars to classes

that are generally enrolled by first year and sophomore natural science majors. Written,

informed consent was obtained from all participants and the study was approved by the

Doane University Institutional Review Board (IRB). Self-efficacy and career path data were

collected by completing and submitting an electronic survey administered using Qualtrics

Table 2. Participant overview.

Year 1 Year 2 Year 3 Total

DIVA Scholars 6 (66%) 6 (83%) 5 (80%) 17 (76%)

Coding Workshops 14 (50%) 10 (71%) 10 (58%) 34 (59%)

Participants who completed assessments, with % women in parenthesis.

https://doi.org/10.1371/journal.pone.0241946.t002
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software (Qualtrics, Provo, UT). Pre- and post-assessments for each intervention were com-

pleted by participants. The post-assessment data from the prior intervention was used as a

baseline for the next intervention in the pipeline. Scholars completed the self-efficacy and

career path surveys five times, first as a pre-survey and then after DIVAS Seminar I, the coding

workshop, pair programming or summer research, and DIVAS Seminar II. Participants also

provided written consent to complete computational thinking prompts and to submit code

generated for analysis, which was scored by project researchers. Scripts and/or prompt

responses were collected from scholars at four points: before and after DIVAS Seminar I, after

the coding workshop, and after pair programming. If scholars completed summer research,

the scripts they generated were collected. One scholar left the program after completing

DIVAS Seminar I, which reduced the sample size to sixteen for that intervention. Two scholars

did not complete surveys at the end of pair programming and summer research and one

scholar from year 2 did not complete the survey at the end of DIVAS Seminar II, reducing the

sample sizes for these interventions to fourteen and ten, respectively.

Self-efficacy and career path assessment

A Qualtrics survey was used to measure perceived self-efficacy in computing and knowledge

of and interest in career paths involving computing. This survey, titled ‘DIVAS Career Path

and Self-Efficacy’, is based on three previously-designed and validated surveys [38–40]. Survey

questions ask participants to score their computational thinking and their ability to use

computational tools to solve problems (self-efficacy); to indicate their interest in incorporating

computational thinking and CS tools into their careers (career interest); and to indicate how

much they know about careers using computer science applications, programming, or compu-

tational thinking and where to find this information (career knowledge). Twelve questions

related to self-efficacy are answered as a user-inputted number on a 100-point scale, with

higher values representing more self-efficacy for a particular item. Seven questions related to

career paths (three items related to career interest and four items related to career knowledge)

include response choices on a four- or five-point Likert-type scale. The self-efficacy instrument

had an internal reliability of 0.95 with no improvement by removal of any single item. The

career interest and career knowledge instruments had internal reliabilities of 0.82 and 0.67,

also with no improvement in reliability with removal of any single question. Participants took

the combined career path (career interest plus career knowledge) and self-efficacy survey

before and after the major interventions in the project, as described above. If the participant

had previously completed the survey after an intervention, this score was used as the pre-sur-

vey for a subsequent intervention.

Computational thinking assessment

To assess computational thinking ability before any formal instruction in coding, participants

were given a handout that described a hypothetical cup stacking robot that could be given sim-

ple instructions to achieve different configurations of cups. The exercise was adapted from the

Hour of Code lesson “Programming Unplugged: My Robotic Friends” [41]. Participants were

asked to create a series of commands to achieve a particular cup stacking arrangement. After

writing their initial set of commands, participants were asked to simplify their ‘code’, possibly

by writing one or more new commands. A different cup-stacking prompt was used after the

DIVAS Seminar I. After each subsequent intervention, the code developed during each one

was used to assess computational thinking ability. The cup stacking prompts are available in

S15–S17 Files.
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Cup-stacking prompt work and scripts (hereafter ‘artifacts’) were evaluated using a rubric

developed based on definitions from the International Society for Technology in Education

(ISTE), Computer Science Teachers Association (CSTA), Carnegie Mellon, Google, and Har-

vard [42–45]. Our computational thinking rubric was organized into the first four phases of

the RADIS (Recognize / Analyze / Design / Implement / Support) framework [46]. The Recog-

nize section measures how well the problem is understood and one’s ability to gather the data

needed to solve the problem. The Analyze section measures the ability of the participant to

understand the options available to solve the given problem. This section also measures the

ability of the participant to use abstraction, modeling/representation, and decomposition to

design a solution to a problem. The Design section measures the participant’s ability to design

an effective algorithmic procedure to solve the problem. It includes the participant’s ability to

use sequence, selection, and iteration. The Implementation section addresses the ability of the

participant to transform the algorithm into working code to solve a given problem. It also

addresses the evidence that is used, reused, and remixed from previous projects or other

sources. Finally, the Implement section assesses any testing or debugging that was used to

improve the code. The original rubric was scored on a three-point scale; Proficient (3), Pro-

gressing (2), or Novice (1). Subsequent iterations included five levels, first from 0 to 4, then

from 1 to 5. The additional levels were added to better accommodate the types of variation we

were seeing in the scored artifacts. The expanded scale was adjusted to start with ‘1’ from ‘0’ to

make statistical analysis more interpretable. The internal reliability of the first version and

final versions of the instrument was high overall (Cronbach’s alpha of 0.94–0.95). Interrater

reliability (IRR), determined by percent agreement, was 76% using a set of seven artifacts

scored by three raters [47]. The reliability of each section for both the first and final versions

ranged from a Cronbach’s alpha of 0.80 for the ‘Implement’ section to a Chronbach’s alpha of

0.97 for the ‘Design’ section. The iterations of our rubric and specific changes made in each

are available in S10–S14 Files.

Data analysis

Self-efficacy and career path assessments. To investigate changes in student self-efficacy

(SE), career path interest (CI) and career knowledge (CK), scores within each category were

summed to determine a composite SE, CI and CK score for each individual. A paired-samples

t-test was performed (alpha = 0.05) to determine if composite scores before and after a given

intervention were significant. For significant changes, the effect size was determined by calcu-

lating Cohen’s d.

IDEA survey data. Voluntary end-of-course evaluations at DU are taken through the

IDEA Student Ratings of Instruction system survey [48]. In addition to evaluating the course

and instructor, students respond to their perceived learning gains in thirteen pre-defined

objectives [49]. Survey responses to these learning gains, along with responses to items related

to perceptions of the course difficulty and motivation to take the seminar, were collected as

available. Eleven of fourteen (79%) DU scholars completed the IDEA survey after DIVAS Sem-

inar I. Six of seven DU scholars (86%) completed the IDEA survey after DIVAS Seminar II.

Median scores for each item were determined along with the percentage of responses that

were scored as a ‘4’ or ‘5’ (the two highest rankings) for each item.

Computational thinking assessments. Computational thinking (CT) scores were gener-

ated by first determining the mode within each criterion for any artifacts scored by two or

more people. Select artifacts had more than one scorer to determine and monitor IRR. The

median score within each section of the rubric was used to define a subsection score. The

median scores were added to give a total CT score. To determine if total CT scores changed,
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the following analysis was done: (1) a paired-samples t-test was performed on scores gathered

from prompt responses taken before and after DIVAS Seminar I and (2) a two-sample t-test

was performed on scripts gathered after the coding workshop and pair programming projects.

Subscores within each of the areas of the rubric (Recognize, Analyze, Design, Implement) were

evaluated the same way. Effect sizes for significant differences were described by calculating

Cohen’s d.

Results and discussion

Evaluating DIVAS program elements

We measured the impact of DIVAS interventions on participant self-efficacy (SE) in using

computation to solve problems, computational thinking (CT), and career path intentions (CI

and CK) using instruments described in the previous section. We saw significant gains in self-

efficacy over the duration of the program, with SE scores highest following DIVAS Seminar II

(Fig 2). Self-efficacy grew steadily throughout the program, increasing by 41.5% from DIVAS

Seminar I through the end of pair programming or summer research on average (Cohen’s-

d = 1.52, Fig 2). Post-workshop, student self-efficacy was maintained throughout the rest of

the program. Given that students were asked to solve a number of challenging problems largely

independently after the workshop, we see this maintenance of self-efficacy as important.

Average baseline SE scores of DIVAS scholars compared to comparison group 1 (CHM 125

students) and 2 (other workshop participants) are shown in Table 3. Baseline scores for

Fig 2. Average self-efficacy scores (and standard errors) after DIVAS pipeline interventions for the three years of

the project. PP = pair programming. A paired t-test was used to compare means between subsequent interventions. ��,

p < 0.01.

https://doi.org/10.1371/journal.pone.0241946.g002

Table 3. Baseline SE of DIVAS scholars compared to other groups.

Average Baseline SE Std. Error n

DIVAS scholars 619 51.2 14

Comparison group 1 484� 24.5 67

Comparison group 2 613 (ns) 52.9 15

DIVAS scholars women 582 52.1 12

Comparison group 1 women 440�� 29.4 33

Comparison group 2 women 575 (ns) 72.8 7

Significance was determined by a paired t-test. not significant, ns, p < 0.05, �, p < 0.01, ��.

https://doi.org/10.1371/journal.pone.0241946.t003
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women within each group were also compared. The mean SE of DIVAS scholars (overall and

women only) was significantly higher than comparison group 1, but not comparison group 2.

The average baseline SE of both the DIVAS scholars and comparison group 2 was comparable

to that of first-year CS majors that took the same instrument in a previous study [50]. The

average SE of women in our study was lower than the overall group averages (Table 3). This is

consistent with other researchers’ findings [51–54]. In a 2014 study by Beyer [52], when

women were asked to rank their interest in and perceived difficulty of computer science com-

pared to a number of other fields including math, nursing, and English, they ranked computer

science as both the most difficult and least interesting field [52]. However, the same study

found that women’s regard for the field of computer science was higher than that of men and

that they had strong agreement with the idea that women have the same ability to succeed in

computer science as men [52]. The effects of gender on SE have additionally been shown to

become non-significant when accounting for variables such as computer knowledge, experi-

ence, and anxiety [51, 52].

As stated in the Introduction, we began with the supposition that increased student self-

efficacy toward computing was an indicator of growth in computational skill. Average z-scores

of total CT scores of participants between baseline and Seminar I and between the coding

workshop and pair programming are shown in Fig 3. The ‘Computational thinking assess-

ment’ subsection of Materials and Methods provides a discussion of the artifacts evaluated

using our rubric. Average z-scores in the ‘Recognize’ category increased after Seminar I

(Cohen’s-d = 0.82) and all scores increased after pair programming (Cohen’s-d = 0.96–1.73,

Fig 3). Computational thinking data standardized across the three years of our study is avail-

able in S4 Dataset.

Career path interest (CI) and knowledge (CK) was also measured after each intervention in

the program (Fig 4). Interest in careers utilizing computing did not change significantly over

the course of the program, but CK significantly increased after Seminar I (Cohens-d = 1.31)

Fig 3. Average z-scores of total CT score at the indicated DIVAS pipeline interventions. A paired t-test was used to

compare means before and after Seminar I. A two-sample t-test was used to compare means before and after pair

programming (PP). �, p < 0.05; ��, p < 0.01; ���, p < 0001.

https://doi.org/10.1371/journal.pone.0241946.g003
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and Seminar II (Cohen’s-d = 0.52, Fig 4). The standard error in the average CI score was

found to increase with each intervention, even as the error in average CK did not.

Overall, every intervention was found to have a positive effect on one or more measures

(SE, CK, CT) for at least one of the program years. In the proceeding sections, we discuss the

impacts of each intervention separately.

DIVAS Seminar I. As described in DIVAS Program Elements, this seminar is the schol-

ar’s entry point onto the DIVAS programmatic onramp. We saw significant gains in SE

(Cohen’s-d = 0.40) and CK (Cohen’s-d = 1.31) over the three years of the program (Table 4,

Figs 2 and 3).

An additional source of self-efficacy information came from the voluntary completion of an

IDEA Student Ratings of Instruction system survey [48], which is conducted at Doane Univer-

sity at the end of each course and that we utilized in DIVAS Seminars I and II. We analyzed

self-reported learning gains in the IDEA-defined learning objectives for the eleven scholars

who completed the survey. At the end of DIVAS Seminar I, we found that scholars self-

reported strong gains in the objectives “Acquiring skills in working with others as a member

of a team” and “Learning appropriate methods for collecting, analyzing, and interpreting

numerical information.” The three cohorts rated both objectives at a median score of 5 out of

5 points. The Doane institutional average over the period of this project on these learning

Fig 4. Average CI and CK scores after DIVAS pipeline interventions for the three years of the project. Error bars

represent standard error of the mean. PP = pair programming. A paired t-test was used to compare means between

subsequent interventions for each score type. �, p < 0.05; ��, p < 0.01.

https://doi.org/10.1371/journal.pone.0241946.g004

Table 4. Average gains in self-efficacy, career interest and career knowledge in DIVAS Seminar I.

Year 1 Year 2 Year 3 Comb.

SE 57.7 36.0 167.2 82.2��

CI -0.67 1.00 1.20 0.47

CK 1.67 1.67 2.20 1.82��

n 6 6 5 17

Mean change in score from baseline for each year of the program and the three years combined (Comb.) is shown.

��, p < 0.01.

https://doi.org/10.1371/journal.pone.0241946.t004
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goals were 3.72 and 3.56, respectively. Overall, SE scores improved after scholars completed

DIVAS Seminar I, and positively influenced their knowledge of careers utilizing computing

skills. Interest in utilizing computing in a future career did not change significantly. Observa-

tionally, the seminar was important in building rapport and a shared experience between all

members (faculty and students) in the community of practice. In year three, that community

was expanded when the DIVAS cohort completed their photo diary project in tandem with

200-level graphic design students (Fig 5). This experience was one of several ways that the sem-

inar served to showcase the multidisciplinary relevance of image collection and analysis.

Coding workshop. Modeled after existing Carpentries workshops, the DIVAS workshop

was built around participants solving authentic research challenges within a community of

practice (see DIVAS Program Elements). We gathered self-efficacy and career data pre- and

post-workshop. We saw a significant improvement in SE in aggregate over the three years with

an average increase of 107.9 points (Cohen’s-d = 0.57, p < 0.01, Table 5). There were no signif-

icant changes in CI or CK over the three-year period.

Fig 5. A collaborative photo journal project. A DIVAS scholar used ImageJ to analyze images of a healing wound

(top) while a design student created a composition depicting the healing process (bottom).

https://doi.org/10.1371/journal.pone.0241946.g005

Table 5. Average gains in self-efficacy, career interest, and career knowledge in the coding workshop.

Year 1 Year 2 Year 3 Comb.

SE 91.4 131.7 96.0 107.9���

CI -0.20 -0.50 -1.60 -0.75

CK 0.60 0.50 0.60 0.56

n 5 6 5 16

Mean change in score from Seminar I for each year of the program and the three years combined (Comb.) is shown.

�, p < 0.5.

https://doi.org/10.1371/journal.pone.0241946.t005
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At the end of each day of the workshop, we also asked participants to rate the percentage of

the day’s material they felt they had mastered. Data was compiled for all participants, including

those who were not DIVAS scholars. We found a high average perceived mastery for the

Python/Bash/git portion of the workshop, and then a drop for the first two days of the image

processing portion (Table 6). We believe this is due to the increased complexity in the subject

matter. By the third day of the image processing portion, this metric rose as participants were

able to use their newfound skills to complete the challenge questions successfully.

We found the coding workshop format to be effective as it immersed scholars in an enrich-

ing skill development environment. Though coding training was intensive, the participants’

self-reported improvements in mastery support the observation that scholars see tangible ben-

efits from their persistence. The workshop also provided two cycles of challenge, learn, and

achieve—in the spirit of Challenge Based Learning [55]—to provide participants multiple

opportunities to struggle with new concepts and see rewards.

Pair-programming projects and independent research. Following the coding workshop,

scholars employed pair programming to solve a colorimetric and a morphometric image anal-

ysis problem (Fig 6, Table 1, S8 File) as described in DIVAS Program Elements.

Following pair programming work, scholars had the opportunity to complete three or more

weeks of independent research (required in year 1, optional in years 2 and 3). Scholars either

chose to work on existing projects, or design their own, within a faculty mentored research

group. Scholars were supported in this research through existing grants and institutional sum-

mer research programs. Examples of scholars’ projects included locating breaks in veterinary

x-ray images, processing and solving printed Sudoku problems, greatly improving program

performance by translating Python scripts into parallelized C++ code, and measuring chemo-

taxis of bacteria toward potential attractants (Table 1).

We collected SE and career data upon the conclusion of summer research, if the scholar

participated, or at the conclusion of pair programming projects for those students not

Table 6. Participant responses to the question ‘What percentage of the day’s material do you feel you have mas-

tered?’ for each day of the coding workshop.

Day 1 Day 2 Day 3

Python Intro 75.9% 76.3% -- -

Image Processing 63.3% 63.0% 72.2%

n = 31–40.

https://doi.org/10.1371/journal.pone.0241946.t006

Fig 6. Example pair programming project in which students aimed to count the dead (straight) worms in a series

of images. The unprocessed image is from [56].

https://doi.org/10.1371/journal.pone.0241946.g006
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participating in research. Similar to the coding workshop, we did not observe changes in CI or

CK. Although self-efficacy moved in a positive direction, we did not see significant gains. This

was not completely unexpected, however, since students’ self-efficacy was already high follow-

ing the coding workshop (Fig 2). Again, we see the maintenance of SE throughout this pro-

grammatic period as significant given the increased complexity of problems and independent

work students were given.

Observationally, the pair programming and summer research projects were where scholars

truly experienced the team-based environment of computational work. They learned to lever-

age each other’s ideas and expertise to develop approaches to solving a variety of problems. We

found that scholars tended to work amongst themselves before seeking input from one of the

faculty mentors. We considered this a healthy development of independence and teamwork

that reflected the confidence scholars gained in their individual and collective skill sets. We

also observed cases where one or more scholars would be given special authority by the group.

While this was often productive, we also observed that it sometimes contributed to an over/

under-functioning dynamic between pairs. Because of this, we were especially mindful of giv-

ing praise for taking risks and highlighting the specific strengths of each project and each

scholar separately. We also worked to minimize this over/under-functioning dynamic when

selecting pairs for each project so as to maximize each student’s engagement.

DIVAS Seminar II. DIVAS Seminar II marks the end to the program and occurred each

spring, concurrent with Seminar I, as described in the DIVAS Program Elements. The last

year of the seminar occurred during the first wave of the COVID-19 pandemic, resulting in a

response rate to the survey that was too low to report. For years 1 and 2, no significant gain in

SE or CI from the summer was observed, but similar to Seminar I, we did see a gain in CK

(Cohen’s-d = 0.52, Table 7).

Similar to DIVAS Seminar I, responses on the IDEA survey for DIVAS Seminar II were

also analyzed for perceived learning gains. Survey data showed that students perceived the

largest gains in “Learning appropriate methods for collecting, analyzing, and interpreting

numerical information” (4.33 ± 0.52). Scholars also responded positively to the statement, “My

background prepared me well for this course’s requirements” (4.5 ± 0.55). All scholars rated

these three items at either a ‘4’ or ‘5’ on a 5-point scale.

Project outcomes and next steps

Over the three years of the project, scholars experienced significant increases in SE towards

computing from the beginning of Seminar I to the end of summer programming (Fig 2). The

most significant gains (p < 0.05) occurred during Seminar I (Cohen’s-d = 0.40) and the coding

workshops (Cohen’s-d = 0.67). The impact of the DIVAS program on scholars’ career interest

and knowledge was more subtle. Although scholars did not show significant gains in CI gain,

Table 7. Average gains in self-efficacy, career interest, and career knowledge in DIVAS Seminar II.

Year 1 Year 2 Comb.

SE -11.3 56.0 22.4

CI -0.25 0.75 0.25

CK 2.25 0.25 1.25�

n 4 4 8

Mean change in score from PP/summer research for each year of the program and the two years combined (Comb.)

is shown.

�, p < 0.5.

https://doi.org/10.1371/journal.pone.0241946.t007
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gains in CK were seen in both Seminars I and II (Fig 4, Tables 4 and 7), both of which include

explicit career exploration components. Scholars were also observed to become ‘warmer’ or

‘colder’ to a career utilizing computing as they moved through the program. This effect is

apparent in the increased standard error in post-intervention CI scores, which started

at ± 0.55 after Seminar I, grew to ± 1.1 after Seminar II. This same trend was observed in analy-

sis of only the subset of scholars that we had full data (S1 Dataset) for from Seminar I through

Seminar II. Overall, we see this as an encouraging progression, especially because scholar self-

efficacy grew steadily throughout the program.

Given the small samples in our study, it is encouraging that our results are consistent with

those of previous studies that have used the same instruments. In a study of students enrolled

in introductory computer science (CS) courses, all groups except CS majors in a special honors

program showed declines in their interest in pursuing careers involving computation, similar

to our findings [39]. An important positive benefit in interest in computational careers is

improved retention in CS courses [40]. However, a weaker, but additional highly significant

predictor of retention within CS courses is acquiring information about careers involving

computational skills (Peteranetz 2018). We saw an increase in CI for some scholars, but an

overall increase in CK over the course of our program (Fig 4, Tables 4 and 7). Previous

research has shown that being able to immediately apply what is being learned positively

impacts student self-efficacy in computing [38]. Increased self-efficacy further promotes skill

development [57]. The steady growth in self-efficacy observed in our program is consistent

with these previous findings given the frequent immediate, developmentally appropriate

opportunities for application of knowledge that are built into it. Also consistent with previous

SE and skills linkage observations, are our observations that improvement in computational

skill occurs with improvement in self-efficacy (Figs 2 and 3).

Retention in STEM is often used to indicate the success of engagement programs such as

DIVAS. A large majority (82%) of scholars entered the program as first year students, taking

Seminar I in the second semester of their first year and Seminar II the second semester of

their sophomore year. All DIVAS scholars were still majoring in STEM fields one year after

taking DIVAS II Seminar. All but one scholar was retained throughout the entire one-year

program for a retention rate of 94%. This is in contrast to first-to-second year STEM reten-

tion rates of approximately 72% and 56% at DU and SEU, respectively. In a number of ways,

DIVAS scholars have also persisted in coding and have incorporated their new skills into

their academic careers, extracurricular activities, and career planning. One scholar majoring

in biology declared a minor in software development. A second biology major switched to a

bioinformatics major, and two scholars have taken non-required electives that emphasize

computational skills. One scholar participated in an external REU program in computa-

tional and systems biology, and eight have elected to conduct research projects that incorpo-

rate coding or computational thinking. Three DIVAS scholars have worked as peer tutors

for DU’s CCLA. One former scholar is pursuing a Ph.D. in chemical biology with a signifi-

cant computational component to their research and another student who participated

in both the coding workshop and paired programming is pursuing a Ph.D. in complex

biosystems.

Overall, even given the small sample represented in this study, we see great potential in the

DIVAS approach of introducing novice students to computing through visual media within a

community of practice. A significantly higher percentage of DIVAS scholars identified as

women (76%) than the total percentage of women in the STEM majors at either DU or SEU,

as well as women in the full-time science and engineering (S&E) or S&E-related occupations

combined (51.7%) [58]. However, the small sample in this study leaves open the possibility

that confounding factors may have led to the trends we observed. For example, the baseline
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self-efficacy of DIVAS scholars is significantly higher than students surveyed from an intro-

ductory chemistry, including among women only (Table 3). It is possible that in our study we

selected for students who were already predisposed toward the outcomes we observed above.

Additional study through the implementation of DIVAS program elements in a broader array

of educational contexts on a larger scale will make it possible to confirm our pilot study find-

ings or reveal new trends. To this end, we hope by presenting our preliminary results and pro-

viding programmatic support materials, partnerships will be formed that will enable an

expanded study on the efficacy of the DIVAS approach.
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