Mathematical Programming
https://doi.org/10.1007/s10107-022-01842-3

FULL LENGTH PAPER

Series B ")

Check for
updates

Fixed parameter approximation scheme for min-max k-cut

Karthekeyan Chandrasekaran' - Weihang Wang'

Received: 27 May 2021 / Accepted: 30 May 2022
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract

We consider the graph k-partitioning problem under the min-max objective, termed as
MINMAX k-CUT. The input here is a graph G = (V, E) with non-negative integral edge
weights w : E — Z and an integer k > 2 and the goal is to partition the vertices into
k non-empty parts Vi, ..., Vx so as to minimize maxle w(§(V;)). Although mini-
mizing the sum objective Zle w(8(V;)), termed as MINSUM k-CUT, has been studied
extensively in the literature, very little is known about minimizing the max objective.
We initiate the study of MINMAX k-CUT by showing that it is NP-hard and W[1]-hard
when parameterized by k, and design a parameterized approximation scheme when
parameterized by k. The main ingredient of our parameterized approximation scheme
is an exact algorithm for MINMAX k-CUT that runs in time (Ak)o(kz)no(l) +0O(m), where
A is value of the optimum, # is the number of vertices, and m is the number of edges.
Our algorithmic technique builds on the technique of Lokshtanov, Saurabh, and Suri-
anarayanan (FOCS, 2020) who showed a similar result for MINSUM k-CUT. Our algo-
rithmic techniques are more general and can be used to obtain parameterized approxi-
mation schemes for minimizing £ ,-norm measures of k-partitioning for every p > 1.

Keywords k-cut - Min-max objective - Parameterized approximation scheme

Mathematics Subject Classification 05C85 - 68W25

An extended abstract of this work appeared in the 22nd conference on Integer Programming and
Combinatorial Optimization (IPCO 2021).

B Weihang Wang
weihang3 @illinois.edu

Karthekeyan Chandrasekaran
karthe @illinois.edu

University of Illinois Urbana-Champaign, Champaign, USA

Published online: 16 June 2022 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01842-3&domain=pdf
http://orcid.org/0000-0002-0628-5532

K. Chandrasekaran, W. Wang

1 Introduction

Graph partitioning problems are fundamental for their intrinsic theoretical value as
well as applications in clustering. In this work, we consider graph partitioning under
the minmax objective. The input here is a graph G = (V, E) with non-negative
integral edge weights w : E — Z. along with an integer k > 2 and the goal is to
partition the vertices of G into k non-empty parts Vi, V2, ..., Vi so as to minimize
maxf‘:1 w(§(V;)); here, 6(V;) is the set of edges which have exactly one end-vertex in
Viand w(s(V;)) = ZeES(V,-) w(e) is the total weight of the edges in 6(V;). We refer
to this problem as MINMAX k-CUT.

Motivations. Minmax objective for optimization problems has an extensive literature
in approximation algorithms. It is relevant in scenarios where the goal is to achieve
fairness/balance—e.g., load balancing in multiprocessor scheduling, discrepancy min-
imization, min-degree spanning tree, etc. In the context of graph cuts and partitioning,
recent works (e.g., see [1, 5, 17]) have proposed and studied alternative minmax objec-
tives that are different from MINMAX k-CUT.

The complexity of MINMAX k-CUT was also raised as an open problem by Lawler
[21]. Given a partition V7, ..., Vi of the vertex set of an input graph, one can mea-
sure the quality of the partition in various natural ways. Two natural measures are
(i) the max objective given by maxf‘:l w(S(V;)) and (ii) the sum objective given by
Zle w(8(V;)). We will discuss other £,-norm measures later. Once a measure is
defined, a corresponding optimization problem involves finding a partition that min-
imizes the measure. We will denote the optimization problem where the goal is to
minimize the sum objective as MINSUM k-CUT.

MINSUM k-CUT and prior works. For k = 2, the objectives in MINMAX k-CUT and
MINSUM k-CUT coincide owing to the symmetric nature of the graph cut function (i.e.,
w((S)) = w(s(V\S)) forall § € V) but the objectives differ for k > 3. MINSUM k-
CUT has been studied extensively in the algorithms community leading to fundamental
graph structural results. We briefly recall the literature on MINSUM k-CUT.
Goldschmidt and Hochbaum [11, 12] showed that MINSUM k-CUT is NP-hard when
k is part of input by a reduction from CLIQUE and designed the first polynomial time
algorithm for fixed k. Their algorithm runs in time no(kz) where 7 is the number
of vertices in the input graph. Subsequently, Karger and Stein [19] gave a random
contraction based algorithm that runs in time O(n%~2). Thorup [30] gave a tree-
packing based deterministic algorithm that runs in time O (n2¥). The last couple of
years has seen renewed interests in MINSUM k-CUT with exciting progress [6, 8, 13—
16, 22, 24]. Very recently, Gupta, Harris, Lee, and Li [13, 16] have shown that the
Karger-Stein algorithm in fact runs in O (n*) time; n! =¥ seems to be a lower
bound on the run-time of any algorithm [22]. The hardness result of Goldschmidt and
Hochbaum as well as their algorithm inspired Saran and Vazirani [27] to consider
MINSUM k-CUT when £ is part of input from the perspective of approximation. They
showed the first polynomial-time 2-approximation for MINSUM k-CUT. Alternative
2-approximations have also been designed subsequently [25, 26, 31]. For k being a
part of the input, Manurangsi [24] showed that there does not exist a polynomial-
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time (2 — €)-approximation for any constant € > 0 under the Small Set Expansion
Hypothesis.

MINSUM k-CUT has also been investigated from the perspective of fixed-parameter
algorithms. It is known that MINSUM k-CUT when parameterized by & is W[1]-hard and
does not admit a f (k)n°1-time algorithm for any function f (k) [7, 10]. Motivated by
this hardness result and Manurangsi’s (2 — €)-inapproximability result, Gupta, Lee,
and Li [14] raised the question of whether there exists a parameterized approximation
algorithm for MINSUM k-CUT when parameterized by k, i.e., can one obtain a (2 — €)-
approximation in time f (k)n°®! for some constant € > 0? As a proof of concept, they
designed a 1.9997-approximation algorithm that runs in time 20¢“,0( [14] and a
(14-¢)-approximation algorithm that runs in time (k /€)°® n*+O() [15]. Subsequently,
Kawarabayashi and Lin [20] designed a (5/3 + €)-approximation algorithm that runs
in time 201026 ,0() This line of work culminated in a parameterized approxi-
mation scheme when parameterized by k—Lokshtanov, Saurabh, and Surianarayanan
[23] designed a (1 + €)-approximation algorithm that runs in time (k/€)°®n% We
emphasize that, from the perspective of algorithm design, a parameterized approxi-
mation scheme is more powerful than a parameterized approximation algorithm.

Fixed-terminal variants. A natural approach to solve both MINMAX k-CUT and MIN-
SUM k-CUT is to solve their fixed-terminal variants: The input here is a graph
G = (V, E) with non-negative integral edge costs w : E — Z, along with k termi-
nals vy, ..., vx € V and the goal is to partition the vertices into k parts V1, ..., Vi such
thatv; € V; foreveryi € [k] so as to minimize the measure of interest for the partition.
The fixed-terminal variant of MINSUM k-CUT, popularly known as MULTIWAY CUT, is
NP-hard for k£ > 3 [9] and has a rich literature. It admits a 1.2965-approximation [28]
and does not admit a (1.20016 — €)-approximation for any constant € > 0 under the
unique games conjecture [3]. The fixed-terminal variant of MINMAX k-CUT, known as
MINMAX MULTIWAY CUT, is NP-hard for k > 4 [29] and admits an O(y/Tog n log k)-
approximation [2]. Although fixed-terminal variants are natural approaches to solve
global cut problems (similar to using min {s, }-cut to solve global min-cut), they have
two limitations: (1) they are not helpful when £ is part of input and (2) even for fixed &,
they do not give the best algorithms (e.g., even for k = 3, MULTIWAY CUT is NP-hard
while MINSUM k-CUT is solvable in polynomial time as discussed above).

MINMAX k-CUT vs MINSUM k-CUT. There are fundamental structural differences
between MINMAX k-CUT and MINSUM k-CUT. The optimal solution to MINSUM k-
CUT satisfies certain nice properties: (i) If the input graph is connected, then every
part in an optimal partition for MINSUM k-CUT induces a connected subgraph. (ii) If
the input graph is disconnected, then there exists an optiumal partition for MINSUM
k-CUT such that every part in is completely contained within a connected component.
Hence, MINSUM -CUT is also phrased as the problem of deleting a subset of edges
with minimum weight so that the resulting graph contains at least k connected com-
ponents. However, these nice properties fail to hold for MINMAX k-CUT as illustrated
by examples in Figs. 1 and 2.
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Fig.1 Anexample where the unique optimum partition for MINMAX k-CUT for k = 5 induces a disconnected
part. The edge weights are as shown. Every 5-partition in this example necessarily consists of one part with
2 vertices and four singleton parts. If the part with 2 vertices is {u, u2}, then the objective value is 8. If
the part with 2 vertices is {u;, vj} where i € [2] and j € [4], then the objective value is 10. If the part
with 2 vertices is {v;, v} where i, j € [4], then the objective value is 12. Hence the optimum partition for
minmax S-cutis ({u1, ua}, {v1}, {v2}, {v3}, {v4}), where the first part induces a disconnected subgraph

vy vy

5

5

Fig. 2 An example of a disconnected graph where the unique optimum partition for MINMAX k-CUT for
k = 7 has a part that intersects two connected components. The edge weights are as shown. The unique
optimum k-partition for k = 7 is ({vy, vs}, {va}, {v3}, {va}, {ve}, {v7}, {vg}), where the first part intersects
two different components components

MINMAX k-CUT for fixed k. For fixed k, there is an easy approach to solve MINMAX
k-CUT based on the following observation: For a given instance, an optimum solution
to MINMAX k-CUT is a k-approximate optimum to MINSUM k-CUT. ! The randomized
algorithm of Karger and Stein implies that the number of k-approximate solutions to
MINSUM k-CUT is n°*?) and they can all be enumerated in polynomial time [13, 16, 19]
(also see [6]). These two facts immediately imply that MINMAX k-CUT can be solved
in n°*?) time. We recall that the graph cut function is symmetric and submodular. In
arecent work, Chandrasekaran and Chekuri [4] show that the more general problem of

Lf (V1, ..., Vi) is an optimum k-partition for MINMAX k-CUT with optimum value OPT};;;, and OPTj;¢
is the optimum value for MINSUM k-CUT, then we have that Zi'{:l w(8(V;)) < kOPTym < kOPT 5.

2 A function f : 2¥ — R is symmetric if £(S) = f(V \ S) forall § € V and is submodular if
fA)+ f(B)= f(ANB)+ f(AUB).
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min-max symmetric submodular k-partition? is also solvable in time n®*)) T, where
n is the size of the ground set and T is the time to evaluate the input submodular
function on a given set.

1.1 Results

In this work, we focus on MINMAX k-CUT when £ is part of input. We first show that
MINMAX k-CUT is strongly NP-hard. Our reduction also implies that it is W[1]-hard
when parameterized by k, i.e., there does not exist a f (k)n®D-time algorithm for any
function f (k).

Theorem 1 MINMAX k-CUT is strongly NP-hard and W[ 1 J-hard when parameterized
by k.

Our hardness reduction also implies that MINMAX k-CUT does not admit an algo-
rithm that runs in time n°®) assuming the exponential time hypothesis. Given the
hardness result, it is natural to consider approximations and fixed-parameter tractabil-
ity. Using the known 2-approximation for MINSUM k-CUT and the observation that the
optimum value of MINSUM k-CUT is at most k times the optimum value of MINMAX
k-CUT, it is easy to get a (2k)-approximation for MINMAX k-CUT. An interesting open
question is whether we can improve the approximability/inapproximability.

The hardness results also raise the question of whether MINMAX k-CUT admits a
parameterized approximation algorithm when parameterized by k or, going a step
further, does it admit a parameterized approximation scheme when parameterized by
k? We resolve this question affirmatively by designing a parameterized approximation
scheme. Let G = (V, E) be a graph with non-negative integral edge weights w :
E — Z4. We write G, to denote the graph with edge weights w. For a partition
V1, ..., Vi) of V, we define

costg, (V1. ..., Vi) := max{w(8(V;)) : i € [K]}.

We will denote the minimum cost of a k-partition in G,, by OPT(G, k). We will
call an instance to be weighted if G has no parallel edges (with edge weights being
arbitrary) and an instance to be unweighted if all edge weights are unit and the graph
G possibly has parallel edges. The following is our algorithmic result showing that
MINMAX k-CUT admits a parameterized approximation scheme when parameterized
by k.

Theorem 2 There exists a randomized algorithm that takes as input a weighted
instance of MINMAX k-CUT, namely an n-vertex simple graph G = (V, E) with
edge weights w : E — 7 and an integer k > 2, along with an € € (0, 1), and runs
in time (k/e)o(kz)no(l) log2(ZeeE w(e)) to return a partition P of the vertices of G
such that costg,, (P) < (1 4+ €)OPT(G,, k) with high probability.

3 In the min-max symmetric submodular k-partition problem, the input is a symmetric submodular function
f: 2V 5 R given by an evaluation oracle, and the goal is to partition the ground set V into k non-empty
parts Vq, ..., Vi so as to minimize ma\x;‘:l f(V).
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We note that log(} ", w(e)) is polynomial in the size of the input. Throughout,
high probability refers to 1 — o(1/n). Theorem 2 can be viewed as the counterpart
of the parameterized approximation scheme for MINSUM k-CUT due to Lokshtanov,
Saurabh, and Surianarayanan [23] but for MINMAX k-CUT. The central component
of our parameterized-approximation scheme given in Theorem 2 is the following
result which shows a fixed-parameter algorithm for MINMAX k-CUT in unweighted
instances when parameterized by k and the solution size. For an unweighted graph G =
(V, E), we define the cost of a partition (Vq, ..., Vx) of V as costg(Vi, ..., Vi) :=
max{[§(Vi)| : i € [k]}.

Theorem 3 There exists an algorithm that takes as input an unweighted instance G =
(V, E) of MINMAX k-CUT, namely an n-vertex m-edge graph G = (V, E) and an
integer k > 2, along with an integer A and runs in time (kk)o(kz)no(l) + O(km) to
determine if there exists a k-partition (V1, ..., Vi) of V such that costg (V1, ..., Vi) <
A and if so, returns an optimum partition for MINMAX k-CUT on G.

We emphasize that the algorithm in Theorem 3 is deterministic.

1.2 Outline of techniques

Our NP-hardness and W[1]-hardness results for MINMAX k-CUT are based on a reduc-
tion from the clique problem. Our reduction is an adaptation of the reduction from the
clique problem to MINSUM k-CUT due to Downey et al [10].

Our randomized algorithm for Theorem 2 essentially reduces the input weighted
instance of MINMAX k-CUT to an instance where Theorem 3 can be applied: we reduce
the instance to an unweighted instance with optimum value O(k/€3)logn, i.e., the
optimum value is logarithmic in the number of vertices, and with (n/€)°() edges.
Moreover, the reduction runs in time (n/€)°") logz(ze < We). Applying Theorem 3
to the reduced instance yields a run-time of

((5)mee) o=
(
(

Hence, the total run-time (including the reduction time) is (k/ e)o(kz)no(l) log?
Q. cE We), thereby proving Theorem 2.

We now briefly describe the reduction to an unweighted instance with logarith-
mic optimum: (i) Firstly, we do a standard knapsack PTAS-style rounding procedure
to convert the instance to an unweighted instance with a (1 + €)-factor loss (see
Lemma 15). (ii) Secondly, we delete cuts with small value to ensure that all connected
components in the graph have large min-cut value, i.e., have min-cut value at least

m | =

O(k?) s
) (log n)o(k )0

m | =

O(k?)
) (KO®) 4 ynOD

0(k?)
) 7O,

m | =
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€ OPT /k—this deletion procedure can remove at most e OPT edges and hence, a (1+-€)-
approximate solution in the resulting graph gives a (1 + O(¢))-approximate solution
in the original graph. (iii) Finally, we do a random sampling of edges with probability
p := O(klogn/(e3OPT)). This gives a subgraph that preserves all cut values within
a (1 % e)-factor when scaled by p with high probability. The preservation of all cut
values also implies that the optimum value to MINMAX k-CUT is also preserved within
a (1 &£ e)-factor. The scaling factor of p allows us to conclude that the optimum in the
subsampled graph is O((k/€>)) logn. We note that this three step reduction follows
the same ideas as that of [23] who designed a parameterized approximation scheme
for MINSUM k-CUT. Our contribution to the reduction is simply showing that their
reduction ideas also apply to MINMAX k-CUT (see Sect. 4 for details).

The main contribution of our work is in proving Theorem 3, i.e., giving a fixed-
parameter algorithm for MINMAX k-CUT when parameterized by k and the solution size.
We discuss this now. Our algorithm is designed for the case of connected graphs; we
handle a disconnected graph by replacing every edge with multiple copies and using
additional edges to make the graph connected—this does not change the optimum
(see proof of Theorem 3). At a high-level, we exploit the tools developed by [23]
who designed a dynamic program based fixed-parameter algorithm for MINSUM k-
CUT when parameterized by k and the solution size. Our algorithm for MINMAX k-CUT
is also based on a dynamic program. However, since we are interested in MINMAX
k-CUT, the subproblems in our dynamic program are completely different from that
of [23]. We begin with the observation that an optimum solution to MINMAX k-CUT is
a k-approximate optimum to MINSUM k-CUT. Chekuri, Quanrud, and Xu [6] showed
that given a graph G, there exists a polynomial-time algorithm to find a polynomial-
sized family of spanning trees such that for any k-partition /7 that is an o-approximate
partition for MINSUMK—CUT, there exists a spanning tree 7 in the family such that
the number of edges of T crossing I7 is at most O(ak). This result coupled with the
observation that an optimum solution to MINMAX k-CUT is a k-approximate optimum
to MINSUM k-CUT allows us to obtain, in polynomial time, a polynomial-sized family
of spanning trees such that the number of edges of one of the spanning trees 7 in the
family has O(k?) edges crossing an optimum k-partition to MINMAX k-CUT optimum.
Let us fix such a spanning tree T (our algorithm would iterate over all spanning trees in
the returned family). We will call a partition /T with O(k?) edges of the spanning tree
T crossing IT to be a T-feasible partition. Next, we use the tools of [23] to generate,
in polynomial time, a suitable tree decomposition of the input graph—Iet us call this a
good tree decomposition. The central intuition underlying our algorithm is to use the
spanning tree T to guide a dynamic program on the good tree decomposition.

As mentioned before, our dynamic program is different from that of [23]. We now
sketch the details of our dynamic program. For simplicity, we assume that we have
a value . > OPT(G, k). The adhesion of a tree node ¢ in a tree decomposition,
denoted Ay, is the intersection of the bag corresponding to ¢ with that of its parent (the
adhesion of the root node of the tree decomposition is the empty set). The good tree
decomposition that we generate has low adhesion, i.e., the adhesion size is O(Ak) for
every tree node. In order to define our sub-problems for a tree node ¢, we consider the
set F41 of all possible partitions P4, of the adhesion A; containing at most k parts such
that P4, can be extended into a partition of the entire vertex set that is 7 -feasible. A
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simple counting argument shows that | F4, | = (Ak)o(kz) (see Lemma 4). Now consider
aBoolean function f; : FA4 x {0, 1, ..., A} x {0, 1, ..., 2k%} — {0, 1}. We note that
the domain of the function is small, i.e., (kk)o(kz). Let (Py,, x, d) denote an argument
to the function. The function aims to determine if there exists a partition P of the union
of the bags descending from ¢ in the tree decomposition (call this set of vertices to be
V;) so that (i) the projection of the partition P to A; is exactly Pa,, (ii) the number of
edges with exactly one end-vertex in the i part of P in the subgraph G[V;] is exactly
x; forall i € [k], and (iii) the number of tree edges crossing the partition P is at most
d. If we can compute such a function f; for the root node r of the tree decomposition,
then it records the cut values of all partitions satisfying the three conditions with at
most k parts and can be used to find the optimum value of MINMAX k-CUT, namely
OPT(G, k).

However, we are unable to solve the sub-problem (i.e., compute such a function
f¢) based on the sub-problem values of the children of . We observe that instead of
solving this sub-problem exactly, a weaker goal of finding a function that satisfies a
certain f-correctand f-sound properties suffices (see Definition 8§ for these properties
and Proposition 1). We show that this weaker goal of computing an f-correct and f-
sound function f; based on f-correct and f-sound functions f;s for all children " of
t can be achieved in time ()Lk)o(kz)no“) + O(m) (see Lemma 5). Since the domain of
the function is of size (Ak)o(kz) and the tree decomposition is polynomial in the size
of the input, the total number of sub-problems that we solve in the dynamic program
is (Ak)o(kz)no(l) (with O(m) preprocessing time), thus proving Theorem 4.

In order to achieve the weaker goal of computing a function f; for the tree node ¢
that is f-correct and f-sound, we progressively define sub-problems and note that it
suffices to achieve a weaker goal for all these sub-problems. Consequently, our goal
reduces to computing Boolean functions that satisfy certain weaker properties. We
encourage the reader to trace towards the base case of the dynamic program during
the first read of the dynamic program.

One of the advantages of our dynamic program (in contrast to that of [23]) is that itis
also applicable for alternative norm-based measures of k-partitions: here, the goal is to
find a k-partition of the vertex set of the given edge-weighted graph so as to minimize
(Zle w(8(V;))P)V/P—we call this as MIN £,-NORM k-CUT. We note that MINMAX
k-CUT is exactly MIN £5,-NORM k-CUT while MINSUM k-CUT is exactly MIN £|-NORM
k-CUT. Our dynamic program can also be used to obtain the counterpart of Theorem 3
for MIN £,-NORM  k-CUT in connected graphs for every p > 1. For disconnected
graphs, we can get a (1 +¢€)-approximation in time (Ak/ e)o(kz)no(l) by using the same
ideas as in the Proof of Theorem 3 from Theorem 4 but by replacing every edge with
[k/€] copies. These results in conjunction with the reduction to unweighted instances
(which can be shown to hold for MIN £,-NORM k-CUT) also leads to a parameterized
approximation scheme for MIN £,,-NORM k-CUT for every p > 1in connected graphs.

Organization. We set up the tools to prove Theorem 4 in Sect. 2. We prove Theorem 3
in Sect. 3. We show a reduction from weighted instances to unweighted instances
with logarithmic optimum value in Sect. 4. We use Theorem 4 and the reduction to
unweighted instances with logarithmic optimum value to prove Theorem 2 in Sect. 5.

@ Springer



Fixed parameter approximation scheme...

We prove the hardness results mentioned in Theorem 1 in Sect. 6. We conclude with
a few open questions in Sect. 7.

2 Tools for the fixed-parameter algorithm

In this section, we set up the background for the fixed-parameter algorithm of Theo-
rem 4. All graphs in this section and Sect. 3 could have parallel edges. Let G = (V, E)
be a graph. Throughout this work, we consider a partition to be an ordered tuple of
non-empty subsets. An ordered tuple of subsets (S, ..., Sx), where S; € V for all
i € [k], is a k-subpartition of V if S U...U Sy = V and S; N S; = @ for every
pair of distinct i, j € [k]. We emphasize the distinction between partitions and k-
subpartitions—in a partition, all parts are required to be non-empty but the number of
parts can be fewer than k while a k-subpartition allows for empty parts but the number
of parts is exactly k.

For a subgraph H € G, asubset X C V, and a partition/k-subpartition P of X, we
use 5 (P) to denote the set of edges in £ (H ) whose end-vertices are in different parts
of P. For a subgraph H of G and a subset S € V(H), we use 5 (S) to denote the set
of edges in H with exactly one end-vertex in S. We will denote the set of (exclusive)
neighbors of a subset S of vertices in the graph G by Ng (S). We need the notion of a
tree decomposition.

Definition1 Let G = (V, E) be a graph. A pair (t, x), where t is a tree and x :
V(r) — 2V is a mapping of the nodes of the tree to subsets of vertices of the graph,
is a tree decomposition of G if the following conditions hold:

D) Uevmx (@ =V,
(ii) for every edge e = uv € E, there exists some t € V(7) such that u, v € x(¢),
and
(iii) for every v € V, the set of nodes {t € V(r) : v € x(¢)} induces a connected
subtree of 7.

For each t € V(t), we call x (¢) to be a bag of the tree decomposition.

We now describe certain notations that will be helpful while working with the tree
decomposition. Let (7, x) be the tree decomposition of the graph G = (V, E). We
root T at an arbitrary node I' € V(7). For a tree node t € V(7)\{I'}, there is a unique
edge between ¢ and its parent. Removing this edge disconnects t into two subtrees 1
and 17, and we say that the set A; := x(t1) N x (12) is the adhesion associated with
t. For the root node I", we define Ar := . For a tree node t € V (1), we denote the
subgraph induced by all vertices in bags descending from ¢ as G, (here, the node 7 is
considered to be a descendant of itself), i.e.,

G, =G [ U X(r’)} )

1’ is a descendant of ¢

We need the notions of compactness and edge-unbreakability.
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Definition 2 A tree decomposition (z, x) of a graph G is compact if for every tree
node t € V (1), the set of vertices V(G;)\A; induces a connected subgraph in G and
Ng(V(G)\Ar) = Ay

Definition3 Let G = (V, E) be a graph and let S € V. The subset S is (a, b)-edge-
unbreakable if for every nonempty proper subset S’ of V satisfying |E[S’, V\S']| < b,
we have that either |[SN S| < a or |S\S'| < a.

Informally, a subset S is (a, b)-edge-unbreakable if every non-trivial 2-partition of V
either has large cut value or one side of the partition has small intersection with S.
With these definitions, we have the following result from [23].

Lemma 1 [23,Theorem 4.1] There exists an algorithm that takes a n-vertex m-edge
graph G = (V, E), an integer k > 2, and an integer A as input, runs in time
poly(n, A) + O(m), and returns a compact tree decomposition (t, x) of G such that

(1) each adhesion has size at most Ak, and
(i) for every tree node t € V (1), the bag x (t) is ((*k + 1)°, Ak)-edge-unbreakable.

We observe that since Lemma 1 runs in polynomial time, the size of 7 is necessarily
polynomial in the input size. Next, we need the notion of «-respecting partitions.

Definition4 Let G = (V, E) be a graph and G’ be a subgraph of G. A partition P of
V a-respects G’ if |8/ (P)| < .

The following lemma will help us find a family of spanning trees of a given graph
such that there exists an optimum k-partition that (2k?)-respects some spanning tree
in the family. The lemma follows from Lemma 4.3 in [6].

Lemma 2 [6] Let G be a graph with optimum MINSUM k-CUT value OPT,,;. There
exists a polynomial time algorithm that takes the graph G as input and returns a
polynomial-sized family of spanning trees of G such that for each k-partition I1 with
[§c(IT)| < aOPT,;, there exists a spanning tree T in the family with the property
that IT (2ak)-respects T.

We recall the observation that an optimum solution to MINMAX k-CUT is a k-
approximate optimum solution to MINSUM k-CUT. Hence, we have the following
corollary from Lemma 2.

Corollary 1 There exists a polynomial time algorithm that takes a graph G as input
and returns a polynomial-sized family of spanning trees of G such that there exists
an optimum min-max k-partition IT that (2k*)-respects some spanning tree T in the

SJamily.

We will frequently work with refinements and coarsenings of partitions and also
restrictions of partitions to subsets.

Definition5 Let G = (V, E) be a graph, S C V be a subset of vertices, and k > 2 be
an integer.
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1. Let Q be a partition/k-subpartition of S. A partition/k-subpartition P of S coarsens
Q if each part of P is a union of parts of Q.

2. Let P be a partition/k-subpartition of S. A partition/k-subpartition Q of S refines
P if each part of P is a union of parts of Q.

3. Let P be a partition/k-subpartition of V. A partition/k-subpartition P’ of S is a
restriction of P to S if for every u, v € S, u and v are in the same part of P’ if
and only if they are in the same part of P.

We note that we consider partitions/k-subpartitions as ordered tuples, and a restriction
of a partition/k-subpartition P to a subset S is areordering of the tuple obtained by tak-
ing the intersection of each part in P with S. Consequently, a partition/k-subpartition
‘P can have multiple restrictions to a subset S. The following definition allows us to
handle partitions of subsets that are crossed by a spanning tree at most 2k times.

Definition6 Let G = (V, E) be a graph, T be a spanning tree of G, and X C V. A
partition P of X is T-feasible if there exists a partition P’ of V such that

(i) P is a restriction of P’ to X and
(ii) P’ (2k?)-respects T

Moreover, a k-subpartition P’ of X is T-feasible if the partition obtained from P’ by
discarding the empty parts of P’ is T-feasible.

The next definition and the subsequent lemmas will show a convenient way to work
with T'-respecting partitions of a subset X of vertices, where T is a spanning tree.

Definition7 Let G = (V, E) be a graph, T be a spanning tree of G, and X € V. The
graph proj(7, X) is the tree obtained from 7' by

1. repeatedly removing leaves of T that are not in X until there is none, and
2. for every path in T all of whose internal vertices are of degree 2 and are in V' \ X,
contract this path, i.e. replace each such path with a single edge, until there is none.

Observation 1 Every vertex of proj(T, X) that is not in X has degree at least 3 in
proj(T, X). Consequently, the number of vertices in proj(T , X) is O(| X|).

The next lemma gives a convenient way to work with 7'-feasible partitions of
subsets of vertices. It is adapted and simplified from [23]. We give a proof for the sake
of completeness. Throughout this work, we use tilde to indicate partitions/subpartitions
of supersets of current sets of interest.

Lemma3 Let G = (V, E) be a graph and T be a spanning tree of G.

1. Forasubset X C V(G) and apartition’P of G, if Px is a restriction of P to X, then
there exists a partition P of the vertices of proj(T , X) such that |8p(T, Xx) (P)| <
|67 (P)| and Py is a restriction 0f77 to X.

2. For a subset X C V and a partition P of the vertices of proj(T, X), lf”ﬁx isa
restriction of P 10 X, then there exists a partition P of V(G) such that |67 (P)| <
[8proj(T, X) (75)| and 75X is a restriction of P to X.
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Proof We will start by proving the first statement. Let X € V(G) and P be fixed as in
the first statement. We will construct P by constructing Sproj(7, X) (P) as follows. For
eachedgee € 87 (P),if eremainsin proj(7’, X), theninclude e into Sproj(T, x) (P):ifeis
removed as part of a path thatis replaced with anedge ¢’ € E (proj(T, X ), theninclude
e’ into proj(r, x)(P) By doing this, we can guarantee that |07, x)(P)I < |87 (P)]|.

To see that 8(73) indeed yields a partition whose restriction to X is Py,
we claim that the partition P’ whose parts are the connected components of
proj (T, X)\&proj(T, %) (75), when restricted to X, refines Py. For every pair of ver-
tices u, v € X that are in different parts of Px, we know u and v are also in different
parts of P. This means some edge e on the unique path in 7 between u and v is in
37 (P). By construction of Sproj(r, x) (75), either e is contained in Sij(T,x)(ﬁ), or e’
which replaces a path containing e is contained in Sproj(T, X) (P). In either case, the
unique path in proj(7, X) between u and v is disconnected. This proves our claim.
To construct P from SPrOJ(T X) (P), we can group parts of P’ together as necessary to
comply with Px because P’ refines Py . This completes the proof of the first statement.

The proof of the second statement is similar to the preceding proof. Let X € V
and P be fixed as in the second statement. We start by constructing the edge set
37 (P). For each edge e € proj(T, x)(75), if e is originally an edge of T, then include
e into 7 (P); if e is introduced to replace a path in 7', then fix an arbitrary edge
e’ in this path and include ¢’ into §7(P). By doing this, clearly we can guarantee
187 (P)| < [8proj(T.x)(P)I.

By the same argument as in proof of the first statement, we can see that the connected
components of 7\87(P) yields a partition that, when restricted to X, refines 75x.
Combining parts as necessary, we obtain a desired partition P. This completes the
proof of the second statement. O

3 Fixed-parameter algorithm parameterized by k and solution size

In this section we prove Theorem 4. Let (G = (V, E), k) be the input instance of
MINMAX k-CUT with n vertices. The input graph G could possibly have parallel edges.
The following will be the main theorem of this section.

Theorem 4 There exists an algorithm that takes as input an n-vertex m-edge
unweighted connected graph G = (V, E) and an integer k > 2, along with an integer
A, and runs in time (kk)o(kz)no(l) + O(m) to determine if there exists a k-partition
V1, ..., Vi) of V such that costg(Vy, ..., Vi) < X and if so, returns an optimum
partition for MINMAX k-CUT on G.

We now complete the Proof of Theorem 3 using Theorem 4.

Theorem 3 There exists an algorithm that takes as input an unweighted instance G =
(V, E) of MINMAX k-CUT, namely an n-vertex m-edge graph G = (V, E) and an
integer k > 2, along with an integer A and runs in time (k)\)o(kz)no(l) + O(km) to
determine if there exists a k-partition (V1, ..., Vx) of V such that costg (V1, ..., Vi) <
A and if so, returns an optimum partition for MINMAX k-CUT on G.
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Proof If G is connected, then this follows from Theorem 4. For the rest of the proof,
we assume that G is disconnected. We note that in a disconnected graph, it is not
guaranteed that each part in an optimum solution of MINMAX k-CUT is contained
within a single connected component (see one such example in Fig. 2). So, we need
to address disconnected instances with a little more care.

Let Cy, C3, ..., C; be the connected components in G. We may assume that 7 < k,
since OPT(G, k) = 0 otherwise. We construct a connected graph H = (V, E’) with
the same vertex set V as follows:

1. For each edge e € E, we add ¢ parallel edges between the end vertices of e and
2. we add ¢ — 1 arbitrary edges between the components Cy, Ca, ..., C; so that H
becomes connected.

We run the algorithm from Theorem 4 on the instance (H, k, k(A + 1)) and return its
output.

We now analyze the run-time of the algorithm. The graph H can be constructed
in time O(km). The run-time of the algorithm from Theorem 4 on the instance
(H, k, k(L + 1)) is (k22 4 1)°%n00 1 0(km) = (k1)°*)nOM 1+ O(km). Hence,
the overall run-time is (kk)o<k2)no(1) + O(km).

Next, we prove the correctness of the algorithm. Suppose that there exists a k-
partition of V such that costg(Vy, ..., Vi) < A. We need to show that the algorithm
from Theorem 4 on the instance (H, k, k(A + 1)) indeed returns YES and the partition
(V1, ..., Vi) returned by the algorithm is in fact an optimum k-partition in G.

Let (Py, ..., Px) be a k-partition of V that corresponds to an optimum MINMAX
k-CUT in G. Then, we have that for each i € [k],

8 (P)| <tldg(P)l+1t—1<tOPT(G,k)+1t—1.
Consequently,
OPT(H, k) <tOPT(G,k) +t— 1. €))

In particular, OPT(H, k) < tOPT(G,k)+t—1) <t(OPT(G,k)+1) < k(A+1) and
hence, the algorithm from Theorem 4 on the instance (H, k, k(A + 1)) indeed returns
YES.

Next, let (Q1, ..., Qk) be the optimum k-partition in H that is returned by the
algorithm from Theorem 4 on the instance (H, k, k(A + 1)). Then,

OPT(H, k) > |6u(Qi)| = 1|56 (Qi)|-
This implies that for every i € [k],

1 1 t—1
166 (Qi)| < ;OPT(H, k) < ;(tOPT(G, k) +1—1) = OPT(G, k) + -
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The second inequality above is by using inequality (1). As a consequence, we have
that
t—1
max |56 (Q;)| < OPT(G, k) + —.
ielk] t
Since max;e[x] |66 (Q;)| and OPT(G, k) are both integral, we conclude that max;¢x)

[66(Qi)| = OPT(G, k) and hence, the k-partition (Q1, ..., Q) is an optimum MIN-
MAX k-CUT in G. O

The rest of the section will be devoted to proving Theorem 4. For this purpose, we
assume that G is connected. Let OPT = OPT(G, k) (i.e., OPT is the optimum objective
value of MINMAX k-CUT on input G) and let A be the input such that A > OPT. We will
design a dynamic programming algorithm that runs in time (Ak)o(kz)no(l) + O(m) to
compute OPT.

Given the input, we first use Lemma 1 to obtain a tree decomposition (z, x) of
G satisfying the conditions of the lemma. Since the algorithm in the lemma runs in
polynomial time, the size of the tree decomposition (z, x) is polynomial in the input
size. Next, we use Corollary 1 to obtain a polynomial-sized family of spanning trees
such that there exists an optimum min-max k-partition §2 of V that (2k?)-respects
a spanning tree 7 in the family, and moreover T is a subgraph of G. The rest of
our algorithm would iterate over each spanning tree in the family. In the rest of this
section, we fix a spanning tree 7 such that there exists an optimum min-max k-partition
2 =(821,...,82%) of V that (2k2)-respects T. We fix the tree decomposition (z, ),
the spanning tree 7', and the optimum solution £2 with these choices in the rest of
this section. We note that §2; # ¢ for all i € [k] and max;¢x] |66 ($2;)| = OPT. We
emphasize that the choice of §2 is fixed only for the purposes of the correctness of
the algorithm and is not known to the algorithm explicitly. We will preprocess the
graph G (that possibly has parallel edges) in O(m + n?) time to compute the number
of edges between every pair of vertices; this information will suffice to compute the
graph cut function value for a given set in time n°1). The rest of our algorithm can
be implemented with access to the graph cut function oracle and will run in time
(3k)O k) O

Our algorithm is based on dynamic program (DP). We will describe the subproblems
of the DP in Sect. 3.1. We will need the notion of a nice decomposition of the bags
corresponding to the tree decomposition. We describe this notion in Sect. 3.2 and give
an algorithm to generate them in Sect. 3.4. We will show the recursion to solve the
dynamic program in Sect. 3.3. We encourage the reader to trace towards the base case
of the dynamic program on first read.

3.1 Subproblems of the DP

In this section, we state the subproblems in our dynamic program (DP), bound the
number of subproblems in the DP, and prove Theorem 4. For a tree node t € V(7),
let 741 be the collection of partitions of the adhesion A, that are (i) T-feasible and
(i) have at most k parts. We emphasize that elements of F4, are of the form P4, =
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(P1, ..., Py)forsomek’ € {0, 1, ...k}, where P; # (foralli € [k']. The following
lemma bounds the size of F4¢, which in turn, will be helpful in bounding the number
of subproblems to be solved in our dynamic program.

Lemma4 For every tree node t € V(t), we have |]:Af| = (Ak)o(kz). Moreover, the
collection FAt can be enumerated in ()»k)o(kz) time.

Proof First we claim that a partition P4, of A; is T-feasible if and only if it is
proj(T, A;)-feasible.

Assume a partition Py, of A; is T -feasible, realized by a partition P of V. It follows
that |57 (P)| < 2Kk>. By Lemma 3, there exists a partition P of proj(7T', A;) such that
[8proj(T, A, (75)| < 2k? and Pa, is arestriction of P to A;. This is equivalent to saying
Pa, is proj(T, A;)-feasible.

The other direction is similar. If a partition P4, of A; is proj(T’, A;)-feasible, real-
ized by a partition P of V (proj(T, A,)), it follows that [8prjr.4,)(P)| < 2k>. By
Lemma 3 there exists a partition P of G such that |67 (P)| < 2k% and Pa, 1s a
restriction of P to A;. Hence Py, is T-feasible.

It remains to bound the number of proj(7', A;)-feasible partitions of A;. By Obser-
vation 1, the size of proj(7T', A;) is O(Ak). We notice that partitions with at most k
parts that 2k>-respect proj(T', A;) can be enumerated by removing up to 2k edges of
proj(T, A,), and putting the resulting connected components (there are at most 2k> + 1
of them) into k bins. Therefore, combining the previous observation, we conclude that

|FA | = O(Ak)2k2 s ()\k)O(kZ)’

Moreover, the time required to compute F4! (by enumerating all eligible partitions as
above) is also (Ak)o(kz). O

The following definition will be useful in identifying the subproblems of the DP.

Definition8 Let ¢t € V(r) be a tree node, and f; : FhA x {0, 1,...,k}k X
{0, 1,...,2k*} — {0, 1} be a Boolean function.

1. (Correctness) The function f; is f-correct if we have f;(Pa,,x,d) = 1 for
all Pa, = (P1,...,Py) € FA % = (x1,...,x) € {0,1,...,A}%, and d €
{0, 1, ..., 2k?} for which there exists a k-subpartition ® = (P/, ..., P)) of V(G;)
satisfying the following conditions:

() P/NA, = Pforalli € [K'],
(i) |86, (P))| = x; foralli € [k],
(iii) |87(P)| <d, and
(iv) P is a restriction of 2 to V(G,).

A k-subpartition of V (G;) satisfying the above four conditions is said to witness
f-correctness of f;(Py,, X, d).

2. (Soundness) The function f; is f-correct if for all Py, = (Py,..., Py) €
FA % = (x1,...,x1) € {0,1,....,2)k and d € {0,1,...,2k?}, we have
fi(Pa,, X, d) = 1 only if there exists a k-subpartition P = (P}, ..., P;) of V(G,)
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satisfying conditions (i), (ii) and (iii) above. A k-subpartition of V (G,) satisfying
(1), (ii) and (iii) is said to witness f-soundness of f;(Py,, X, d).

We emphasize the distinction between correctness and soundness: correctness relies
on all four conditions while soundness relies only on three conditions. Correctness
guarantees that the function value of f; is set to be 1 on inputs obtained by restricting
£2, and soundness guarantees that a partition of V (not necessarily £2) that satisfies
(i), (i1) and (iii) indeed exists when f; is set to 1. We discuss the need for distinct
correctness and soundness definitions after Lemma 6.

The next proposition shows that an f-correct and f-sound function for the root
node of the tree decomposition can be used to recover the optimum value.

Proposition 1 If we have a function fr : FAr x {0,1,..., A}k x {0,1,..., 2k2} —
{0, 1} that is both f-correct and f-sound, where I is the root of the tree decomposition
T, then

OPT = min {m[&lk)?{x,’} S fr (P %, 2k5) =1, = (x1, ..., x%) € [,\]"} ,
IAS

where Py is the O-tuple that denotes the trivial partition of Ar = (.

Proof The optimum partition §2 is a k-subpartition of V = V(Gr) that witnesses
f-correctness of fr(Py, (186 (211, ..., 186(S2))), 2k*). Hence, fr(Py, (186 (£21)]
s 186 (20D, 2k%) = 1, where |86 (£2;)] € [A] for every i € [k]. Consequently,

min {max{xi} D fr(Py %, 2k3) =1,% € [x]"} < max{|8G(£2;)|} = OPT.
ielk] i€lk]

We now show the reverse inequality. Suppose that fr(Py, X, 2k%) = 1 for some
% € [A]%. Then there exists a k-subpartition P’ of V witnessing f-soundness of
fr(Pg, x, 2k2). Since ¥ € [A]¥, we know that x; > 1 for every i € [k]. Since G
is connected, this implies that each part of P’ is non-empty. Therefore, P’ is also a
k-partition of V and is hence, feasible for MINMAX k-CUT. This implies that

max{x;} > OPT. O
ielk]

By Proposition 1, it suffices to compute an f-correct and f-sound function fr,
where I" is the root of the tree decomposition t. We will compute this in a bottom-up
fashion on the tree decomposition using the following lemma.

Lemma5 There exists an algorithm that takes as input (t, x), a tree node t € V (1),
Boolean functions f, : FAr x {0, 1, ..., A}k x {0, 1,..., 2k2} — {0, 1} for every
child t' of t in T that are f-correct and f-sound, and runs in time (Ak)o(kz)no(])
to return a function f; : FA% x {0,1,..., 0K x {0, 1,...,2k*} — {0, 1} that is
f-correct and f-sound.

We now complete the proof of Theorem 4 using Lemma 5 and Proposition 1.
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Proof of Theorem 4 In order to compute a function fr : F Ar % {0, 1, ..., A}k X
{0,1,..., 2k2} — {0, 1} that is both f-correct and f-sound, we can apply Lemma 5
on each tree node ¢t € V(1) in a bottom up fashion starting from the leaf nodes of the
tree decomposition. Therefore, using Lemmas 4 and 5, the total run time to compute

fris
(M)PER0W v (1) = (W) °*)nOW - poly(n, &, k) = (1k)O* nOW),

Using Proposition 1, we can compute OPT from the function fr. Consequently, the
total time to compute OPT is (Ak)o(kz)no(l). O

We will prove Lemma 5 in the following subsections. We fix the tree node t € V (1)
for the rest of the subsections.

3.2 Nice decomposition

We need the notion of a nice decomposition that we define below. Our definition differs
from the notion of the nice decomposition defined by [23] in property (ii) below (we
use 4k% + 1 while [23] use 2k — 1).

Definition 9 A nice decomposition of x(t) is a triple (Py (1), Qy ), O) where Py ;)
and Q, ;) are partitions of x (¢), Q) refines Py (), and O is either a part of P, (;) or
). Additionally, the following conditions need to be met:

(i) If O # 9, then O is a part of Q, ;).
If O =@, then P, () has only one part.
(ii) For every part P of Py (), P contains at most 4k* + 1 parts of Qy ;).
(iii) For every pair of distinct parts P, P’ of P, other than O, there are no edges
between P and P’'.
(iv) If ¢’ € V(z) is a child of ¢ or ¢ itself, then A, intersects with at most one part of
Py () other than O.

In order to compute an f-correct and f-sound function f; : FAr % {0,1,..., A}k X
{0,1,...,2k%} — {0, 1}, we will compute a family D of nice decompositions of y ()
such that if there exists a k-subpartition IT of V (G;) that realizes f-correctness of
fi(Pa,, X, d) for some Py, € FA4, % € {0,1,...,2}F andd € {0, 1, ..., 2k?}, then
there exists a nice decomposition (Py ), @), O) in D such that Q, ;) refines a
restriction of I7 to x (¢). A formal statement is given in Lemma 6.

Lemma 6 There exists an algorithm that takes as input the spanning tree T, the tree
decomposition (t, x), atreenodet € V(t), and runs in time (Ak)o(kz)no(l) to return a
family D of nice decompositions of x (t) with |D| = ()»k)o(kz)no(l). Additionally, ifa k-
subpartition IT of V (G;) realizes f-correctness of f;(Pa,, x, d) for some Py, € Fhi,
x € {0,1,..., k}k and d € {0,1, ..., 2k2}, then D contains a nice decomposition
(Py)» Ly O) where Q, (s refines a restriction of IT to x (t).

We defer the Proof of Lemma 6 to Sect. 3.4.
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We now discuss the need for distinct definitions for correctness and soundness. If a k-
subpartition T of V (G,) realizes f-correctness of f;(Pjy,, X, d) for some Py, € F A
x €{0,1,...,A and d € {0, 1,...,2k?}, then IT is a restriction of the optimal
partition £2 to V(G,). The family D of nice decompositions then serves to provide
a partition Q, ;) of x () that refines a restriction of the optimal partition £2 to x (¢),
which will later be used to identify an optimal partition. We note that if a k-subpartition
IT of V(G;) only witnesses f-soundness of f;(Pa,, x,d) for some Py, € FAr,
x€{0,1,...., 2 and d € {0, 1, ..., 2k?}, then the family D is not guaranteed to
provide a refinement of a restriction of the k-subpartition IT to x (¢). This motivates
the two distinct definitions for correctness and soundness.

3.3 Computing an f-correct and f-sound function f;

In this section, we will prove Lemma 5. For a fixed tree node t € V (), we will describe
an algorithm to assign values to f;(Pa,, x, d) for all P4, € FA xelo1,..., A}k,
andd € {0, 1, ..., 2k2} based on the value of f; (PAw a, B) for all children ¢’ of 7,
andall Py, € FA, @ € {0,1,...,A}F, and B € {0, 1, ..., 2k?} so that the resulting
function f; is f-correct and f-sound.

For the fixed t € V(7), we use Lemma 6 to obtain a family D of nice decompo-
sitions of x (¢). Our plan to compute the function f; involves working with each nice
decomposition D € D. The following definition will be helpful to achieve our goal of
computing the function f;.

Definition 10 Let D := (Pyu), Q). 0) € D, and rP : FA x [A]F x
{0, 1,...,2k*} — {0, 1} be a Boolean function.

1. (Correctness) The function r? is r-correct if we have rP (Pa,,x,d) = 1 for

all P, = (Py,...,Pv) € FA% % = (x1,...,x) € {0,1,...,2})f and d €
{0, 1, ..., 2k?} for which there exists a k-subpartition ® = (P/, ..., P)) of V(Gy)
satisfying the following conditions:

() P/NA, = Pforalli € [K'],
(i) |8G,(P/)| = x; foralli € [k],
@iii) [or(P)| =d,
(iv) Q) refines P restricted to x (¢), and
(v) P is arestriction of £2 to V(G,).

A k-subpartition of V(G;) satisfying the above five conditions is said to witness
r-correctness of rD(PA,, x,d).

2. (Soundness) The function r” is r-correct if for all Py, = (Py,..., Py) €
FA % = (x1,...,x) € {0,1,..., 2 and d € {0,1,...,2k?}, we have
rP(Pa,,%,d) = 1 only if there exists a k-subpartition P = (P/,..., P)) of
V (G, ) satisfying conditions (i), (ii), (iii) and (iv) above. A k-subpartition of V (G;)
satisfying (i), (ii), (iii) and (iv) is said to witness r-soundness of rD(PA,, x,d).

We note that the only difference between r-correctness/r-soundness and f-
correctness/ f-soundness is that r-correctness/r-soundness has the additional condi-
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tion (iv). The next proposition shows that r-correct and r-sound functions can be used
to recover an f-correct and f-correct function.

Proposition 2 Suppose that we have functions r? : FA x [AF x {0, 1, ..., 2k*} —
{0, 1} for every D € D such that all of them are both r-correct and r-sound. Then,
the function f; obtained by setting

fI(PAp)Ea d) = maX{rD(PAI,)E, d) . D (S D}

for every Py, € FA, x € {0,1,..., 2  and d € {0, 1,...,2k?} is both f-correct
and f-sound.

Proof We first show f-correctness. For P4, € FA 5 e {0, 1,...,A}k and
d € {0,1,..., 2k2}, suppose that there exists a k-subpartition I7 of V(G;) wit-
nessing f-correctness of f;(Pa,, X, d). By Lemma 6, we know that D contains a

nice decomposition D* = (P;(t), Q; ot 0*) such that Q;‘( @ refines IT restricted to

x (t). Then by r-correctness of rP* we know that 2" (Pa,, x,d) = 1. This implies
fiPa, 5 d) = 1.

Next we show f-soundness. Suppose that f;(Pg4,, x,d) = 1 for some Py, € Fh
¥ €{0,1,...,2)k and d € {0, 1,...,2k?}. Then, there exists D € D such that
rP (Pa,,x,d) = 1. By r-soundness of the function rP . there exists a k-subpartition
I’ of V(G,) witnessing r-soundness of rD(PA[ , X, d). It follows by definition of rP
and f that [T’ also witnesses f-soundness of f;(Pa,, X, d). O

Our goal now is to compute an r-correct and r-sound function 7 for each D € D.

Lemma 7 There exists an algorithm that takes as input (t, x), a tree node t € V (1),
a nice decomposition D = (Py ), Qy), O) € D, together with Boolean functions
fo t FA x{0,1,..., 0 x {0,1,...,2k*} — {0, 1} for every child t' of t that
are f-correct and f-sound, and runs in time (Ak)o(kz)no(l) to return a function r? :
FAr x [A]k x {0, 1,..., 2k2} — {0, 1} that is r-correct and r-sound.

We now use Lemma 7 to complete the proof of Lemma 5.

Proof of Lemma 5 Using Lemma 6, we compute a family D of nice decompositions in
time ()»k)o(kZ)no(l), where |D| = (Ak)o(kz)no(l). For each D € D, we use Lemma 7
to compute a function r? : FAr x [A]F x {0, 1,...,2k?} — {0, 1} that is both r-
correct and 7-sound in time (Ak)°**) O Finally, we use Proposition 2 to compute
the desired function f; that is both f-correct and f-sound. The total run-time is

(}Lk)O(kz)nO(l) + ()Lk)oa&)nou) ) (Ak)O(kz)nO(l) _ (}Lk)O(kz)nO(l)' O

The rest of the section is devoted to proving Lemma 7. We fix the inputs spec-
ified in Lemma 7 for the rest of this section. In particular, we additionally fix
D = Py, Ly, 0) €D.

Notation. Let Pyy = (P1,..., Pp, 0). If O = §, we will abuse notation and use
Py @) to refer to the partition of x (¢) containing only one part, namely Py ) = (P1).
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We note that p < n since D is a nice decomposition. We define P<; := Ule P;, where
£e{0,1,..., p}. We will use P<g := ). We specially define Py := O for indexing
convenience. For every ¢ € {0, 1, ..., p}, we define A(£) to be the set of children of
t whose adhesion is contained in O U P, and intersects Py, i.e.,

AW :=1{t e V(r):isachildoft, Ay € O U Py, Ay N Py # ().

Moreover, let AX) = {1, 1, ..., fAw)} For each £ € {0,1,...,p} and a €
{0, 1, ..., JAO) [}, let

G<(t.a):=G|OoUuPU | V(G |,

1<i<a

G():=G|ouPuU (] V(G |, and
e A(l)

G=(t):=G| |J V(GG))

| O=i=<(

These subgraphs are illustrated in Figs. 3, 4, and 5. In order to compute an r-correct
and r-sound function 7, we will employ new sub-problems that we define below.

Definition 11 Let g2Pa - {0, 1,..., p} x {0, 1,...,2k%} x {0, 1, ..., A}f x [k] —>
{0, 1} be a Boolean function, where D = (P, ) = (P1, ..., Py, 0), @y, 0) € D
and Pa, = (Py, ..., Pv) € FA.

1. (Correctness) The function gP-F4r is g-correct if we have g2Par (¢, d, 5, q) = 1
forall € € {0, 1,...,p},d €{0,1,...,2k%}, 5 = (v1, ..., y) € {0, 1,..., A}k

Fig.3 Anexample of G< (¢, a). Here the regions enclosed by dashed lines represent V (G,/), where t' runs
over A(£). The region enclosed by the dotted line is G< (¢, a)
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Fig. 4 An example of G(¢). Here the regions enclosed by dashed lines represent V (G,/), where t' runs
over children of 7. The region enclosed by the dotted line is G (£)

Fig. 5 An example of G <(¢). Here the regions enclosed by dashed lines represent V (G,/), where " runs
over children of ¢. The region enclosed by the dotted line is G < (¢)

and g € [k] for which there exists a k-subpartition P = (Py, ..., P{) of V(G <(¢))
satisfying the following conditions:

(i) P restricted to O U Py is a coarsening of Q, () restricted to O U P<y,
(11) |3G§(Z)(Pi/)| =Yy foralli e [k],
(i) |87 (P)| < d,
(iv) 0 C P,
(v) if A, € O U Py, then P/ N A, = Py, foralli € [K'], and
(vi) P is arestriction of £2 to V(G<(¥)).

A k-subpartition of V (G <(£)) satisfying the above six conditions is said to witness
g-correctness of g2-Pai (¢, d, ¥, q).

2. (Soundness) The function gD’PAt is g-correct if for all £ € {0,1,..., p},d €
0,1,...,2*},5 = O1,..., %) € {0,1,...,A}% and ¢ € [k], we have
gD*PAr (¢,d,y,q) = 1 only if there exists a k-subpartition P = (P, ..., P,é) of
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V(G <(¥)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. A k-subpartition
of V(G <(¥)) satistying (i), (ii), (iii), (iv) and (v) is said to witness g-soundness of
gPPr(t.d. 3. q).

Definition 12 Let hA2-Pa - {0, 1, ..., p} x {0, L. 262 x (0,1, . A x [k] —
{0, 1} be a Boolean function, where D € D and P4, = (Py, ..., Py) € FA

1. (Correctness) The function % is h-correct if we have WP Pa; «,d,y,q) =1 for
alle €{0,1,...,p},d €{0,1,....2k*}, 5 = (y1, ..., y) €{0,1,..., 2} and
g € [k] for which there exists a k-subpartition P = (Py,..., P]) of V(G(¢))
satisfying the following conditions:

(i) P restricted to O U Py is a coarsening of Q, () restricted to O U Py,
(i) 18G(e)(P))| = y; foralli € [k],
(iii) |67 (P)| < d,
@iv) O C P/,
(v) if A, © O U Py, then P/ N A, = P;, foralli € [k'], and
(vi) P is arestriction of £2 to V(G (£)).

A k-subpartition of V(G (£)) satisfying the above six conditions is said to witness
h-correctness of h?-Pai (¢, d, ¥, q).

2. (Soundness) The function hDP-Par is h-correct if for all € € {0,1,...,p},d €
0,1,...,2>,%y = (y1,....m) € {0,1,...,2)f and ¢ € [k], we have
hP-Pac(,d, v, q) = 1 only if there exists a k-subpartition P = (P/, ..., P)) of
V(G (£)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. Such k-subpartition
P is said to witness h-soundness of KPP (¢, d, 3, q).

We note that the difference between g “Par and h?-Par s that gP “Par considers
G<(£) and O U P<y, whereas h?-Pa:r considers G() and O U P,. The following
proposition outlines how to compute a function r that is both r-correct and r-sound
using functions gP-F4: for every Py, € FAr.

Proposition 3 Suppose that we have functions gD'PAr {0, 1, ..., pyx{0, 1,...,2k%}
x {0, 1,..., 2}F x [k] = {0, 1} for every P4, € FAt such that all of them are both
g-correct and g-sound. Then, the function r® obtained by setting

rP(Py,. %, d) := max{g” P4 (p.d, %, q) : q € [k]}

for every Py, € FA x e {0,1,..., A}k and d € {0, 1,..., 2k2} is both r-correct
and r-sound.

Proof We first show r-correctness. For Py, € FA ke {0, 1,..., A}k and d €
{0,1,..., 2k2}, suppose that there exists a k-subpartition I[1 = (my,..., ;) of
V(G;) witnessing r-correctness of r” (Pa,, X, d). Then, there exists ¢’ € [k] such
that O C m, by definition of D. It follows that [T also witnesses g-correctness of
gD'PAt (p,d, x,q"), and hence gD’PAr (p,d,x,q") = 1 since the function gD’PAt is
g-correct. This implies that rP (Pa,,x,d) =1.

Next, we show r-soundness. Suppose that rD(PA,,)E, d) = 1 for some Py, €
FA, x € {0,1,...,A and d € {0,1,...,2k?}. Then, there exists ¢’ € [k]
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D, Pa, D, Py,

such that g (p,d,x,q") = 1. By g-soundness of the function g , there
exists a k-subpartition IT" of V(G<(p)) = V(G;) that witnesses g-soundness of
gD'pAr (p.d, x,q"). It follows that IT" also witnesses r-soundness of rD(PA,, x,d).

O

Our goal now is to compute a function g” “Pa: that is both g-correct and g-sound.

Lemma 8 There exists an algorithm that takes as input (t, x), a tree node t € V (1),
a partition Py, € FA anice decomposition (Pyiy = (P1, ..., Py, 0), Qy1), O0) €
D, together with Boolean functions f; : FAr x {0,1,..., A}k x {0,1,..., 2k2} —
{0, 1} for every child t' of t that are f-correct and f-sound, and runs in time
()Lk)o(kz)no(l) to return a function gD’PAz : {0, 1,..., p} x {0, 1, ...,2k2} X
{0, 1,..., A}k x [k] — {0, 1} that is g-correct and g-sound.

Lemma 7 follows from Lemma 8 and Proposition 3. We will prove Lemma 8 in the
following subsections.

3.3.1 Computing gD’PAf assuming hP> P is available

In this section, for a given pair of D = (Py) = (P1,..., Py, 0), Qy1), 0) € D
and Py, € FAr we will show how to construct a function gD’pAr {0, 1,..., p} x
{0,1,..., 2k2}>< {0, 1,... ,A}k x[k] — {0, 1} thatis both g-correct and g-sound using
a function A2 Par - {0,1,..., p} x {0, 1,...,2k?} x {0, 1, ..., 2}k x [k] — {0, 1}
that is h-correct and A-sound.

Lemma9 There exists an algorithm that takes as input a partition Py, € FA, a
nice decomposition D = (Py ) = (P1, ..., Pp, 0), Q,1), O) € D, together with a
Boolean function hD-Pa; {0,1,..., p} x{0,1,. ..,2k2} x {0, 1, ...,A}k X [k] —
{0, 1} that is h-correct and h-sound, and runs in time (Ak)o(kz)no(l) to return a function
gPPar 240, 1,...,p} x {0, 1,...,2k%} x {0,1,..., 2}k x [k] = {0, 1} that is g-
correct and g-sound.

Proof Let the inputs be fixed as in the lemma. We will iteratively assign values to
g¢PPare,d, w,q)fore =0,1,...,p.

For ¢ = 0, we set gPP4(0,d, w,q) := hPPa(0,d, w,q) for every d €
{0,1,...,2k*}, w € {0,1,..., A} and ¢ € [k]. We note O U P<y = O U Py and
G <(0) = G(0) by definition. Thus the definitions of g-correctness and /-correctness
coincide, and the definitions of g-soundness and i-soundness coincide when £ = 0.

Now, we will assume that for some £ € [p], we have assigned values to gD Py -
1,d,w,q)foreveryd € {0,1,...,2k*},w € {0, 1, ..., 2} and ¢ € [k] and describe

an algorithm to assign values to gD’PAr (,d, w,q) forevery d € {0,1,...,2k?},
we{0,1,..., A} and g € [k].
Let

Vo= {((t—1,d1,5.q), (€, d>, 2. q2)) :
di,dy €{0,1,...,26*,5,2€{0,1,.... 2. q1, q2 € [K],
gPPr @ —1,d1,5.q1) = 1, hPPr (e, dy, 2, q2) = 1)
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Here, V! is the collection of pairs of inputs to g2-P4r and hP-P4: such that gP-Pa

evaluates to 1 on the first input and 22-P4: evaluates to 1 on the second input. For each
pair (¢ — 1,d1,5,q1), (¢, d2,7,q2)) € Y and each pair of permutations o, 07 :
[k] — [k] of permutations (i.e., bijections) satisfying the following conditions,

(GD) o1(q1) = 02(q2),
(G2) If A, C O U Py, then 0,(i) =i foralli € [K'].
(G3) If A; C O U P<y_y,then oy (i) =i foralli € [k'].

our algorithm will set gPPac (e, ds, 01() + 02(2), 01 (q1)) = 1forallds > d| + d>.
Here the notation o1 (y) refers to the k-dimensional vector whose ith entry is y_-1 i)
1

Finally, we set g2-Par (¢, d, w,q) = Oforalld € {0,1,...,2k*}, w € {0, 1,..., A}
and ¢ € [k] for which the algorithm has not set the g” P value so far.

We briefly mention the intuition behind conditions (G1), (G2), and (G3). The goal
of this algorithm is to merge a k-subpartition of G<({ — 1) and a k-subpartition of
G (£) to get a k-subpartition of G <(£). Permutations o1 and o> together allow us to
merge the o (i)™ part of the k-subpartition of G< (¢ — 1) with the o (i)™ part of the
k-subpartition of G (£) for each i € [k]. However, the choice of o1 and o, cannot be
arbitrary. Condition (G1) guarantees that the parts containing O are merged together.
Conditions (G3) guarantees condition (v) in Definition 11. Condition (G2) along with
(G3) guarantees that when A; € O U Py, the two parts containing the same part of
Pa, from the two k-subpartitions are merged together. We describe this formally in
Algorithm 1.

Algorithm 1 Computing function g?-P4:

Set gD'PAI 0,d, w,q) = nPPa; (0,d, w, q) for every d € {0, 1,. L, 2K%), w e {0,1,...,2)% and
q € [k].
foralle=1,..., p do
for all pair (¢ — 1,d1,y,q1), €, d2,Z,q2)) € V¢ do
for all permutation pairs (o1, 07) satisfying (G1), (G2) and (G3) do
Set g2 PA (0, dy, 01 () + 02(2), 01 (q)) = | forall dy = dy + db.
end for
end for
Fordz € {0, 1, ..., 2k2}, wef0,1,..., A}k and g € [k] such thath'PAt (€, d3, w, q) is not yet set
to 1, set gD’PAT ¢, d3, w,q) =0.
end for

We first bound the run-time of the algorithm. The size of Y is O(k®)A%* for every
£ € [p]. We recall that p < n. Thus, the run-time of the algorithm is

p -0k (k)?0(k?) = (k) °*)n.
We now prove the correctness of the algorithm by induction on £. We recall that we
have already proved the base case. We now prove the induction step.
By induction hypothesis, if there exists a k-subpartition of V(G<(¢ — 1)) wit-

nessing g-correctness of gD’PAr € — 1,d,w,q) for some d € {0,1, ...,2k2},
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w e {0,1,...,A}" and ¢ € [k], then gPPa(¢ — 1,d,w,q) = 1. Furthermore,
if g?Par(e —1,d,w,q) = 1forsomed € {0,1,...,2k*}, w € {0,1,...,2}F and
q € [k], then there exists a k-subpartition of V(G < (£ — 1)) witnessing g-soundness
of PPt —1,d,w, q).

Suppose that there exists a k-subpartition Q¥ = (Y, ..., Qg) of V(G<(¥))
witnessing g-correctness of gD’PAt (€,d, w,q) for some d € {0,1,..., 2k2}, w e
{0,1,..., A}k and g € [k]. We now show that the algorithm will correctly set
gPPae,d, w,q) = 1.

Let Q' := (Q}, e, Q,i) and Q% = (Qz, e, Q,%) be restrictions of QP to the
vertices of G<(£ — 1) and G (£), respectively, given by Q,.1 = Q? NV(G<({—1))and
Q? = Q? NV (G (L)) forevery i € [k]. It follows that Q! and Q? are both restrictions
of £2. We note that Q! witnesses g-correctness of gD’PAt € —1,d1,y,q), where
d) = |(ST(Q1)| and y; := |<SG<(/3_1)(Q})| for all i € [k]. Furthermore, Q% witnesses
h-correctness of hP-Par (¢, d», 7, q) where d := |87(Q%)| and z; := |5G(g)(le)| for
all i € [k]. We note that dy,d> € {0, 1,...,2k*} and ,Z € {0, 1, ..., A} since the
number of crossing edges in the subgraph is at most the number of crossing edges in
the graph G<({).

Consequently, the pair (¢ — 1,d1,y,q), ({,da, Z,q)) is present in V¢ We now
consider the case when o7 and o are both the identity permutation on [k], i.e., 01 (i) =
i = o0;(i) forevery i € [k]. These two permutations satisfy the conditions (G1), (G2),
and (G3). Moreover, since there are no edges between any two distinct parts among
Py, ..., Pg due to the nice decomposition property, and that no two of Py, ..., Py
intersects the same adhesion of a child of 7 in 7 (by property (iv) of Definition 9), we
know that d + dy < d and y; + z; = w; for each i € [k]. This also implies that
01(y) + 02(z) = w. We also have that o1(g) = ¢q. Consequently, the algorithm will
set g2Pac (0, d, w, q) to be 1.

Next suppose that (¢ — 1,d1,y,q1), l,d2,2,q2)) € V¢ and let o1, 0 : [k] —
[k] be permutations satisfying conditions (G1), (G2), and (G3). Then, we will
exhibit a k-subpartition QY of the vertices of G <(¢) that witnesses g-soundness of
gl Pu (e, d3, 01(3)+02(2), 01(q1) forevery ds = di+da. Let Q' := (0}, ..., Q)
and Q2 := (02, ..., Q%) be k-subpartitions of the vertices of G<(¢£ — 1) and G(¥)
respectively, that witness g-soundness of gD Pa, (¢ —1,dy,y, q1) and h-soundness of
hP-Pai (e, dy, Z, o), respectively.

Consider the k-subpartition Qv .= (QO, e, Qg) of the vertices of G < (£) obtained
by setting Q? = Q;_l(i) U Qi_l(i)' Letds > dy +d>. We will show that Q° witnesses

1 2

g-soundness of g2-P4: (¢, d3, 01 () + 02(2), 01(q1)).
Since o1(q1) = 02(g2), we know that the parts containing O in Q' and Q2, i.e.

Q(111 and Q(ZH, are both in le () thus proving condition (iv) needed to witness g-

soundness of gD’PAt , ds, 01(y) + 02(2), 01(q1)). As a consequence of the fact that
O C Q;l and O C Q22, we obtain that Q° is indeed a k-subpartition of the vertices
of G<(¢). Furthermore, the k-subpartition QY restricted to O U P—y is a coarsening of
Q) restricted to O U Py, thus proving condition (i) needed to witness g-soundness

@ Springer



K. Chandrasekaran, W. Wang

of gPPai (e, d3, 01(¥) + 02(2), 01(q1)). By the nice decomposition property, there
are no edges between two distinct parts among P, ..., P;. Hence,

1860 (O = 186 (c-1(Qg 1)1 + P60 (O] 1)
= Vo) + 26571 (0) for all i € [k], and
187(Q")] = 187(Q)| + 187(Q%)| < di + da,

thus proving conditions (ii) and (iii) needed to witness g-soundness of g Pas

(€, d3, 01(y) + 02(2), 01(q1))-

Suppose that A; € O U P;. Then, we know that 05 (i) = i for all i € [k']. We also
know that Ql.zﬂA, = f’,- foralli € [k']. Therefore, 15,- - Ql.2 - ng(l.) = Q? foralli €
[k']. Next, suppose that A, € OU P,. Then, we know thatoy (i) = i and Q! NA, = P;
forall i € [K']. Therefore, P; C Q} C le o= Q? for all i € [k']. Hence, condition
(v) needed to witness g-soundness ong’PAr €, d3, 01(y) +02(2), 01(q1)) also holds.
This shows that Q¥ witnesses g-soundness of gD’PAt «,d3,01(y) + 02(2), 01(q1))

forall d3 > d| + d». O

3.3.2 Computing hP-P4: in leaf nodes of the tree decomposition

In this section we will describe an algorithm to compute an i-correct and A-sound
function A2Par : {0, 1,..., p} x {0,1,...,2k%} x {0,1,...,2}f x [k] = {0, 1}
when ¢t € V(7) is a leaf node of 7. This corresponds to the base case of our dynamic
program. We note that this base case is also handled by our algorithm for computing
hP-Pa: in non-leaf nodes given in Sect. 3.3.3. We include the base case explicitly as a
precursor which will help the reader understand the non-leaf case in the next section.

Lemma10 If t € V() is a leaf node of t, then there exists an algorithm that
takes as input a partition P, € FA, a nice decomposition D = (Pyy) =
(P1,..., Py, 0),Qy), O) € D, and runs in time (Ak)o<k2)no(]) to return a func-
tion hP?Par {0, 1, ..., p} x {0,1,...,2k%} x {0, 1, ..., A}k x [k] = {0, 1} that is
h-correct and h-sound.

Proof Let the input be fixed as in the lemma. We will iteratively assign values to
hPPase,d, w,q) fore =0,1,...,p.

Let ¢ € {0, 1, ..., p}. By the definition of nice decomposition, we know that the
part Py contains O(k?) parts of Q, (r). Hence, O U P, contains O(k?) parts from Q, ().
Hence, we can enumerate all ko(kz) k-subpartitions of O U Py that coarsen Q, ;) and
explicitly verify if one of them satisfies the required conditions to witness z-soundness
of hP-Pai(€,d, 3, q). If so, then we set the corresponding h?P4: (1, d, 5, q) = 1 and
otherwise set h2Pac (1, d, 3, q) = 0. Thus, the time to compute KP4 (¢, d, 3, q)
foralld € {0,1,...,2k*},5 €{0,1,...,2}Fand g € [k] is

QK2 + 1) - 2K k- KO RO — (5 1yOK?) 0
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InordertocomputehD’PA/ «,d,y,q)forallt € {0, 1, ..., p},d € {0, 1, ...,2k2},
y € {0,1,.. .,A}k and g € [k], the total time required is p(kk)o(kz)no(l) =
(Ak)o(k2)no(l), since p < n. The resulting function hPPar is h-sound as well as
h-correct by construction. O

3.3.3 Computing hP P4 in non-leaf nodes of the tree decomposition

In this section, we will describe an algorithm to compute a function i?Pa
0,1,...,p} x{0,1,...,2k%} x {0,1,..., A}* x [k] = {0, 1} that is h-correct and
h-sound when ¢ is a non-leaf node of the tree decomposition 7.

Lemma 11 There exists an algorithm that takes as input (t, x), a non-leaf tree
node t € V (1), a partition Ps, € FA1 a nice decomposition D = Pyawy =
(P1,..., Py, 0),Qyn), 0) € D, together with Boolean functions fy : FA x
0,1,..., 0 x{0,1,...,2k*} — {0, 1} for each child t’ of t that are f-correct and
f-sound, and runs in time (Ak)o(kz)no(l) to return a function hP-Par {0,1,..., p}x
0,1,...,2k%} x {0, 1, ..., A} x [k] = {0, 1} that is h-correct and h-sound.

Proof Given the inputs and an integer £ € {0, 1, ..., p}, let us define 7~2(D, Pa,. )
to be the set of k-subpartitions P = (P, ..., P{) of O U P that satisfy the following
conditions:

(i) P coarsens Q, () restricted to O U Py,
(ii) [87(P)| < 2k*, and i
(iii) if A; € O U Py, then Pl/ NA; = P; foralli € [K'].

Since every k-subpartition in 7~€(D, P4, ) necessarily coarsens Q, ), we have the
size bound |7i(D, Pa,, O = ko(kz) because O U P; contains O(k?) parts of Q, ().

In order to compute an A-correct and -sound function h? Par, we will employ a
new sub-problem that we define below.

Definition 13 Let u2%40¢ 1 (0, 1, ..., 2k} x {0, 1, ..., A} x [k] x R(D, Pa,, £) —
{0, 1} be a Boolean function, where D = (P, ) = (P1, ..., Py, 0), Qy1), 0) € D,
Pa, =(P1,..., ) e FArand € € {0, 1,..., p}.

1. (Correctness) The function 1 2-P41- is yu-correct if we have uP-Pa-t(d, 3, q,R)
=1foralld € {0,1,...,2k*}, 5 = (y1..... m) € {0, 1,....1}*, ¢ € [k] and
R € R(D, Pa,, £) for which there exists a k-subpartition P = (P, ..., P,é) of
V(G (¥)) satisfying the following conditions:

(i) P restrictedto O U Py is R,
(i) |5G(Z)(Pi/)| =y; foralli € [k],
(iii) [o7(P)| =d,
(iv) O € P,
(v) if A, € O U Py, then P/ N A, = P; foralli € [k'], and
(vi) P is arestriction of £2 to V(G (¥)).

A k-subpartition of V(G (£)) satisfying the above six conditions is said to witness
w-correctness of w2 Par-t(d, v.q,R).
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2. (Soundness) The function uP-Fac-t is u-correct if for all d € {0, 1, ..., 2k%},
5=t €1{0,1,...,45 g € [kl and R € R(D, Pa,, £), we have
uPPact(d, 5,q,R) = 1 only if there exists a k-subpartition P = (P|, ..., P))
of V(G (¢)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. A k-subpartition
of V(G (¢)) satisfying (i), (ii), (iii), (iv) and (v) is said to witness p-soundness of
uPPatd, 3,9, R).

A function 2 P:-¢ that is pu-correct and p-sound helps compute a function 1 ” Pa;

that is h-correct and h-sound by the following proposition.

Proposition 4 Suppose that we have functions ,uD’PAt'Z : {0, 1,...,2k%} x
0,1,..., 0% x [k] x 7~Z(D,77A,,€) — {0, 1} for all £ € {0,1,..., p} such that
all of them are ji-correct and p-sound. Then the function WP-Pa . 40,1, ..., pl} x
0,1,...,2k%y x {0, 1, ..., A}k x [k] = {0, 1} obtained by setting

WP Pae,d, 3, q) == max {u”P4td, 5,4, R) : R € R(D, Pa,, 0))

forevery £ € {0,1,....p},d € {0,1,...,2k*}, 3 € {0,1,..., A} and q € [k] is
both h-correct and h-sound.

Proof We first show h-correctness. For ¢ € {0, 1,..., p},d € {0, 1, ...,2k2}, y €
{0,1,..., k}k andg € [k], suppose that there exists a k-subpartition [T = (mq, ..., 7)
of V(G (£)) withnessing h-correctness of hP-Pa; (€,d,y,q). Then, IT also witnesses
u-correctness of ,uD’PAr'Z(d, v, q, 119, where I1° = (7 N (O U Py), ..., N
(O U Py)) € R(D, Pa,, £). We note that IT° € R(D, Py, , £) because the defini-
tion of AP-Pa: guarantees the three conditions of 7@(D, Pa,, ). Since the function
MD'PAr*e is u-correct, we know that ,uD*PAt’e(d, v, q, 170) = 1. This implies that
hP-Pac(e,d,y,q) = 1.

Next, we show h-soundness. Suppose that hP-Paie,d, y, q) = 1 for some ¢ €
0,1,...,p},d € {0,1,...,2k%}, 7 € {0,1,..., A} and g € [k]. It then follows
that there exists R’ € R(D, Pa4,, ) such that wuPPatd 5.4, R) = 1. Since the
function ,uD*pAt'e is p-sound, we know that there exists some k-subpartition I7’ of
V(G (£)) witnessing p-soundness of u2-P4-¢(d, 5, q, R'). It follows that IT’ also
witnesses h-soundness of h PP €, d,y,q). O

By the above proposition, it suffices to assign values to ,uD ’PAt'g(d ,¥,q,R) for
every £ € {0,1,...,p}, R € R(D, Pa,, £),d € {0,1,...,2k*} 5 € {0, 1,..., )%,
and g € [k] so that the resulting function is p-correct and w-sound. We define another
sub-problem.

Definition 14 LetvP-Par-t.R .10, 1, ..., 2k21x {0, 1, ..., JA@D|}x {0, 1, ..., A} x
[k] — {0, 1} be a Boolean function, where D = (P, ) = (P1, ..., Pp, 0), Q4 1), O)
€ D, Pa = (Pr,....,Py) € F4, £ € {0,1,....,p}and R = (Ry,....Ry) €
R(D, Pa,, 0).

1. (Correctness) The function vP:Pa bR is v correct if we have vP-Par ’K'R(d, a, z,
q) = 1foralld € {0,1,...,2k*},a € {0,1,....|AD|}, 7 = (z1,...,2x) €
{0,1,...,4}% and ¢ € [k] for which there exists a k-subpartition P =
(P[,..., P))of V(G<(¢, a)) satisfying the following conditions:
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() P/N(OUP) =R, foralli €[],
(i) 18G_(e.a)(P))| = z; foralli € [k],
(iii) |67 (P)| = d,
(iv) O C Pé, and
(v) P is arestriction of £2 to V(G <(¢, a)).

A k-subpartition of V(G<({, a)) satisfying the above five conditions is said to
witness v-correctness of vD*PAr’e’R(d, a,z,q).

2. (Soundness) The function v2-Par-t.R i v-sound if for all d € {0, 1, ..., 2k%},
ae{0,1,..,JADI},Z = (z1,....2x) € {0,1,..., A} and ¢ € [k], we have
vP-Par-t R(d a7, ¢q) = 1 only if there exists a k-subpartition P = (P/, ..., P))

of V(G <(¥)) satisfying conditions (i), (ii), (iii) and (iv) above. A k-subpartition
of V(G<({, a)) satisfying (i), (ii), (iii) and (iv) is said to witness v-soundness of
l)D’PAf‘e’R(d, a,z,q).

A function vPPartR 40 1,...,2k%} x {0, 1, ..., [A@O)|} x {0,1,..., 2}k x
[k] — {0, 1} that is v-correct and v-sound helps compute a function ;” Part .
0,1,..., 2k x {0, 1, ..., A}k X [k] x 7~2(D, Pa,, £) — {0, 1} thatis p-correct and -
sound by the following observation. As a side note, we mention that setting | A(¢)| = 0
resolves the base case of ¢ being a leaf node.

Observation 2 Suppose that we have functions v PactR 0,1, 2K3) x
0,1,..., JA@} x {0,1,..., A} x [k] — {0, 1} for every R € 7~2(D,73A,,€)
such that all of them are v-correct and v-sound. Then the function p?-Far-t -
{0,1,.., 2%} x {0, 1, ..., A} x [k] x R(D, Pa,, £) — {0, 1} obtained by setting

uPPatd, 5, q, Ry = vP Pt Ra | AW, 7, q)

foreveryd € {0,1,...,2k?), 5 € {0,1,..., A% g € [kl and R € R(D, Pa,, £) is
both u-correct and ju-sound.

We note that a function v2-Pa-t.R - 10 1,... 2k%} x {0, 1,...,A®)|} x
{0,1,..., 2% x [k] — {0, 1} that is v-correct and v-sound can be computed in
(k)°%) time using Lemma 12, which we state and prove after this proof.

Our algorithm to prove Lemma 11 starts by computing R(D, Pa,, L) for every
£ €{0,1,..., p}, which can be done in ko(kz)n time (since the size 0f7~€(D, Pa,, ) is
KO® forevery £ € {0, 1, ..., p}).Foreach€¢ € {0, 1,..., pyandR € R(D, Py,. 0),
our algorithm assigns values to vD-Pa-tRg | A0, y,q)foralld € {0, 1, ..., 2Kk2Y,
y e {0,1,..., k}k and g € [k] using Lemma 12. The algorithms uses these val-
ues to next assign values to ,lLD’pAf‘e(d, y,q,R) forall £ € {0,1,...,p},d €
{0,1,...,2k%), 5 € {0,1,..., 1%, ¢ € [kl and R € R(D, Py, £) using Obser-
vation 2. Finally, the algorithm uses these values to assign values to h2-P4: (¢, d, 3, )
forall £ € {0,1,...,p},d € {0,1,...,2k?}, 5 € {0,1,...,2}F and g € [k] using
Proposition 4. The resulting function 2P is h-correct and h-sound.

The total time to compute WP Pa; “,d,y,q) forall £ € {0,1,...,p},d €
0,1,...,2k*),y€{0,1,..., A} and ¢ € [k] is

MO £ (p 4 1) - [R(D. Pa,, )] - (3O InO0 = (k) **n O,
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This completes the Proof of Lemma 11. O

Lemma 12 There exists an algorithm that takes as input (t, x), a non-leaf tree
node t € V(t), a partition Ps, € FAi, a nice decomposition D = Py =
(P1,..., Py, 0),Qyn,0) € D, an integer £ € {0,1,..., p}, a k-subpartition
R = (Ri,...,Ry) € 7%(D, Pa,. t), together with Boolean functions fy : FAr x
{0,1,..., A}k x {0, 1, ...,2k2} — {0, 1} for each child t' of t that are f-correct
and f-sound, and runs in (Ak)o(kz)no(]) time to return a function vP-FPart.R
0,1,...,2k2y x {0, 1, ..., JA(D)|} x {0, 1, ..., A} x [k] — {0, 1} that is v-correct

and v-sound.

Proof Let the input be as stated in the lemma. We will iteratively assign values to
vPPatRd a,7, q)fora=0,1,...,p.

For a = 0, we observe that in order to assign values to vD-Pay ’Z’R(d, 0, z, q) forall
de{0,1,...,2k*},7€{0,1,..., 2} and ¢ € [k], the k-subpartition R is the only
k-subpartition of V(G <(¢, 0)) = O U P; whose restrictionto O U Py is R (i.e., itis the
only k-subpartition that can satisfy condition (i) in the definition of the v Pa:-t.R sub-
problem). Therefore, we set vD ’PAt’e’R(d ,0,z,q) = 1 if and only if R satisfies the
remaining v-soundness conditions, which can be verified in n9() time. The run-time to
assign values to v2-Pa-t.R(g 0,7, ¢) foralld € {0, 1,...,2k*},Z € {0,1, ..., A}k
and g € [k]is AOPkOMLOM If R witnesses v-correctness of vD-PartRg 0, z, q)

forsomed € {0, 1, ..., 2k2}, zef{0,1,..., A}k and g € [k], then our algorithm sets
vPPart R4, 0,7, q) = 1. If our algorithm sets v P4-6R (4, 0,7, ) = 1 for some
de{0,1,...,2k*),2€{0,1,..., A}  and g € [k], then R witnesses v-soundness of

v PatR(d 0,7, q).

Now, we will assume that for some a € [|.A(£)|], we have assigned values to
vPPatRid g —1,7,q) foralld € {0,1,...,2k*},Z7 € {0,1,...,2}f and ¢ €
[k] and describe an algorithm to assign values to vP ’PAr’Z’R(d ,a,z,q) foralld €
0,1,...,2k*},7€{0,1,...,x}* and ¢ € [k].

Let Ry, = (R}, ..., R,’(a) be a restriction of R to A;,, where k, < k and R} # ¢
foralli € [k4] (i.e., R4, is a partition with at most k parts). Additionally, in the case
t, = t, we order RAM so that RA[a = P4,. Moreover, let y : [k,] — [k] be the
injection such that R} = R, ;) N A,,.

We start by defining a set

2 ={(d,a—1,2,9),(Ra, . X, d)) :
di,dr» €{0,1,...,2k*), 2,5 €{0,1,..., 1%, q € [k],
VPP bRy a—1,2,9) = 1, fa, (Ra,,. %.do) = 1}.

For each pair ((d1,a — 1,7, q), (RA,a ,X,dr)) € Z%, and each pair of permutations
(01, 02) : [k] = [k] satisfying the following two conditions,

(N1) o1() = crz(y’l(i)) foralli € [k] with R; N A;, # @, and

(N2) o1(i) =i foralli € [k] for which R; # @,
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our algorithm will set v2Pa-tR(ds a, W, 01(q)) = 1 for all d3s > dy + dy —
|07 (Ra,, )|, where
)]

w; = ngl(i) + xa{l(i) - H[U{] (@) < kg~ |8G[A[a](R;_2—1(i)
for all i € [k]. We mention the informal intuition underlying conditions (N1) and
(N2). The goal of this algorithm is to merge a k-subpartition of V(G <(¢,a —1)) and a
k-subpartition of V (G,,) to construct a k-subpartition of V(G < (£, a)). Permutations
o1 and o, allows us to merge the o (i )th part of the first k-subpartition with the o7 (i )th
part of the second k-subpartition for every i € [k]. However, the choice of o1 and o9
cannot be arbitrary: Condition (N1) guarantees that parts containing the same R; N A,,
are merged together for each i € [k], and condition (N2) guarantees condition (i) in

the definition of v2-Par-tR
Finally, we set v2-P4-tR(@’ a w,q) = 0 forall d € {0,1,...,2k%}, w €
{0,1,..., A}k and g € [k] for which the algorithm has not set the vP:Pa bR yalue so

far. This algorithm is described in Algorithm 2.

Algorithm 2 Computing function v" PatR

foralld € {0,1,...,2k?},z€{0,1,..., ¥ and g € [k] do
if R witnesses v-soundness of v2: s ’Z’R(d, 0,7, q) then
Set v PartRq.0,7,¢) = 1.
else
Set vPPar-tRq.0,7,¢q) = 0.
end if
end for
foralla=1,2,..., |A(¢)| do
for all pair ((d1,a — 1, %, q), (RAza ,Xx,dp)) € Z%do
for all (o1, 07) satisfying (N1) and (N2) do
Setv2 Pt R (a3 a, v, 01(g) = 1 forallds > dy +dy — |87 (R,

where w; = anl(i) +x0{1(i) - ]1[(;2—1(1') <kgl- |BG[AtaJ(R;;1(i))I foralli € [k].
end for
end for
Foralld’ € {0,1,...,2k%},® € {0, 1,..., A}¥ and ¢ € [k] with v2Pa-ER (4 4, @, ¢) not yet set
to 1, set V2Pt Rl 4w, q) = 0.

end for

We first bound the run-time of the algorithm. The size of Z¢ is O(k>)A% for every
a € [|A)]]. We note that |A(£)| < |V ()| = poly(n, A, k). Thus, the run-time of
the algorithm is

JA@)] - O3 . (kD20 (K?) = (1)) O,
We now prove the correctness of Algorithm 2. We recall that we have already proved
the base case. We now prove the induction step.

By induction hypothesis, if there exists a k-subpartition of V(G<(¢,a — 1)) wit-
nessing v-correctness of UD’PAt'e’R(d, a—1,w,q) for some d € {0, 1, ...,2k2},

@ Springer



K. Chandrasekaran, W. Wang

we{0,1,...,A*and g € [k], then vP-Pa-tR(d a—1,w, g) = 1. Furthermore, if
vPPatRd g —1,w,q) =1forsomed € {0, 1,...,2k%}, w {0, 1,...,x}¥ and
q € [k], then there exists a k-subpartition of V(G <(¢, a — 1)) witnessing v-soundness
of vV2Pa-tR(d g —1,w,q).

Suppose that there exists a k-subpartition Q% = (09,..., Qg) of G<(¢, a) that
witnesses v-correctness of vD’PAr’LR(d,a, w, q) for some d € {0,1, ...,2k2},
w e {0,1,..., )»}" and g € [k]. We now show that the algorithm will correctly
setv(d,a,w,q) = 1.

Let Q! = (Q}, R Q}() be the restriction of Q° to V(G<(, a)) given by Qi1 =
0N V(G<(t,a — 1)) forall i € [k]. Let Q> = (Q7,..., Q7) be the restriction
of 9% to V(Gy,) given by Qi2 NA;, = le for all i € [kg]. It follows that Q! and
0?2 are both restrictions of 2. Let 6 : [k] — [k] be the permutation of [k] such that
0? = Qg(l.) N V(G,,) forevery i € [k].

We note that Q! witnesses v-correctness of vD*PAt’E*R(dl ,a—1,7Z,q) =1, where
di = 187(QY| and z; = |5G<(£,a—1)(Q,-1)| for every i € [k]. Furthermore, Q?
witnesses v-correctness of f, (RA,a ,X,dy) = 1,wherex; := 18G,, (Ql.z)l foralli € [k]
and dp := |87(Q?)|. We note that dy,d> € {0, 1,...,2k*} and Z, % € {0,1,..., 1}k
since the number of crossing edges in the corresponding subgraph is at most the
number of crossing edges in the graph G<(¢, a).

Hence, the pair ((d1,a—1, z, q), (RAM , X, dp)) is present in Z¢. Consider the pair
of permutations (o1, ), where o7 is the identity permutation on [k], i.e. o1 (i) = i for
every i € [k].

We will first prove that (o1, 0) is an eligible pair of permutations for the algorithm.
We note that by definition of 9, for all i € [k] such that R; N A,, # ¢, the part Q? con-
sists of Q;’l(i) and Qil, and Ql.1 further contains R; and R;,l W Since each part of QY
intersects at most one part of R4, , we know that R;,l o= Q? NV(Gy,) = Q;,l e
By definition of Q2, we know that y ~!(i) = 6~!(i). This implies that 0(y ~'(i)) =
i = o01(i) for all i € [k] such that R; N A;, # @, which proves (N1). Since o7 is the
identity permutation, it also satisfies (N2).

For this choice of permutations, we will show that our algorithm will set
vD’PAt’K’R(d, a,w, q) = 1. By compactness of the tree decomposition (z, x), there
are no edges between any two distinct members among V (G4 )\ Ay, ..., V(G )\Ay,.
Consequently, our algorithm indeed sets vP 'PAr’e*R(d ,a,w,q) = 1 due to the fol-
lowing relationships:

d > |87(Q%| = di +d> — 167 (Ra,,)l, and
wi = 186_(.a) (O]
= 86<e.a-n (2D + 186, (@51 ;)| = 1O (1) < kal - 18614, 1 (Rp 1 ;)]
=2i + Xg-1y — L[0T () < kal - 18G14,,1(Ry-1;)| foralli e [k].
Next suppose that ((dj,a — 1,7, ¢q), (RA[a,)E, d>)) € Z% and let (01, 07) be a

pair of permutations satisfying (N1) and (N2). We will exhibit a k-subpartition Q°
of V(G<({, a)) that witnesses v-soundness of v(d3, a, w,o1(g)) = 1 for all d3 >
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di + d» and W as described above. Let Q! = (Q}, e Q}() and Q% = (0%, ..., Q,%)
be k-subpartitions of V(G<(¢,a — 1)) and V(G,,) that witnesses v-soundness of
vD*PAt’K’R(dl ,a—1,z,¢q) and f-soundness of f;, (RA,a , X, d»), respectively. Then,
by definition, we have Qi2 NA;, =R foralli € [k,].

Consider the k-subpartition Q% = (09, ..., Qg) of V(G< (¢, a)) obtained by

setting Q? = Q(ly,l(i) U Qi{l(i)' Let d35 > dy + dr and w be as described
1

above. We will show that Q° witnesses v-soundness of v2Par-tR(dy a, w, oy @)

by showing that it satisfies the five conditions in the definition of v-soundness of

VPPt Rdy, a,w, 01(q)).

We first show that Q° is indeed a k-subpartition of V(G <(¢, a)). It suffices to show
that if a part R; of R has non-empty intersection with A;,, then the part containing R;
in Ql,i.e., the part Qil, is in the same part in Q0 with the part containing R; N A;, =
R;,l(i) in Q2, i.e. the part Qi,l(i). This is equivalent to requiring o (i) = o (y 1))
foralli e [k]with R;NA,, # @, whichis satisfied due to condition (N1). Additionally,
foralli € [k]suchthat R; # ¢, we have that Q9N(OUPy) = Q(lyfl(i)ﬂ(OUPg) =R;
due to (N2). For all i € [k] such that R; = ), we have QY N (O U Py) = Qi_l(i) N

1
(O U Py) = = R;, where Qil,l(i) N (0 U Py) = @ follows from condition (i) of Q!
witnessing v-soundness of v2P4-6Rdy a — 1, 7, ). Hence, this implies condition
(i) needed to witness v-soundness of V2 Pa-tR(ds a, w, oy (@)).

By compactness of the tree decomposition (z, x), we know that there is no edge
between any two distinct members of V(G )\ Ay, ..., V(Gy,)\A;,. This implies that
for a part QY of QU, if Qi, Ly which is contained in QY, does not intersect A, , then

2

([N 0 0 _
18G-.a) (@) = |8G§(Z,a—l)(Q01—1(i))| + 18, (Qaz—](i)” = 2oy T X0y

If QZ,l . intersects A;,, then
0y @)

|SGS(l,a)(Q?)| = ZUI—'([) + xgz—l(l') - |8G[A,a](R/ )l

a3 (@)

Since Q2 _, © intersects A, ifand onlyif o, Yi) < ka, combining these two equations,
UZ l
we get

0y, —1,. / R
|SGS(Z,a)(Q,’)| = Zgl—'(;) + xgz—l(l') — 1o, (i) < kal- |SG[A’ﬂ](R<72_1(i))| = w;.

The above holds for every i € [k], thus implying condition (ii) needed to wit-
ness v-soundness of UD’PAr’e’R(dg,a,i;,ol (¢)). The part in QY that contains
O is le @ thus implying condition (iv) needed to witness v-soundness of

VPPt Rds a, w, 01(q)).
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By definition of the tree decomposition (z, x), we know that there are no edges
between V(G;,)\A;, and V(G<(¢, a — 1))\ A;,. This implies that

187(Q) = 187 (@Y + 187 (Q%)| — 187 (R, )| < di + d> — 187 (Ra, ),
thus implying condition (iii) needed to witness v-soundness of pD-Pa; "Z’R(dg, a,w, o]

(g))- This shows that 0V indeed witnesses v-soundness of vP-Pa; ’Z’R(d3, a,w,o1(q))
= 1, where d3 and w are in the range given in our algorithm. O

3.3.4 Proof of Lemma 8

In this subsection, we complete the Proof of Lemma 8.

Proof of Lemma 8 Letthe inputs be as stated in Lemma 8. First we will consider the case

wheret € V(r)isaleafnode. By Lemma 10, WecancomputehD’PAr {0, 1,..., p}x
{0,1,..., 2k2} x{0,1,..., A}k x [k] — {0, 1} that is h-correct and k-sound in time
(3k)O k) O

If t € V(7) is not a leaf node, then by Lemma 11, we can compute a function
WP Par 240, 1,..., p} x {0,1,...,2k%} x {0, 1,..., A}* x [k] — {0, 1} that is &-
correct and A-sound in (kk)o(kz)no(l) time.

Therefore, in either case, to compute a desired function hD:Pa, . {0,1,..., p} x
{0,1,..., 2k2} x{0,1,..., k}k x [k] — {0, 1} thatis h-correct and i#-sound takes total
time (Ak)o(kQ)no(l).By Lemma 9, we can compute a function g2-P4 : {0, 1, ..., p}x
{0,1,..., 2k2} x{0,1,..., A}k x [k] — {0, 1} that is g-correct and g-sound with an
additional (Ak)o(kz)n time. This completes the Proof of Lemma 8. O

3.4 Generating nice decompositions and Proof of Lemma 6

In this section, we restate and prove Lemma 6.

Lemma 6 There exists an algorithm that takes as input the spanning tree T, the tree
decomposition (t, x), atreenodet € V(t), and runs in time (Ak)o(kz)no(l) to return a
family D of nice decompositions of x (t) with |D| = ()Lk)o(kz)no(”. Additionally, ifa k-
subpartition I1 of V (G;) realizes f-correctness of f;(Pa,, x, d) for some Py, € FAr
x e {0,1,..., k}k and d € {0,1, ..., 2k2}, then D contains a nice decomposition
(Py)> @yy» O) where Q, sy refines a restriction of IT to x (t).

Our definition of nice decomposition closely resembles the definition of [23]. Our
way to generate nice decompositions and thereby prove Lemma 6 will also closely
resemble the proof approach of [23]. We need the following lemma.

Lemma 13 (Lemma 2.1 of [23]) There exists an algorithm that takes as input a set S
and positive integers s1, s> < |S|, and runs in time O((s1 + s2)°¢V[S19M) to return
a family S C 25 of size O((s1 + 52)°¢V log|S|) such that for every pair of disjoint
subsets X1, Xy C S where |X1| < s1 and |X3| < s7, there exists a set X € S with
X1 C X C S\X».
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Let the inputs be as stated in Lemma 6. We will start with notations followed by
the algorithm with bound on the runtime and a proof of correctness.

Notations. We refer the reader to Definition 7 for the definition of proj(7T', x (¢)). Let
A C E(proj(T, x(1))). We let R4 denote the partition of V (proj(T, x(¢))) whose
parts are the connected components of proj(T, x (1))\A. Let P and P’ be disjoint
subsets of vertices of proj(T, x (t)). We say that P shares adhesion with P’ if there
exists some descendant ¢ of ¢ (inclusive) such that P N A, # @ and P’ N Ay # .
When it is necessary to specify which adhesion is shared by P and P’, we will say that
P shares adhesion with P' via Ay if t’ is a descendant of ¢ (inclusive) such that A,/
intersects both P and P’. Moreover, we say that P shares G;-edge with P’ if there is
an edge in G, with one end-vertex in P and another end-vertex in P’. For a partition
R of V(proj(T, x(t))), we define the graph H(R) whose vertices correspond to the
parts of R and two vertices are adjacent in H(R) if and only if the corresponding
parts in R share either an adhesion or a G,-edge with each other.

Algorithm. We now describe the algorithm. We initialize D to be the empty set. The first
step of our algorithm is to generate a family C using Lemma 13 on set E (proj(7', x (1))
with s; = min{| E (proj(T, x (t)))|, 4k*} and s, = min{| E (proj(T, x (t)))|, (4k>*+1)-
2((Ak + 1)° + 4k% + 1)}. The next step of our algorithm depends on the size of the
bag x (1).

Case 1: Suppose |x(t)| < (Ak + 1)°. For each C’ € C, if R¢ has at most 4k> + 1
parts, then we add the following triple to D:

Der = (Pyay i= (X (1), Qxy = Rerlywy, 0 :=19),

where the partition R¢/|, (1) is a restriction of Rer to x(¢). If Rer has more than
4k? 4 1 parts, then we do not add anything into D.

Case 2: Suppose | x ()| > (A +1)°. Foreach C’ € C, we generate a family S¢- using
Lemma 13 on the set {P : P is apart of R¢/} with s = min{|R¢/|, 4k* 4 1} and
s = min{|R¢|, (4k* + 1)(Ak? 4 21k + 4k> + 1)}. For each C’ € C and each set
X’ € 8¢, we use the following steps to update D.

1. Starting from the partition Qp := R¢s, we merge all parts that are not in X’
together to be one part called O;. Call the resulting partition Q.

2. In the graph H(Qj), for each connected component of H(Q;)\{O;} that has
more than 4k> + 1 vertices, we merge the parts corresponding to the vertices of
the component with O;. Let Q» be the resulting partition and let O; be the part of
Q5 that contains Oj.

3. In the graph H(Q>), for each connected component of H(Q>)\{0»}, we merge
the parts corresponding to vertices in that component. Let Q3 be the resulting
partition.

4. Add the triple D¢r x := (Py«), @x@)» O) to D, where Py (1), Q1) and O are
restrictions of Q3, Q», and O to x (t), respectively.
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This completes the description of our algorithm.

Run-time. We now bound the run time of this algorithm. The family C can be computed
in O((4k2 + O(k2(hk 4+ 1IN**n0My = (1k)O* O time, and the size of C is
(Ak)o(kz) log n using Lemma 13. In the next step, Case 1 runs in n°) time for each
C’ € C. Case 2 requires O((4k2 + 1 + (4k2)((Ak)? + 20k + 4k2 + 1)) +1,0(0) —
(Ak)o(kz)no(l) time to generate S¢v for each C’ € C, and the size of each S¢ is

bounded by (kk)o(kz) log n. The rest of the steps in Case 2 take %)) time. Therefore,
the total time needed for this algorithm is

M)°E70M L 1 )O®) fog i - (M) O*)nOD = (k) Ok O

Correctness. We now prove the correctness of the algorithm. We first show that the
algorithm indeed outputs a family of nice decompositions.

Claim1 1. If|x(t)| < (Ak + 1)°, then the triple D¢ is indeed a nice decomposition
for every C' € C for which D¢ is defined.

2. If |x ()] > (Ak + 1)°, then, for every C' € C and X' € Sc, the triple D¢/ x is
indeed a nice decomposition.

Proof Suppose |x (1)| < (Ak + 1)> and R has at most 4k% + 1 parts. Then Rev |y (1)
also has at most 4k2 + 1 parts, which verifies condition 2 in Definition 9. The remain-
ing conditions in the definition hold immediately, and hence, D¢ is indeed a nice
decomposition.

We henceforth consider the case where |x (¢)| > (Ak + 1)>. Let C’ € C be fixed
and X' € S¢v, yielding a triple D¢r x/ == (Py ). @y (). O) to be included into D. We
will prove that D¢ x- satisfies the conditions in Definition 9. We note that O, refines
Q3,50 Q, (1) refines Py (p).

Fori =0,1,2, let Hl.’ denote the subgraph of H(Q;) induced by vertices whose
corresponding parts intersect x (t). By compactness of the tree decomposition (7, x),
the subgraph G; is connected. Therefore, there exists a path in G; between every pair
of vertices of x (¢). This implies that there exists a path in G; between every pair of
vertices of H( as every vertex of H| corresponds to a part that intersects x (¢). Hence,
the graph H; is connected.

Let us first consider the case where O = O> N x(¢) = . In this case the parts
merged to become O do not intersect x (¢), and hence Hj = H{. If Hj = H| has
more than 4k% + 1 vertices, then H/ will be merged into O;. Therefore, we conclude
that A = H{ has no more than 4k& + 1 vertices and H) = H{ = H,.In step 3, H,
is in one component of H(Q>)\{O02}. Therefore, in O3, only one part intersects x (¢)
and this part consists of at most 4k + 1 parts in Q» intersecting x (7). This implies
Py ) has only one part, and this part contains at most 4k? + 1 parts of Q9 (r)- The rest
of the conditions in the definition of nice decomposition hold immediately.

Next we consider the case where O = O, N x (1) # @. Since O, is a part of O,
we know that O is a part of Q, (), which proves condition (i) of the definition of nice
decomposition. Every part of Q3 consists of at most 4k> + 1 parts of Q> due to step
3, so every part of P, () consists of at most 4k> + 1 parts of Q9 (1)» proving condition
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(ii). For two distinct parts P and P’ of Q3, P and P’ share either an adhesion or a
G,-edge only if the corresponding vertices in H(Q3) are adjacent. In graph H(Q3),
each edge has one end-vertex being O,. This implies that one of P and P’ has to be
O;. Therefore, no two parts other than O in P, ;) share an adhesion or a G;-edge,
thus proving conditions (iii) and (iv) in the definition of nice decomposition. This
completes the Proof of Claim 1. O

The following lemma completes the Proof of Lemma 6.

Lemma 14 If a k-subpartition IT of V(G,) witnesses f-correctness of f;(Pa,, X, d)
for some Py, € FA % e {0,1,..., k}k andd € {0, 1, ..., 2k2}, then D contains a
nice decomposition D = (Py 1), Qy ), O) such that Q, ) refines a restriction of I1
to x (1).

Proof We begin with some notations. Let I7 be a k-subpartition of V (G ) that witnesses
f-correctness of f;(Pa,, X, d) for some Py, € FA % € {0, 1, ...,A}k, and d €
{0, 1, ..., 2k?}. Then, IT is a restriction of £2 to V(G,) and |87 (IT)| < d < 2k%. Let
IT, ;) denote a partition of x (¢) that is a restriction of IT to x (¢). By definition, the
partition Py, is a restriction of IT to A;.

Claim 2 There exists a partition ﬁx ) of proj(T, x (t)) such that Iy ) is a restriction
of My sy to x(t) and |8pmojcr 5 (1)) Ty 1))| < 4k>.

Proof Since P,, is T-feasible, there exists a partition 3 of V that 2k>-respects T
and its restriction to A, is P4,. Without loss of generality we may assume that 13 has
exactly k' parts By, ..., By (recall that P4, = (131, R ﬁk/)) such that B, N A, = 13,-
for all i € [k']. Moreover, we may assume that IT has exactly k’ parts 7y, ..., T
such that 7; N A, = 13,- for all i € [k’]. With these two partitions, we can define a
partition B = (B, ..., B,) of V by B = (B;\V(G,)) U m; for each i € [K']. The
partition T, is a restriction of B’ to x(t). Moreover, there are no edges between
V(G)\A; and V\V(G,), and Py, is a restriction of both B and /T to A,. Hence, we
have |87 (B')| < [87(B)| + 87 (IT)] < 4k*.

Now by Lemma 3, given partition B’ of V, there exists a partition /T x@) of
proj(T', x(t)) such that its restriction to x (t) is I, and |8pmj(T’X(,))(ﬁX(t))| <
|87 (B))| < 4k%. This completes the Proof of Claim 2. O

From now on we will fix ﬁx () to be a partition of V (proj(T, x(t))) that satisfies
the conditions of Claim 2. Let C denote the set of edges Sproj(7, (1)) ([T (1)), Which is
a subset of E(proj(T, x (¢))). It follows that IC| < 4k>.

Removing C from proj(T', x (¢)) yields a partition of V (proj(7', x (¢))) whose parts
are connected components of proj(7', x (1))\C. We denote this partition as IT’ ,,, and
observe that IT ;/((z) is necessarily a refinement of Il «(1)- Moreover, we may assume
that each part of I7 )/( ) intersects y (¢). If some parts of [T )/( © do not intersect x (1),
then there exist two parts P and P’ of IT ;( ® such that P intersects x () while P’ does

not, and there is an edge in C CE (proj~ (T, x(t))) with one end-vertex in P and the
other end-vertex in P’. We can modify /7T, ) so that P’ belongs to the part containing
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Table 1 Notations used for the

Proof of Lemma 14 k-subpartition of V(Gy)

HX @ Partition of x (¢)

My Partition of V (proj(T’, x (1))
ﬁ)/((t) Partition of V (proj(T’, x (1))
¢ Subset of E (proj(T, x (t)))
Sx(z) Subset of x (1)

3 Subset of V (proj(T, x (t)))
Sg Subset of E (proj(T, x(t)))

P. After such modification, the size of dpoj(T, X(,))(I:I (1)) does not increase (because
grouping P’ into the part containing P does not require us to cut any edge not in
C) and IT (1) 1s still a restriction of I %) to x(t). By doing this repeatedly, we may
assume that each part of 1 )’((t) intersects x (7) while the size of C does not increase.

Since £2 is an optimum MINMAX k-CUT in G, we have that |6 (£2)| < kOPT < kA.
Since [T, ) is a restriction of §2 to x (), by the edge-unbreakability property of x (¢),
we know that at most one part of IT, ) has size exceeding (Ak + 1)5. Now, let Sy (1)
denote the union of the parts of IT, ;) whose sizes are at most (Ak + 1)5 ,i.e.,

S)((t) = U TT.

7 is a part of [T, (),
7| < (k1)

Furthermore, we use S to denote the union of parts of Hx () whose intersection
with S, (;) is non-empty. Each part of I x() included in S induces a set of edges

in proj(T, x(¢)) whose both end-vertices are in this part. We use Sg to denote the
union of such edges, i.e.,

S = U m and

7 is a part of I:IX(,),
TSy (1) F#Y

Sg = U E@rojT, xo)ix).

7 is a part of I:IX(,),
TSy (1) FZD

We remark that Sg N C = ¥ because every edge in C has end-vertices in different parts
of IT, ). For convenience, we summarize the nature of notations introduced here in
Table 1.

Now that we have introduced these notations and definitions, our next goal is to
bound the size of Sg. We will use the following claim.

Claim 3 For every part P 0f17 we have that |P| < 2(|P N x (t)| + 4k* + 1).

x(@)
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Proof If P is a part of IT )’( (1) then by definition of I )’( (1)» the subgraph induced by
P in proj(T, x (1)), i.e., proj(T, x (¢))[ P], is a connected subtree of proj(T, x(¢)). To
bound the size of P, we will bound the sizes of the following types of vertices:

1. vertices of P with degree at least 3 in proj(T, x (¢))[P],

2. vertices of P that are not in x(¢#) and have degree at most 2 in the subtree
proj(T, x (t))[P], and

3. vertices in P N x ().

These three types together form a superset of the vertices of P.

In order to bound the number of Type 2 vertices, we note that these vertices are in
V (proj(T', x (¢)))\x(¢), which means they are of degree at least 3 in proj(T, x (¢)).
For each Type 2 vertex, some edge in proj(7, x (¢)) adjacent to it which connects P to
some other component is not included in proj(7', x (¢))[ P], resulting it to have degree
at most 2 in proj(7', x (¢))[P]. Since each part of 1 )/((t) induces a connected subtree

!/
x (@)
Here 11 )/( (1) has at most 4k* 4 1 parts as |C| < 4k>, and hence the number of Type 2

of proj(T, x (1)), each Type 2 vertex serves to connect P to a unique part of /7

vertices is at most 4k% + 1.

In order to bound the number of Type 1 vertices, we will first bound the number of
leaves of proj(T', x (t))[P]. Leaves of proj(T', x (t))[ P]areeitherin y () ornotin x (¢).
The number of leaves in y (¢) is at most | PN x (¢)|. The leaves of proj(7T', x (¢))[ P] that
are not in y (¢) are Type 2 vertices. So the total number of leaves of proj(7T, x (t))[ P]
is at most |P N x ()| + 4k> + 1.

Next we bound the number of Type 1 vertices. We have the following inequality,
where all degrees are with respect to the subgraph proj(7', x (¢))[P]:

2P| =2 = 2|E(proj(T, x (D[P = ) _ deg(v)

veP
> |{v € P :deg(v) = 1}| + 2|{v € P : deg(v) = 2}
+ 3|{v € P : deg(v) > 3}|
=2|P| — |{v e P :deg(v) = 1}| 4+ [{v € P : deg(v) > 3}|.

where the last equation holds due to the fact that |{v € P : deg(v) = 1}| + |{v € P :
deg(v) = 2}| + [{v € P : deg(v) > 3}| = | P|. This implies that the number of Type
1 vertices can be bounded by the following relationship:

{v e P:deg(v) >3} < [{veP:deg(v) =1} <|PN x| +4k>+1.

The number of Type 3 vertices is exactly | P N x (¢)], and hence the size of P is at
most

G2+ D+ (PN x| +42+ D+ PN x @) =2(P N x@)| +4k> + 1).

Claim4 ||, |Sg| < (4k% 4+ 1) - 2((Mk + 1)° + 4k% + 1).
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Proof We will start by bounding the size of S. Let us fix 7 to be a part of /T % (1) such
that 7 N S, ) # @, and 7’ to be a part of 1 )’( o contained in . Here, we notice that

N x(t)is apartof [Ty and | N x ()] < (Ak + 1)>. Then by Claim 3, we know
that

I7'| < 27" N x@)| +4k> + 1)
<27 N x (@) + 4%+ 1) < 2((Mk + 1)° + 46> + 1).

The set S is the union of all such parts 7, i.e., it is the union of parts 7" of 11/ " (1) Where

7' is contained in some part 7z of I ¥ (1) such that 7 N S, ;) # @. There are at most
4k? + 1 such candidates for 7’ because 17 has at most 4k” + 1 parts. Hence,

IS| < (4k* + 1) - 2((Mk + 1)° + 4k + 1).

To b01~1nd the §ize of § £, we observe that S r forms a forest over the vertex set S , and
thus [Sg| < |8] < (4k% + 1) - 2((Mk + 1) + 4k + 1). O

The first step of our algorithm generates a family C using Lemma 13 on
the set E(proj(T, x(¢))) with s; = min{|E(proj(T, x(t)))l, 4k%} and s, =
min{| E (proj(T, x (1)), (4k*+1)-2((xk+1)° +4k*+1)}. By Claim 4 and Lemma 13,
this implies that C contains a set C such that C € C and C N Sg = @. For the rest of
the proof, let us fix C € C such that CCCandCnN S £ = ). We now introduce some
more more notations and prove certain useful properties of C.

Here, we note that the partition R ¢ refines bil )’( o because C C C.Weuse L¢ to

denote the set of parts of R¢ that are contained in S. We use N¢ to denote the set
of parts of R¢ outside S that either share adhesion with some part in L¢ or share
G-edges with some part in Lc. We will use the following observation and claim to
bound the size of N¢.

Observation 3 Every edge in C\C necessarily has both end-vertices in V (proj(T,
X (O)\S. This is because every edge between V(proj(T, x(t)))\§ and § belongs to
C, and every edge whose both end-vertices are in S are either in Sg (which does not
intersect C) orin C. This implies that when restricted to S, the partition R¢ and IT’ <)
are the same.

Claim5 |N¢| < (4k% + 1)((Ak)2 4 20k + 4k> + 1).

Proof Let us fix one part R in L¢ and bound the number of parts of R¢ that could
share adhesion or G;-edge with R. By Observation 3, we know that R is also a part
of IT )/((;y We will use 7 to denote the part of T, ;) that contains R. The parts of R¢
that share either an adhesion or a G;-edge with R can be enumerated by the following
four types:

1. parts outside 7 that share adhesion with R via A/, where ¢’ is a child of ¢,
2. parts outside 7 that share adhesion with R via A;,
3. parts outside 7 that share G;-edge with R, and
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4. partsin 7.

We bound the number of parts of Type 1. For this, we will first bound the number
of children ¢’ of 7 such that A, intersects both R and some part outside 7. Let ¢ be
a child of ¢ such that A, intersects R and a part R’ that is outside 7. Then R N A,
and R’ N A, are in different parts of IT. By compactness of 7, we know that R N A,/
has a neighbor v in V(G,)\A,, and R’ N A, has a neighbor v’ in V(G,)\ A, . Since
V(G,)\ A, induces a connected subgraph in G, there is a path between v and v’ in
G[V(G)\A,]. Hence, in order to separate R N Ay and R’ N Ay, the k-subpartition
IT must cut some edge with at least one end-vertex in V(G )\ A, . We fix one such
edge and denote it as e,/. Then e, is contained in 6 (/7). We associate one such edge
e, for each child ¢’ of ¢ such that A, intersects R and a part R’ that is outside 7.

We now show that the edge e, associated the child ¢’ is unique. For the sake of
contradiction, suppose thate;; = e;» = e fortwochildrent’ and¢” of t.Lete = {u’, u”'}
with u’ € V(Gy) \ Ay and u” € V(G,) \ Ap. Then, e is contained in some bag
x (fo). The bags containing u’ induce a connected subtree, and u’ ¢ x (¢), so fy must
be a descendant of ¢’ (inclusive). Similarly 7y must be a descendant of ¢ (inclusive).
This is a contradiction because ¢" and ¢” are distinct children of z.

Therefore, the number of children ¢’ of ¢ such that A, intersects both R and some
other part outside 7 is at most |6 (IT)| < Ak. Each such adhesion has size at most Ak,
so it contributes at most Ak to the number of adjacent parts that R could have. Hence
the size of type 1 is bounded above by (1k)?.

In order to bound the number of parts of Type 2, we use the fact that [A;| < Ak and
conclude that the the number of parts of Type 2 is at most Ak.

In order to bound the number of parts of Type 3, we observe that a G;-edge with
one end-vertex in 7 and the other end-vertex not in 7 is necessarily in §g (/7). Each
part outside 7 that shares G,-edge with R connects R to a unique edge in 6 (/T), and
hence the number of parts of Type 3 is at most |G (IT)| < Ak.

Lastly, we bound the number of parts of Type 4. Since R is a partin L, by definition
we know that 77 is contained in S. This means that every part in 7 is also a part of
7 )’( © by Observation 3. Therefore, the size of type 4 is at most 4k> + 1.

We conclude that R shares an adhesion or a G;-edge with at most ()Jc)2 + Ak +
M+ 4k2 + 1 parts of R¢. Hence, the size of N¢ is at most

ILc| - ((k)* 4 Ak + Ak + (4k% + 1)).

Since parts in L¢ are also parts in IT ., we know that |L¢c| < 4k% + 1. This yields

. x()°
the desired bound:
INc| < (4k* 4+ 1)((0k)* + 20k + 4k* + 1).

O

We now have the ingredients to show that D contains a nice decomposition D =
(Py@)> Qx> O) such that Q, ;) refines IT, ). We begin with the easier case where
the size of the bag is small.
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Claim 6 If|x (t)| < (Ak+ 1), then the nice decomposition Dc = ((x (1)), Rc Iy, 9)
is contained in D and the partition Ry ) refines ITy ).

Proof If |x(t)] < (Ak + 1)5, then we note that S,y = x(¢) and hence S =
V (proj(T, x(¢))). By Observation 3, we know that R¢ = I1 )/( )" This guarantees
that R¢ has at most 4k% + 1 parts, and thus the triple ((x (¢)), Rcly @), 9) is defined

and added into D. Moreover, we know that Rc = [T/, ,, refines I, and hence
Relyq) refines ITy ;). O

/
x(®)
We now handle the case where the size of the bag is large. For the rest of the proof,
suppose that |x (¥)| > (Ak + 1)5. We recall that C € C and C N Sg = @. Since
|[Lcl < 4k% + 1, by Claim 5 and Lemma 13, the family S¢ is guaranteed to contain a
set X suchthat Lc € X and X N N¢ = . Let us fix such a set X in the remainder of
the proof. The next claim states that the nice decomposition D¢, x yields a refinement
of IT, ;) as desired, thereby completing the Proof of Lemma 14. O

Claim7 If|x(t)| > (Ak+ 1), then the nice decomposition Dc.x = Pyay, Ly)s O)
yields a partition Qi of x(t) that refines IT, ().

Proof By definition of the set X, at the end of step 1 of the algorithm, the part O
contains all parts in N¢ and no parts in L. Moreover, in the graph H(Q;), we have
Ng9,)(Lc) = {01}. Since L¢ contains at most 4k? 4 1 parts, we know that no part
in L¢ is merged into O in step 2. Therefore, every part of R¢ in L¢ remains a single
part in Q5. This implies that every part of IT )’( ® in S remains a single part in Q,. If a

part 7 of ﬁx () 1s contained in S, then 7 is the union of some parts of 17)/((,) in §, and

hence the union of some parts of Q,. If a part = of n (1) 1s not contained in S, then 7
is the unique part of /T, ;) that is not contained in S. This implies that 7 is the union
of parts of Q) that are not contained in L¢. Thus, we conclude that Q5 refines 1 X (1)
and hence Q, () refines IT, ;). |

4 Reduction to unweighted instances with logarithmic optimum
value

In this section, we show a (1 + €)-approximation preserving reduction to unweighted
instances with optimum value O((k/ ) log n). The ideas in this section are somewhat
standard and are also the building blocks for the (1 + €)-approximation for MINSUM
k-CUT. Our contribution to the reduction is simply showing that the ideas also apply
to MINMAX k-CUT.

Theorem 5 There exists an algorithm that takes as input a weighted instance G =
(V, E) of MINMAX k-CUT, namely an n-vertex simple graph G = (V, E) with edge
weights w : E — 7., an integer k > 2, and an € € (0, 1), and runs in time
poly(n, 1/¢) log? (Z ecE we) to return a collection C of unweighted instances of MIN-
MAX k-CUT such that with high probability

(1) for each instance in C, the number of vertices is at most n and the number of edges
is O(n*/e),
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(ii) the number of instances in C is O(1og(}_,. g we) log(n/€)), and

(iii) there exists an instance H € C satisfying (a) OPT(H, k) = O((k/€>)logn) and
(b) every optimum k-partition Py in H can be used to recover a k-partition P of
the vertices of G such that costg, (P) = (1 4+ O(€))OPT(G, k) in time noW,

Proof We use Algorithm 3 to prove Theorem 5. Let the input instance be G = (V, E)
with edge weights w : E — Z. along with an integer k > 2 and € € (0, 1).

Algorithm 3 Algorithm for the Proof of Theorem 5

C<9¢
for A =1,2,22,... 2108 ccr o) do
Compute an unweighted multigraph H = (V’, E’) using Lemma 15 with value A
fora' =1,2,22, ... 2oglE'l go
count < 0
while count < k — 1 and H has acutset F C E’ such that 0 < |F| < e)//(2(k — 1)) do
H < H — F, count < count + 1
end while
if count = k — 1 then
Go to the next choice of A/
end if
H <~ H
Construct Hy from Hj by sampling each edge with probability p = 10001log |V’ |/e2 i, wWhere
u:=min{OPT(Q,2): Q isacomponent of Hy}
C <« CU{Hy}
end for
end for
Return C

We bound the run time of the algorithm. For each fixed A € {1, 2, 22 ...,
2log(Xeer e} the unweighted multigraph H = (V’, E’) can be constructed in
poly(n, 1/€) Y, logw(e) time, and satisfies |E'| < 8|E|*/e by Lemma 15. Each
inner for-loop can be implemented to run in poly(n, 1/€) time. Therefore, the total
run time is at most

log2 (Z we> poly(n, 1/€) - 10g(8|E|2/e) = poly(n, 1/€) log2 (Z we> .

ecE ecE

Next, we prove the correctness of Algorithm 3. We need to show that collection C of
unweighted instances constructed by the algorithm satisfies properties (i), (ii), and (iii).
For each A € {1,2,22,..., 2108 ccr wo)} the unweighted multigraph H = (V', E’)
has at most 8| E|?/e < 8n*/e edges by Lemma 15. Each instance added to C in this
outer for-loop is a subgraph of H, and thus has at most 8n%/e edges. This proves
property (i). The total number of inner for-loops is log(} ", g we) log(8n*/e), and at
most one instance is added to C in each inner for-loop. Thus, we have

ICl=0 (log (Z we> log(n/e)) ,
eceE

and this implies property (ii).
We now prove property (iii). We note that there exists A € {1,2,2% ...,
2l0g(Xecr W} such that A € [OPT(Gyy, k), 20PT(G,,, k)]. Let us fix this choice of
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A henceforth. Let H = (V’, E’) be the unweighted multigraph constructed using
Lemma 15 with value A. We also fix the choice of A’ € {1, 2, 22 ..., 21°g(|E/|)} such
that A" € [OPT(H, k), 20PT(H, k)].

For this choice of 1/, the algorithm repeatedly removes cut sets F (i.e., a subset F
of edges that cross some 2-partition of G) that have 0 < |F| < €)//(2(k — 1)). If the
algorithm can remove k — 1 such cut sets, then it would have removed at most €A’ /2 <
€OPT(H, k) edges while creating k connected components, thus contradicting the
optimum value. Hence, the while loop of the algorithm will terminate with count
< k — 1 and with the number of edges being removed in the while loop being less than
€)' /2 < eOPT(H, k). Hence, we will have a subgraph H; = (V’, E1) of H such that
(1) |[E' — E1| < €eOPT(H, k) and (2) the min-cut in each connected component of Hj
is at least eOPT(H, k) /k > €¢OPT(H|, k) /k. We note that if we can find a (1 + O(¢))-
approximate optimum minmax k-partition (S1, ..., Sx) for the unweighted instance
Hj,thencosty (Si, ..., Sk) < costy,(S1, ..., Sk)+|IE'—E1| < costg, (Si, ..., Sk)+
€OPT(H, k) < (1 + O(¢))OPT(H, k). We note that the components of H; are well-
connected: each component of H| has min-cut value at least eOPT(H, k) /k.

The final step of the algorithm constructs H, from H; by subsampling the edges
of H;: it picks each edge with probability p = 10001log |V'|/(e?1), where n is the
number of vertices in H; and p := min{OPT (Q, 2) : Q is a component of H;}. Let
H, .= (V' Ey).

By Karger [18], we know that for each component Q of Hj, with probability at least
1=1/IV(Q)|P/Pe, we have |81, (S)|/p € [(1 =€) [8a, (S)]. (1+€)[8, (S)|] for every
subset S C V(Q), where pg := 100log [V (Q)|/(€20PT(Q,2)). Let Qy, ..., O, be
the components of H; with at least 2 vertices. Then, by union bound, with probability

at least
t

~ L v >|P“’Qt

we have that |8, (S)|/p € [(1—€)|8m, (S)], (1+€)|8a, (S)|] for every subset S € V.
We note that the components with a single vertex in H; do not contain any edges, and
thus do not affect our argument. We bound this probability as follows:
Y =Y 1
- = og|V/| OPT(Q;.2)
i=1 |V(Qi)|p/pQ' i=1 |V(Ql)|10k‘]g\gV7‘(‘/Qi)\ m

t

1

_OPT(Q;.,2)
P 21010gn —

1 -
< Z S10Tog V7 (by definition of 1)

1
= Z |V/|10
i—

VP
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Moreover, for each i € [¢], the number of edges in E(Q;) that survive into Hj is
O(log |V'|/€¥)|E(Q»)| with probability at least 1 — O(W) by Chernoff bound.
Thus, applying union bound again, with probability at least 1 — O(ﬁ) > 1-0(-),
(D) the scaled cut-value of every 2-partition is preserved within a (1 & €)-factor, i.e.,
18, ()1/p € [(1 = )8, (S, (1 + €)I6m, (S)]] for every S € V and () |E2| =
O(log |V'|/€®)| E1l.

We show that the instance H; in the collection C satisfies property (iii). The preserva-
tion of cut values immediately implies that OPT(H», k)/p € [(1—€)OPT(Hy, k), (1+
€)OPT(H,, k)] and moreover,

OPT(H,, k) < p(1 + €)OPT(H|, k)

log |V’
—0o(1) °g2| L oPT(H,. k)
2u
klog |V’ OPT(H,, k
€ k
k1
<o(—==.
€

Thus, we obtain an instance (Hj, k) whose optimum cost is O((k/e3) logn). Sup-
pose that (S1, ..., Sx) is an optimum k-partition for the instance (H>, k). Then, by
preservation of cut values, the partition (Sy, ..., Sx) is a (1 + O(e))-approximate
optimum minmax k-partition on the instance (H1, k). Consequently, (Sy, ..., Sx)isa
(1 + O(e))-approximate optimum minmax k-partition on the unweighted instance H
because

costy (St ..., Sk) < costp, (S, ..., Sk) + |E' — Eq|
< costy, (S1, ..., Sk) +€OPT(H, k)
< (1 + O(¢€))OPT(H,, k) + €OPT(H, k)
< (1 + O(e))OPT(H, k).

According to Lemma 15, this allows us to recover a (1 + O(¢))-approximate minmax
k-partition in G, in time n°(), thus proving property (iii). O

We emphasize that a constant factor approximation algorithm for MINMAX k-CUT
would help in shaving off alog(} ,. p w,) term from the run-time given in Theorem 5.

For the sake of completeness, we now give the details of the knapsack PTAS-style
rounding procedure to reduce the problem in a (1 + €)-approximation preserving
fashion to an unweighted instance.

Lemma 15 There exists an algorithm that takes as input a graph G = (V, E) with
edge weights w : E — Z4, an € € (0, 1), and a value X, and and runs in time
poly(n, 1/€)log (3, w(e)) to return an unweighted multigraph H = (V', E') such
that |V'| < |V| and |E'| < 8|E|?/e. Moreover, if A € [OPT(G,, k), 20PT(G,, k)],
then an o-approximate minmax k-partition in H can be used to recover an a(1 4 €)-
approximate minmax k-partition in G, in time n°" for any a > 1.
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Proof We contract all edges e € E with w(e) > A and denote the resulting graph
as GO = (VO E®). Let m := |E®|, & = eA/4m and w'(e) := [w(e)/0] for every
e € E°. We construct the graph H = (V°, E’) by creating w’(e) copies of each edge
e € EY. The time to construct H is poly(n, 1/€) -log (ZeeE w(e)). The bound on the
number of vertices in H is due to contraction. We bound the number of edges in H as
follows:

0
1= 2 2= X () = T e

ecEY ecE0
4w (E%m 4m? 8m?
=————+tm=—+m=< —
€A € €

The last but one inequality above is because w(e) < A for every e € E°. The bound
on |E’| follows now by observing that m < |E|.

Next, suppose that A € [OPT(Gy, k), 20PT (G, k)]. We will show that an «-
approximate minmax k-partition in H can be used to recover an o (1 + €)-approximate
minmax k-partition in G, in polynomial time for any & > 1. We may assume that
w(e) > A for all edges e € E since all edges e € E with w(e) > A do not cross an
optimum minmax k-partition. Now, we show that OPT(H, k) < (1+¢€)OPT(Gy, k).
Let (ST, ..., S{) be an optimum minmax k-partition in G,. Then, for every i € [k],
we have that

oGS = Y [wéﬂef

w(e) * *
3 ( ¢ +1>9=w(8(5i))+9|5(5i)|

es(SP) ees(SP)
€r|8(ST)]
< OPT(Gy, k) + am < OPT(Gy, k)(1 + €).
m

Hence, (ST, ..., S;:) is a k-partition of the vertices of H with fcosty (S}, ..., S{) <
OPT(G, k) (1 + €).

Let (S1, ..., Sx) be an w-approximate minmax k-partition in H. For every i € [k],
we have

w(e)
w@EESN = Y, wE@= ), <9w’(e)> ow'(e) < ) fw'(e)
e€8(S;) e€d(S;) e€d(S))

<aOPT(H, k)0 < a(l +€)OPT(Gy, k).
Thus, costg,, (S, ..., Sk) < a(l + €)OPT(Gy, k). If V' # V (i.e., if some edges e

were contracted since w(e) > A), then the run time to recover an « (1 +€)-approximate
minmax k-partition in G, from (S1, ..., Sx) is n®0). ]

5 Proof of Theorem 2

In this section, we restate and prove Theorem 2.
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Theorem 2 There exists a randomized algorithm that takes as input a weighted
instance of MINMAX k-CUT, namely an n-vertex simple graph G = (V, E) with
edge weights w : E — 7 and an integer k > 2, along with an € € (0, 1), and runs

in time (k/e)o(kz)no(l) log2(ZeeE w(e)) to return a partition P of the vertices of G
such that costg, (P) < (1 + €)OPT(G,, k) with high probability.

Proof Given the input, we compute a family C as described in Theorem 5. For each
instance H € C, we use Theorem 3 with . = O((k/€>) logn) to find an optimum
to the instance or obtain that the optimum is $2((k/ ) log n). By conclusion (iii) of
Theorem 5, we can then recover and output a k-partition P of V such that costg,, (P) =
(1 4+ O(€))OPT(G, k) in time n°D. The correctness probability comes from the
correctness probability in Theorem 5.

By Theorem 5, the time required to compute the collection C is

poly(n, 1/€) log? (Z w(e)) .

ecE

For each H € C, the total time to run the algorithm described in Theorem 3 with
A = O((k/e*)logn) is

2 0(k?) £\ O ,
((6—3) logn> nOM = <6—3> (logn)o(k )pOM

k O(k?)
- <_3> (KOK) 4 pyn®D
€

0O(k?)

k

=|- nPWm.
€

Finally, our algorithm requires n°(!) time to recover a k-partition in G from an optimum
k-partition of an instance H € C. Therefore, the total run time is

poly(n, 1/€) log” (Z we> +1C - ((k/€)°P*0W) | O /¢ 4 ,,0(D)y

eckE

— (/)2 D0 poly(n, 1/€) log? (Z w(e))

ecE

= (k/e)o(kz)no(l) log2 <Z w(e)) .

ecE

6 NP-hardness

In this section, we restate and prove the hardness result.

Theorem 1 MINMAX k-CUT is strongly NP-hard and W[ ]-hard when parameterized
by k.
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Fig.6 The graph G’ constructed
in the Proof of Theorem 1 when
the input graph G is a 4-cycle

M — de;
£ deg(vs)

Proof We will show a reduction from 4- CLIQUE in the unweighted case. In - CLIQUE,
the input consists of a simple graph G = (V, E) and a positive integer /1, and the goal
is to decide whether there exists a subset S of V of size |S| = h with G[S] being a
clique. The h- CLIQUE problem is NP-hard and W[1]-hard when parameterized by 4.
Let (G = (V, E), h) be an instance of h- CLIQUE, where V = {vy, ..., v,}. We
may assume that 7 > 2. Let M := max{(n + 1)2, 3m} and N := Mn + 2, where m
is the number of edges in G. We construct a graph G’ = (V’, E’) as follows: for each
vertex v; € V, we create a clique of size N over the vertex set C; := {u; ; : j € [N]}.
We also create a clique of size N over the vertex set W := {w; : j € [N]}. For
each edge e = v;v € E, we add the edge u; 1u;s 1 (between the first copy of vertex
v; and the first copy of vertex v;/). For each v; € V, we also add M — degs(v;)
edges between arbitrary pair of vertices in C; and W—for the sake of clarity, we
fix these M — degg; (v;) edges to be u; jw; for every j € [M — degq(v;)]. We set
V' := W UU,¢nCi. We note that the size of the graph G’ is polynomial in the size of
the input graph G. See Fig. 6 for an example. The next claim completes the reduction.
O

Claim 8 The graph G contains an h-clique if and only if there exists an (h+1)-partition
P=(P,..., Pht1) OfV/ such that max;efh+1] 6/ (P)| < Mh — h(h — 1).
Proof Suppose that G contains an h-clique induced by a subset Vy € V. We may
assume that Vy = {v1, ..., vy} by relabelling the vertices of V. Consider the partition
P =(Py,..., Ppy1) given by
P; == C; Vi € [h] and
Py =V \(PLU...UP).
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We observe that

8/ (P;)] = (M — degg (vi)) +degg(v;) = M foralli € [h] and
8/ (Phy)| = Y (M — degg (v)) + | E[Vo, V\Vol|

veVy

= > (M —degg()) + Y _ degg(v) — 2|E[Vl|
veVy veVp

= Mh —=2|E[Vo]|

= Mh —h(h —1).

By choice of M, we know that M < Mh—h(h—1), and hence max;c[s+1] 16 (P;)]
Mh — h(h —1).

We now prove the converse. Suppose that we have an (h + 1)-partition P =
(P1, ..., Ppy1) of V' such that max;efp+11{18c/ (P} < Mh — h(h — 1).

We now show that P does not separate any two vertices in C; for all i € [n] or
any two vertices in W. For the sake of contradiction, suppose that there exists vertices
u,v € V' such that u and v are in the same set A € {Cy, ..., C,, W} but they are
in different parts of P. Without loss of generality, let # € P} and v € P,. Then
AN P and A\ P; together forms a non-trivial 2-cut of G’[A], and hence |85/ (P})| >
[66/1a1(ANPy)| = N — 1. By our choice of N, we know that N —1 > Mh —h(h —1).
This contradicts the fact that |65/ (P;)| < Mh — h(h — 1) foralli € [h + 1].

From now on, let us fix P to be the part of P that contains W. We will show
that Pj,41 contains exactly n — h sets among C1, ..., C,. Since all parts of P are non-
empty, it follows that P, cannot contain more than n — h sets among Cq, ..., C,.
For the sake of contradiction, suppose that Py, contains at most n —h — 1 sets among
Ci, ..., Cy. This implies that more than / sets among C1, ..., C, are not contained
in Ppyy.Let Gy, ..., Ci, be the sets outside P, where A’ > h. Then

8o (Puy)l = > |E'[Ciy, W
Lelh’]

> (M — deg(vi)))

telh’]

> (M=)
Lelh’]
(h+1)(M —n)
> Mh — h(h —1).

v

v

This contradicts the fact that |8/ (P;)| < Mh — h(h — 1) for alli € [h + 1]. Hence,

Pp41 contains exactly n — h sets among Cy, ..., C,.
Let C;y, ..., C;, be the sets that are not in Pj,41. We will now show that § :=
{vi;, ..., v;,} induces a clique in G. Since max;e[p+1] 166/ (P)| < Mh — h(h — 1),

we know that
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Mh —h(h —1) > |86/ (Ppy1)]
= Z (M — degg; (vi,)) + | E' [Yeein Ciy » Uit Ci)\(Ueemn Cip)1l

e[h]
= Y (M —deg;(vi)) + |ELS, V\S]|
telh]
= Mh— Y degg(vi,) + |ELS, V\S]|
Lelh]
= Mh —2|E[S]].
Consequently, |E[S]| > h(h — 1)/2, and thus S induces an A-clique in G. O

We remark that our hardness reduction also implies that an exact algorithm for MIN-
MAX k-CUT in n°® time in simple graphs (i.e., unweighted graphs) would also imply
an n°M_time algorithm for /- CLIQUE, thus refuting the exponential time hypothesis
(see Theorem 14.21 in [7]).

7 Conclusion

Our work adds to the exciting recent collection of works aimed at improving the
algorithmic understanding of alternative objectives in graph partitioning [1, 5, 17]. We
addressed the graph k-partitioning problem under the minmax objective. We showed
that it is NP-hard, W[1]-hard when parameterized by k, and admits a parameterized
approximation scheme when parameterized by k. Our algorithmic ideas generalize
in a natural manner to also lead to a parameterized approximation scheme for MIN
£,-NORM  k-CUT for every p > 1:in MIN £,-NORM k-CUT, the input is a graph
G = (V, E) with edge weights w : E — Z, and the goal is to partition the vertices
into k non-empty parts Vi, Va, ..., Vi so as to minimize (Z;‘Z] w@S (V)P We
note that MIN £ ,-NORM  k-CUT generalizes MINSUM k-CUT as well as MINMAX k-CUT.

Based on prior works in approximation literature for minmax and minsum objec-
tives, it is a commonly held belief that the minmax objective is harder to approximate
than the minsum objective. Our results suggest that for the graph k-partitioning prob-
lem, the complexity/approximability of the two objectives are perhaps the same. A
relevant question towards understanding if the two objectives exhibit a complex-
ity/approximability gap is the following: When k is part of input, is MINMAX k-CUT
constant-approximable? We recall that when k is part of input MINSUM k-CUT does not
admit a (2 — €)-approximation for any constant € > 0 under the Small Set Expansion
Hypothesis [24] and admits a 2-approximation [27]. The best approximation factor
that we know currently for MINMAX k-CUT is 2k (see Sect. 1.1). A reasonable step-
ping stone would be to show that MINMAX k-CUT is APX-hard. We note that having
a constant factor approximation for MINMAX k-CUT would immediately shave off the
log max.cg w(e) term from the run-time mentioned in Theorem 2.

The 2-approximation for MINSUM k-CUT is based on solving the same problem in
the Gomory-Hu tree of the given graph. We note that solving MINMAX k-CUT on the
Gomory-Hu tree of the given graph could at best result in an O(n)-approximation:
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consider the complete graph K7,4+1 on 2n + 1 vertices with unit edge weights. The
optimum partition for MINMAX k-CUT for k = n is the partition that contains n — 1 parts
each containing 2 vertices and one part containing 3 vertices leading to an optimum
value of 3(2n — 2) = ®(n). The star graph on 2n + 1 vertices with all edge weights
being 2n is a Gomory-Hu tree for K»,+1. The optimum partition for MINMAX k-CUT
for k = n on the Gomory-Hu tree (i.e., the star graph with weighted edges) consists
of n — 1 parts corresponding to n — 1 leaves of the star graph and one part containing
the remaining leaves and the center, thus leading to an optimum value of @ (n?).

Funding Supported in part by NSF grants CCF-1814613 and CCF-1907937.
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