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Abstract – This paper illustrates how a challenging problem be 
solved by assuring the adequacy of the raw information and 
using an appropriate deep learning network to extract the 
relevant information. The problem concerned is accurate 
monitoring of the penetration, in a fully penetrated weld pool, as 
quantified by the width of the weld on the back-side of the 
workpiece. This is challenging as the penetration occurs below 
the workpiece surface and is not visible. A popular method is to 
use a weld pool image to derive it. Analysis of the physical 
process suggests that a single weld pool does not contain 
adequate information but most recent serial weld pools may. As 
such, although a deep learning model may extract information 
that is already there, the raw information may not be sufficient. 
Hence, a model that is capable of extracting information from 
dynamic serial weld pool images is needed. To this end, a CNN-
LSTM (convolutional neural network combined with long-short 
term memory one) model is proposed. Dynamic weld pools are 
experimentally generated using changing the welding current 
and welding speed randomly. The weld pools are imaged using 
an HDR camera during experiments. Images are also captured 
from the back-side surface of the workpiece to provide the 
ground truth for training, validation, and testing. It is found that 
the highly dynamically changing weld pool can be accurately 
predicted using serial weld pool images at 0.3 mm for its back-
side bead width. Comparison has been made with results from 
comparative studies to verify the effectiveness of and the 
contribution from the information adequacy (by using serial 
images) and the feature extracting capability (by using deep 
learning).      
Keywords: weld, weld penetration, deep earning, CNN, LSTM, 
CNN-LSTM, HDR image 

I. INTRODUCTION 

This work aims at precision monitoring of the weld 
penetration needed for its feedback control. Welding joins 
two workpieces together by melting their facing interfaces, 
and weld penetration quantifying the degree of such melting 
determines the integrity of the produced weld [1]. While the 
actual way to quantify varies with the application as detailed 
in [1], it is in common that such melting always occurs 
underneath the workpieces and is not directly visible [2], [3], 
in particular by a sensor attached to a welding torch operated 
by a moving robot/manipulator. The problem is thus 
challenging as it can only be estimated from indirect 
observables while they must contain adequate information 
about what occurs underneath. A further challenge is to 
effectively derive the penetration from the observables that 
are likely to be complex, as determined by the complex 
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welding phenomena, containing redundant information. The 
challenges increase further when the welding parameters are 
subject to dynamic adjustments so that the process is in 
continuous dynamic evolution. In such a case, the welding 
process phenomena become more complex and so does an 
effective derivation from the more complex observables. 
Unfortunately, such adjustments are fundamental for the 
monitoring to be used to provide the feedback for real-time 
control as being aimed in this study. 

Weld pool formed by the melted metal is where complex 
welding process phenomena originate containing most of the 
raw information related to the degree of the melting, i.e., the 
state of the weld penetration [4]. Kotecki and Richardson 
made initial efforts [5] by correlating the weld pool oscillation 
frequency with its mass as a larger pool with greater 
mass/inertia oscillating slower. One major issue is that the 
weld pool is a 3D free liquid body and its mass is determined 
by 3D geometry while the penetration concerned is most 
correlated to its geometry in the depth direction. Xiao and de 
Ouden added a milestone by finding a large difference in the 
oscillation frequency among incomplete (partial) and 
complete (full) penetration [6], [7]: the frequency drastically 
reduces when the workpiece is fully melted/penetrated in its 
thickness direction. Developing from partial to full 
penetration changes the support to the weld pool bottom 
surface from un-melted solid metal to the gaseous ambiance 
so that the oscillation damping is drastically reduced. While 
this is effective in detecting the penetration mode (partial or 
full) in a stationary pool without a motion of the welding 
torch, it does not provide an accurate measure for the degree 
of the partial or full penetration and faces challenges in a 
moving pool where the pool shape becomes more complex. 
Various efforts have been made to improve the method over 
time [8], [9]. Other approaches have also been proposed 
including using ultrasound sensors [10], [11], infrared 
cameras [12], etc., and their principles and facing challenges 
are analyzed in [1]. 

Skilled welders can assure weld penetration by adjusting 
the welding parameters through their adaptive operation per 
their close observation on the weld pool. While the 
aforementioned approaches use specific information in the 
weld pool, for example, the temperature distribution from an 
infrared camera [12], it is hard to tell by the welders what 
specific information they pay attention to. Efforts have been 

(corresponding 
author: phone: 859-323-3262; e-mail: yuming.zhang@uky.edu). 

 

How to accurately monitor the weld penetration from dynamic weld 
pool serial images using CNN-LSTM deep learning model?  

Rui Yu, Joseph Kershaw, Peng Wang, Member, IEEE, and YuMing Zhang*, Senior Member, IEEE 



  

focused on clearly imaging the weld pool [13]–[16] and 
effectively extracting the information from the weld pool 
images as observables contain welding phenomena in 
complex ways. Intuitive approaches are to measure the weld 
pool width and length. More advanced ways are to 
characterize/model the weld pool to introduce less intuitive 
but more abstract characteristic parameters [15], [17]. 
However, this is a hand-crafted engineering approach. As the 
phenomena are complex, effective extraction of the adequate 
characteristic parameter is challenging. 

Deep learning can potentially provide an effective 
approach to extracting the state of the weld penetration from 
weld pool images similarly to a human welder. As such, 
CNNs have been used as a major type of deep learning model 
to extract relevant features automatically from weld pool 
images to predict the weld penetration through training from 
experimental data [18]–[22]. However, most studies are 
experimental and mathematical ignoring the basic physical 
ground if the weld pool images contain adequate raw 
information. 

Weld pool images are taken from the workpiece surface. 
However, the weld pool itself is in 3D and the penetration is 
determined by its bottom underneath the workpiece. A 
question thus arises if one image from the visible weld pol 
surface contains sufficient raw information to tell what occurs 
underneath. As analyzed in Section II, this is unlikely to be 
true when the weld pool is in dynamic evolution and 
sequential weld pool images may be needed. 

This study attempts to more accurately predict the backside 
width of the weld bead, which quantifies the state of the full 
penetration, using sequential images of a dynamically 
changing weld pool. To this end, we propose a CNN-LSTM 
model structure that complements CNN’s capability for single 
image processing with that from the LSTM for counter-
parting the dynamic evolution. The paper is organized as 
follows: Section II discusses the physical process to justify 
why dynamic image series is needed while an overview of the 
collection of the raw data is given in Section III; Section IV 
details the neural network structure. Its training, validation, 
and testing are presented in Section V which also includes 
Discussion and Analysis. Finally, conclusions are drawn in 
Section VI.             

II. BACKGROUND AND ANALYSIS 

Fig. 1 shows the gas tungsten arc welding (GTAW) process. 
This is the most widely used process for the precision joining 
as it can provide the welding current, thus the arc power and 
arc heat, precisely, while another most widely used welding 
process gas metal arc welding (GMAW) cannot [18]. It also 
illustrates a completely penetrated weld pool whose state can 
be represented as the backside width 𝑤௕ and height ℎ௕ of the 
liquid pool.    

The most critical state is 𝑤௕. First, 𝑤௕ ൐ 0 is required as  
𝑤௕ ൌ 0  means partial penetration that would cause an 
explosion under high temperature and pressure. Further, as 
the seam tracking error 𝑒 ൒ 0, the absolute deviation of the 

weld symmetrical axis for the weld cross section (𝑧 in Fig. 
1(b)) from the interface of the metals being joined (dot line in 
Fig. 1(b)), may not be avoidable, 𝑤௕/2 ൏ 𝑒 will also cause 
the interface not be fully melted so that the penetration is 
actually also incomplete/partial.  

To assure the required complete/full penetration, the 
desired 𝑤௕ , denotated as 𝑤௕

∗ , needs to be appropriate. In 
general, a greater 𝑤௕

∗  better assures the required complete 
penetration; but as 𝑤௕ increases, the heat input also increases 
causing greater distortion and residual stress, etc. 𝑤௕

∗  thus 

should be minimized while assuring the complete penetration. 
Such minimization depends on the application, which 
determines the maximal weld seam tracking error 𝑒௠௔௫. This 
requires 2𝑒௠௔௫ ൑ 𝑤௕ so that  2𝑒௠௔௫ ൑ 𝑤௕

∗. It also depends on 
the accuracy achievable for the monitoring and control of 
𝑤௕. Denote 𝜀  as the estimation/control error between the 
estimated backside bead width 𝑤ෝ௕ and actual one 𝑤௕ so that 
𝑤௕ ൌ 𝑤ෝ௕ ൅ 𝜀.  The condition 2𝑒௠௔௫ ൑ 𝑤௕  thus becomes 
2𝑒௠௔௫ ൅ 𝜀 ൑ 𝑤ෝ௕ .  Denoting, 𝜀௠௔௫ ൒ |𝜀|  as the maximal 
estimation/control error, then 2𝑒௠௔௫ ൅ 𝜀௠௔௫ ൑ 𝑤௕

∗. As can be 
seen, a precision monitoring, as well as a control, of the weld 

 
Fig.2 Dynamic development of the penetration. 
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Fig.1 GTAW and complete weld penetration. (a) Illustration of GTAW 
process; (b) Cross section of the workpiece and weld. Axis 𝑧 is that of 
the tungsten electrode and the weld is in general symmetrical about it. 
The dot-line in (b) is the interface of the two metals being joined and 𝑒 
is the seam tracking error.   



  

penetration is to minimize 𝜀௠௔௫  to minimize the heat input 
while assuring the complete penetration, i.e., fully melting of 
the interface along the entire thickness direction.   

GTAW melts the workpiece in the following way: the arc 
heats the workpiece surface first; then the heat imposed on the 
surface is transferred in 3D in the workpiece including along 
the thickness direction to deepen the weld pool. One may 
artificially decompose this penetrating process into two 
subsystems (Fig. 2): upper subsystem and lower subsystem. 
The upper subsystem has the arc 𝑎ሺ𝑡ሻ and upper weld pool 
(thus the image) 𝐼ሺ𝑡ሻ as its input and output while the lower 
one has the upper weld pool as measured by 𝐼ሺ𝑡ሻ and bottom 
surface as measured by 𝑤௕ሺ𝑡ሻ as its input and output. Because 
of the complex heat transfer and phenomena in the weld pool, 
𝑤௕ሺ𝑡ሻ ൌ 𝑓ሺ𝐼ሺ𝜏ሻ, 𝜏 ൑ 𝑡ሻ. As such, using a single image 𝐼ሺ𝑡ሻ to 
estimate 𝑤௕ሺ𝑡ሻ  is only an approximation. The accuracy of 
such approximation largely depends on how significantly and 
how quickly 𝐼ሺ𝜏ሻ dynamically changes. Using 𝐼ሺ𝜏ሻ, 𝑡 െ Δ𝑡 ൑
𝜏 ൑ 𝑡 with Δ𝑡 ൐ 0 provides more, and possibly the critical, 
raw information. An excessive Δ𝑡 may not be necessary while 
increasing the computation and modeling complexity. We 
will correlate 𝐼ሺ𝜏ሻ, 𝑡 െ Δ𝑡 ൑ 𝜏 ൑ 𝑡  to 𝑤௕ሺ𝑡ሻ  using a CNN-
LSTM network and compare its accuracy with a CNN that 
correlates just 𝐼ሺ𝑡ሻ to 𝑤௕ሺ𝑡ሻ. To this end, we will generate 
data pairs (𝐼ሺ𝑘ሻ,𝑤௕ሺ𝑘ሻ)]’s where 𝑘 the discrete-time instant. 

III. DATA GENERATION 

A GTAW welding system at the University of Kentucky 
Welding Research Laboratory [23] has been used to perform 
GTAW welding experiments. During the experiment, one 
camera views the backside of the workpiece to capture the 
images 𝐼௕ሺ𝑘ሻ  to be used to calculate 𝑤௕ሺ𝑘ሻ  and a high 
dynamic range (HDR) camera views the weld pool to capture 
𝐼ሺ𝑘ሻ. The images are synchronized in the recordings to form 

 

 
Fig.3 Welding current and travel speed in one experiment. 

 
Fig.4 Example 5-second sequence of image pairs. 

 
Fig.5 Dynamic changes of the back-side bead width from two 

experiments. 



  

(𝐼ሺ𝑘ሻ , 𝐼௕ሺ𝑘ሻ) pairs. Cameras and welding torch are fixed 
while the workpiece is moved by a linear motion system. The 
welding current and travel speed vary every 2 seconds, within  
[80A, 130A] and [1.4 mm/s, 2.0mm/s], randomly to provide 
moving arc on 1.8 mm thick stainless steel. The current 𝑖 and 
travel speed 𝑣 together determine the heat input 𝐻, i.e., the 
input imposed on the workpiece in a unit length of weld: 
𝑖𝑣௔௡௢ௗ௘/𝑣  where 𝑣௔௡௢ௗ௘  is the voltage on the workpiece 
which is the anode of the arc in GTAW. 𝑣௔௡௢ௗ௘ is considered 
a constant, when the shield gas and workpiece material are 
given, not changing with the welding current. While the heat 
input 𝐻 is a major parameter in determining the penetration, 
the current 𝑖 is also important as the arc pressure that largely 
controls the weld pool liquid metal flow thus the heat transfer 
within the pool is proportional to 𝐼ଶ where 𝐼 is the current. 

Varying the current and travel speed is to generate dynamic 
evolution in the weld pool and this is needed as at least one of 
them will be adaptively adjusted if the weld penetration is not 
at the desired value. If the current and travel speed remain 
constant, the weld pool will be at a steady-state most of the 
time. The effect of 𝐼ሺ𝑚 ൏ 𝑘ሻ  on  𝑤௕ሺ𝑘ሻ  will be unable or 
difficult to be observed. In this work, 6 experiments have been 
conducted and each experiment runs for 80 seconds 
approximately. Fig. 3 shows the current and travel speed in 
one experiment. Those in other experiments are similar but 
not exactly the same as they are different realizations of the 
same random processes. Fig. 4 provides a series of (𝐼ሺ𝑘ሻ, 
𝐼௕ሺ𝑘ሻ)s in five seconds from the 60 frames/s recordings, with 
one second apart from each other. Each image 𝐼௕ is binarized 
using to segment the image into bright and back regions and 
the width of the bright region is calculated as 𝑤௕ [20] using a 
threshold. The threshold and the resolution mm/pixel are 
calibrated. As images were sampled at 60 Hz, 28,560 (𝐼ሺ𝑘ሻ, 
𝑤௕ሺ𝑘ሻ ) pairs are obtained. Fig. 5 shows 𝑤௕  from two 
experiments to illustrate the dynamic changes. 

IV. NETWORK MODEL 

The comparative CNN’s architecture is illustrated in Fig.6, 
which predicts 𝑤௕ሺ𝑘ሻ  from a single image 𝐼ሺ𝑘ሻ . The 
proposed CNN-LSTM, which predicts from serial images  
𝐼ሺ𝑚ሻ ሺ𝑚 ൑ 𝑘ሻ is given in Fig. 7. Their CNNs are identical in 
structure and parameters are to be trained. Each image, all 
256 ൈ 256, is fed into the CNN through its typical 
convolution layer followed by a pooling layer. This is 
repeated 4 times, with the parameters of convolution layers to 
be (1, 32, 5, 2, 2), (32, 64, 3, 2, 1), (64, 128, 3, 2, 1), (128, 
256, 3, 2, 1) respectively. Batch normalization and ReLU 
activation were conducted between each convolution and 
pooling layer. After this convolution process, the input image 
is converted into a 1 ൈ 256 feature vector 𝑉ሺ𝑘ሻ to the input 
of the following fully connected layer to 𝑤௕ሺ𝑘ሻ. 

LSTM as a unique artificial recurrent neural network 
(RNN) architecture [24] with feedback connections can 
generate outputs from serial data. LSTM has outperformed 
other popular conventional dynamic prediction approaches 
like hidden Markov models in many tests [25]. As such, it is 
natural to hypothesize that incorporating LSTM with CNN 
may provide an effective approach to automatically extract 
relevant dynamic and abstract features from serial dynamic 
weld pool images to predict the weld penetration occurring 
underneath the workpiece.   

In the proposed CNN-LSTM model shown in Fig. 7, 𝑉ሺ𝑘ሻ 
is connected to the LSTM model rather than the fully 
connected layer. The size of the input 𝑉 of the LSTM model 
is thus 256. In our study, we first try 128 for the hidden size, 
3 for the num_layers set, and 8 for the sequence length to see 
if we can obtain desirable results. Because the hidden state in 
the RNN will receive the previous state information, the 
previous state will then be able to influence the current state, 
which means that our earlier images 𝐼ሺ𝑚 ൏ 𝑘ሻ will also make 
a contribution to help predict current 𝑤௕ሺ𝑘ሻ. 

We captured images at 60 frames per second and set the 
batch size as 32. Each batch thus took 1.875 images per 
second. With the sequence length of 8, the model will use 𝑉 
as far as 4 seconds ago. As such, the CNN-LSTM uses 
𝑉ሺ𝑘 െ 𝑗ሻሺ𝑗 ൑ 32 ∗ 7 ൌ 224 , i.e., image series 𝐼ሺ𝑘ሻ, 𝐼ሺ𝑘 െ
33ሻ, … , 𝐼ሺ𝑘 െ 224ሻ to predict 𝑤௕ሺ𝑘ሻ. 4 seconds reflect the 
settling time approximately of the GTAW process which was 
illustrated in Fig. 9 in ref [26].  

V. TRAINING, RESULTS, AND DISCUSSION  

We perform the training, validation, and testing process on a 
NVIDIA GTX 2080 graphic card. Both models were trained 
iteratively 100 times with SGD optimizer and mean-square 
loss under Python environment with Pytorch library. 

Of the data from six experiments, those from four of them 
were used for training and from other two were used for 
validation and test respectively. Each experiment was 
performed under the same nominal welding conditions; 
however, as the welding parameters changed randomly, each 
experiment is different from other experiments in a random 
way. Hence, there is no need for random selection at the data 
level and any experiment can serve for training, validation, or 
testing.  

 

 
Fig.6 CNN architecture for comparative model. 

 

 
Fig.7 Proposed CNN-LSTM model structure. 



  

The 28,560 paired images in our dataset were thus used to 
form three subsets: training, validation, and testing. The sizes  
are 19040, 4760 and 4760, respectively. To train the CNN 
model, the dataset has been shuffled to make sure the data has 
been drawn randomly. For training the CNN-LSTM model, 
the data was pre-arranged: divided as multiple sequences with 
each containing 8 images and the difference between the 
frame number was 32, for example, one sequence would 
contain frame 1, frame 33, frame 65, etc. In this way, we could 
ensure that the images fed into the CNN-LSTM model have 
the time correlation with each other and each frame follows 
the previous frame in the sequence after 0.53s.  

The results of loss in training and validation datasets for 
both networks are presented in Fig. 8. It is obvious that with 
the mean square error loss (MSE), the model which adds the 

LSTM could reduce the validation error much further than the 
CNN model without LSTM. In particular, while the CNN 

realized the minimal validation error of 0.6𝑚𝑚ଶ , CNN-
LSTM achieved at 0.34𝑚𝑚ଶ , realizing 43 percent of 
reduction. It is critical for accurate monitoring for the 
precision joining this work targets.  

The network has been trained with the mean squared error 
as the loss. An absolute error-based loss is logically more 
reasonable. However, mean squared error-based losses have 
analytical gradients helping lead to more efficient solutions. 
In addition, absolute error-based losses minimize the mean of 
the absolute error and such mean is still not the maximal 
absolute error 𝜀௠௔௫.  Hence, for the present paper that 
contributes by proposing dynamic image series through 
analysis of physical process to assure the adequacy of the raw 
information, the use of the particular network, loss, and 
learning algorithm should not affect the objective for 
verification of the idea using dynamic images to assure the 
adequacy in the raw information.      

Both models were selected at the above epochs of their 
respective minimum validation error to test. Fig. 9 illustrates 
the prediction results for the test experiment. The average 
error was 0.54 mm for the CNN model while it was 0.3 mm 
for the CNN-LSTM model. This reflects a 44 percent 
reduction in the prediction error and this is simply contributed 
by adding LSTM to the CNN.  

In particular, as can be seen, the CNN model performed 
particularly less ideal in the beginning of the welding during 
which the weld pool is most dynamic. The CNN-LSTM 
model performed fundamentally differently, having 
successfully tracked the fast rise of the weld penetration. To 
our knowledge, this is extremely challenging and only few 
efforts have been reported to predict the weld penetration 
under such a drastic dynamic change. In addition, in the entire 
range of the experiment where the dynamics demonstrated 
different randomness, the CNN-LSTM model achieved 
outstanding performance. The achieved 0.3 mm error is ultra-
accurate for the welding process that applies an arc with a 
broad arc heat distribution and there are many factors 
affecting the transfer of the heat to the bottom of the 
workpiece.    

We have not been successful in finding many reports, that 
plot a curve as in Fig. 9 to directly compare the actual and 
predicted weld penetration using a deep learning approach, to 
compare with our results. Fig. 10 shows the result from a 
previous effort using a CNN model to estimate the growth of 
the weld penetration for a stationary weld pool without a 
relative motion between the arc and workpiece. Fig. 11 shows 
the results from previous efforts using hand-crafted features 
from moving weld pool. In (a), the 3D surface of the weld 
pool was measured using an innovative approach by 
projecting a laser dot-matrix to this mirror-like specular 
surface and intercepting the reflected laser rays [27]. The 3D 
surface was characterized by the length and width of the weld 
pool together with a proposed novel key parameter 
“convexity” of the irregular 3D weld pool surface [28]. (a) 
compares the actual and 3D weld pool surface characteristic 
parameters predicted weld penetration. In (b), a series of weld 
pool images were used as the input to estimate the back-side 
width of the weld. However, the weld pool images are not 

 
Fig.8 CNN training curve (Top) and CNN-LSTM training curve (Bottom). 

 

 
Fig.9 CNN (Top) and CNN-LSTM (Bottom) performance on test data. 



  

directly used to automatically extract the abstract features as 
in deep learning. Instead, hand-drafted features were 
proposed to represent the weld pool boundary. The resultant 
features in the most recent 5 seconds were used to estimate 
the back-side weld width using a neural network. As can be 
seen, their accuracies are far below that achieved in this work. 
In particular, (a) demonstrated that a single image, even if 
from an accurate 3D surface, is not sufficient; and (b) 
illustrated that manual hand-craft is difficult to extract the 
right information. As such, deep-learning that may 
automatically extract the right information and serial images 
that contain adequate information are both critical and CNN-
LSTM is their mathematical surrogate.         

VI. CONCLUSION AND FUTURE WORK 

This work used randomly varying waveforms for the welding 
current and travel speed to generate dynamic weld pools. It 
found that serial weld pool images in the most recent 5 
seconds contain adequate raw information to estimate the 
back-side bead, which quantifies the degree of the full 
penetration. However, a single weld pool image acquired at 
the current time does not in particular when the weld pool 
experiences a rapid dynamic evolution. A CNN-LSTM is 
capable of extracting the relevant dynamic features from the 
serial images to determine a rapidly changing weld 
penetration accurately. The effect and the contribution from 
the CNN-based deep learning model and the serial images are 

separately verified through comparative studies. The 
resultant CNN-LSMT model can estimate the back-side 
weld bead at 0.3 mm accuracy from the serial weld pool 
images captured by an HDR camera despite random changes 

in the major welding parameters.   
While using weld pool images and deep learning networks 

has become a popular and standard approach to monitor the 
weld penetration in recent literature, there has a critical lack 
on analyzing the adequacy of the raw information used. This 
paper analyzed the dynamic weld pool evolution that 
determines the weld penetration. Per the analysis, the weld 
pool images must be serial in order to for the raw information 
to be adequate to reflect the critical dynamic evolution. This 
provides a novel innovative thinking and direction to choose 
the raw information and design the needed models 
accordingly. It played a decisive role in improving the 
prediction accuracy when the weld pool is under dynamic 
adjustment/development as in the beginning of the welding. 

Specially, in order to represent the dynamic changes of the 
weld penetration process, we need weld pool images in most 
recent 4 second period to reflect the settling time for the 
GTAW process. We also picked one image from every 
2^5=32 images captured at 60 Hz, resulting in 0.53 second 
sampling time, as if the sample time is lower the secretive 
images would hardly demonstrate differences. Furthermore, 
using less number of images helps control the network to an 
manageable size. We found most recent 8 images contain 
adequate features needed to predict the backside bead width. 
Our innovative, analysis-based network structure design thus 
contributed to solving the weld pool images-based weld 

 
(a) Prediction using 3D weld pool surface as characterized 

by width, length, and convexity of the liquid weld pool 
surface [27]   

 
(b) Prediction using dynamic 2D weld pool boundaries as 

input of a neural network [2] 

Fig. 11 Comparative efforts in predicting the weld penetration using 
hand-crafted features.  

  
Fig. 10 Comparative efforts in predicting the weld penetration at different 

welding current using CNN [20]. (a) 60 A; (b) 83 A; (c) 110 A.   



  

penetration prediction problem for the GTAW that is the most 
widely used welding process for critical applications where 
the weld penetration must be assured. 

The effectiveness of the prediction under dynamic 
adjustment/development of the weld pool is crucial for real-
time control of the weld penetration. We expect that the 
proposed method will be particularly useful when applied to 
real-time control where the weld pool is subject to continuous 
dynamic adjustment. We will apply the proposed method to 
obtain the feedback for real-time control of weld penetration 
and compare its accuracy in resultant welds with using 
feedback from non-serial images-based models.              
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