
1. Introduction
The term “time domain structures” (TDSs) refers to packets of ⩾1-ms duration intense electric field spikes 
detected by Van Allen Probes in the Earth's outer radiation belt (Mozer et al., 2015). The spatial scale of 
TDSs (in the direction along the magnetic field lines) is on the order of tens of Debye Lengths (∼0.3–0.6 km) 
(Malaspina et al., 2018; Vasko et al., 2017a). TDSs propagate at a velocity comparable to the electron thermal 
velocity and are usually identified as electron acoustic-like mode (Vasko et al., 2017c). TDSs have significant 
electric field components parallel to the local background magnetic field. Depending on the appearance of 
these parallel electric fields, TDSs are generally categorized into double layers and phase space holes. The 
double layer has a unipolar parallel electric field (e.g., Quon & Wong, 1976), which resembles a net poten-
tial drop from a two-layer structure composed of a layer of net positive charges to an adjacent layer of net 
negative charges. The phase space hole has a bipolar electric field, which resembles the field created by a 
collection of positive or negative charges (e.g., Schamel, 1979). TDSs can interact with thermal electrons in 
the energy range between tens of eV to a few keV, causing efficient pitch angle scattering and acceleration 
of thermal electrons (Artemyev et al., 2014; Osmane & Pulkkinen, 2014; Vasko et al., 2017b).

Statistical observations by the Van Allen Probes have shown that TDSs permeate the inner magnetosphere 
(Malaspina et al., 2014). The occurrence of these TDSs in the inner magnetosphere is strongly correlated 
with macroscopic plasma boundaries, such as dipolarization fronts (Malaspina et al., 2015). Also, the re-
gions where TDSs are excited travel with propagating dipolarization fronts. These observations indicate 
that the free energy of the plasma boundary motion at the macroscale is transferred to that of TDSs at the 
microscale. But how does this energy transfer manifest itself between different spatial scales? The answer is 
related to whistler and kinetic Alfvén waves that have spatial scales between dipolarization fronts and TDSs. 
In fact, both of these waves are observed to be excited during energetic particle injections into the inner 
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follows: macroscale dipolarization fronts first transfer the ion flow (kinetic) energy to kinetic Alfvén waves 
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magnetosphere (Chaston et al., 2014; Malaspina et al., 2018), and are typically present in TDS observations 
(Chaston et al., 2015; Malaspina et al., 2015; Mozer et al., 2015).

It was suggested that the localized electric field associated with kinetic Alfvén waves may locally accelerate 
electrons to form an electron beam (e.g., Artemyev et al., 2015; Damiano et al., 2015, 2016), leading to TDS 
excitation through beam instabilities (e.g., Malaspina et al., 2015). The same hypothesis has been proposed 
to explain the abundance of double layers and phase space holes in the bursty bulk flow braking region of 
the magnetotail (e.g., Chaston et al., 2012; Ergun et al., 2015; Stawarz et al., 2015). In the auroral ionosphere, 
despite it being a low beta plasma, the generation of double layers and phase space holes has been attrib-
uted to beam instabilities driven by the parallel electric field of inertial Alfvén waves (Génot et al., 2004; 
Silberstein & Otani, 1994). In connection with this hypothesis, the parallel electric field of whistler waves 
was observed to be strong enough to accelerate Landau resonant electrons and generate Langmuir waves 
(Li et al., 2017; Reinleitner et al., 1982). It was further demonstrated that Landau resonant electrons trapped 
by the whistler parallel electric field generate a range of TDSs, and that a single quantity, the ratio of Lan-
dau resonant velocity to electron thermal velocity, controls the type of TDSs that will be generated (An 
et al., 2019). It is worth mentioning that an alternative scenario was proposed for the formation of electric 
field spikes, such as nonlinear fluid steepening of electron acoustic modes (Agapitov et al., 2018; Vasko 
et al., 2018). These studies motivate us to further investigate TDSs driven by kinetic Alfvén waves. Concrete-
ly, we aim to demonstrate that TDSs can be excited by Landau resonant electrons trapped in kinetic Alfvén 
waves through beam instabilities. In Section 2, we will analyze properties of kinetic Alfvén waves using lin-
ear kinetic theory, which then serve as the initialization for particle-in-cell simulations. In Section 3, using 
particle-in-cell simulations, we will demonstrate how kinetic Alfvén waves drive TDSs by electron phase 
trapping and show the associated characteristics of TDSs. With the intuition gained from particle-in-cell 
simulations, we will also analyze the critical condition for TDS excitation. In Section 4, we summarize our 
results and put our work in the bigger context regarding energy dissipation around dipolarization fronts.

2. Linear Dispersion Relation of Kinetic Alfvén Waves
To familiarize ourselves with the linear properties of kinetic Alfvén waves and prepare for the initialization 
of particle-in-cell simulations, we start with the linear kinetic theory. The linearized Vlasov equation is 
combined with Maxwell's equations to solve for the hot plasma dispersion relation. The solution is found 
via the following equation, in matrix form,
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where n = (nx, ny, nz) is the refractive index and the coordinate system in which ny = 0 is chosen. The back-
ground magnetic field is in the z direction. All the complexities of evaluating velocity space integrals are 
contained in elements of the dielectric tensor ϵij, the derivation of which is fairly standard and can be found 
in textbooks (e.g., Ichimaru, 2018; Stix, 1992; Swanson, 2012). For any nontrivial solution of the wavefield 
(δEx, δEy, δEz), the determinant of dispersion matrix is required to be zero. To this end, we use the hot 
plasma dispersion relation solver in the HOTRAY code (Horne, 1989) to find the roots of the determinant.

We consider a collisionless, homogeneous plasma, which is composed of electrons and protons for 
simplicity. The proton-to-electron mass ratio is mi/me  =  1,836. The normalized Alfvén velocity is 

31 1/ / 4.67 10
5 1,836A ci piv c        . Here, c is the speed of light, ωci is the proton cyclotron fre-

quency, and ωpi is the proton plasma frequency. Each species is assumed to have a Maxwellian velocity 
distribution, which is a simplification from realistic situations (Vasko et al., 2017c; Walsh et al., 2020). The 
proton and electron thermal velocities are vTi = vA/8 and vTe = 4vA, respectively. These values are chosen 
to represent typical conditions around dipolarization fronts, i.e., electron temperature Te  =  300  eV, ion 
temperature Ti = 2,000 eV, background magnetic field B0 = 100 nT, and plasma density n0 = 1 cm−3. We 
focus on the wave dispersion properties and thus did not include any free energy source for wave excitation. 
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We note that, in the limit vTe > vA, the shear Alfvén wave is termed the “kinetic Alfvén wave” (e.g., Haseg-
awa, 1976; Lysak & Lotko, 1996). In this kinetic regime, the characteristic perpendicular length scale is 
the ion acoustic gyroradius ρs = cs/ωci, where cs is the ion acoustic speed. In the opposite limit vTe < vA, the 
electron inertia becomes important and the shear Alfvén wave is termed the “inertial Alfvén wave” (e.g., 
Goertz & Boswell, 1979). The inertial regime is applicable to the Earth's ionosphere. In this study, however, 
we focus on the kinetic regime which is representative of dipolarization fronts located in the equatorial 
magnetosphere. It is worthy to clarify that the nomenclature “electromagnetic ion cyclotron waves” (EMIC) 
is often used to refer to shear Alfvén waves when the wave frequency is relatively large and does not satisfy 
the condition ω ≪ ωci, regardless of the kinetic or inertial regime. Here, we use “kinetic Alfvén waves” to 
unambiguously refer to shear Alfvén waves in the limit vTe > vA, regardless of the wave frequency.

The hot plasma dispersion relation of kinetic Alfvén waves ranging from slightly oblique (ψ = 30°) to al-
most perpendicular (ψ = 89°) propagation are shown in Figure 1. Here, ψ stands for the wave normal angle 
between the wavenumber vector k = (kx, 0, kz) and the background magnetic field B0 = (0, 0, B0). In the 
long wavelength limit |k| → 0, shear Alfvén waves at different propagation angles converge to ω = kzvA 
(Figure 1a). The damping rate is negligibly small in this limit (Figure 1b). As wavenumber increases, the 
parallel phase velocity ω/kz decreases for slightly oblique propagation (ψ = 30°), whereas ω/kz increases for 
highly oblique propagation (ψ = 89°). This distinct characteristic of ω/kz at different wave normal angles 
has important implications for the wave damping mechanism (e.g., Gary & Nishimura, 2004). In the latter 
case of highly oblique propagation (e.g., ψ = 89°), where ω/kz approaches the electron thermal velocity 
with increasing wavenumber (Figure  1c), electron Landau resonance is responsible for the damping of 
kinetic Alfvén waves in the small wavelength limit (Figures 1b and 1c). In the former cases (e.g., ψ = 30°, 
75°, 85°), where ω/kz stays away from vTe with increasing wavenumber (Figure 1c) while the ion cyclotron 
resonant velocity approaches the ion thermal velocity (Figure 1d), ion cyclotron damping becomes more 
effective in the small wavelength limit (Figures 1b and 1d). In all the present cases, the contribution of ion 
Landau damping is relatively small, since ω/kz is large compared to ion thermal velocity (i.e., vTi = vA/8; 
see Figure 1c). We can imagine that, if the ion thermal velocity approaches the Alfvén velocity, ion Landau 
damping may become more pronounced.

After solving for the hot plasma dispersion relation, we can further obtain ratios between different compo-
nents of electric fields (Figure 2). The ratio of wave electrostatic field δEL to total electric field δE is shown 
in Figure 2a. Here, δEL is the projection of wave electric field onto the k direction. In the limit of parallel 
propagation (ψ = 0), the wave is purely electromagnetic, i.e., δEL = 0 (not shown). At slightly oblique prop-
agation (ψ = 30°), a small portion (|δEL/δE| ≈ 0.15) of the total electric field is electrostatic, whereas the 
waves are nearly electrostatic (|δEL/δE| ≈ 1) at ψ = 75°, 85°, 89°. The ratio of parallel electric field δEz to total 
electric field δE is shown in Figure 2b. It is seen that the parallel electric field is only a very small portion of 
the total electric field at all propagation angles, that is, |δEz/δE| < 10−2 for wave modes that are not heavily 
damped.

The parallel electric field of kinetic Alfvén wave can trap electrons in its potential well due to its finite am-
plitude, which is the so-called nonlinear Landau resonance (e.g., O'Neil, 1965). Even though the magnitude 
of δEz is small for kinetic Alfvén waves, the integral of this electric field over an extended wavelength along 
the background magnetic field can still be significant (Artemyev et al., 2015, 2017). Indeed, the half width 
of trapping island can be compared to the electron thermal velocity as

Δ 2 / 2 2 ,tr tr z z z

Te Te z Te e e

v k ek k e
v v k v m T

  
   (2)

where /tr z z eek E m  ∣ ∣  is the oscillation frequency for electrons trapped at the bottom of the poten-
tial well (i.e., the trapping frequency), and 2

e e TeT m v  is the electron temperature. The wave potential δϕ is 
defined through the relation δEz = −ikzδϕ, where i is the unit imaginary number. Evidently, it is the ratio of 
the magnitude of wave potential eδϕ to the electron temperature Te that controls the significance of electron 
trapping. In addition, kinetic Alfvén waves around dipolarization fronts typically have a finite bandwidth Δf 
in frequency or Δλ in wavelength. For electron trapping to occur, the kinetic Alfvén waves should be coher-
ent over the electron trapping time scale. This requires the wave coherence time τcoherence = 1/Δf = Δλ/(vAλ2) 
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to be greater than the electron trapping time trapping / ( | |)e z zm ek E  , which needs to be verified by 
measurements.

Apart from the parallel electric field, the parallel magnetic field perturbation δBz is present for oblique 

wave normal angles. The variation of δBz along the background magnetic field, that is, zBz



, acts as a mi-

ni-magnetic mirror on electrons. Here, the first adiabatic invariant of electrons (i.e., the electron magnetic 
moment) is conserved because electrons gyrate about the magnetic field much faster than the equivalent 
temporal variation of δBz. The magnetic mirror force and the parallel electric force can be in phase or out 
of phase, which add up to be either constructive or destructive effects. For comparison, we write these two 
forces explicitly as

AN ET AL.

10.1029/2020JA028643

4 of 16

Figure 1. The dispersion relation of kinetic Alfvén waves for four representative wave normal angles. In each panel, 
ψ = 30°, 75°, 85°, 89° correspond to blue, black, green and red dots, respectively. All physical quantities on the vertical 
axis are shown as a function of normalized parallel wavenumber kzc/ωpi on the horizontal axis. (a) Normalized wave 
frequency ω/ωci. (b) Normalized wave growth rate γ/ωci. Note that γ < 0 indicates wave damping. (c) Parallel phase 
velocity or Landau resonant velocity ω/kz compared to ion and electron thermal velocities. (d) Ion cyclotron resonant 
velocity. Note that ions in cyclotron resonance counter-propagate with the wave (kz > 0) and thus have negative 
cyclotron resonant velocities. The ion cyclotron resonant velocity for ψ = 89° is out of range.
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where 2
0/ (2 )e em v B   is the electron magnetic moment. We can express δBz in terms of the electric field 

using Faraday's Law, that is, δBz = (kxc/ω)δEy. The ratio of Fzb to Fze can be rewritten as
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Figure 2. Properties of kinetic Alfvén waves derived from the linear kinetic theory. The format of this figure is the 
same as that of Figure 1. (a) The ratio of electrostatic field δEL to total electric field δE. (b) The ratio of parallel electric 
field δEz to total electric field δE. (c and d) The magnitude and phase of the ratio of the wave magnetic mirror force Fzb 
to the parallel electric force Fze.
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where , ,
ˆ /x z x z pik k c   is the normalized wavenumber, ωce is the electron 

cyclotron frequency, and μe is written as as 2
0

1 /
2e e Tem v B  . Using δEy/

δEz derived from the hot plasma dispersion relation, the magnitude and 

phase of Fzb/Fze are shown as a function of kz in Figures 2c and 2d, re-
spectively. On the one hand, at ψ = 30°, Fzb is a fraction of Fze (i.e., |Fzb/
Fze| ∼ 0.1), and they are out of phase by 180°. Thus, the wave magnetic 
mirror force cancels part of the parallel electric force, causing a reduction 
of the trapping width in Equation 2. More importantly, the wave mag-
netic mirror force depends on the perpendicular velocity of electrons. 
This gives rise to an asynchronization of trapped electrons with different 
perpendicular velocities, and thus causes additional phase mixing. We 
denote this scenario as the regime of weak nonlinear Landau resonant 
interaction. On the other hand, at large wave normal angles (ψ = 75°, 85°, 
89°), Fzb is negligible compared to Fze and hence Fze acts coherently on 
trapped electrons. We denote this scenario as the regime of strong non-
linear Landau resonant interaction.

It is often difficult to get accurate measurements of the low frequency 
electric fields due to their small amplitudes and low frequencies. Thus, it is difficult to obtain the half trap-
ping width Δvtr in Equation 2 directly from electric field measurements. To have an estimation of Δvtr, we 
replace ekzδϕ in Equation 2 with |Fze + Fzb| = μekzδBz⋅ |(Fze + Fzb)/Fzb|, which takes the wave magnetic mirror 
force into account and gives

0

Δ 2 .tr z ze zb

Te zb

v B F F
v B F

 
  (6)

In practice, we have accurate measurements of the wave magnetic fields and background plasma parame-
ters, which give reasonable approximations of δBz/B0 and Fzb/Fze (from the linear kinetic theory). We will 
use Equation 6 to estimate Δvtr in our particle-in-cell simulations.

3. TDS Excitation by Electron Phase Trapping
3.1. Computational Setup

We carry out particle-in-cell (PIC) simulations using the OSIRIS framework (Fonseca et al., 2002; Hemk-
er, 2015), which consists of a massively parallel, fully relativistic, electromagnetic PIC code and a visualiza-
tion and data analysis infrastructure. In this study, the simulations have one dimension (x) in configuration 
space and three dimensions (vx, vy, vz) in velocity space. The cell length is Δx = λD, where λD = vTe/ωpe is 
the initial electron Debye length, vTe is the initial electron thermal velocity, and ωpe is the electron plasma 
frequency. The time step is set as Δt = 0.95Δx/c to satisfy the Courant-Friedrichs-Lewy condition in one di-
mension. The boundary conditions for both fields and particles are periodic. The coordinate system differs 
from what we used in linear kinetic theory: the x–z plane is rotated with respect to the y axis so that the wave 
propagates along the x direction (Figure 3). The background magnetic field B0 is oriented at a finite angle ψ 
with respect to the x axis in the x–z plane. The electron cyclotron frequency ωce is equal to 0.2ωpe. Given the 

reduced ion-to-electron mass ratio mi/me = 64, the normalized Alfvén velocity is 1/ 0.2 0.025
64Av c    .  

Both ions and electrons are initialized as isotropic Maxwellian distributions. The electron and ion thermal 
velocities, vTe and vTi respectively, are scaled to the Alfvén velocity vA to represent typical conditions in the 
equatorial magnetosphere (e.g., Chaston et al., 2014). To observe instabilities induced by nonlinear electron 
trapping in kinetic Alfvén waves, we need to reduce the background field fluctuations to a low level com-
pared to the Alfvén wavefield. For this purpose, each cell contains at least 105 particles per species. Such 
computational cost is currently not affordable in 2D and 3D simulations, which is further reason why sim-
ulations are restricted to 1D in the present study.
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Figure 3. Comparison of coordinate systems between PIC simulations 
and linear kinetic theory. We rotate the x–z plane in linear kinetic theory 
about the y axis to an orientation so that the wave vector of kinetic Alfvén 
wave is along the x direction in PIC simulations.
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We set up the Alfvén wavefield by driving the plasma with an external pump field for a prescribed time 
interval. During this time interval, each particle experiences an external acceleration given by

 0 0

pump

Re , with , , and , ,j ik x i ts
j

s

dv q E e j x y z s e i
dt m

 
   

 
 (7)

where vj is the particle velocity, Ej is the pump electric field, and t is time. qs and ms are the charge and 
mass of species s, respectively. The wavenumber and frequency of the pump field are k0 and ω0, respec-
tively. k0 is connected to the mode number M through k0 = 2πM/(NxΔx), meaning the pump field has M 
wavelengths in the system, where Nx is the number of cells in the system. We choose the mode number 
M = 2 in our simulations. For a given k0, the frequency ω0 is determined by the dispersion relation of 
kinetic Alfvén waves. We add the pump electric field to the self-generated electric field as the total electric 
field, and add the background magnetic field to the self-generated magnetic field as the total magnetic 
field. The total electric and magnetic fields are used in the particle push stage. The magnetic field associ-
ated with the kinetic Alfvén wave is generated naturally by the particle response. The time profile of the 
pump electric field is
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This pump field starts with a linear up-ramp until t  =  trmp, then maintains a constant amplitude until 
t = toff − trmp, and finally ends with a linear down-ramp until t = toff. The relative magnitude of the pump 
field, that is, Ex0/Ey0 and Ez0/Ey0, is determined by the dispersion relation of kinetic Alfvén waves similar to 
that in Section 2. The magnitude and duration of the pump field are chosen so that the field component δBy/
B0 of the kinetic Alfvén wave reaches ≲0.1 when the pump field is turned off. Such a large amplitude wave is 
needed to overcome the incoherent field fluctuations in the simulations. After the pump field is turned off, 
the electromagnetic field of kinetic Alfvén wave continues to propagate, and is self-consistently supported 
by the electron and ion distributions.

Below, we present two nominal simulations using the above setup (see detailed simulation parameters in 
Table 1). In the first simulation (ψ = 30°), the wave magnetic mirror force is a fraction of the parallel electric 
force |Fzb/Fze| = 0.2, and these two forces are out of phase (i.e., arctan (Fzb/Fze) = 180°), representing the 
regime of weak nonlinear Landau resonant interaction. In contrast, in the second simulation (ψ = 75°), the 
wave magnetic mirror force is negligible (i.e., |Fzb/Fze| = 0.008), representing the regime of strong nonlinear 
Landau resonant interaction. In both simulations, trapped electrons in kinetic Alfvén waves form electron 
beams and generate various forms of TDSs through beam instabilities.
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Nx Δx/λD vTe/vA vTi/vA M k0c/ωpi ω0/ωci

Simulation 1 3,561 1 4.0 0.125 2 0.28 0.23

Simulation 2 2,059 1 2.0 0.125 2 0.98 0.25

ψ Ex0 [×10−5] Ey0 [×10−5] Ez0 [×10−5] trmpωci toffωci tendωci

Simulation 1 30° 4.08i 3.0 −7.59i 27.5 82.5 250

Simulation 2 75° −11.19i 0.05 3.17i 25.1 75.4 175

The electric field is given in units of 
2

/
e

pe

m c
e c 

. The imaginary unit i in the values of electric field represents a phase 

shift of 90°. It is surprising to find that the kinetic Alfvén wave at ψ = 75° is elliptically polarized but rotating in the 
electron sense, which was discovered by Gary (1986).

Table 1 
The Parameters for Two Nominal Simulations
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3.2. Weak Nonlinear Landau Resonant Interaction

In the first simulation, the Landau resonant velocity, ω0/k0∥ ≃ vA, is located at the core of the electron dis-
tribution (vA = 0.25vTe) but at the tail of the ion distribution (vA = 8vTi). Therefore, it is relatively easy to 
first understand the response of the ion distribution, since the core of ion distribution is characterized by a 
linear, nonresonant response (Figure 4c). The linearized Vlasov equation for the reduced ion distribution 
(see A for details of derivation) is

0 ,i i
i

i

q E fv f
t x m v




   
       




 
 (9)

where δfi and f0i are the perturbed and equilibrium parts of the reduced ion distribution function, respec-
tively. Noticing 0 0ik x i tE e    

 , we can Fourier analyze Equation 9 and obtain
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where δϕ = δE∥/(−ik0∥) is the potential of the kinetic Alfvén wave along the background magnetic field. 
Note that ω0/k0∥ > v∥ for the bulk of the ion distribution. Thus the sign of the perturbation δfi depends on 
the sign of the potential field δϕ and the velocity gradient ∂f0i/∂v∥. Given a location x in the ion phase space, 
the sign of δfi changes across v∥ = 0 due to the change of the sign in the velocity gradient ∂f0i/∂v∥ (Figure 4c). 
Conversely, we can infer the phase of the potential field δϕ based on the ion perturbation δfi, as annotated 
at the top of Figure 4c. Knowledge of δϕ will aid our analysis of electron phase trapping.

The electron response to the kinetic Alfvén wave is mainly characterized by the formation of spatially mod-
ulated (or localized) beams around Landau resonance (Figure 4b). The resonant electrons are accelerated 
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Figure 4. TDSs and phase space portraits in Simulation 1. This snapshot is taken at 1100 cit  . (a) The parallel electric 
field. The green boxes mark the TDS locations. Hereafter, in our PIC simulations, the electric field has the dimension 

2

/
e

pe

m c
e c 

. (b) The perturbed electron phase space density δfe. (c) The perturbed ion phase space density δfi. At the top 

of this panel, the phase of the potential field is annotated by blue text.
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in the phase of δE∥ < 0 (or ∂δϕ/∂x > 0), whereas they are decelerated in 
the phase of δE∥ > 0 (or ∂δϕ/∂x < 0). This transport of phase space density 
gives a spatially modulated beam distribution, which is centered around 
vA (=0.25vTe) in velocity and peaked around δϕmax in phase, known as the 
trapping island (Figure 4b). To estimate the size of the trapping island, we 
average the perturbed phase space density δfe in the range 9 ⩽ xωpi/c ⩽ 11 
and plot the averaged distribution 〈δfe〉 in Figure 5. The trapping island 
(i.e., resonant region) is identified between the two dashed lines and has 
a half width Δvtr/vTe = 0.55. As a sanity check, we also calculate the half 
width of the trapping island using Equation 6 and obtain Δvtr/vTe = 0.32, 
where we have used the input δBz/B0 = 0.013 (obtained from the simu-
lation) and Fzb/Fze = −0.2 (derived from the linear kinetic theory). This 
theoretical estimation is roughly consistent with the result using simula-
tion data.

Outside of the trapping island, the electrons are nonresonant and thus 
can be interpreted using

0

0

0

1 ,e
e

e

e ff
m vv

k

 



 




 (11)

which is on an equal footing with Equation 10 for the nonresonant ion response. With the use of Equa-
tion 11, it is straightforward to demonstrate that a positive (negative) perturbation of electron phase space 
density δfe > 0 (δfe < 0) is produced in the phase of δϕ > 0 (δϕ < 0), as shown in Figure 4b.

Electron beams driven by the kinetic Alfvén wave excite localized bursts of TDSs, appearing as bipolar elec-
tric field structures (Figure 4a). The ratio of the parallel electric field amplitude of TDSs to that of the kinetic 
Alfvén wave is about 17. These TDSs occur in the phase of δE∥ > 0 (or ∂δϕ/∂x < 0). The exact occurrence 
phase of TDSs may depend on the cumulative growth rate ∫t γdt′ of beam instability over a certain time pe-

riod, since the signal-to-noise ratio is modulated by 
t dte  . These TDSs are identified as nonlinear electron 

acoustic-mode (Anderegg et al., 2009; Holloway & Dorning, 1991; Valentini et al., 2006), which does not 
require the simultaneous presence of a cold electron component and a hot electron component as the usual 
electron acoustic-mode (Gary, 1993). Instead, it survives undamped on the distribution of trapped electrons 
(Holloway & Dorning,  1991). In the space environment, the existence of kinetic Alfvén waves of finite 
amplitude indicates that a plateau of finite width on the electron distribution function has to be created, 
otherwise kinetic Alfvén waves would be damped out. As a result, TDSs survive in the space environment 
because their phase velocities are located within this plateau.

The electric field perturbation of TDSs is largely along the k direction (i.e., the longitudinal electric field 
δEL). To analyze the TDS properties, we show the spatiotemporal evolution of δEL and its Fourier spectra in 

Figures 6 and 7, respectively. TDSs propagate at a slightly larger phase ve-
locity than the kinetic Alfvén wave (Figures 6 and 7b). The spiky electric 
field of TDSs has the signature of broadband spectrum (Figure 7). Using 
the range of TDS wavenumbers in the spectrum, we can estimate the spa-
tial scales of TDSs as 25 − 50λD. Due to the modest spatial bunching of 
trapped electrons, a weak second harmonic of the fundamental kinetic 
Alfvén wave is also generated (Figure 7a).

The excitation of TDSs is a manifestation of beam instabilities driven by 
the kinetic Alfvén wave. The majority of wave energy, however, is de-
posited into thermal electrons through nonlinear Landau resonance. Fig-
ure  8 shows how the final electron distribution has deviated from the 
initial Maxwellian. Around the Landau resonant velocity vA, a region of 
high phase space density moves from v∥ < vA to v∥ > vA and a region of 
low phase space density moves from v∥ > vA to v∥ < vA via nonlinear phase 
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Figure 5. The localized electron velocity distribution function. This 
distribution is obtained by averaging the perturbed electron phase space 
density δfe in Figure 4 between xωpi/c = 9 and xωpi/c = 11. The two vertical 
dashed lines indicate the extent of the separatrix around the trapping 
island, which separates resonant electrons from nonresonant electrons.

Figure 6. The spatiotemporal evolution of the longitudinal electric field 
δEL in Simulation 1. δEL is the projection of total electric field along the k 
direction. The phase and amplitude of δEL is color-coded.
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trapping. This results in a net increase in the kinetic energy of the res-
onant electrons and a consequent damping of the kinetic Alfvén wave. 
Again, the estimated half width of the trapping region using Equation 6, 
Δvtr/vTe = 0.55, is consistent with that shown in Figure 8c.

3.3. Strong Nonlinear Landau Resonant Interaction

In the second simulation, the wave magnetic mirror force is much small-
er than the parallel electric force. The resulting half width of the trap-
ping island is Δvtr/vTe = 1, where we have used Equation 6 with the input 
δBz/B0 = 0.004 (obtained from the simulation) and Fzb/Fze = 0.008 (de-
rived from the linear kinetic theory). For comparison, Δvtr/vTe is about 
0.55 in the first simulation. Thus, we would expect a stronger beam in-
stability and potentially different characteristics of TDSs in the present 
case. Below we emphasize the differences between the first and second 
simulations.

The expectation of a strong beam instability is confirmed by the electron 
phase space plot (Figure  9b). Spatially modulated, prominent electron 
beams are driven by the parallel electric field of the kinetic Alfvén wave 
inside the trapping island (vA − Δvtr < v∥ < vA + Δvtr). Solitary electric field 
structures are generated by these unstable beams. Several phase space 
holes are clearly identified in Figures 9a and 9b. The ratio of the parallel 
electric field amplitude of TDSs to that of the kinetic Alfvén wave is about 
10. The phase space holes propagate at the local beam velocity, which is 
larger than vA (Figures 9b and 11b). As a consequence, the phase space 
holes overtake the phase fronts of the kinetic Alfvén wave (Figure 10). In 
addition, double layers are seen to form in the phase of maximum δE∥, 
where the phase of δE∥ is inferred from δfi using the technique in Sec-
tion 3.2. The beam electrons are slowed down by the double layers and 
accumulate at the high potential sides of the double layers (Figure 9b), 
which eventually leads to the dissipation of double layers (Figure  10). 
Finally, in comparison with the first simulation, more harmonics of the 
kinetic Alfvén wave are generated due to the nonlinear phase trapping of 
electrons (Figures 10 and 11).

Thermal electrons in the present simulation are more strongly heated through nonlinear Landau resonance 
than the first simulation. This produces an elongated electron distribution in the parallel velocity, known as 

the flat-top distribution (Figure 12). Such a distribution has been previ-
ously obtained in coordinated observations and simulations (e.g., Dami-
ano et al., 2018). The velocity range of the flat-top is consistent with the 
Landau resonance range, vA − Δvtr < v∥ < vA + Δvtr. Curiously, weak non-
resonant electron heating is seen next to the Landau resonance at v∥ < 0.

3.4. Critical Condition for TDS Excitation

As seen from the PIC simulations, the free energy source of TDSs is 
the trapped electron beam driven by the kinetic Alfvén wave. However, 
trapped electrons are subject to phase mixing (O'Neil, 1965) and thus the 
beam distribution is destroyed in a few trapping periods. Note that the 
phase mixing here refers to phase mixing of nonlinear Landau resonant 
electrons of different energies. How does the phase mixing rate of trapped 
electrons compare with the growth rate of the beam instability? To ad-
dress this problem, we analyze the controlling factors of this process.
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Figure 7. The Fourier spectra of the longitudinal electric field δEL in 
Simulation 1. (a) The temporal evolution of the wavenumber spectrum 
of δEL. The wavenumber spectrum is obtained by Fourier-transforming 
the spatiotemporal pattern of δEL in space. The wavenumber of the 
fundamental kinetic Alfvén wave is 0.28ωpi/c. The wavenumber of TDS is 
in the range 10–20 ωpi/c. (b) The frequency-wavenumber diagram of δEL. 
The reciprocal of the slope of the dashed line represents the phase velocity 
of the kinetic Alfvén wave. The inset plot zooms in on the fundamental 
kinetic Alfvén wave and its harmonics. We note that the weak signals 
propagating at v = −vA are likely caused by part of the resonant island 
extending to v = −vA as shown in Figure 5.

(a)

(b)

Figure 8. The thermal electron heating in Simulation 1. The density 
distribution in this figure has been averaged over the spatial domain. (a) 
The initial Maxwellian distribution. (b) The distribution at the end of the 
simulation. (c) The difference between the final and initial distribution 
functions. The three dashed lines from left to right stand for v∥ = vA − Δvtr, 
v∥ = vA and v∥ = vA + Δvtr, respectively.

(a) (b) (c)
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perturbed distribution δftr (by trapped electrons) (see Figure 13). The perturbed distribution comprises of a 
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The magnitude of the perturbed distribution, Δf, is determined by
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where even terms in the Taylor series are canceled out and the Hermite 
Polynomial H2n+1 is used for calculating derivatives of the Maxwellian 
distribution (Weber & Arfken, 2003).

The growth rate of the beam instability contributed by the trapped 
electrons can be written as (O'Neil & Malmberg, 1968)
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Figure 9. TDSs and phase space portraits in Simulation 2. This snapshot is taken at 161 cit  . (a) The parallel electric 
field. (b) The perturbed phase space density of electrons. Phase space structures in association with solitary electric 
fields are identified using arrows. Two of the arrows point to double layers at x = 6.0 and 12.5 c/ωpi. Other arrows point 
to phase space holes. (c) The perturbed phase space density of ions. The phase of potential field δϕ is annotated by blue 
text.

(a)

(b)

(c)

Figure 10. The spatiotemporal evolution of the longitudinal electric field 
δEL in Simulation 2. As indicated by the two arrows, phase space holes and 
double layers are embedded in the large scale kinetic Alfvén wave. The 
kinetic Alfvén wavefield is distorted by its higher harmonics.
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where ω/k∥ is the phase velocity of TDSs. The zeroth-order term (n = 0) 
of the beam growth rate does not depend on the wave amplitude δϕ and 
always provides a positive growth rate [ 1( / 2 ) 0A TeH v v  ]. The next 
higher-order term (n = 1) linearly scales with δϕ, the sign of which de-
pends on 3( / 2 )A TeH v v . For the range of interest (i.e., vA < vTe), we have 

3( / 2 ) 0A TeH v v  , which means the beam growth rate decreases with 
the wave amplitude δϕ in the regime of vA < vTe.

In the meantime, TDSs undergo Landau damping caused by f0e and f0i 
(Figure  13). The ratio of electron Landau damping rate to ion Landau 
damping rate is

 (16)

For typical values Te = 300 eV, Ti = 2,000 eV, B0 = 100 nT, n0 = 1 cm−3 
around dipolarization fronts, we have |γLe| ≫ |γLi|. Thus, it suffices to con-
sider only the electron Landau damping rate, i.e.,

 (17)

The phase mixing rate of trapped electrons is characterized by the trapping 
frequency, that is,

 (18)

The signal-to-noise ratio of TDSs can be estimated as ( )Δ mixingttr Lee   , 
where Δtmixing = 1/γmixing. Suppose that TDSs are observable after N e-fold-
ings. The critical condition for TDS excitation may be written as

mixing.tr Le N    (19)

Plugging Equations 15, 17, and 18 into Equation 19, we explicitly obtain
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Figure 12. The thermal electron heating in Simulation 2. The density 
distribution has been averaged over the spatial domain. (a) The initial 
Maxwellian distribution. (b) The final flat-top distribution. (c) The 
difference between the final and initial distribution functions. The 
three dashed lines from left to right stand for v∥ = vA − Δvtr, v∥ = vA and 
v∥ = vA + Δvtr, respectively.
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Figure 11. The Fourier spectra of the longitudinal electric field δEL in 
Simulation 2. (a) The temporal evolution of the wavenumber spectrum of 
δEL. The wavenumber of the fundamental kinetic Alfvén wave is 0.98ωpi/c. 
Higher harmonics of the kinetic Alfvén wave occur consecutively in 
time. TDSs start to be excited in the interval 50 < tωci < 100 and are 
mainly located in the wavenumber range 10–30 ωpi/c. (b) The frequency-
wavenumber diagram of δEL. Notably, the propagation velocity of TDSs 
is greater than that of the kinetic Alfvén wave, whereas the harmonics of 
the kinetic Alfvén wave propagate at the same velocity as the fundamental 
mode. The inset plot zooms in on the fundamental kinetic Alfvén wave 
and its harmonics.

(a)

(b)
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 (20)

The TDS growth rate (left side of Inequality (20)) decreases with δϕ, 
whereas the phase mixing rate (right side of Inequality (20)) increases 
as  . This gives an upper bound of wave amplitude δϕc, beyond which 
the phase mixing rate exceeds the TDS growth rate and thus TDSs can-
not be excited anymore. To find δϕc, we evaluate both sides of Inequality 
(20) as shown in Figure 14a. In this procedure, we parameterize the TDS 
growth rate by vA/vTe. For a given normalized wave amplitude eδϕ/Te, the 

TDS growth rate (γtr + γLe) increases with vA/vTe. For a given vA/vTe, the phase mixing rate exceeds the TDS 
growth rate at the critical amplitude eδϕc/Te. We plot this critical amplitude eδϕc/Te as a function of vA/
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Figure 13. Sketch of distribution functions. The black line represents the 
ion Maxwellian distribution f0i. The electron distribution is separated into 
an equilibrium part (blue; the Maxwellian distribution f0e) and a perturbed 
part (red; δftr in Equation 12). The perturbed part is induced by trapped 
electrons, the scale of which is shown by the vertical axis on the right.

Figure 14. Critical condition for TDS excitation. (a) The comparison between the TDS growth rate and the phase mixing rate. In evaluating the TDS growth 
rate on the left side of Inequality (20), we use the typical TDS parameter k∥λD = 0.1, truncate the power series at n = 4 (the resulting relative truncation error 
is <5 × 10−5), and parameterize the TDS growth rate by vA/vTe. The results are shown in rainbow-colored lines. In evaluating the phase mixing rate on the right 
side of Inequality (20), we take the number of e-folding as N = 7 (i.e., the signal-to-noise ratio is e7 ≃ 103). The result is shown in the black line. For given values 
of vA/vTe and eδϕ/Te, if the phase mixing rate is greater than the TDS growth rate, excitation of TDSs is prohibited due to electron phase mixing. (b) The critical 
potential amplitude of kinetic Alfvén waves to drive TDSs. Beyond the critical potential amplitude δϕc, TDSs cannot be excited through electron trapping by 
kinetic Alfvén waves. The texts “TDS possible” and “TDS not possible” indicate the allowed and prohibited regions, respectively, in the parameter space for 
excitation of TDSs. To have a better comparison with spacecraft observations, the critical potential δϕc is shown in the physical unit “volts” on the y axis on the 
right for a typical electron temperature Te = 300 eV.



Journal of Geophysical Research: Space Physics

vTe in Figure 14b. For example, the critical amplitude is eδϕc/Te = 0.078 
for vA/vTe = 0.25 in Simulation 1, whereas the critical amplitude is eδϕc/
Te = 0.387 for vA/vTe = 0.5 in Simulation 2. Using Equation 2, we cal-
culate the critical half width of the trapping island as Δvtr,c/vTe = 0.56 
for Simulation one and Δvtr,c/vTe = 1.24 for Simulation 2. The measured 
half widths of the trapping island are below these critical values in each 
simulation. Additionally, we have confirmed that the excitation of TDSs 
is prohibited if the wave amplitude is above the critical value δϕc in PIC 
simulations.

4. Conclusions
In this study, we have presented the excitation of TDSs through nonlin-
ear Landau resonant interaction between kinetic Alfvén waves and ther-
mal electrons. First, we show that the parallel electric field of the kinetic 

Alfvén wave is the primary driver of electron phase trapping. Second, we demonstrate that a spatially mod-
ulated beam distribution is formed by phase-trapped electrons and excites TDSs through the beam instabil-
ity. Thermal electrons are heated by the kinetic Alfvén wave in the nonlinear trapping process. Third, we 
demonstrate that the TDS growth rate decreases with the wave potential δϕ whereas the phase mixing rate 
scales with  . A critical condition for TDS excitation is thus derived (Equation 20) and an upper bound 
of δϕ is obtained (Figure 14).

Putting this work in the bigger context regarding the dissipation of the injection energy in the inner mag-
netosphere, a picture of energy cascading emerges as follows (Figure 15): (1) The energy carried by the 
flow and the magnetic field of dipolarization fronts at macroscale is first converted to that of kinetic Alfvén 
waves and whistler waves. (2) These kinetic Alfvén waves and whistler waves then drive TDSs by accelerat-
ing electron beams locally through nonlinear Landau resonance. (3) In the meantime, kinetic Alfvén waves 
and whistler waves, together with TDSs, heat thermal electrons. In this way, energy cascades from dipolar-
ization fronts at the macroscale to TDSs at the microscale, and is eventually deposited to electron thermal 
energy. Such a picture of energy cascading is being actively sought by combining global MHD simulations, 
test particle simulations, and kinetic instability analysis to conquer the vast scale separations between dipo-
larization fronts and TDSs (e.g., Ukhorskiy et al., 2018, 2019).

Appendix A: Linearized Vlasov Equation for the Reduced Particle 
Distribution
We use the linearized Vlasov equation to describe the nonresonant response of the particle distribution. 
This equation reads

0 0( ) ,s s
s

s

q FF
t m c

                     

v B Bv E
x v

 (A1)

where δFs(t, x, v) and F0s(v) are the perturbed and equilibrium parts of the distribution function of spe-
cies s, respectively. We aim to rewrite the linearized Vlasov equation in terms of the reduced distribution 
functions

� � �f dv dv F Fs s s� � � ��� 1 2 , (A2)

f dv dv F Fs s s0 1 2 0 0� � � ��� , (A3)

where v1 and v2 are the two orthogonal velocity components perpendicular to 0 0 3ˆBB x , and the notation 
〈⋅〉 is short for the velocity space integral ∫∫ dv1 dv2. By integrating Equation A1 over v1 and v2, we obtain
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Figure 15. Energy cascading from macroscopic dipolarization fronts 
down to microscopic TDSs. In characterizing the spatial scales of different 
objects, we use the following typical parameters around dipolarization 
fronts: the background magnetic field 50–150 nT; plasma density 
0.1–1 cm−3; ion temperature 1,000–2,000 eV; electron temperature 300 eV. 
“KAWs” is the acronym for kinetic Alfvén waves.
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Here, the term with ∂/∂v1 has been integrated to zero, because the acceleration in front of ∂/∂v1 is irrele-
vant to v1 and thus we can directly perform the integration ∫ dv1 ∂F0s/∂v1 = 0. The same technique has also 
been applied to the term with ∂/∂v2. By using the property that F0s is a Maxwellian, we have 〈v1F0s〉 = 0 and 
〈v2F0s〉 = 0. Furthermore, δFs is a function of 2 2

1 2v v  but not a function of the gyro-phase. The reason is 
that the cyclotron resonant velocity is much larger than the electron/ion thermal velocity in this case and 
virtually no particles are in cyclotron resonance with the kinetic Alfvén wave. This leads to 〈v1δFs〉 = 0 and 
〈v2δFs〉 = 0. With the above considerations, Equation A4 can be simplified as

3 0
3

3 3
.s s

s
s

q E fv f
t x m v


   

      
 (A5)

This is the linearized Vlasov equation for the reduced particle distribution.

Data Availability Statement
The simulation data have been archived on Zenodo https://doi.org/10.5281/zenodo.4005006.

References
Agapitov, O., Drake, J., Vasko, I., Mozer, F., Artemyev, A., Krasnoselskikh, V., et al. (2018). Nonlinear electrostatic steepening of whis-

tler waves: The guiding factors and dynamics in inhomogeneous systems. Geophysical Research Letters, 45, 2168–2176. https://doi.
org/10.1002/2017GL076957

An, X., Li, J., Bortnik, J., Decyk, V., Kletzing, C., & Hospodarsky, G. (2019). Unified view of nonlinear wave structures associated with 
whistler-mode chorus. Physical Review Letters, 122(4), 045101.

Anderegg, F., Driscoll, C. F., Dubin, D. H., O'Neil, T. M., & Valentini, F. (2009). Electron acoustic waves in pure ion plasmas. Physics of 
Plasmas, 16(5), 055705.

Artemyev, A., Agapitov, O., Mozer, F., & Krasnoselskikh, V. (2014). Thermal electron acceleration by localized bursts of electric field in the 
radiation belts. Geophysical Research Letters, 41, 5734–5739. https://doi.org/10.1002/2014GL061248

Artemyev, A., Rankin, R., & Blanco, M. (2015). Electron trapping and acceleration by kinetic Alfvén waves in the inner magnetosphere. 
Journal of Geophysical Research: Space Physics, 120, 10305–10316. https://doi.org/10.1002/2015JA021781

Artemyev, A., Rankin, R., & Vasko, I. (2017). Nonlinear Landau resonance with localized wave pulses. Journal of Geophysical Research: 
Space Physics, 122, 5519–5527. https://doi.org/10.1002/2017JA024081

Chaston, C., Bonnell, J., Clausen, L., & Angelopoulos, V. (2012). Energy transport by kinetic-scale electromagnetic waves in fast plasma 
sheet flows. Journal of Geophysical Research, 117, A09202. https://doi.org/10.1029/2012JA017863

Chaston, C., Bonnell, J., Kletzing, C., Hospodarsky, G., Wygant, J., & Smith, C. (2015). Broadband low-frequency electromagnetic waves 
in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 120, 8603–8615. https://doi.org/10.1002/2015JA021690

Chaston, C. C., Bonnell, J. W., Wygant, J. R., Mozer, F., Bale, S. D., Kersten, K., et al. (2014). Observations of kinetic scale field line reso-
nances. Geophysical Research Letters, 41, 209–215. https://doi.org/10.1002/2013GL058507

Damiano, P., Chaston, C., Hull, A., & Johnson, J. R. (2018). Electron distributions in kinetic scale field line resonances: A comparison of 
simulations and observations. Geophysical Research Letters, 45, 5826–5835. https://doi.org/10.1029/2018GL077748

Damiano, P., Johnson, J., & Chaston, C. (2015). Ion temperature effects on magnetotail Alfvén wave propagation and electron energization. 
Journal of Geophysical Research: Space Physics, 120, 5623–5632. https://doi.org/10.1002/2015JA021074

Damiano, P., Johnson, J. R., & Chaston, C. (2016). Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field 
lines. Journal of Geophysical Research: Space Physics, 121, 10831–10844. https://doi.org/10.1002/2016JA022566

Ergun, R., Goodrich, K., Stawarz, J., Andersson, L., & Angelopoulos, V. (2015). Large-amplitude electric fields associated with 
bursty bulk flow braking in the earth's plasma sheet. Journal of Geophysical Research: Space Physics, 120, 1832–1844. https://doi.
org/10.1002/2014JA020165

Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., et al. (2002). OSIRIS: A three-dimensional, fully relativistic particle 
in cell code for modeling plasma based accelerators. In International conference on computational science (pp. 342–351).

Gary, S. P. (1986). Low-frequency waves in a high-beta collisionless plasma: Polarization, compressibility and helicity. Journal of Plasma 
Physics, 35(3), 431–447.

Gary, S. P. (1993). Theory of space plasma microinstabilities (No. 7). Cambridge, UK: Cambridge University Press.
Gary, S. P., & Nishimura, K. (2004). Kinetic Alfvén waves: Linear theory and a particle-in-cell simulation. Journal of Geophysical Research, 

109, A02109. https://doi.org/10.1029/2003JA010239
Génot, V., Louarn, P., & Mottez, F. (2004). Alfvén wave interaction with inhomogeneous plasmas: Acceleration and energy cascade toward 

small-scales. Annales Geophysicae, 22, 2081–2096.

AN ET AL.

10.1029/2020JA028643

15 of 16

Acknowledgments
This research was supported by the 
NASA Grants NO. NNX16AG21G, NO. 
80NSSC18K1227 and NO. 80NSS-
C20K0917. We thank G. J. Morales for 
insightful discussions. We also thank 
V. Angelopoulos for explaining the 
distinction between the nomenclatures 
“dipolarization fronts” and “injection 
fronts.” We would like to acknowl-
edge high-performance computing 
support from Cheyenne (https://doi.
org/10.5065/D6RX99HX) provided by 
NCAR's Computational and Informa-
tion Systems Laboratory, sponsored by 
the National Science Foundation. We 
would also like to acknowledge the OSI-
RIS Consortium, consisting of UCLA 
and IST (Lisbon, Portugal) for the use of 
OSIRIS and for providing access to the 
OSIRIS 4.0 framework.

https://doi.org/10.5281/zenodo.4005006
https://doi.org/10.1002/2017GL076957
https://doi.org/10.1002/2017GL076957
https://doi.org/10.1002/2014GL061248
https://doi.org/10.1002/2015JA021781
https://doi.org/10.1002/2017JA024081
https://doi.org/10.1029/2012JA017863
https://doi.org/10.1002/2015JA021690
https://doi.org/10.1002/2013GL058507
https://doi.org/10.1029/2018GL077748
https://doi.org/10.1002/2015JA021074
https://doi.org/10.1002/2016JA022566
https://doi.org/10.1002/2014JA020165
https://doi.org/10.1002/2014JA020165
https://doi.org/10.1029/2003JA010239


Journal of Geophysical Research: Space Physics

Goertz, C., & Boswell, R. (1979). Magnetosphere-ionosphere coupling. Journal of Geophysical Research, 84(A12), 7239–7246.
Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. Journal of Geophysical Research, 81(28), 

5083–5090.
Hemker, R. G. (2015). Particle-in-cell modeling of plasma-based accelerators in two and three dimensions. arXiv:1503.00276.
Holloway, J. P., & Dorning, J. (1991). Undamped plasma waves. Physical Review A, 44(6), 3856.
Horne, R. B. (1989). Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. Journal of Geophys-

ical Research, 94(A7), 8895–8909.
Ichimaru, S. (2018). Basic principles of plasma physics: A statistical approach. CRC Press.
Li, J., Bortnik, J., An, X., Li, W., Thorne, R. M., Zhou, M., et al. (2017). Chorus wave modulation of Langmuir waves in the radiation belts. 

Geophysical Research Letters, 44, 11713–11721. https://doi.org/10.1002/2017GL075877
Lysak, R. L., & Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. Journal of Geophysical Research, 101(A3), 

5085–5094.
Malaspina, D. M., Andersson, L., Ergun, R. E., Wygant, J. R., Bonnell, J., Kletzing, C., et al. (2014). Nonlinear electric field structures in the 

inner magnetosphere. Geophysical Research Letters, 41, 5693–5701. https://doi.org/10.1002/2014GL061109
Malaspina, D. M., Ukhorskiy, A., Chu, X., & Wygant, J. (2018). A census of plasma waves and structures associated with an injection front 

in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 123, 2566–2587. https://doi.org/10.1002/2017JA025005
Malaspina, D. M., Wygant, J. R., Ergun, R. E., Reeves, G. D., Skoug, R. M., & Larsen, B. A. (2015). Electric field structures and waves 

at plasma boundaries in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 120, 4246–4263. https://doi.
org/10.1002/2015JA021137

Mozer, F., Agapitov, O., Artemyev, A., Drake, J., Krasnoselskikh, V., Lejosne, S., & Vasko, I. (2015). Time domain structures: What and where 
they are, what they do, and how they are made. Geophysical Research Letters, 42, 3627–3638. https://doi.org/10.1002/2015GL063946

O'Neil, T. (1965). Collisionless damping of nonlinear plasma oscillations. The Physics of Fluids, 8(12), 2255–2262.
O'Neil, T., & Malmberg, J. (1968). Transition of the dispersion roots from beam-type to landau-type solutions. The Physics of Fluids, 11(8), 

1754–1760.
Osmane, A., & Pulkkinen, T. I. (2014). On the threshold energization of radiation belt electrons by double layers. Journal of Geophysical 

Research: Space Physics, 119, 8243–8248. https://doi.org/10.1002/2014JA020236
Quon, B., & Wong, A. (1976). Formation of potential double layers in plasmas. Physical Review Letters, 37(21), 1393.
Reinleitner, L. A., Gurnett, D. A., & Gallagher, D. L. (1982). Chorus-related electrostatic bursts in the Earth's outer magnetosphere. Nature, 

295(5844), 46.
Schamel, H. (1979). Theory of electron holes. Physica Scripta, 20(3–4), 336.
Silberstein, M., & Otani, N. (1994). Computer simulation of Alfvén waves and double layers along auroral magnetic field lines. Journal of 

Geophysical Research, 99(A4), 6351–6365.
Stawarz, J., Ergun, R., & Goodrich, K. (2015). Generation of high-frequency electric field activity by turbulence in the earth's magnetotail. 

Journal of Geophysical Research: Space Physics, 120, 1845–1866. https://doi.org/10.1002/2014JA020166
Stix, T. H. (1992). Waves in plasmas. Springer Science & Business Media.
Swanson, D. G. (2012). Plasma waves. Elsevier.
Ukhorskiy, A., Sorathia, K., Merkin, V., Crabtree, C., Fletcher, A., & Malaspina, D. (2019). Kinetic properties of mesoscale plasma injec-

tions. In 2019 international conference on electromagnetics in advanced applications (ICEAA), Granada, Spain (pp. 1350–1350).
Ukhorskiy, A. Y., Sorathia, K., Merkin, V. G., Crabtree, C. E., Fletcher, A., & Malaspina, D. (2018). Microscopic properties of mesoscale 

plasma injections. AGU fall meeting 2018.
Valentini, F., O'Neil, T. M., & Dubin, D. H. (2006). Excitation of nonlinear electron acoustic waves. Physics of Plasmas, 13(5), 052303.
Vasko, I., Agapitov, O., Mozer, F., Artemyev, A., Drake, J., & Kuzichev, I. (2017a). Electron holes in the outer radiation belt: Characteristics and 

their role in electron energization. Journal of Geophysical Research: Space Physics, 122, 120–135. https://doi.org/10.1002/2016JA023083
Vasko, I., Agapitov, O., Mozer, F., Artemyev, A., Krasnoselskikh, V., & Bonnell, J. (2017b). Diffusive scattering of electrons by electron 

holes around injection fronts. Journal of Geophysical Research: Space Physics, 122, 3163–3182. https://doi.org/10.1002/2016JA023337
Vasko, I., Agapitov, O., Mozer, F., Bonnell, J., Artemyev, A., Krasnoselskikh, V., et al. (2017c). Electron-acoustic solitons and double layers 

in the inner magnetosphere. Geophysical Research Letters, 44, 4575–4583. https://doi.org/10.1002/2017GL074026
Vasko, I. Y., Agapitov, O. V., Mozer, F. S., Bonnell, J. W., Artemyev, A. V., Krasnoselskikh, V. V., & Tong, Y. (2018). Electrostatic steepening 

of whistler waves. Physical Review Letters, 120(19), 195101.
Walsh, B. M., Hull, A., Agapitov, O., Mozer, F. S., & Li, H. (2020). A census of magnetospheric electrons from several eV to 30 keV. Journal 

of Geophysical Research: Space Physics, 125, e2019JA027577. https://doi.org/10.1029/2019JA027577
Weber, H. J., & Arfken, G. B. (2003). Essential mathematical methods for physicists. ISE Elsevier.

AN ET AL.

10.1029/2020JA028643

16 of 16

https://doi.org/10.1002/2017GL075877
https://doi.org/10.1002/2014GL061109
https://doi.org/10.1002/2017JA025005
https://doi.org/10.1002/2015JA021137
https://doi.org/10.1002/2015JA021137
https://doi.org/10.1002/2015GL063946
https://doi.org/10.1002/2014JA020236
https://doi.org/10.1002/2014JA020166
https://doi.org/10.1002/2016JA023083
https://doi.org/10.1002/2016JA023337
https://doi.org/10.1002/2017GL074026
https://doi.org/10.1029/2019JA027577

	Nonlinear Landau Resonant Interaction Between Kinetic Alfvén Waves and Thermal Electrons: Excitation of Time Domain Structures
	Abstract
	1. Introduction
	2. Linear Dispersion Relation of Kinetic Alfvén Waves
	3. TDS Excitation by Electron Phase Trapping
	3.1. Computational Setup
	3.2. Weak Nonlinear Landau Resonant Interaction
	3.3. Strong Nonlinear Landau Resonant Interaction
	3.4. Critical Condition for TDS Excitation

	4. Conclusions
	Appendix A: Linearized Vlasov Equation for the Reduced Particle Distribution
	Data Availability Statement
	References


