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Abstract — This paper illustrates how a challenging problem be
solved by assuring the adequacy of the raw information and
using an appropriate deep learning network to extract the
relevant information. The problem concerned is accurate
monitoring of the penetration, in a fully penetrated weld pool, as
quantified by the width of the weld on the back-side of the
workpiece. This is challenging as the penetration occurs below
the workpiece surface and is not visible. A popular method is to
use a weld pool image to derive it. Analysis of the physical
process suggests that a single weld pool does not contain
adequate information but most recent serial weld pools may. As
such, although a deep learning model may extract information
that is already there, the raw information may not be sufficient.
Hence, a model that is capable of extracting information from
dynamic serial weld pool images is needed. To this end, a CNN-
LSTM (convolutional neural network combined with long-short
term memory one) model is proposed. Dynamic weld pools are
experimentally generated using changing the welding current
and welding speed randomly. The weld pools are imaged using
an HDR camera during experiments. Images are also captured
from the back-side surface of the workpiece to provide the
ground truth for training, validation, and testing. It is found that
the highly dynamically changing weld pool can be accurately
predicted using serial weld pool images at 0.3 mm for its back-
side bead width. Comparison has been made with results from
comparative studies to verify the effectiveness of and the
contribution from the information adequacy (by using serial
images) and the feature extracting capability (by using deep
learning).
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I. INTRODUCTION

This work aims at precision monitoring of the weld
penetration needed for its feedback control. Welding joins
two workpieces together by melting their facing interfaces,
and weld penetration quantifying the degree of such melting
determines the integrity of the produced weld [1]. While the
actual way to quantify varies with the application as detailed
in [1], it is in common that such melting always occurs
underneath the workpieces and is not directly visible [2], [3],
in particular by a sensor attached to a welding torch operated
by a moving robot/manipulator. The problem is thus
challenging as it can only be estimated from indirect
observables while they must contain adequate information
about what occurs underneath. A further challenge is to
effectively derive the penetration from the observables that
are likely to be complex, as determined by the complex

Rui Yu, Joseph Kershaw, Peng Wang and YuMing Zhang are with
Institute for Sustainable Manufacturing and Department of Electrical and
Computer Engineering, University of Kentucky, Lexington, KY 40506.

welding phenomena, containing redundant information. The
challenges increase further when the welding parameters are
subject to dynamic adjustments so that the process is in
continuous dynamic evolution. In such a case, the welding
process phenomena become more complex and so does an
effective derivation from the more complex observables.
Unfortunately, such adjustments are fundamental for the
monitoring to be used to provide the feedback for real-time
control as being aimed in this study.

Weld pool formed by the melted metal is where complex
welding process phenomena originate containing most of the
raw information related to the degree of the melting, i.c., the
state of the weld penetration [4]. Kotecki and Richardson
made initial efforts [5] by correlating the weld pool oscillation
frequency with its mass as a larger pool with greater
mass/inertia oscillating slower. One major issue is that the
weld pool is a 3D free liquid body and its mass is determined
by 3D geometry while the penetration concerned is most
correlated to its geometry in the depth direction. Xiao and de
Ouden added a milestone by finding a large difference in the
oscillation frequency among incomplete (partial) and
complete (full) penetration [6], [7]: the frequency drastically
reduces when the workpiece is fully melted/penetrated in its
thickness direction. Developing from partial to full
penetration changes the support to the weld pool bottom
surface from un-melted solid metal to the gaseous ambiance
so that the oscillation damping is drastically reduced. While
this is effective in detecting the penetration mode (partial or
full) in a stationary pool without a motion of the welding
torch, it does not provide an accurate measure for the degree
of the partial or full penetration and faces challenges in a
moving pool where the pool shape becomes more complex.
Various efforts have been made to improve the method over
time [8], [9]. Other approaches have also been proposed
including using ultrasound sensors [10], [11], infrared
cameras [12], etc., and their principles and facing challenges
are analyzed in [1].

Skilled welders can assure weld penetration by adjusting
the welding parameters through their adaptive operation per
their close observation on the weld pool. While the
aforementioned approaches use specific information in the
weld pool, for example, the temperature distribution from an
infrared camera [12], it is hard to tell by the welders what
specific information they pay attention to. Efforts have been
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focused on clearly imaging the weld pool [13]-[16] and
effectively extracting the information from the weld pool
images as observables contain welding phenomena in
complex ways. Intuitive approaches are to measure the weld
pool width and length. More advanced ways are to
characterize/model the weld pool to introduce less intuitive
but more abstract characteristic parameters [15], [17].
However, this is a hand-crafted engineering approach. As the
phenomena are complex, effective extraction of the adequate
characteristic parameter is challenging.

Deep learning can potentially provide an effective
approach to extracting the state of the weld penetration from
weld pool images similarly to a human welder. As such,
CNNs have been used as a major type of deep learning model
to extract relevant features automatically from weld pool
images to predict the weld penetration through training from
experimental data [18]-[22]. However, most studies are
experimental and mathematical ignoring the basic physical
ground if the weld pool images contain adequate raw
information.

Weld pool images are taken from the workpiece surface.
However, the weld pool itself is in 3D and the penetration is
determined by its bottom underneath the workpiece. A
question thus arises if one image from the visible weld pol
surface contains sufficient raw information to tell what occurs
underneath. As analyzed in Section II, this is unlikely to be
true when the weld pool is in dynamic evolution and
sequential weld pool images may be needed.

This study attempts to more accurately predict the backside
width of the weld bead, which quantifies the state of the full
penetration, using sequential images of a dynamically
changing weld pool. To this end, we propose a CNN-LSTM
model structure that complements CNN’s capability for single
image processing with that from the LSTM for counter-
parting the dynamic evolution. The paper is organized as
follows: Section II discusses the physical process to justify
why dynamic image series is needed while an overview of the
collection of the raw data is given in Section III; Section IV
details the neural network structure. Its training, validation,
and testing are presented in Section V which also includes
Discussion and Analysis. Finally, conclusions are drawn in
Section VI.

II. BACKGROUND AND ANALYSIS

Fig. 1 shows the gas tungsten arc welding (GTAW) process.
This is the most widely used process for the precision joining
as it can provide the welding current, thus the arc power and
arc heat, precisely, while another most widely used welding
process gas metal arc welding (GMAW) cannot [18]. It also
illustrates a completely penetrated weld pool whose state can
be represented as the backside width wy, and height h;, of the
liquid pool.

The most critical state is wy,. First, w;,, > 0 is required as
wy, = 0 means partial penetration that would cause an
explosion under high temperature and pressure. Further, as
the seam tracking error e = 0, the absolute deviation of the

weld symmetrical axis for the weld cross section (z in Fig.
1(b)) from the interface of the metals being joined (dot line in
Fig. 1(b)), may not be avoidable, w, /2 < e will also cause
the interface not be fully melted so that the penetration is
actually also incomplete/partial.

To assure the required complete/full penetration, the
desired wy,, denotated as w;,, needs to be appropriate. In
general, a greater wy better assures the required complete
penetration; but as wy, increases, the heat input also increases
causing greater distortion and residual stress, etc. wj thus
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Fig.1 GTAW and complete weld penetration. (a) Illustration of GTAW
process; (b) Cross section of the workpiece and weld. Axis z is that of
the tungsten electrode and the weld is in general symmetrical about it.
The dot-line in (b) is the interface of the two metals being joined and e
is the seam tracking error.
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Fig.2 Dynamic development of the penetration.

should be minimized while assuring the complete penetration.
Such minimization depends on the application, which
determines the maximal weld seam tracking error e,,,,. This
requires 2e,4, < Wy so that 2e,,,, < wj. Italso depends on
the accuracy achievable for the monitoring and control of
wy,. Denote ¢ as the estimation/control error between the
estimated backside bead width W, and actual one wy, so that
wy, = Wy, + €. The condition 2e,,,, < w, thus becomes
2emax + € < Wy,. Denoting, &pq, = €| as the maximal
estimation/control error, then 2e,,,, + Emax < Wp. As can be
seen, a precision monitoring, as well as a control, of the weld
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Fig.3 Welding current and travel speed in one experiment.

penetration is to minimize &,,,, to minimize the heat input
while assuring the complete penetration, i.e., fully melting of
the interface along the entire thickness direction.

GTAW melts the workpiece in the following way: the arc
heats the workpiece surface first; then the heat imposed on the
surface is transferred in 3D in the workpiece including along
the thickness direction to deepen the weld pool. One may
artificially decompose this penetrating process into two
subsystems (Fig. 2): upper subsystem and lower subsystem.
The upper subsystem has the arc a(t) and upper weld pool
(thus the image) I(t) as its input and output while the lower
one has the upper weld pool as measured by /(t) and bottom
surface as measured by wy, (t) as its input and output. Because
of the complex heat transfer and phenomena in the weld pool,
wy(t) = f(I(7), T < t). As such, using a single image I(t) to
estimate wy,(t) is only an approximation. The accuracy of
such approximation largely depends on how significantly and
how quickly I(t) dynamically changes. Using I(7),t — At <
T < t with At > 0 provides more, and possibly the critical,
raw information. An excessive At may not be necessary while
increasing the computation and modeling complexity. We
will correlate I(7),t — At < T <t to wy(t) using a CNN-
LSTM network and compare its accuracy with a CNN that
correlates just I(t) to wy(t). To this end, we will generate
data pairs (I (k), wy, (k))]’s where k the discrete-time instant.

III. DATA GENERATION

A GTAW welding system at the University of Kentucky
Welding Research Laboratory [23] has been used to perform
GTAW welding experiments. During the experiment, one
camera views the backside of the workpiece to capture the
images I, (k) to be used to calculate wy (k) and a high
dynamic range (HDR) camera views the weld pool to capture
I(k). The images are synchronized in the recordings to form
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Fig.5 Dynamic changes of the back-side bead width from two
experiments.
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state

(I(k), I,(k)) pairs. Cameras and welding torch are fixed
while the workpiece is moved by a linear motion system. The
welding current and travel speed vary every 2 seconds, within
[80A, 130A] and [1.4 mm/s, 2.0mm/s], randomly to provide
moving arc on 1.8 mm thick stainless steel. The current i and
travel speed v together determine the heat input H, i.e., the
input imposed on the workpiece in a unit length of weld:
Vanode/V Where Vgno4e 1S the voltage on the workpiece
which is the anode of the arc in GTAW. vg;,04¢ 1S considered
a constant, when the shield gas and workpiece material are
given, not changing with the welding current. While the heat
input H is a major parameter in determining the penetration,
the current i is also important as the arc pressure that largely
controls the weld pool liquid metal flow thus the heat transfer
within the pool is proportional to I? where [ is the current.

Varying the current and travel speed is to generate dynamic
evolution in the weld pool and this is needed as at least one of
them will be adaptively adjusted if the weld penetration is not
at the desired value. If the current and travel speed remain
constant, the weld pool will be at a steady-state most of the
time. The effect of I(m < k) on wy, (k) will be unable or
difficult to be observed. In this work, 6 experiments have been
conducted and each experiment runs for 80 seconds
approximately. Fig. 3 shows the current and travel speed in
one experiment. Those in other experiments are similar but
not exactly the same as they are different realizations of the
same random processes. Fig. 4 provides a series of (I(k),
I,,(k))s in five seconds from the 60 frames/s recordings, with
one second apart from each other. Each image I, is binarized
using to segment the image into bright and back regions and
the width of the bright region is calculated as wy, [20] using a
threshold. The threshold and the resolution mm/pixel are
calibrated. As images were sampled at 60 Hz, 28,560 (I(k),
wy(k) ) pairs are obtained. Fig. 5 shows wj, from two
experiments to illustrate the dynamic changes.

IV. NETWORK MODEL

The comparative CNN’s architecture is illustrated in Fig.o,
which predicts wy, (k) from a single image I(k) . The
proposed CNN-LSTM, which predicts from serial images
I(m) (m < k) is given in Fig. 7. Their CNNs are identical in
structure and parameters are to be trained. Each image, all
256 x 256, is fed into the CNN through its typical
convolution layer followed by a pooling layer. This is
repeated 4 times, with the parameters of convolution layers to
be (1, 32, 5, 2, 2), (32, 64, 3, 2, 1), (64, 128, 3, 2, 1), (128,
256, 3, 2, 1) respectively. Batch normalization and ReLU
activation were conducted between each convolution and
pooling layer. After this convolution process, the input image
is converted into a 1 X 256 feature vector V (k) to the input
of the following fully connected layer to wy, (k).

LSTM as a unique artificial recurrent neural network
(RNN) architecture [24] with feedback connections can
generate outputs from serial data. LSTM has outperformed
other popular conventional dynamic prediction approaches
like hidden Markov models in many tests [25]. As such, it is
natural to hypothesize that incorporating LSTM with CNN
may provide an effective approach to automatically extract
relevant dynamic and abstract features from serial dynamic
weld pool images to predict the weld penetration occurring
underneath the workpiece.

In the proposed CNN-LSTM model shown in Fig. 7, V (k)
is connected to the LSTM model rather than the fully
connected layer. The size of the input V' of the LSTM model
is thus 256. In our study, we first try 128 for the hidden size,
3 for the num_layers set, and 8 for the sequence length to see
if we can obtain desirable results. Because the hidden state in
the RNN will receive the previous state information, the
previous state will then be able to influence the current state,
which means that our earlier images I(m < k) will also make
a contribution to help predict current wy, (k).

We captured images at 60 frames per second and set the
batch size as 32. Each batch thus took 1.875 images per
second. With the sequence length of 8, the model will use VV
as far as 4 seconds ago. As such, the CNN-LSTM uses
V(k—j)( <32%7 =224, ie. image series I(k),I(k —
33), ..., I(k — 224) to predict w;, (k). 4 seconds reflect the
settling time approximately of the GTAW process which was
illustrated in Fig. 9 in ref [26].

V.TRAINING, RESULTS, AND DISCUSSION

We perform the training, validation, and testing process on a
NVIDIA GTX 2080 graphic card. Both models were trained
iteratively 100 times with SGD optimizer and mean-square
loss under Python environment with Pytorch library.

Of the data from six experiments, those from four of them
were used for training and from other two were used for
validation and test respectively. Each experiment was
performed under the same nominal welding conditions;
however, as the welding parameters changed randomly, each
experiment is different from other experiments in a random
way. Hence, there is no need for random selection at the data
level and any experiment can serve for training, validation, or
testing.



The 28,560 paired images in our dataset were thus used to
form three subsets: training, validation, and testing. The sizes
are 19040, 4760 and 4760, respectively. To train the CNN
model, the dataset has been shuffled to make sure the data has
been drawn randomly. For training the CNN-LSTM model,
the data was pre-arranged: divided as multiple sequences with
each containing 8 images and the difference between the
frame number was 32, for example, one sequence would
contain frame 1, frame 33, frame 65, etc. In this way, we could
ensure that the images fed into the CNN-LSTM model have
the time correlation with each other and each frame follows
the previous frame in the sequence after 0.53s.
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Fig.8 CNN training curve (Top) and CNN-LSTM training curve (Bottom).

The results of loss in training and validation datasets for
both networks are presented in Fig. 8. It is obvious that with
the mean square error loss (MSE), the model which adds the
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Fig.9 CNN (Top) and CNN-LSTM (Bottom) performance on test data.

LSTM could reduce the validation error much further than the
CNN model without LSTM. In particular, while the CNN

realized the minimal validation error of 0.6mm?, CNN-
LSTM achieved at 0.34mm? , realizing 43 percent of
reduction. It is critical for accurate monitoring for the
precision joining this work targets.

The network has been trained with the mean squared error
as the loss. An absolute error-based loss is logically more
reasonable. However, mean squared error-based losses have
analytical gradients helping lead to more efficient solutions.
In addition, absolute error-based losses minimize the mean of
the absolute error and such mean is still not the maximal
absolute error &,,,. Hence, for the present paper that
contributes by proposing dynamic image series through
analysis of physical process to assure the adequacy of the raw
information, the use of the particular network, loss, and
learning algorithm should not affect the objective for
verification of the idea using dynamic images to assure the
adequacy in the raw information.

Both models were selected at the above epochs of their
respective minimum validation error to test. Fig. 9 illustrates
the prediction results for the test experiment. The average
error was 0.54 mm for the CNN model while it was 0.3 mm
for the CNN-LSTM model. This reflects a 44 percent
reduction in the prediction error and this is simply contributed
by adding LSTM to the CNN.

In particular, as can be seen, the CNN model performed
particularly less ideal in the beginning of the welding during
which the weld pool is most dynamic. The CNN-LSTM
model performed fundamentally differently, having
successfully tracked the fast rise of the weld penetration. To
our knowledge, this is extremely challenging and only few
efforts have been reported to predict the weld penetration
under such a drastic dynamic change. In addition, in the entire
range of the experiment where the dynamics demonstrated
different randomness, the CNN-LSTM model achieved
outstanding performance. The achieved 0.3 mm error is ultra-
accurate for the welding process that applies an arc with a
broad arc heat distribution and there are many factors
affecting the transfer of the heat to the bottom of the
workpiece.

We have not been successful in finding many reports, that
plot a curve as in Fig. 9 to directly compare the actual and
predicted weld penetration using a deep learning approach, to
compare with our results. Fig. 10 shows the result from a
previous effort using a CNN model to estimate the growth of
the weld penetration for a stationary weld pool without a
relative motion between the arc and workpiece. Fig. 11 shows
the results from previous efforts using hand-crafted features
from moving weld pool. In (a), the 3D surface of the weld
pool was measured using an innovative approach by
projecting a laser dot-matrix to this mirror-like specular
surface and intercepting the reflected laser rays [27]. The 3D
surface was characterized by the length and width of the weld
pool together with a proposed novel key parameter
“convexity” of the irregular 3D weld pool surface [28]. (a)
compares the actual and 3D weld pool surface characteristic
parameters predicted weld penetration. In (b), a series of weld
pool images were used as the input to estimate the back-side
width of the weld. However, the weld pool images are not
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directly used to automatically extract the abstract features as
in deep learning. Instead, hand-drafted features were
proposed to represent the weld pool boundary. The resultant
features in the most recent 5 seconds were used to estimate
the back-side weld width using a neural network. As can be
seen, their accuracies are far below that achieved in this work.
In particular, (a) demonstrated that a single image, even if
from an accurate 3D surface, is not sufficient; and (b)
illustrated that manual hand-craft is difficult to extract the
right information. As such, deep-learning that may
automatically extract the right information and serial images
that contain adequate information are both critical and CNN-
LSTM is their mathematical surrogate.

VI. CONCLUSION AND FUTURE WORK

This work used randomly varying waveforms for the welding
current and travel speed to generate dynamic weld pools. It
found that serial weld pool images in the most recent 5
seconds contain adequate raw information to estimate the
back-side bead, which quantifies the degree of the full
penetration. However, a single weld pool image acquired at
the current time does not in particular when the weld pool
experiences a rapid dynamic evolution. A CNN-LSTM is
capable of extracting the relevant dynamic features from the
serial images to determine a rapidly changing weld
penetration accurately. The effect and the contribution from
the CNN-based deep learning model and the serial images are
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Fig. 11 Comparative efforts in predicting the weld penetration using
hand-crafted features.

separately verified through comparative studies. The

resultant CNN-LSMT model can estimate the back-side

weld bead at 0.3 mm accuracy from the serial weld pool

images captured by an HDR camera despite random changes
in the major welding parameters.

While using weld pool images and deep learning networks
has become a popular and standard approach to monitor the
weld penetration in recent literature, there has a critical lack
on analyzing the adequacy of the raw information used. This
paper analyzed the dynamic weld pool evolution that
determines the weld penetration. Per the analysis, the weld
pool images must be serial in order to for the raw information
to be adequate to reflect the critical dynamic evolution. This
provides a novel innovative thinking and direction to choose
the raw information and design the needed models
accordingly. It played a decisive role in improving the
prediction accuracy when the weld pool is under dynamic
adjustment/development as in the beginning of the welding.

Specially, in order to represent the dynamic changes of the
weld penetration process, we need weld pool images in most
recent 4 second period to reflect the settling time for the
GTAW process. We also picked one image from every
2/°5=32 images captured at 60 Hz, resulting in 0.53 second
sampling time, as if the sample time is lower the secretive
images would hardly demonstrate differences. Furthermore,
using less number of images helps control the network to an
manageable size. We found most recent 8 images contain
adequate features needed to predict the backside bead width.
Our innovative, analysis-based network structure design thus
contributed to solving the weld pool images-based weld



penetration prediction problem for the GTAW that is the most
widely used welding process for critical applications where
the weld penetration must be assured.

The effectiveness of the prediction under dynamic
adjustment/development of the weld pool is crucial for real-
time control of the weld penetration. We expect that the
proposed method will be particularly useful when applied to
real-time control where the weld pool is subject to continuous
dynamic adjustment. We will apply the proposed method to
obtain the feedback for real-time control of weld penetration
and compare its accuracy in resultant welds with using
feedback from non-serial images-based models.
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