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Abstract
We consider the graph k-partitioning problem under the min-max objective, termed as
Minmax k-cut. The input here is a graphG = (V , E)with non-negative integral edge
weightsw : E → Z+ and an integer k ≥ 2 and the goal is to partition the vertices into
k non-empty parts V1, . . . , Vk so as to minimize maxki=1 w(δ(Vi )). Although mini-

mizing the sum objective
∑k

i=1 w(δ(Vi )), termed asMinsum k-cut, has been studied
extensively in the literature, very little is known about minimizing the max objective.
We initiate the study of Minmax k-cut by showing that it is NP-hard and W[1]-hard
when parameterized by k, and design a parameterized approximation scheme when
parameterized by k. The main ingredient of our parameterized approximation scheme
is an exact algorithm forMinmax k-cut that runs in time (λk)O(k2)nO(1)+O(m), where
λ is value of the optimum, n is the number of vertices, and m is the number of edges.
Our algorithmic technique builds on the technique of Lokshtanov, Saurabh, and Suri-
anarayanan (FOCS, 2020) who showed a similar result for Minsum k-cut. Our algo-
rithmic techniques are more general and can be used to obtain parameterized approxi-
mation schemes for minimizing �p-norm measures of k-partitioning for every p ≥ 1.

Keywords k-cut · Min-max objective · Parameterized approximation scheme

Mathematics Subject Classification 05C85 · 68W25

An extended abstract of this work appeared in the 22nd conference on Integer Programming and
Combinatorial Optimization (IPCO 2021).

B Weihang Wang
weihang3@illinois.edu

Karthekeyan Chandrasekaran
karthe@illinois.edu

1 University of Illinois Urbana-Champaign, Champaign, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01842-3&domain=pdf
http://orcid.org/0000-0002-0628-5532


K. Chandrasekaran, W. Wang

1 Introduction

Graph partitioning problems are fundamental for their intrinsic theoretical value as
well as applications in clustering. In this work, we consider graph partitioning under
the minmax objective. The input here is a graph G = (V , E) with non-negative
integral edge weights w : E → Z+ along with an integer k ≥ 2 and the goal is to
partition the vertices of G into k non-empty parts V1, V2, . . . , Vk so as to minimize
maxki=1 w(δ(Vi )); here, δ(Vi ) is the set of edges which have exactly one end-vertex in
Vi and w(δ(Vi )) := ∑

e∈δ(Vi ) w(e) is the total weight of the edges in δ(Vi ). We refer
to this problem as Minmax k-cut.
Motivations. Minmax objective for optimization problems has an extensive literature
in approximation algorithms. It is relevant in scenarios where the goal is to achieve
fairness/balance—e.g., load balancing inmultiprocessor scheduling, discrepancymin-
imization, min-degree spanning tree, etc. In the context of graph cuts and partitioning,
recent works (e.g., see [1, 5, 17]) have proposed and studied alternative minmax objec-
tives that are different from Minmax k-cut.

The complexity of Minmax k-cut was also raised as an open problem by Lawler
[21]. Given a partition V1, . . . , Vk of the vertex set of an input graph, one can mea-
sure the quality of the partition in various natural ways. Two natural measures are
(i) the max objective given by maxki=1 w(δ(Vi )) and (ii) the sum objective given by
∑k

i=1 w(δ(Vi )). We will discuss other �p-norm measures later. Once a measure is
defined, a corresponding optimization problem involves finding a partition that min-
imizes the measure. We will denote the optimization problem where the goal is to
minimize the sum objective as Minsum k-cut.

Minsum k-cut and prior works. For k = 2, the objectives in Minmax k-cut and
Minsum k-cut coincide owing to the symmetric nature of the graph cut function (i.e.,
w(δ(S)) = w(δ(V \ S)) for all S ⊆ V ) but the objectives differ for k ≥ 3.Minsum k-
cut has been studied extensively in the algorithms community leading to fundamental
graph structural results. We briefly recall the literature on Minsum k-cut.

Goldschmidt and Hochbaum [11, 12] showed thatMinsum k-cut is NP-hard when
k is part of input by a reduction from Clique and designed the first polynomial time
algorithm for fixed k. Their algorithm runs in time nO(k2), where n is the number
of vertices in the input graph. Subsequently, Karger and Stein [19] gave a random
contraction based algorithm that runs in time Õ(n2k−2). Thorup [30] gave a tree-
packing based deterministic algorithm that runs in time Õ(n2k). The last couple of
years has seen renewed interests in Minsum k-cut with exciting progress [6, 8, 13–
16, 22, 24]. Very recently, Gupta, Harris, Lee, and Li [13, 16] have shown that the
Karger-Stein algorithm in fact runs in Õ(nk) time; n(1−o(1))k seems to be a lower
bound on the run-time of any algorithm [22]. The hardness result of Goldschmidt and
Hochbaum as well as their algorithm inspired Saran and Vazirani [27] to consider
Minsum k-cut when k is part of input from the perspective of approximation. They
showed the first polynomial-time 2-approximation for Minsum k-cut. Alternative
2-approximations have also been designed subsequently [25, 26, 31]. For k being a
part of the input, Manurangsi [24] showed that there does not exist a polynomial-
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time (2 − ε)-approximation for any constant ε > 0 under the Small Set Expansion
Hypothesis.

Minsum k-cut has also been investigated from the perspective of fixed-parameter
algorithms. It is known thatMinsum k-cutwhen parameterized by k isW[1]-hard and
does not admit a f (k)no(1)-time algorithm for any function f (k) [7, 10]. Motivated by
this hardness result and Manurangsi’s (2 − ε)-inapproximability result, Gupta, Lee,
and Li [14] raised the question of whether there exists a parameterized approximation
algorithm forMinsum k-cutwhen parameterized by k, i.e., can one obtain a (2− ε)-
approximation in time f (k)nO(1) for some constant ε > 0? As a proof of concept, they
designed a 1.9997-approximation algorithm that runs in time 2O(k6)nO(1) [14] and a
(1+ε)-approximation algorithm that runs in time (k/ε)O(k)nk+O(1) [15]. Subsequently,
Kawarabayashi and Lin [20] designed a (5/3+ ε)-approximation algorithm that runs
in time 2O(k2 log k)nO(1). This line of work culminated in a parameterized approxi-
mation scheme when parameterized by k—Lokshtanov, Saurabh, and Surianarayanan
[23] designed a (1+ ε)-approximation algorithm that runs in time (k/ε)O(k)nO(1). We
emphasize that, from the perspective of algorithm design, a parameterized approxi-
mation scheme is more powerful than a parameterized approximation algorithm.

Fixed-terminal variants. A natural approach to solve both Minmax k-cut and Min-
sum k-cut is to solve their fixed-terminal variants: The input here is a graph
G = (V , E) with non-negative integral edge costs w : E → Z+ along with k termi-
nals v1, . . . , vk ∈ V and the goal is to partition the vertices into k parts V1, . . . , Vk such
that vi ∈ Vi for every i ∈ [k] so as to minimize themeasure of interest for the partition.
The fixed-terminal variant of Minsum k-cut, popularly known asMultiway cut, is
NP-hard for k ≥ 3 [9] and has a rich literature. It admits a 1.2965-approximation [28]
and does not admit a (1.20016 − ε)-approximation for any constant ε > 0 under the
unique games conjecture [3]. The fixed-terminal variant of Minmax k-cut, known as
Minmax Multiway cut, is NP-hard for k ≥ 4 [29] and admits an O(

√
log n log k)-

approximation [2]. Although fixed-terminal variants are natural approaches to solve
global cut problems (similar to using min {s, t}-cut to solve global min-cut), they have
two limitations: (1) they are not helpful when k is part of input and (2) even for fixed k,
they do not give the best algorithms (e.g., even for k = 3,Multiway cut is NP-hard
while Minsum k-cut is solvable in polynomial time as discussed above).

Minmax k-cut vs Minsum k-cut. There are fundamental structural differences
between Minmax k-cut and Minsum k-cut. The optimal solution to Minsum k-
cut satisfies certain nice properties: (i) If the input graph is connected, then every
part in an optimal partition for Minsum k-cut induces a connected subgraph. (ii) If
the input graph is disconnected, then there exists an optiumal partition for Minsum
k-cut such that every part in is completely contained within a connected component.
Hence, Minsum k-cut is also phrased as the problem of deleting a subset of edges
with minimum weight so that the resulting graph contains at least k connected com-
ponents. However, these nice properties fail to hold for Minmax k-cut as illustrated
by examples in Figs. 1 and 2.
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Fig. 1 Anexamplewhere the unique optimumpartition forMinmax k-cut for k = 5 induces a disconnected
part. The edge weights are as shown. Every 5-partition in this example necessarily consists of one part with
2 vertices and four singleton parts. If the part with 2 vertices is {u1, u2}, then the objective value is 8. If
the part with 2 vertices is {ui , v j } where i ∈ [2] and j ∈ [4], then the objective value is 10. If the part
with 2 vertices is {vi , v j } where i, j ∈ [4], then the objective value is 12. Hence the optimum partition for
minmax 5-cut is ({u1, u2}, {v1}, {v2}, {v3}, {v4}), where the first part induces a disconnected subgraph

Fig. 2 An example of a disconnected graph where the unique optimum partition for Minmax k-cut for
k = 7 has a part that intersects two connected components. The edge weights are as shown. The unique
optimum k-partition for k = 7 is ({v1, v5}, {v2}, {v3}, {v4}, {v6}, {v7}, {v8}), where the first part intersects
two different components components

Minmax k-cut for fixed k. For fixed k, there is an easy approach to solve Minmax
k-cut based on the following observation: For a given instance, an optimum solution
toMinmax k-cut is a k-approximate optimum toMinsum k-cut. 1 The randomized
algorithm of Karger and Stein implies that the number of k-approximate solutions to
Minsum k-cut is nO(k2) and they can all be enumerated in polynomial time [13, 16, 19]
(also see [6]). These two facts immediately imply that Minmax k-cut can be solved
in nO(k2) time. We recall that the graph cut function is symmetric and submodular.2 In
a recent work, Chandrasekaran and Chekuri [4] show that the more general problem of

1 If (V1, . . . , Vk ) is an optimum k-partition for Minmax k-cut with optimum value OPTmm and OPTms

is the optimum value for Minsum k-cut, then we have that
∑k

i=1 w(δ(Vi )) ≤ kOPTmm ≤ kOPTms .
2 A function f : 2V → R is symmetric if f (S) = f (V \ S) for all S ⊆ V and is submodular if
f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B).
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min-max symmetric submodular k-partition3 is also solvable in time nO(k2)T , where
n is the size of the ground set and T is the time to evaluate the input submodular
function on a given set.

1.1 Results

In this work, we focus on Minmax k-cut when k is part of input. We first show that
Minmax k-cut is strongly NP-hard. Our reduction also implies that it is W[1]-hard
when parameterized by k, i.e., there does not exist a f (k)nO(1)-time algorithm for any
function f (k).

Theorem 1 Minmax k-cut is strongly NP-hard and W[1]-hard when parameterized
by k.

Our hardness reduction also implies that Minmax k-cut does not admit an algo-
rithm that runs in time no(k) assuming the exponential time hypothesis. Given the
hardness result, it is natural to consider approximations and fixed-parameter tractabil-
ity. Using the known 2-approximation forMinsum k-cut and the observation that the
optimum value of Minsum k-cut is at most k times the optimum value of Minmax
k-cut, it is easy to get a (2k)-approximation for Minmax k-cut. An interesting open
question is whether we can improve the approximability/inapproximability.

The hardness results also raise the question of whether Minmax k-cut admits a
parameterized approximation algorithm when parameterized by k or, going a step
further, does it admit a parameterized approximation scheme when parameterized by
k?We resolve this question affirmatively by designing a parameterized approximation
scheme. Let G = (V , E) be a graph with non-negative integral edge weights w :
E → Z+. We write Gw to denote the graph with edge weights w. For a partition
(V1, . . . , Vk) of V , we define

costGw(V1, . . . , Vk) := max{w(δ(Vi )) : i ∈ [k]}.

We will denote the minimum cost of a k-partition in Gw by OPT(Gw, k). We will
call an instance to be weighted if G has no parallel edges (with edge weights being
arbitrary) and an instance to be unweighted if all edge weights are unit and the graph
G possibly has parallel edges. The following is our algorithmic result showing that
Minmax k-cut admits a parameterized approximation scheme when parameterized
by k.

Theorem 2 There exists a randomized algorithm that takes as input a weighted
instance of Minmax k-cut, namely an n-vertex simple graph G = (V , E) with
edge weights w : E → Z+ and an integer k ≥ 2, along with an ε ∈ (0, 1), and runs
in time (k/ε)O(k2)nO(1) log2(

∑
e∈E w(e)) to return a partition P of the vertices of G

such that costGw(P) ≤ (1 + ε)OPT(Gw, k) with high probability.

3 In themin-max symmetric submodular k-partition problem, the input is a symmetric submodular function
f : 2V → R given by an evaluation oracle, and the goal is to partition the ground set V into k non-empty
parts V1, . . . , Vk so as to minimize maxki=1 f (Vi ).
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We note that log(
∑

e∈E w(e)) is polynomial in the size of the input. Throughout,
high probability refers to 1 − o(1/n). Theorem 2 can be viewed as the counterpart
of the parameterized approximation scheme for Minsum k-cut due to Lokshtanov,
Saurabh, and Surianarayanan [23] but for Minmax k-cut. The central component
of our parameterized-approximation scheme given in Theorem 2 is the following
result which shows a fixed-parameter algorithm for Minmax k-cut in unweighted
instanceswhen parameterized by k and the solution size. For an unweighted graphG =
(V , E), we define the cost of a partition (V1, . . . , Vk) of V as costG(V1, . . . , Vk) :=
max{|δ(Vi )| : i ∈ [k]}.

Theorem 3 There exists an algorithm that takes as input an unweighted instance G =
(V , E) of Minmax k-cut, namely an n-vertex m-edge graph G = (V , E) and an
integer k ≥ 2, along with an integer λ and runs in time (kλ)O(k2)nO(1) + O(km) to
determine if there exists a k-partition (V1, . . . , Vk) of V such that costG(V1, . . . , Vk) ≤
λ and if so, returns an optimum partition for Minmax k-cut on G.

We emphasize that the algorithm in Theorem 3 is deterministic.

1.2 Outline of techniques

Our NP-hardness andW[1]-hardness results forMinmax k-cut are based on a reduc-
tion from the clique problem. Our reduction is an adaptation of the reduction from the
clique problem to Minsum k-cut due to Downey et al [10].

Our randomized algorithm for Theorem 2 essentially reduces the input weighted
instance of Minmax k-cut to an instance where Theorem 3 can be applied: we reduce
the instance to an unweighted instance with optimum value O(k/ε3) log n, i.e., the
optimum value is logarithmic in the number of vertices, and with (n/ε)O(1) edges.
Moreover, the reduction runs in time (n/ε)O(1) log2(

∑
e∈E we). Applying Theorem 3

to the reduced instance yields a run-time of

((
k2

ε3

)

log n

)O(k2)

nO(1) =
(
k

ε

)O(k2)

(log n)O(k2)nO(1)

=
(
k

ε

)O(k2)

(kO(k2) + n)nO(1)

=
(
k

ε

)O(k2)

nO(1).

Hence, the total run-time (including the reduction time) is (k/ε)O(k2)nO(1) log2

(
∑

e∈E we), thereby proving Theorem 2.
We now briefly describe the reduction to an unweighted instance with logarith-

mic optimum: (i) Firstly, we do a standard knapsack PTAS-style rounding procedure
to convert the instance to an unweighted instance with a (1 + ε)-factor loss (see
Lemma 15). (ii) Secondly, we delete cuts with small value to ensure that all connected
components in the graph have large min-cut value, i.e., have min-cut value at least
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εOPT/k—this deletion procedure can remove atmost εOPTedges and hence, a (1+ε)-
approximate solution in the resulting graph gives a (1 + O(ε))-approximate solution
in the original graph. (iii) Finally, we do a random sampling of edges with probability
p := Θ(k log n/(ε3OPT)). This gives a subgraph that preserves all cut values within
a (1 ± ε)-factor when scaled by p with high probability. The preservation of all cut
values also implies that the optimum value toMinmax k-cut is also preserved within
a (1± ε)-factor. The scaling factor of p allows us to conclude that the optimum in the
subsampled graph is O((k/ε3)) log n. We note that this three step reduction follows
the same ideas as that of [23] who designed a parameterized approximation scheme
for Minsum k-cut. Our contribution to the reduction is simply showing that their
reduction ideas also apply toMinmax k-cut (see Sect. 4 for details).

The main contribution of our work is in proving Theorem 3, i.e., giving a fixed-
parameter algorithm forMinmax k-cutwhenparameterizedby k and the solution size.
We discuss this now. Our algorithm is designed for the case of connected graphs; we
handle a disconnected graph by replacing every edge with multiple copies and using
additional edges to make the graph connected—this does not change the optimum
(see proof of Theorem 3). At a high-level, we exploit the tools developed by [23]
who designed a dynamic program based fixed-parameter algorithm for Minsum k-
cutwhen parameterized by k and the solution size. Our algorithm forMinmax k-cut
is also based on a dynamic program. However, since we are interested in Minmax
k-cut, the subproblems in our dynamic program are completely different from that
of [23]. We begin with the observation that an optimum solution toMinmax k-cut is
a k-approximate optimum to Minsum k-cut. Chekuri, Quanrud, and Xu [6] showed
that given a graph G, there exists a polynomial-time algorithm to find a polynomial-
sized family of spanning trees such that for any k-partitionΠ that is an α-approximate
partition for Minsumk−cut, there exists a spanning tree T in the family such that
the number of edges of T crossing Π is at most O(αk). This result coupled with the
observation that an optimum solution toMinmax k-cut is a k-approximate optimum
toMinsum k-cut allows us to obtain, in polynomial time, a polynomial-sized family
of spanning trees such that the number of edges of one of the spanning trees T in the
family has O(k2) edges crossing an optimum k-partition toMinmax k-cut optimum.
Let us fix such a spanning tree T (our algorithmwould iterate over all spanning trees in
the returned family). We will call a partition Π with O(k2) edges of the spanning tree
T crossing Π to be a T -feasible partition. Next, we use the tools of [23] to generate,
in polynomial time, a suitable tree decomposition of the input graph—let us call this a
good tree decomposition. The central intuition underlying our algorithm is to use the
spanning tree T to guide a dynamic program on the good tree decomposition.

As mentioned before, our dynamic program is different from that of [23]. We now
sketch the details of our dynamic program. For simplicity, we assume that we have
a value λ ≥ OPT(G, k). The adhesion of a tree node t in a tree decomposition,
denoted At , is the intersection of the bag corresponding to t with that of its parent (the
adhesion of the root node of the tree decomposition is the empty set). The good tree
decomposition that we generate has low adhesion, i.e., the adhesion size is O(λk) for
every tree node. In order to define our sub-problems for a tree node t , we consider the
setF At of all possible partitionsPAt of the adhesion At containing at most k parts such
that PAt can be extended into a partition of the entire vertex set that is T -feasible. A
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simple counting argument shows that |FAt | = (λk)O(k2) (see Lemma 4). Now consider
a Boolean function ft : F At ×{0, 1, . . . , λ}k ×{0, 1, . . . , 2k2} → {0, 1}. We note that
the domain of the function is small, i.e., (λk)O(k2). Let (PAt , x̄, d) denote an argument
to the function. The function aims to determine if there exists a partitionP of the union
of the bags descending from t in the tree decomposition (call this set of vertices to be
Vt ) so that (i) the projection of the partition P to At is exactly PAt , (ii) the number of
edges with exactly one end-vertex in the i th part of P in the subgraph G[Vt ] is exactly
xi for all i ∈ [k], and (iii) the number of tree edges crossing the partition P is at most
d. If we can compute such a function fr for the root node r of the tree decomposition,
then it records the cut values of all partitions satisfying the three conditions with at
most k parts and can be used to find the optimum value of Minmax k-cut, namely
OPT(G, k).

However, we are unable to solve the sub-problem (i.e., compute such a function
ft ) based on the sub-problem values of the children of t . We observe that instead of
solving this sub-problem exactly, a weaker goal of finding a function that satisfies a
certain f -correct and f -sound properties suffices (see Definition 8 for these properties
and Proposition 1). We show that this weaker goal of computing an f -correct and f -
sound function ft based on f -correct and f -sound functions ft ′ for all children t ′ of
t can be achieved in time (λk)O(k2)nO(1) +O(m) (see Lemma 5). Since the domain of
the function is of size (λk)O(k2) and the tree decomposition is polynomial in the size
of the input, the total number of sub-problems that we solve in the dynamic program
is (λk)O(k2)nO(1) (with O(m) preprocessing time), thus proving Theorem 4.

In order to achieve the weaker goal of computing a function ft for the tree node t
that is f -correct and f -sound, we progressively define sub-problems and note that it
suffices to achieve a weaker goal for all these sub-problems. Consequently, our goal
reduces to computing Boolean functions that satisfy certain weaker properties. We
encourage the reader to trace towards the base case of the dynamic program during
the first read of the dynamic program.

One of the advantages of our dynamic program (in contrast to that of [23]) is that it is
also applicable for alternative norm-based measures of k-partitions: here, the goal is to
find a k-partition of the vertex set of the given edge-weighted graph so as to minimize
(
∑k

i=1 w(δ(Vi ))p)1/p—we call this asMin �p-norm k-cut. We note that Minmax
k-cut is exactlyMin �∞-norm k-cutwhileMinsum k-cut is exactlyMin �1-norm
k-cut. Our dynamic program can also be used to obtain the counterpart of Theorem 3
for Min �p-norm k-cut in connected graphs for every p ≥ 1. For disconnected

graphs, we can get a (1+ε)-approximation in time (λk/ε)O(k2)nO(1) by using the same
ideas as in the Proof of Theorem 3 from Theorem 4 but by replacing every edge with
�k/ε
 copies. These results in conjunction with the reduction to unweighted instances
(which can be shown to hold for Min �p-norm k-cut) also leads to a parameterized
approximation scheme forMin �p-norm k-cut for every p ≥ 1 in connected graphs.

Organization.We set up the tools to prove Theorem 4 in Sect. 2. We prove Theorem 3
in Sect. 3. We show a reduction from weighted instances to unweighted instances
with logarithmic optimum value in Sect. 4. We use Theorem 4 and the reduction to
unweighted instances with logarithmic optimum value to prove Theorem 2 in Sect. 5.
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We prove the hardness results mentioned in Theorem 1 in Sect. 6. We conclude with
a few open questions in Sect. 7.

2 Tools for the fixed-parameter algorithm

In this section, we set up the background for the fixed-parameter algorithm of Theo-
rem 4. All graphs in this section and Sect. 3 could have parallel edges. LetG = (V , E)

be a graph. Throughout this work, we consider a partition to be an ordered tuple of
non-empty subsets. An ordered tuple of subsets (S1, . . . , Sk), where Si ⊆ V for all
i ∈ [k], is a k-subpartition of V if S1 ∪ . . . ∪ Sk = V and Si ∩ S j = ∅ for every
pair of distinct i, j ∈ [k]. We emphasize the distinction between partitions and k-
subpartitions—in a partition, all parts are required to be non-empty but the number of
parts can be fewer than k while a k-subpartition allows for empty parts but the number
of parts is exactly k.

For a subgraph H ⊆ G, a subset X ⊆ V , and a partition/k-subpartition P of X , we
use δH (P) to denote the set of edges in E(H)whose end-vertices are in different parts
of P . For a subgraph H of G and a subset S ⊆ V (H), we use δH (S) to denote the set
of edges in H with exactly one end-vertex in S. We will denote the set of (exclusive)
neighbors of a subset S of vertices in the graph G by NG(S). We need the notion of a
tree decomposition.

Definition 1 Let G = (V , E) be a graph. A pair (τ, χ), where τ is a tree and χ :
V (τ ) → 2V is a mapping of the nodes of the tree to subsets of vertices of the graph,
is a tree decomposition of G if the following conditions hold:

(i) ∪t∈V (τ )χ(t) = V ,
(ii) for every edge e = uv ∈ E , there exists some t ∈ V (τ ) such that u, v ∈ χ(t),

and
(iii) for every v ∈ V , the set of nodes {t ∈ V (τ ) : v ∈ χ(t)} induces a connected

subtree of τ .

For each t ∈ V (τ ), we call χ(t) to be a bag of the tree decomposition.

We now describe certain notations that will be helpful while working with the tree
decomposition. Let (τ, χ) be the tree decomposition of the graph G = (V , E). We
root τ at an arbitrary node � ∈ V (τ ). For a tree node t ∈ V (τ )\{�}, there is a unique
edge between t and its parent. Removing this edge disconnects τ into two subtrees τ1
and τ2, and we say that the set At := χ(τ1) ∩ χ(τ2) is the adhesion associated with
t . For the root node �, we define A� := ∅. For a tree node t ∈ V (τ ), we denote the
subgraph induced by all vertices in bags descending from t as Gt (here, the node t is
considered to be a descendant of itself), i.e.,

Gt := G

[
⋃

t ′ is a descendant of t
χ(t ′)

]

.

We need the notions of compactness and edge-unbreakability.
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Definition 2 A tree decomposition (τ, χ) of a graph G is compact if for every tree
node t ∈ V (τ ), the set of vertices V (Gt )\At induces a connected subgraph in G and
NG(V (Gt )\At ) = At .

Definition 3 Let G = (V , E) be a graph and let S ⊆ V . The subset S is (a, b)-edge-
unbreakable if for every nonempty proper subset S′ of V satisfying |E[S′, V \S′]| ≤ b,
we have that either |S ∩ S′| ≤ a or |S\S′| ≤ a.

Informally, a subset S is (a, b)-edge-unbreakable if every non-trivial 2-partition of V
either has large cut value or one side of the partition has small intersection with S.
With these definitions, we have the following result from [23].

Lemma 1 [23,Theorem 4.1] There exists an algorithm that takes a n-vertex m-edge
graph G = (V , E), an integer k ≥ 2, and an integer λ as input, runs in time
poly(n, λ) + O(m), and returns a compact tree decomposition (τ, χ) of G such that

(i) each adhesion has size at most λk, and
(ii) for every tree node t ∈ V (τ ), the bag χ(t) is ((λk + 1)5, λk)-edge-unbreakable.

We observe that since Lemma 1 runs in polynomial time, the size of τ is necessarily
polynomial in the input size. Next, we need the notion of α-respecting partitions.

Definition 4 Let G = (V , E) be a graph and G ′ be a subgraph of G. A partition P of
V α-respects G ′ if |δG ′(P)| ≤ α.

The following lemma will help us find a family of spanning trees of a given graph
such that there exists an optimum k-partition that (2k2)-respects some spanning tree
in the family. The lemma follows from Lemma 4.3 in [6].

Lemma 2 [6] Let G be a graph with optimum Minsum k-cut value OPTms. There
exists a polynomial time algorithm that takes the graph G as input and returns a
polynomial-sized family of spanning trees of G such that for each k-partition Π with
|δG(Π)| ≤ αOPTms, there exists a spanning tree T in the family with the property
that Π (2αk)-respects T .

We recall the observation that an optimum solution to Minmax k-cut is a k-
approximate optimum solution to Minsum k-cut. Hence, we have the following
corollary from Lemma 2.

Corollary 1 There exists a polynomial time algorithm that takes a graph G as input
and returns a polynomial-sized family of spanning trees of G such that there exists
an optimum min-max k-partition Π that (2k2)-respects some spanning tree T in the
family.

We will frequently work with refinements and coarsenings of partitions and also
restrictions of partitions to subsets.

Definition 5 Let G = (V , E) be a graph, S ⊆ V be a subset of vertices, and k ≥ 2 be
an integer.
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1. LetQ be a partition/k-subpartition of S. A partition/k-subpartitionP of S coarsens
Q if each part of P is a union of parts of Q.

2. Let P be a partition/k-subpartition of S. A partition/k-subpartition Q of S refines
P if each part of P is a union of parts of Q.

3. Let P be a partition/k-subpartition of V . A partition/k-subpartition P ′ of S is a
restriction of P to S if for every u, v ∈ S, u and v are in the same part of P ′ if
and only if they are in the same part of P .

We note that we consider partitions/k-subpartitions as ordered tuples, and a restriction
of a partition/k-subpartitionP to a subset S is a reordering of the tuple obtained by tak-
ing the intersection of each part in P with S. Consequently, a partition/k-subpartition
P can have multiple restrictions to a subset S. The following definition allows us to
handle partitions of subsets that are crossed by a spanning tree at most 2k2 times.

Definition 6 Let G = (V , E) be a graph, T be a spanning tree of G, and X ⊆ V . A
partition P of X is T -feasible if there exists a partition P ′ of V such that

(i) P is a restriction of P ′ to X and
(ii) P ′ (2k2)-respects T .

Moreover, a k-subpartition P ′ of X is T -feasible if the partition obtained from P ′ by
discarding the empty parts of P ′ is T -feasible.

The next definition and the subsequent lemmas will show a convenient way to work
with T -respecting partitions of a subset X of vertices, where T is a spanning tree.

Definition 7 Let G = (V , E) be a graph, T be a spanning tree of G, and X ⊆ V . The
graph proj(T , X) is the tree obtained from T by

1. repeatedly removing leaves of T that are not in X until there is none, and
2. for every path in T all of whose internal vertices are of degree 2 and are in V \ X ,

contract this path, i.e. replace each such path with a single edge, until there is none.

Observation 1 Every vertex of proj(T , X) that is not in X has degree at least 3 in
proj(T , X). Consequently, the number of vertices in proj(T , X) is O(|X |).

The next lemma gives a convenient way to work with T -feasible partitions of
subsets of vertices. It is adapted and simplified from [23]. We give a proof for the sake
of completeness. Throughout thiswork,weuse tilde to indicate partitions/subpartitions
of supersets of current sets of interest.

Lemma 3 Let G = (V , E) be a graph and T be a spanning tree of G.

1. For a subset X ⊆ V (G) and a partitionP of G, ifPX is a restriction ofP to X, then
there exists a partition P̃ of the vertices of proj(T , X) such that |δproj(T ,X)(P̃)| ≤
|δT (P)| and PX is a restriction of P̃ to X.

2. For a subset X ⊆ V and a partition P̃ of the vertices of proj(T , X), if P̃X is a
restriction of P̃ to X, then there exists a partition P of V (G) such that |δT (P)| ≤
|δproj(T ,X)(P̃)| and P̃X is a restriction of P to X.
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Proof Wewill start by proving the first statement. Let X ⊆ V (G) and P be fixed as in
the first statement. We will construct P̃ by constructing δproj(T ,X)(P̃) as follows. For
each edge e ∈ δT (P), if e remains in proj(T , X), then include e into δproj(T ,X)(P̃); if e is
removed as part of a path that is replacedwith an edge e′ ∈ E(proj(T , X)), then include
e′ into δproj(T ,X)(P̃). By doing this, we can guarantee that |δproj(T ,X)(P̃)| ≤ |δT (P)|.

To see that δ(P̃) indeed yields a partition whose restriction to X is PX ,
we claim that the partition P̃ ′ whose parts are the connected components of
proj(T , X)\δproj(T ,X)(P̃), when restricted to X , refines PX . For every pair of ver-
tices u, v ∈ X that are in different parts of PX , we know u and v are also in different
parts of P . This means some edge e on the unique path in T between u and v is in
δT (P). By construction of δproj(T ,X)(P̃), either e is contained in δproj(T ,X)(P̃), or e′
which replaces a path containing e is contained in δproj(T ,X)(P̃). In either case, the
unique path in proj(T , X) between u and v is disconnected. This proves our claim.
To construct P̃ from δproj(T ,X)(P̃), we can group parts of P̃ ′ together as necessary to
complywithPX because P̃ ′ refinesPX . This completes the proof of the first statement.

The proof of the second statement is similar to the preceding proof. Let X ⊆ V
and P̃ be fixed as in the second statement. We start by constructing the edge set
δT (P). For each edge e ∈ δproj(T ,X)(P̃), if e is originally an edge of T , then include
e into δT (P); if e is introduced to replace a path in T , then fix an arbitrary edge
e′ in this path and include e′ into δT (P). By doing this, clearly we can guarantee
|δT (P)| ≤ |δproj(T ,X)(P̃)|.

By the same argument as in proof of the first statement,we can see that the connected
components of T \δT (P) yields a partition that, when restricted to X , refines P̃X .
Combining parts as necessary, we obtain a desired partition P . This completes the
proof of the second statement. ��

3 Fixed-parameter algorithm parameterized by k and solution size

In this section we prove Theorem 4. Let (G = (V , E), k) be the input instance of
Minmax k-cutwith n vertices. The input graphG could possibly have parallel edges.
The following will be the main theorem of this section.

Theorem 4 There exists an algorithm that takes as input an n-vertex m-edge
unweighted connected graph G = (V , E) and an integer k ≥ 2, along with an integer
λ, and runs in time (kλ)O(k2)nO(1) + O(m) to determine if there exists a k-partition
(V1, . . . , Vk) of V such that costG(V1, . . . , Vk) ≤ λ and if so, returns an optimum
partition for Minmax k-cut on G.

We now complete the Proof of Theorem 3 using Theorem 4.

Theorem 3 There exists an algorithm that takes as input an unweighted instance G =
(V , E) of Minmax k-cut, namely an n-vertex m-edge graph G = (V , E) and an
integer k ≥ 2, along with an integer λ and runs in time (kλ)O(k2)nO(1) + O(km) to
determine if there exists a k-partition (V1, . . . , Vk) of V such that costG(V1, . . . , Vk) ≤
λ and if so, returns an optimum partition for Minmax k-cut on G.
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Proof If G is connected, then this follows from Theorem 4. For the rest of the proof,
we assume that G is disconnected. We note that in a disconnected graph, it is not
guaranteed that each part in an optimum solution of Minmax k-cut is contained
within a single connected component (see one such example in Fig. 2). So, we need
to address disconnected instances with a little more care.

Let C1,C2, . . . ,Ct be the connected components in G. We may assume that t < k,
since OPT(G, k) = 0 otherwise. We construct a connected graph H = (V , E ′) with
the same vertex set V as follows:

1. For each edge e ∈ E , we add t parallel edges between the end vertices of e and
2. we add t − 1 arbitrary edges between the components C1,C2, . . . ,Ct so that H

becomes connected.

We run the algorithm from Theorem 4 on the instance (H , k, k(λ + 1)) and return its
output.

We now analyze the run-time of the algorithm. The graph H can be constructed
in time O(km). The run-time of the algorithm from Theorem 4 on the instance
(H , k, k(λ+1)) is (k2(λ+1))O(k2)nO(1) +O(km) = (kλ)O(k2)nO(1) +O(km). Hence,
the overall run-time is (kλ)O(k2)nO(1) + O(km).

Next, we prove the correctness of the algorithm. Suppose that there exists a k-
partition of V such that costG(V1, . . . , Vk) ≤ λ. We need to show that the algorithm
from Theorem 4 on the instance (H , k, k(λ+1)) indeed returns YES and the partition
(V1, . . . , Vk) returned by the algorithm is in fact an optimum k-partition in G.

Let (P1, . . . , Pk) be a k-partition of V that corresponds to an optimum Minmax
k-cut in G. Then, we have that for each i ∈ [k],

|δH (Pi )| ≤ t |δG(Pi )| + t − 1 ≤ tOPT(G, k) + t − 1.

Consequently,

OPT(H , k) ≤ tOPT(G, k) + t − 1. (1)

In particular, OPT(H , k) ≤ tOPT(G, k)+ t−1) ≤ t(OPT(G, k)+1) < k(λ+1) and
hence, the algorithm from Theorem 4 on the instance (H , k, k(λ + 1)) indeed returns
YES.

Next, let (Q1, . . . , Qk) be the optimum k-partition in H that is returned by the
algorithm from Theorem 4 on the instance (H , k, k(λ + 1)). Then,

OPT(H , k) ≥ |δH (Qi )| ≥ t |δG(Qi )|.

This implies that for every i ∈ [k],

|δG(Qi )| ≤ 1

t
OPT(H , k) ≤ 1

t
(tOPT(G, k) + t − 1) = OPT(G, k) + t − 1

t
.
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The second inequality above is by using inequality (1). As a consequence, we have
that

max
i∈[k] |δG(Qi )| ≤ OPT(G, k) + t − 1

t
.

Since maxi∈[k] |δG(Qi )| and OPT(G, k) are both integral, we conclude that maxi∈[k]
|δG(Qi )| = OPT(G, k) and hence, the k-partition (Q1, . . . , Qk) is an optimumMin-
max k-cut in G. ��

The rest of the section will be devoted to proving Theorem 4. For this purpose, we
assume thatG is connected. LetOPT = OPT(G, k) (i.e., OPT is the optimumobjective
value of Minmax k-cut on inputG) and let λ be the input such that λ ≥ OPT.Wewill
design a dynamic programming algorithm that runs in time (λk)O(k2)nO(1) +O(m) to
compute OPT.

Given the input, we first use Lemma 1 to obtain a tree decomposition (τ, χ) of
G satisfying the conditions of the lemma. Since the algorithm in the lemma runs in
polynomial time, the size of the tree decomposition (τ, χ) is polynomial in the input
size. Next, we use Corollary 1 to obtain a polynomial-sized family of spanning trees
such that there exists an optimum min-max k-partition Ω of V that (2k2)-respects
a spanning tree T in the family, and moreover T is a subgraph of G. The rest of
our algorithm would iterate over each spanning tree in the family. In the rest of this
section, we fix a spanning tree T such that there exists an optimummin-max k-partition
Ω = (Ω1, . . . ,Ωk) of V that (2k2)-respects T . We fix the tree decomposition (τ, χ),
the spanning tree T , and the optimum solution Ω with these choices in the rest of
this section. We note that Ωi �= ∅ for all i ∈ [k] and maxi∈[k] |δG(Ωi )| = OPT. We
emphasize that the choice of Ω is fixed only for the purposes of the correctness of
the algorithm and is not known to the algorithm explicitly. We will preprocess the
graph G (that possibly has parallel edges) in O(m + n2) time to compute the number
of edges between every pair of vertices; this information will suffice to compute the
graph cut function value for a given set in time nO(1). The rest of our algorithm can
be implemented with access to the graph cut function oracle and will run in time
(λk)O(k2)nO(1).

Our algorithm is based ondynamic program (DP).Wewill describe the subproblems
of the DP in Sect. 3.1. We will need the notion of a nice decomposition of the bags
corresponding to the tree decomposition. We describe this notion in Sect. 3.2 and give
an algorithm to generate them in Sect. 3.4. We will show the recursion to solve the
dynamic program in Sect. 3.3. We encourage the reader to trace towards the base case
of the dynamic program on first read.

3.1 Subproblems of the DP

In this section, we state the subproblems in our dynamic program (DP), bound the
number of subproblems in the DP, and prove Theorem 4. For a tree node t ∈ V (τ ),
let F At be the collection of partitions of the adhesion At that are (i) T -feasible and
(ii) have at most k parts. We emphasize that elements of FAt are of the form PAt =
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(P̃1, . . . , P̃k′) for some k′ ∈ {0, 1, . . . , k}, where P̃i �= ∅ for all i ∈ [k′]. The following
lemma bounds the size of F At , which in turn, will be helpful in bounding the number
of subproblems to be solved in our dynamic program.

Lemma 4 For every tree node t ∈ V (τ ), we have |F At | = (λk)O(k2). Moreover, the
collection F At can be enumerated in (λk)O(k2) time.

Proof First we claim that a partition PAt of At is T -feasible if and only if it is
proj(T , At )-feasible.

Assume a partitionPAt of At is T -feasible, realized by a partitionP of V . It follows
that |δT (P)| ≤ 2k2. By Lemma 3, there exists a partition P̃ of proj(T , At ) such that
|δproj(T ,At )(P̃)| ≤ 2k2 and PAt is a restriction of P̃ to At . This is equivalent to saying
PAt is proj(T , At )-feasible.

The other direction is similar. If a partition PAt of At is proj(T , At )-feasible, real-
ized by a partition P̃ of V (proj(T , At )), it follows that |δproj(T ,At )(P̃)| ≤ 2k2. By
Lemma 3 there exists a partition P of G such that |δT (P)| ≤ 2k2 and PAt is a
restriction of P to At . Hence PAt is T -feasible.

It remains to bound the number of proj(T , At )-feasible partitions of At . By Obser-
vation 1, the size of proj(T , At ) is O(λk). We notice that partitions with at most k
parts that 2k2-respect proj(T , At ) can be enumerated by removing up to 2k2 edges of
proj(T , At ), and putting the resulting connected components (there are at most 2k2+1
of them) into k bins. Therefore, combining the previous observation, we conclude that

|F At | = O(λk)2k
2 · k2k2+1 = (λk)O(k2).

Moreover, the time required to computeF At (by enumerating all eligible partitions as
above) is also (λk)O(k2). ��

The following definition will be useful in identifying the subproblems of the DP.

Definition 8 Let t ∈ V (τ ) be a tree node, and ft : F At × {0, 1, . . . , λ}k ×
{0, 1, . . . , 2k2} → {0, 1} be a Boolean function.

1. (Correctness) The function ft is f -correct if we have ft (PAt , x̄, d) = 1 for
all PAt = (P̃1, . . . , P̃k′) ∈ F At , x̄ = (x1, . . . , xk) ∈ {0, 1, . . . , λ}k , and d ∈
{0, 1, . . . , 2k2} for which there exists a k-subpartitionP = (P ′

1, . . . , P
′
k) of V (Gt )

satisfying the following conditions:

(i) P ′
i ∩ At = P̃i for all i ∈ [k′],

(ii) |δGt (P
′
i )| = xi for all i ∈ [k],

(iii) |δT (P)| ≤ d, and
(iv) P is a restriction of Ω to V (Gt ).

A k-subpartition of V (Gt ) satisfying the above four conditions is said to witness
f -correctness of ft (PAt , x̄, d).

2. (Soundness) The function ft is f -correct if for all PAt = (P̃1, . . . , P̃k′) ∈
F At , x̄ = (x1, . . . , xk) ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, we have
ft (PAt , x̄, d) = 1 only if there exists a k-subpartitionP = (P ′

1, . . . , P
′
k) of V (Gt )

123



K. Chandrasekaran, W. Wang

satisfying conditions (i), (ii) and (iii) above. A k-subpartition of V (Gt ) satisfying
(i), (ii) and (iii) is said to witness f -soundness of ft (PAt , x̄, d).

We emphasize the distinction between correctness and soundness: correctness relies
on all four conditions while soundness relies only on three conditions. Correctness
guarantees that the function value of ft is set to be 1 on inputs obtained by restricting
Ω , and soundness guarantees that a partition of V (not necessarily Ω) that satisfies
(i), (ii) and (iii) indeed exists when ft is set to 1. We discuss the need for distinct
correctness and soundness definitions after Lemma 6.

The next proposition shows that an f -correct and f -sound function for the root
node of the tree decomposition can be used to recover the optimum value.

Proposition 1 If we have a function f� : F A� × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} →
{0, 1} that is both f -correct and f -sound, where� is the root of the tree decomposition
τ , then

OPT = min

{

max
i∈[k]{xi } : f�(P∅, x̄, 2k2) = 1, x̄ = (x1, . . . , xk) ∈ [λ]k

}

,

where P∅ is the 0-tuple that denotes the trivial partition of A� = ∅.
Proof The optimum partition Ω is a k-subpartition of V = V (G�) that witnesses
f -correctness of f�(P∅, (|δG(Ω1)|, . . . , |δG(Ωk)|), 2k2). Hence, f�(P∅, (|δG(Ω1)|
, . . . , |δG(Ωk)|), 2k2) = 1, where |δG(Ωi )| ∈ [λ] for every i ∈ [k]. Consequently,

min

{

max
i∈[k]{xi } : f�(P∅, x̄, 2k2) = 1, x̄ ∈ [λ]k

}

≤ max
i∈[k]{|δG(Ωi )|} = OPT.

We now show the reverse inequality. Suppose that f�(P∅, x̄, 2k2) = 1 for some
x̄ ∈ [λ]k . Then there exists a k-subpartition P ′ of V witnessing f -soundness of
f�(P∅, x̄, 2k2). Since x̄ ∈ [λ]k , we know that xi ≥ 1 for every i ∈ [k]. Since G
is connected, this implies that each part of P ′ is non-empty. Therefore, P ′ is also a
k-partition of V and is hence, feasible for Minmax k-cut. This implies that

max
i∈[k]{xi } ≥ OPT. ��

By Proposition 1, it suffices to compute an f -correct and f -sound function f� ,
where � is the root of the tree decomposition τ . We will compute this in a bottom-up
fashion on the tree decomposition using the following lemma.

Lemma 5 There exists an algorithm that takes as input (τ, χ), a tree node t ∈ V (τ ),
Boolean functions ft ′ : F At ′ × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} for every
child t ′ of t in τ that are f -correct and f -sound, and runs in time (λk)O(k2)nO(1)

to return a function ft : F At × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} that is
f -correct and f -sound.

We now complete the proof of Theorem 4 using Lemma 5 and Proposition 1.
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Proof of Theorem 4 In order to compute a function f� : F A� × {0, 1, . . . , λ}k ×
{0, 1, . . . , 2k2} → {0, 1} that is both f -correct and f -sound, we can apply Lemma 5
on each tree node t ∈ V (τ ) in a bottom up fashion starting from the leaf nodes of the
tree decomposition. Therefore, using Lemmas 4 and 5, the total run time to compute
f� is

(λk)O(k2)nO(1) · |V (τ )| = (λk)O(k2)nO(1) · poly(n, λ, k) = (λk)O(k2)nO(1).

Using Proposition 1, we can compute OPT from the function f� . Consequently, the
total time to compute OPT is (λk)O(k2)nO(1). ��

Wewill prove Lemma 5 in the following subsections.We fix the tree node t ∈ V (τ )

for the rest of the subsections.

3.2 Nice decomposition

Weneed the notion of a nice decomposition that we define below.Our definition differs
from the notion of the nice decomposition defined by [23] in property (ii) below (we
use 4k2 + 1 while [23] use 2k − 1).

Definition 9 A nice decomposition of χ(t) is a triple (Pχ(t),Qχ(t), O) where Pχ(t)

andQχ(t) are partitions of χ(t),Qχ(t) refines Pχ(t), and O is either a part of Pχ(t) or
∅. Additionally, the following conditions need to be met:

(i) If O �= ∅, then O is a part of Qχ(t).
If O = ∅, then Pχ(t) has only one part.

(ii) For every part P of Pχ(t), P contains at most 4k2 + 1 parts of Qχ(t).
(iii) For every pair of distinct parts P, P ′ of Pχ(t) other than O , there are no edges

between P and P ′.
(iv) If t ′ ∈ V (τ ) is a child of t or t itself, then At ′ intersects with at most one part of

Pχ(t) other than O .

In order to compute an f -correct and f -sound function ft : F At × {0, 1, . . . , λ}k ×
{0, 1, . . . , 2k2} → {0, 1}, we will compute a familyD of nice decompositions of χ(t)
such that if there exists a k-subpartition Π of V (Gt ) that realizes f -correctness of
ft (PAt , x̄, d) for some PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then
there exists a nice decomposition (Pχ(t),Qχ(t), O) in D such that Qχ(t) refines a
restriction of Π to χ(t). A formal statement is given in Lemma 6.

Lemma 6 There exists an algorithm that takes as input the spanning tree T , the tree
decomposition (τ, χ), a tree node t ∈ V (τ ), and runs in time (λk)O(k2)nO(1) to return a
familyD of nice decompositions ofχ(t)with |D| = (λk)O(k2)nO(1). Additionally, if a k-
subpartitionΠ of V (Gt ) realizes f -correctness of ft (PAt , x̄, d) for somePAt ∈ F At ,
x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then D contains a nice decomposition
(Pχ(t),Qχ(t), O) where Qχ(t) refines a restriction of Π to χ(t).

We defer the Proof of Lemma 6 to Sect. 3.4.
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Wenowdiscuss the need for distinct definitions for correctness and soundness. If a k-
subpartitionΠ of V (Gt ) realizes f -correctness of ft (PAt , x̄, d) for somePAt ∈ F At ,
x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then Π is a restriction of the optimal
partition Ω to V (Gt ). The family D of nice decompositions then serves to provide
a partition Qχ(t) of χ(t) that refines a restriction of the optimal partition Ω to χ(t),
whichwill later be used to identify an optimal partition.We note that if a k-subpartition
Π of V (Gt ) only witnesses f -soundness of ft (PAt , x̄, d) for some PAt ∈ F At ,
x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then the family D is not guaranteed to
provide a refinement of a restriction of the k-subpartition Π to χ(t). This motivates
the two distinct definitions for correctness and soundness.

3.3 Computing an f-correct and f-sound function ft

In this section,wewill proveLemma5. For a fixed tree node t ∈ V (τ ), wewill describe
an algorithm to assign values to ft (PAt , x̄, d) for all PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k ,
and d ∈ {0, 1, . . . , 2k2} based on the value of ft ′(PAt ′ , ᾱ, β) for all children t ′ of t ,
and all PAt ′ ∈ F At ′ , ᾱ ∈ {0, 1, . . . , λ}k , and β ∈ {0, 1, . . . , 2k2} so that the resulting
function ft is f -correct and f -sound.

For the fixed t ∈ V (τ ), we use Lemma 6 to obtain a family D of nice decompo-
sitions of χ(t). Our plan to compute the function ft involves working with each nice
decomposition D ∈ D. The following definition will be helpful to achieve our goal of
computing the function ft .

Definition 10 Let D := (Pχ(t),Qχ(t), O) ∈ D, and r D : F At × [λ]k ×
{0, 1, . . . , 2k2} → {0, 1} be a Boolean function.

1. (Correctness) The function r D is r -correct if we have r D(PAt , x̄, d) = 1 for
all PAt = (P̃1, . . . , P̃k′) ∈ F At , x̄ = (x1, . . . , xk) ∈ {0, 1, . . . , λ}k and d ∈
{0, 1, . . . , 2k2} for which there exists a k-subpartitionP = (P ′

1, . . . , P
′
k) of V (Gt )

satisfying the following conditions:

(i) P ′
i ∩ At = P̃i for all i ∈ [k′],

(ii) |δGt (P
′
i )| = xi for all i ∈ [k],

(iii) |δT (P)| ≤ d,
(iv) Qχ(t) refines P restricted to χ(t), and
(v) P is a restriction of Ω to V (Gt ).

A k-subpartition of V (Gt ) satisfying the above five conditions is said to witness
r -correctness of r D(PAt , x̄, d).

2. (Soundness) The function r D is r -correct if for all PAt = (P̃1, . . . , P̃k′) ∈
F At , x̄ = (x1, . . . , xk) ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, we have
r D(PAt , x̄, d) = 1 only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of

V (Gt ) satisfying conditions (i), (ii), (iii) and (iv) above. A k-subpartition of V (Gt )

satisfying (i), (ii), (iii) and (iv) is said to witness r -soundness of r D(PAt , x̄, d).

We note that the only difference between r -correctness/r -soundness and f -
correctness/ f -soundness is that r -correctness/r -soundness has the additional condi-

123



Fixed parameter approximation scheme…

tion (iv). The next proposition shows that r -correct and r -sound functions can be used
to recover an f -correct and f -correct function.

Proposition 2 Suppose that we have functions r D : F At × [λ]k × {0, 1, . . . , 2k2} →
{0, 1} for every D ∈ D such that all of them are both r-correct and r-sound. Then,
the function ft obtained by setting

ft (PAt , x̄, d) := max{r D(PAt , x̄, d) : D ∈ D}

for every PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2} is both f -correct
and f -sound.

Proof We first show f -correctness. For PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and
d ∈ {0, 1, . . . , 2k2}, suppose that there exists a k-subpartition Π of V (Gt ) wit-
nessing f -correctness of ft (PAt , x̄, d). By Lemma 6, we know that D contains a
nice decomposition D∗ = (P∗

χ(t),Q∗
χ(t), O

∗) such that Q∗
χ(t) refines Π restricted to

χ(t). Then by r -correctness of r D
∗
, we know that r D

∗
(PAt , x̄, d) = 1. This implies

ft (PAt , x̄, d) = 1.
Next we show f -soundness. Suppose that ft (PAt , x̄, d) = 1 for some PAt ∈ F At ,

x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}. Then, there exists D ∈ D such that
r D(PAt , x̄, d) = 1. By r -soundness of the function r D , there exists a k-subpartition
Π ′ of V (Gt ) witnessing r -soundness of r D(PAt , x̄, d). It follows by definition of r D

and f that Π ′ also witnesses f -soundness of ft (PAt , x̄, d). ��
Our goal now is to compute an r -correct and r -sound function r D for each D ∈ D.

Lemma 7 There exists an algorithm that takes as input (τ, χ), a tree node t ∈ V (τ ),
a nice decomposition D = (Pχ(t),Qχ(t), O) ∈ D, together with Boolean functions
ft ′ : F At ′ × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} for every child t ′ of t that
are f -correct and f -sound, and runs in time (λk)O(k2)nO(1) to return a function r D :
F At × [λ]k × {0, 1, . . . , 2k2} → {0, 1} that is r-correct and r-sound.

We now use Lemma 7 to complete the proof of Lemma 5.

Proof of Lemma 5 Using Lemma 6, we compute a familyD of nice decompositions in
time (λk)O(k2)nO(1), where |D| = (λk)O(k2)nO(1). For each D ∈ D, we use Lemma 7
to compute a function r D : F At × [λ]k × {0, 1, . . . , 2k2} → {0, 1} that is both r -
correct and r -sound in time (λk)O(k2)nO(1). Finally, we use Proposition 2 to compute
the desired function ft that is both f -correct and f -sound. The total run-time is

(λk)O(k2)nO(1) + (λk)O(k2)nO(1) · (λk)O(k2)nO(1) = (λk)O(k2)nO(1). ��

The rest of the section is devoted to proving Lemma 7. We fix the inputs spec-
ified in Lemma 7 for the rest of this section. In particular, we additionally fix
D = (Pχ(t),Qχ(t), O) ∈ D.

Notation. Let Pχ(t) = (P1, . . . , Pp, O). If O = ∅, we will abuse notation and use
Pχ(t) to refer to the partition of χ(t) containing only one part, namely Pχ(t) = (P1).
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We note that p ≤ n since D is a nice decomposition.We define P≤� := ∪�
i=1Pi , where

� ∈ {0, 1, . . . , p}. We will use P≤0 := ∅. We specially define P0 := O for indexing
convenience. For every � ∈ {0, 1, . . . , p}, we define A(�) to be the set of children of
t whose adhesion is contained in O ∪ P� and intersects P�, i.e.,

A(�) := {t ′ ∈ V (τ ) : t ′ is a child of t, At ′ ⊆ O ∪ P�, At ′ ∩ P� �= ∅}.

Moreover, let A(�) := {t1, t2, ..., t|A(�)|}. For each � ∈ {0, 1, . . . , p} and a ∈
{0, 1, . . . , |A(�)|}, let

G≤(�, a) := G

⎡

⎣O ∪ P� ∪
⋃

1≤i≤a

V (Gti )

⎤

⎦ ,

G(�) := G

⎡

⎣O ∪ P� ∪
⋃

t ′∈A(�)

V (Gt ′)

⎤

⎦ , and

G≤(�) := G

⎡

⎣
⋃

0≤i≤�

V (G(i))

⎤

⎦ .

These subgraphs are illustrated in Figs. 3, 4, and 5. In order to compute an r -correct
and r -sound function r D , we will employ new sub-problems that we define below.

Definition 11 Let gD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] →
{0, 1} be a Boolean function, where D = (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O) ∈ D
and PAt = (P̃1, . . . , P̃k′) ∈ F At .

1. (Correctness) The function gD,PAt is g-correct if we have gD,PAt (�, d, ȳ, q) = 1
for all � ∈ {0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k

Fig. 3 An example of G≤(�, a). Here the regions enclosed by dashed lines represent V (Gt ′ ), where t ′ runs
overA(�). The region enclosed by the dotted line is G≤(�, a)
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Fig. 4 An example of G(�). Here the regions enclosed by dashed lines represent V (Gt ′ ), where t ′ runs
over children of t . The region enclosed by the dotted line is G(�)

Fig. 5 An example of G≤(�). Here the regions enclosed by dashed lines represent V (Gt ′ ), where t ′ runs
over children of t . The region enclosed by the dotted line is G≤(�)

and q ∈ [k] for which there exists a k-subpartitionP = (P ′
1, . . . , P

′
k) of V (G≤(�))

satisfying the following conditions:

(i) P restricted to O ∪ P≤� is a coarsening of Qχ(t) restricted to O ∪ P≤�,
(ii) |δG≤(�)(P ′

i )| = yi for all i ∈ [k],
(iii) |δT (P)| ≤ d,
(iv) O ⊆ P ′

q ,

(v) if At ⊆ O ∪ P≤�, then P ′
i ∩ At = P̃i , for all i ∈ [k′], and

(vi) P is a restriction of Ω to V (G≤(�)).

A k-subpartition of V (G≤(�)) satisfying the above six conditions is said towitness
g-correctness of gD,PAt (�, d, ȳ, q).

2. (Soundness) The function gD,PAt is g-correct if for all � ∈ {0, 1, . . . , p}, d ∈
{0, 1, . . . , 2k2}, ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k and q ∈ [k], we have
gD,PAt (�, d, ȳ, q) = 1 only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of
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V (G≤(�)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. A k-subpartition
of V (G≤(�)) satisfying (i), (ii), (iii), (iv) and (v) is said to witness g-soundness of
gD,PAt (�, d, ȳ, q).

Definition 12 Let hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] →
{0, 1} be a Boolean function, where D ∈ D and PAt = (P̃1, . . . , P̃k′) ∈ F At .

1. (Correctness) The function h is h-correct if we have hD,PAt (�, d, ȳ, q) = 1 for
all � ∈ {0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k and
q ∈ [k] for which there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of V (G(�))

satisfying the following conditions:

(i) P restricted to O ∪ P� is a coarsening of Qχ(t) restricted to O ∪ P�,
(ii) |δG(�)(P ′

i )| = yi for all i ∈ [k],
(iii) |δT (P)| ≤ d,
(iv) O ⊆ P ′

q ,

(v) if At ⊆ O ∪ P�, then P ′
i ∩ At = P̃i , for all i ∈ [k′], and

(vi) P is a restriction of Ω to V (G(�)).

A k-subpartition of V (G(�)) satisfying the above six conditions is said to witness
h-correctness of hD,PAt (�, d, ȳ, q).

2. (Soundness) The function hD,PAt is h-correct if for all � ∈ {0, 1, . . . , p}, d ∈
{0, 1, . . . , 2k2}, ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k and q ∈ [k], we have
hD,PAt (�, d, ȳ, q) = 1 only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of

V (G(�)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. Such k-subpartition
P is said to witness h-soundness of hD,PAt (�, d, ȳ, q).

We note that the difference between gD,PAt and hD,PAt is that gD,PAt considers
G≤(�) and O ∪ P≤�, whereas hD,PAt considers G(�) and O ∪ P�. The following
proposition outlines how to compute a function r D that is both r -correct and r -sound
using functions gD,PAt for every PAt ∈ F At .

Proposition 3 Suppose thatwehave functions gD,PAt : {0, 1, . . . , p}×{0, 1, . . . , 2k2}
× {0, 1, . . . , λ}k × [k] → {0, 1} for every PAt ∈ F At such that all of them are both
g-correct and g-sound. Then, the function r D obtained by setting

r D(PAt , x̄, d) := max{gD,PAt (p, d, x̄, q) : q ∈ [k]}

for every PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2} is both r-correct
and r-sound.

Proof We first show r -correctness. For PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈
{0, 1, . . . , 2k2}, suppose that there exists a k-subpartition Π = (π1, . . . , πk) of
V (Gt ) witnessing r -correctness of r D(PAt , x̄, d). Then, there exists q ′ ∈ [k] such
that O ⊆ πq ′ by definition of D. It follows that Π also witnesses g-correctness of
gD,PAt (p, d, x̄, q ′), and hence gD,PAt (p, d, x̄, q ′) = 1 since the function gD,PAt is
g-correct. This implies that r D(PAt , x̄, d) = 1.

Next, we show r -soundness. Suppose that r D(PAt , x̄, d) = 1 for some PAt ∈
F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}. Then, there exists q ′ ∈ [k]
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such that gD,PAt (p, d, x̄, q ′) = 1. By g-soundness of the function gD,PAt , there
exists a k-subpartition Π ′ of V (G≤(p)) = V (Gt ) that witnesses g-soundness of
gD,PAt (p, d, x̄, q ′). It follows that Π ′ also witnesses r -soundness of r D(PAt , x̄, d).

��
Our goal now is to compute a function gD,PAt that is both g-correct and g-sound.

Lemma 8 There exists an algorithm that takes as input (τ, χ), a tree node t ∈ V (τ ),
a partition PAt ∈ F At , a nice decomposition (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O) ∈
D, together with Boolean functions ft ′ : F At ′ × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} →
{0, 1} for every child t ′ of t that are f -correct and f -sound, and runs in time
(λk)O(k2)nO(1) to return a function gD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} ×
{0, 1, . . . , λ}k × [k] → {0, 1} that is g-correct and g-sound.

Lemma 7 follows from Lemma 8 and Proposition 3. We will prove Lemma 8 in the
following subsections.

3.3.1 Computing gD,PAt assuming hD,PAt is available

In this section, for a given pair of D = (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O) ∈ D
and PAt ∈ F At , we will show how to construct a function gD,PAt : {0, 1, . . . , p} ×
{0, 1, . . . , 2k2}×{0, 1, . . . , λ}k×[k] → {0, 1} that is both g-correct and g-sound using
a function hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1}
that is h-correct and h-sound.

Lemma 9 There exists an algorithm that takes as input a partition PAt ∈ F At , a
nice decomposition D = (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O) ∈ D, together with a
Boolean function hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] →
{0, 1} that is h-correct and h-sound, and runs in time (λk)O(k2)nO(1) to return a function
gD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is g-
correct and g-sound.

Proof Let the inputs be fixed as in the lemma. We will iteratively assign values to
gD,PAt (�, d, w̄, q) for � = 0, 1, . . . , p.

For � = 0, we set gD,PAt (0, d, w̄, q) := hD,PAt (0, d, w̄, q) for every d ∈
{0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k]. We note O ∪ P≤0 = O ∪ P0 and
G≤(0) = G(0) by definition. Thus the definitions of g-correctness and h-correctness
coincide, and the definitions of g-soundness and h-soundness coincide when � = 0.

Now, we will assume that for some � ∈ [p], we have assigned values to gD,PAt (�−
1, d, w̄, q) for every d ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k] and describe
an algorithm to assign values to gD,PAt (�, d, w̄, q) for every d ∈ {0, 1, . . . , 2k2},
w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k].

Let

Y� := {
((� − 1, d1, ȳ, q1), (�, d2, z̄, q2)) :

d1, d2 ∈ {0, 1, . . . , 2k2}, ȳ, z̄ ∈ {0, 1, . . . , λ}k, q1, q2 ∈ [k],
gD,PAt (� − 1, d1, ȳ, q1) = 1, hD,PAt (�, d2, z̄, q2) = 1

}
.
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Here, Y� is the collection of pairs of inputs to gD,PAt and hD,PAt such that gD,PAt

evaluates to 1 on the first input and hD,PAt evaluates to 1 on the second input. For each
pair ((� − 1, d1, ȳ, q1), (�, d2, z̄, q2)) ∈ Y� and each pair of permutations σ1, σ2 :
[k] → [k] of permutations (i.e., bijections) satisfying the following conditions,

(G1) σ1(q1) = σ2(q2),
(G2) If At ⊆ O ∪ P�, then σ2(i) = i for all i ∈ [k′].
(G3) If At ⊆ O ∪ P≤�−1, then σ1(i) = i for all i ∈ [k′].
our algorithm will set gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)) = 1 for all d3 ≥ d1 + d2.
Here the notation σ1(ȳ) refers to the k-dimensional vector whose i th entry is y

σ−1
1 (i).

Finally, we set gD,PAt (�, d, w̄, q) = 0 for all d ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k
and q ∈ [k] for which the algorithm has not set the gD,PAt value so far.

We briefly mention the intuition behind conditions (G1), (G2), and (G3). The goal
of this algorithm is to merge a k-subpartition of G≤(� − 1) and a k-subpartition of
G(�) to get a k-subpartition of G≤(�). Permutations σ1 and σ2 together allow us to
merge the σ1(i)th part of the k-subpartition of G≤(� − 1) with the σ2(i)th part of the
k-subpartition of G(�) for each i ∈ [k]. However, the choice of σ1 and σ2 cannot be
arbitrary. Condition (G1) guarantees that the parts containing O are merged together.
Conditions (G3) guarantees condition (v) in Definition 11. Condition (G2) along with
(G3) guarantees that when At ⊆ O ∪ P�, the two parts containing the same part of
PAt from the two k-subpartitions are merged together. We describe this formally in
Algorithm 1.

Algorithm 1 Computing function gD,PAt

Set gD,PAt (0, d, w̄, q) = hD,PAt (0, d, w̄, q) for every d ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and
q ∈ [k].
for all � = 1, . . . , p do

for all pair ((� − 1, d1, ȳ, q1), (�, d2, z̄, q2)) ∈ Y� do
for all permutation pairs (σ1, σ2) satisfying (G1), (G2) and (G3) do

Set gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)) = 1 for all d3 ≥ d1 + d2.
end for

end for
For d3 ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k] such that gD,PAt (�, d3, w̄, q) is not yet set

to 1, set gD,PAt (�, d3, w̄, q) = 0.
end for

We first bound the run-time of the algorithm. The size of Y� is O(k6)λ2k for every
� ∈ [p]. We recall that p ≤ n. Thus, the run-time of the algorithm is

p · O(k6)λ2k · (k!)2O(k2) = (λk)O(k2)n.

We now prove the correctness of the algorithm by induction on �. We recall that we
have already proved the base case. We now prove the induction step.

By induction hypothesis, if there exists a k-subpartition of V (G≤(� − 1)) wit-
nessing g-correctness of gD,PAt (� − 1, d, w̄, q) for some d ∈ {0, 1, . . . , 2k2},
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w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k], then gD,PAt (� − 1, d, w̄, q) = 1. Furthermore,
if gD,PAt (� − 1, d, w̄, q) = 1 for some d ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and
q ∈ [k], then there exists a k-subpartition of V (G≤(� − 1)) witnessing g-soundness
of gD,PAt (� − 1, d, w̄, q).

Suppose that there exists a k-subpartition Q0 = (Q0
1, . . . , Q

0
k) of V (G≤(�))

witnessing g-correctness of gD,PAt (�, d, w̄, q) for some d ∈ {0, 1, . . . , 2k2}, w̄ ∈
{0, 1, . . . , λ}k and q ∈ [k]. We now show that the algorithm will correctly set
gD,PAt (�, d, w̄, q) = 1.

Let Q1 := (Q1
1, . . . , Q

1
k) and Q2 := (Q2

1, . . . , Q
2
k) be restrictions of Q0 to the

vertices ofG≤(�−1) andG(�), respectively, given by Q1
i := Q0

i ∩V (G≤(�−1)) and
Q2

i := Q0
i ∩V (G(�)) for every i ∈ [k]. It follows thatQ1 andQ2 are both restrictions

of Ω . We note that Q1 witnesses g-correctness of gD,PAt (� − 1, d1, ȳ, q), where
d1 := |δT (Q1)| and yi := |δG≤(�−1)(Q1

i )| for all i ∈ [k]. Furthermore, Q2 witnesses
h-correctness of hD,PAt (�, d2, z̄, q) where d2 := |δT (Q2)| and zi := |δG(�)(Q2

i )| for
all i ∈ [k]. We note that d1, d2 ∈ {0, 1, . . . , 2k2} and ȳ, z̄ ∈ {0, 1, . . . , λ}k since the
number of crossing edges in the subgraph is at most the number of crossing edges in
the graph G≤(�).

Consequently, the pair ((� − 1, d1, ȳ, q), (�, d2, z̄, q)) is present in Y�. We now
consider the case when σ1 and σ2 are both the identity permutation on [k], i.e., σ1(i) =
i = σ2(i) for every i ∈ [k]. These two permutations satisfy the conditions (G1), (G2),
and (G3). Moreover, since there are no edges between any two distinct parts among
P1, . . . , P� due to the nice decomposition property, and that no two of P1, . . . , P�

intersects the same adhesion of a child of t in τ (by property (iv) of Definition 9), we
know that d1 + d2 ≤ d and yi + zi = wi for each i ∈ [k]. This also implies that
σ1(ȳ) + σ2(z̄) = w̄. We also have that σ1(q) = q. Consequently, the algorithm will
set gD,PAt (�, d, w̄, q) to be 1.

Next suppose that ((� − 1, d1, ȳ, q1), (�, d2, z̄, q2)) ∈ Y� and let σ1, σ2 : [k] →
[k] be permutations satisfying conditions (G1), (G2), and (G3). Then, we will
exhibit a k-subpartition Q0 of the vertices of G≤(�) that witnesses g-soundness of
gD,PAt (�, d3, σ1(ȳ)+σ2(z̄), σ1(q1)) for every d3 ≥ d1+d2. LetQ1 := (Q1

1, . . . , Q
1
k)

and Q2 := (Q2
1, . . . , Q

2
k) be k-subpartitions of the vertices of G≤(� − 1) and G(�)

respectively, that witness g-soundness of gD,PAt (�−1, d1, ȳ, q1) and h-soundness of
hD,PAt (�, d1, z̄, q2), respectively.

Consider the k-subpartitionQ0 := (Q0
1, . . . , Q

0
k) of the vertices ofG≤(�) obtained

by setting Q0
i := Q1

σ−1
1 (i)

∪Q2
σ−1
2 (i)

. Let d3 ≥ d1+d2.Wewill show thatQ0 witnesses

g-soundness of gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)).
Since σ1(q1) = σ2(q2), we know that the parts containing O in Q1 and Q2, i.e.

Q1
q1 and Q2

q2 , are both in Q0
σ1(q1)

, thus proving condition (iv) needed to witness g-

soundness of gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)). As a consequence of the fact that
O ⊆ Q1

q1 and O ⊆ Q2
q2 , we obtain that Q0 is indeed a k-subpartition of the vertices

of G≤(�). Furthermore, the k-subpartitionQ0 restricted to O ∪ P≤� is a coarsening of
Qχ(t) restricted to O ∪ P≤�, thus proving condition (i) needed to witness g-soundness
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of gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)). By the nice decomposition property, there
are no edges between two distinct parts among P1, . . . , P�. Hence,

|δG≤(�)(Q
0
i )| = |δG≤(�−1)(Q

1
σ−1
1 (i)

)| + |δG(�)(Q
2
σ−1
2 (i)

)|
= y

σ−1
1 (i) + z

σ−1
2 (i) for all i ∈ [k], and

|δT (Q0)| = |δT (Q1)| + |δT (Q2)| ≤ d1 + d2,

thus proving conditions (ii) and (iii) needed to witness g-soundness of gD,PAt

(�, d3, σ1(ȳ) + σ2(z̄), σ1(q1)).
Suppose that At ⊆ O ∪ P�. Then, we know that σ2(i) = i for all i ∈ [k′]. We also

know that Q2
i ∩At = P̃i for all i ∈ [k′]. Therefore, P̃i ⊆ Q2

i ⊆ Q0
σ2(i)

= Q0
i for all i ∈

[k′]. Next, suppose that At ⊆ O∪P≤�. Then,we know thatσ1(i) = i and Q1
i ∩At = P̃i

for all i ∈ [k′]. Therefore, P̃i ⊆ Q1
i ⊆ Q0

σ1(i)
= Q0

i for all i ∈ [k′]. Hence, condition
(v) needed to witness g-soundness of gD,PAt (�, d3, σ1(ȳ)+σ2(z̄), σ1(q1)) also holds.
This shows that Q0 witnesses g-soundness of gD,PAt (�, d3, σ1(ȳ) + σ2(z̄), σ1(q1))
for all d3 ≥ d1 + d2. ��

3.3.2 Computing hD,PAt in leaf nodes of the tree decomposition

In this section we will describe an algorithm to compute an h-correct and h-sound
function hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1}
when t ∈ V (τ ) is a leaf node of τ . This corresponds to the base case of our dynamic
program. We note that this base case is also handled by our algorithm for computing
hD,PAt in non-leaf nodes given in Sect. 3.3.3. We include the base case explicitly as a
precursor which will help the reader understand the non-leaf case in the next section.

Lemma 10 If t ∈ V (τ ) is a leaf node of τ , then there exists an algorithm that
takes as input a partition PAt ∈ F At , a nice decomposition D = (Pχ(t) =
(P1, . . . , Pp, O),Qχ(t), O) ∈ D, and runs in time (λk)O(k2)nO(1) to return a func-
tion hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is
h-correct and h-sound.

Proof Let the input be fixed as in the lemma. We will iteratively assign values to
hD,PAt (�, d, w̄, q) for � = 0, 1, . . . , p.

Let � ∈ {0, 1, . . . , p}. By the definition of nice decomposition, we know that the
part P� containsO(k2) parts ofQχ(t). Hence, O∪ P� containsO(k2) parts fromQχ(t).

Hence, we can enumerate all kO(k2) k-subpartitions of O ∪ P� that coarsenQχ(t) and
explicitly verify if one of them satisfies the required conditions to witness h-soundness
of hD,PAt (�, d, ȳ, q). If so, then we set the corresponding hD,PAt (l, d, ȳ, q) = 1 and
otherwise set hD,PAt (l, d, ȳ, q) = 0. Thus, the time to compute hD,PAt (�, d, ȳ, q)

for all d ∈ {0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k] is

(2k2 + 1) · λk · k · kO(k2)nO(1) = (λk)O(k2)nO(1).
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In order to computehD,PAt (�, d, ȳ, q)for all � ∈ {0, 1, . . . , p},d ∈ {0, 1, . . . , 2k2},
ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k], the total time required is p(λk)O(k2)nO(1) =
(λk)O(k2)nO(1), since p ≤ n. The resulting function hD,PAt is h-sound as well as
h-correct by construction. ��

3.3.3 Computing hD,PAt in non-leaf nodes of the tree decomposition

In this section, we will describe an algorithm to compute a function hD,PAt :
{0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is h-correct and
h-sound when t is a non-leaf node of the tree decomposition τ .

Lemma 11 There exists an algorithm that takes as input (τ, χ), a non-leaf tree
node t ∈ V (τ ), a partition PAt ∈ F At , a nice decomposition D = (Pχ(t) =
(P1, . . . , Pp, O),Qχ(t), O) ∈ D, together with Boolean functions ft ′ : F At ′ ×
{0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} for each child t ′ of t that are f -correct and
f -sound, and runs in time (λk)O(k2)nO(1) to return a function hD,PAt : {0, 1, . . . , p}×
{0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is h-correct and h-sound.

Proof Given the inputs and an integer � ∈ {0, 1, . . . , p}, let us define R̃(D,PAt , �)

to be the set of k-subpartitions P = (P ′
1, . . . , P

′
k) of O ∪ P� that satisfy the following

conditions:

(i) P coarsens Qχ(t) restricted to O ∪ P�,
(ii) |δT (P)| ≤ 2k2, and
(iii) if At ⊆ O ∪ P�, then P ′

i ∩ At = P̃i for all i ∈ [k′].
Since every k-subpartition in R̃(D,PAt , �) necessarily coarsens Qχ(t), we have the

size bound |R̃(D,PAt , �)| = kO(k2) because O ∪ P� contains O(k2) parts of Qχ(t).
In order to compute an h-correct and h-sound function hD,PAt , we will employ a

new sub-problem that we define below.

Definition 13 LetμD,PAt ,� : {0, 1, ..., 2k2}×{0, 1, . . . , λ}k ×[k]× R̃(D,PAt , �) →
{0, 1} be a Boolean function, where D = (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O) ∈ D,
PAt = (P̃1, . . . , P̃k′) ∈ F At and � ∈ {0, 1, . . . , p}.
1. (Correctness)The functionμD,PAt ,� isμ-correct if we haveμD,PAt ,�(d, ȳ, q,R)

= 1 for all d ∈ {0, 1, . . . , 2k2}, ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k , q ∈ [k] and
R ∈ R̃(D,PAt , �) for which there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of

V (G(�)) satisfying the following conditions:

(i) P restricted to O ∪ P� isR,
(ii) |δG(�)(P ′

i )| = yi for all i ∈ [k],
(iii) |δT (P)| ≤ d,
(iv) O ⊆ P ′

q ,

(v) if At ⊆ O ∪ P�, then P ′
i ∩ At = P̃i for all i ∈ [k′], and

(vi) P is a restriction of Ω to V (G(�)).

A k-subpartition of V (G(�)) satisfying the above six conditions is said to witness
μ-correctness of μD,PAt ,�(d, ȳ, q,R).
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2. (Soundness) The function μD,PAt ,� is μ-correct if for all d ∈ {0, 1, . . . , 2k2},
ȳ = (y1, . . . , yk) ∈ {0, 1, . . . , λ}k , q ∈ [k] and R ∈ R̃(D,PAt , �), we have
μD,PAt ,�(d, ȳ, q,R) = 1 only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k)

of V (G(�)) satisfying conditions (i), (ii), (iii), (iv) and (v) above. A k-subpartition
of V (G(�)) satisfying (i), (ii), (iii), (iv) and (v) is said to witness μ-soundness of
μD,PAt ,�(d, ȳ, q,R).

A functionμD,PAt ,� that isμ-correct andμ-sound helps compute a function hD,PAt

that is h-correct and h-sound by the following proposition.

Proposition 4 Suppose that we have functions μD,PAt ,� : {0, 1, ..., 2k2} ×
{0, 1, . . . , λ}k × [k] × R̃(D,PAt , �) → {0, 1} for all � ∈ {0, 1, . . . , p} such that
all of them are μ-correct and μ-sound. Then the function hD,PAt : {0, 1, . . . , p} ×
{0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} obtained by setting

hD,PAt (�, d, ȳ, q) := max
{
μD,PAt ,�(d, ȳ, q,R) : R ∈ R̃(D,PAt , �)

}

for every � ∈ {0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k] is
both h-correct and h-sound.

Proof We first show h-correctness. For � ∈ {0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ ∈
{0, 1, . . . , λ}k andq ∈ [k], suppose that there exists a k-subpartitionΠ = (π1, . . . , πk)

of V (G(�)) withnessing h-correctness of hD,PAt (�, d, ȳ, q). Then, Π also witnesses
μ-correctness of μD,PAt ,�(d, ȳ, q,Π0), where Π0 = (π1 ∩ (O ∪ P�), . . . , πk ∩
(O ∪ P�)) ∈ R̃(D,PAt , �). We note that Π0 ∈ R̃(D,PAt , �) because the defini-
tion of hD,PAt guarantees the three conditions of R̃(D,PAt , �). Since the function
μD,PAt ,� is μ-correct, we know that μD,PAt ,�(d, ȳ, q,Π0) = 1. This implies that
hD,PAt (�, d, ȳ, q) = 1.

Next, we show h-soundness. Suppose that hD,PAt (�, d, ȳ, q) = 1 for some � ∈
{0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k]. It then follows
that there exists R′ ∈ R̃(D,PAt , �) such that μD,PAt ,�(d, ȳ, q,R′) = 1. Since the
function μD,PAt ,� is μ-sound, we know that there exists some k-subpartition Π ′ of
V (G(�)) witnessing μ-soundness of μD,PAt ,�(d, ȳ, q,R′). It follows that Π ′ also
witnesses h-soundness of hD,PAt (�, d, ȳ, q). ��

By the above proposition, it suffices to assign values to μD,PAt ,�(d, ȳ, q,R) for
every � ∈ {0, 1, . . . , p}, R ∈ R̃(D,PAt , �), d ∈ {0, 1, . . . , 2k2} ȳ ∈ {0, 1, . . . , λ}k ,
and q ∈ [k] so that the resulting function is μ-correct and μ-sound. We define another
sub-problem.

Definition 14 Let νD,PAt ,�,R : {0, 1, . . . , 2k2}×{0, 1, . . . , |A(�)|}×{0, 1, . . . , λ}k×
[k] → {0, 1} be aBoolean function,where D = (Pχ(t) = (P1, . . . , Pp, O),Qχ(t), O)

∈ D, PAt = (P̃1, . . . , P̃k′) ∈ F At , � ∈ {0, 1, . . . , p} and R = (R1, . . . , Rk) ∈
R̃(D,PAt , �).

1. (Correctness)The function νD,PAt ,�,R is ν-correct if we have νD,PAt ,�,R(d, a, z̄,
q) = 1 for all d ∈ {0, 1, . . . , 2k2}, a ∈ {0, 1, ..., |A(�)|}, z̄ = (z1, . . . , zk) ∈
{0, 1, . . . , λ}k and q ∈ [k] for which there exists a k-subpartition P =
(P ′

1, . . . , P
′
k) of V (G≤(�, a)) satisfying the following conditions:
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(i) P ′
i ∩ (O ∪ P�) = Ri for all i ∈ [k],

(ii) |δG≤(�,a)(P ′
i )| = zi for all i ∈ [k],

(iii) |δT (P)| ≤ d,
(iv) O ⊆ P ′

q , and
(v) P is a restriction of Ω to V (G≤(�, a)).

A k-subpartition of V (G≤(�, a)) satisfying the above five conditions is said to
witness ν-correctness of νD,PAt ,�,R(d, a, z̄, q).

2. (Soundness) The function νD,PAt ,�,R is ν-sound if for all d ∈ {0, 1, . . . , 2k2},
a ∈ {0, 1, ..., |A(�)|}, z̄ = (z1, . . . , zk) ∈ {0, 1, . . . , λ}k and q ∈ [k], we have
νD,PAt ,�,R(d, a, z̄, q) = 1 only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k)

of V (G≤(�)) satisfying conditions (i), (ii), (iii) and (iv) above. A k-subpartition
of V (G≤(�, a)) satisfying (i), (ii), (iii) and (iv) is said to witness ν-soundness of
νD,PAt ,�,R(d, a, z̄, q).

A function νD,PAt ,�,R : {0, 1, . . . , 2k2} × {0, 1, ..., |A(�)|} × {0, 1, . . . , λ}k ×
[k] → {0, 1} that is ν-correct and ν-sound helps compute a function μD,PAt ,� :
{0, 1, ..., 2k2}×{0, 1, . . . , λ}k ×[k]×R̃(D,PAt , �) → {0, 1} that isμ-correct andμ-
sound by the following observation. As a side note, wemention that setting |A(�)| = 0
resolves the base case of t being a leaf node.

Observation 2 Suppose that we have functions νD,PAt ,�,R : {0, 1, . . . , 2k2} ×
{0, 1, . . . , |A(�)|} × {0, 1, . . . , λ}k × [k] → {0, 1} for every R ∈ R̃(D,PAt , �)

such that all of them are ν-correct and ν-sound. Then the function μD,PAt ,� :
{0, 1, ..., 2k2} × {0, 1, . . . , λ}k × [k] × R̃(D,PAt , �) → {0, 1} obtained by setting

μD,PAt ,�(d, ȳ, q,R) := νD,PAt ,�,R(d, |A(�)|, ȳ, q)

for every d ∈ {0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k , q ∈ [k] and R ∈ R̃(D,PAt , �) is
both μ-correct and μ-sound.

We note that a function νD,PAt ,�,R : {0, 1, . . . , 2k2} × {0, 1, . . . , |A(�)|} ×
{0, 1, . . . , λ}k × [k] → {0, 1} that is ν-correct and ν-sound can be computed in
(λk)O(k2) time using Lemma 12, which we state and prove after this proof.

Our algorithm to prove Lemma 11 starts by computing R̃(D,PAt , �) for every

� ∈ {0, 1, . . . , p}, which can be done in kO(k2)n time (since the size of R̃(D,PAt , �) is

kO(k2) for every � ∈ {0, 1, . . . , p}). For each � ∈ {0, 1, . . . , p} andR ∈ R̃(D,PAt , �),
our algorithm assigns values to νD,PAt ,�,R(d, |A(�)|, ȳ, q) for all d ∈ {0, 1, . . . , 2k2},
ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k] using Lemma 12. The algorithms uses these val-
ues to next assign values to μD,PAt ,�(d, ȳ, q,R) for all � ∈ {0, 1, . . . , p}, d ∈
{0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k , q ∈ [k] and R ∈ R̃(D,PAt , �) using Obser-
vation 2. Finally, the algorithm uses these values to assign values to hD,PAt (�, d, ȳ, q)

for all � ∈ {0, 1, . . . , p}, d ∈ {0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k] using
Proposition 4. The resulting function hD,PAt is h-correct and h-sound.

The total time to compute hD,PAt (�, d, ȳ, q) for all � ∈ {0, 1, . . . , p}, d ∈
{0, 1, . . . , 2k2}, ȳ ∈ {0, 1, . . . , λ}k and q ∈ [k] is

(λk)O(k2)nO(1) + (p + 1) · |R̃(D,PAt , �)| · (λk)O(k2)nO(1) = (λk)O(k2)nO(1).
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This completes the Proof of Lemma 11. ��

Lemma 12 There exists an algorithm that takes as input (τ, χ), a non-leaf tree
node t ∈ V (τ ), a partition PAt ∈ F At , a nice decomposition D = (Pχ(t) =
(P1, . . . , Pp, O),Qχ(t), O) ∈ D, an integer � ∈ {0, 1, . . . , p}, a k-subpartition
R = (R1, . . . , Rk) ∈ R̃(D,PAt , �), together with Boolean functions ft ′ : F At ′ ×
{0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} for each child t ′ of t that are f -correct
and f -sound, and runs in (λk)O(k2)nO(1) time to return a function νD,PAt ,�,R :
{0, 1, . . . , 2k2} × {0, 1, ..., |A(�)|} × {0, 1, . . . , λ}k × [k] → {0, 1} that is ν-correct
and ν-sound.

Proof Let the input be as stated in the lemma. We will iteratively assign values to
νD,PAt ,�,R(d, a, z̄, q) for a = 0, 1, . . . , p.

For a = 0, we observe that in order to assign values to νD,PAt ,�,R(d, 0, z̄, q) for all
d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈ [k], the k-subpartition R is the only
k-subpartition of V (G≤(�, 0)) = O∪ Pl whose restriction to O∪ P� isR (i.e., it is the
only k-subpartition that can satisfy condition (i) in the definition of the νD,PAt ,�,R sub-
problem). Therefore, we set νD,PAt ,�,R(d, 0, z̄, q) = 1 if and only if R satisfies the
remaining ν-soundness conditions, which can be verified in nO(1) time. The run-time to
assign values to νD,PAt ,�,R(d, 0, z̄, q) for all d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k
and q ∈ [k] is λO(k)kO(1)nO(1). IfR witnesses ν-correctness of νD,PAt ,�,R(d, 0, z̄, q)

for some d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈ [k], then our algorithm sets
νD,PAt ,�,R(d, 0, z̄, q) = 1. If our algorithm sets νD,PAt ,�,R(d, 0, z̄, q) = 1 for some
d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈ [k], thenR witnesses ν-soundness of
νD,PAt ,�,R(d, 0, z̄, q).

Now, we will assume that for some a ∈ [|A(�)|], we have assigned values to
νD,PAt ,�,R(d, a − 1, z̄, q) for all d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈
[k] and describe an algorithm to assign values to νD,PAt ,�,R(d, a, z̄, q) for all d ∈
{0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈ [k].

Let RAta
= (R′

1, ..., R
′
ka

) be a restriction of R to Ata , where ka ≤ k and R′
i �= ∅

for all i ∈ [ka] (i.e.,RAta
is a partition with at most k parts). Additionally, in the case

ta = t , we order RAta
so that RAta

= PAt . Moreover, let γ : [ka] → [k] be the
injection such that R′

i = Rγ (i) ∩ Ata .
We start by defining a set

Za := {
((d1, a − 1, z̄, q), (RAta

, x̄, d2)) :
d1, d2 ∈ {0, 1, . . . , 2k2}, z̄, x̄ ∈ {0, 1, . . . , λ}k, q ∈ [k],
νD,PAt ,�,R(d1, a − 1, z̄, q) = 1, f Ata

(RAta
, x̄, d2) = 1

}
.

For each pair ((d1, a − 1, z̄, q), (RAta
, x̄, d2)) ∈ Za , and each pair of permutations

(σ1, σ2) : [k] → [k] satisfying the following two conditions,

(N1) σ1(i) = σ2(γ
−1(i)) for all i ∈ [k] with Ri ∩ Ata �= ∅, and

(N2) σ1(i) = i for all i ∈ [k] for which Ri �= ∅,
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our algorithm will set νD,PAt ,�,R(d3, a, w̄, σ1(q)) = 1 for all d3 ≥ d1 + d2 −
|δT (RAta

)|, where

wi := z
σ−1
1 (i) + x

σ−1
2 (i) − 1[σ−1

2 (i) ≤ ka] · |δG[Ata ](R′
σ−1
2 (i)

)|

for all i ∈ [k]. We mention the informal intuition underlying conditions (N1) and
(N2). The goal of this algorithm is to merge a k-subpartition of V (G≤(�, a−1)) and a
k-subpartition of V (Gta ) to construct a k-subpartition of V (G≤(�, a)). Permutations
σ1 and σ2 allows us to merge the σ1(i)th part of the first k-subpartition with the σ2(i)th

part of the second k-subpartition for every i ∈ [k]. However, the choice of σ1 and σ2
cannot be arbitrary: Condition (N1) guarantees that parts containing the same Ri ∩ Ata
are merged together for each i ∈ [k], and condition (N2) guarantees condition (i) in
the definition of νD,PAt ,�,R.

Finally, we set νD,PAt ,�,R(d ′, a, w̄, q) = 0 for all d ′ ∈ {0, 1, . . . , 2k2}, w̄ ∈
{0, 1, . . . , λ}k and q ∈ [k] for which the algorithm has not set the νD,PAt ,�,R value so
far. This algorithm is described in Algorithm 2.

Algorithm 2 Computing function νD,PAt ,�,R

for all d ∈ {0, 1, . . . , 2k2}, z̄ ∈ {0, 1, . . . , λ}k and q ∈ [k] do
if R witnesses ν-soundness of ν

D,PAt ,�,R(d, 0, z̄, q) then
Set νD,PAt ,�,R(d, 0, z̄, q) = 1.

else
Set νD,PAt ,�,R(d, 0, z̄, q) = 0.

end if
end for
for all a = 1, 2, . . . , |A(�)| do

for all pair ((d1, a − 1, z̄, q), (RAta , x̄, d2)) ∈ Za do
for all (σ1, σ2) satisfying (N1) and (N2) do

Set νD,PAt ,�,R(d3, a, w̄, σ1(q)) = 1 for all d3 ≥ d1 + d2 − |δT (RAta )|,
where wi := z

σ−1
1 (i)

+ x
σ−1
2 (i)

− 1[σ−1
2 (i) ≤ ka ] · |δG[Ata ](R′

σ−1
2 (i)

)| for all i ∈ [k].
end for

end for
For all d ′ ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k] with ν

D,PAt ,�,R(d ′, a, w̄, q) not yet set

to 1, set νD,PAt ,�,R(d ′, a, w̄, q) = 0.
end for

We first bound the run-time of the algorithm. The size of Za is O(k5)λ2k for every
a ∈ [|A(�)|]. We note that |A(�)| ≤ |V (τ )| = poly(n, λ, k). Thus, the run-time of
the algorithm is

|A(�)| · O(k5)λ2k · (k!)2O(k2) = (λk)O(k2)nO(1).

Wenowprove the correctness ofAlgorithm2.We recall that we have already proved
the base case. We now prove the induction step.

By induction hypothesis, if there exists a k-subpartition of V (G≤(�, a − 1)) wit-
nessing ν-correctness of νD,PAt ,�,R(d, a − 1, w̄, q) for some d ∈ {0, 1, . . . , 2k2},
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w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k], then νD,PAt ,�,R(d, a − 1, w̄, q) = 1. Furthermore, if
νD,PAt ,�,R(d, a− 1, w̄, q) = 1 for some d ∈ {0, 1, . . . , 2k2}, w̄ ∈ {0, 1, . . . , λ}k and
q ∈ [k], then there exists a k-subpartition of V (G≤(�, a−1))witnessing ν-soundness
of νD,PAt ,�,R(d, a − 1, w̄, q).

Suppose that there exists a k-subpartition Q0 = (Q0
1, . . . , Q

0
k) of G≤(�, a) that

witnesses ν-correctness of νD,PAt ,�,R(d, a, w̄, q) for some d ∈ {0, 1, . . . , 2k2},
w̄ ∈ {0, 1, . . . , λ}k and q ∈ [k]. We now show that the algorithm will correctly
set ν(d, a, w̄, q) = 1.

Let Q1 = (Q1
1, . . . , Q

1
k) be the restriction of Q0 to V (G≤(�, a)) given by Q1

i :=
Q0

i ∩ V (G≤(�, a − 1)) for all i ∈ [k]. Let Q2 = (Q2
1, . . . , Q

2
k) be the restriction

of Q0 to V (Gta ) given by Q2
i ∩ Ata = R′

i for all i ∈ [ka]. It follows that Q1 and
Q2 are both restrictions of Ω . Let θ : [k] → [k] be the permutation of [k] such that
Q2

i = Q0
θ(i) ∩ V (Gta ) for every i ∈ [k].

We note thatQ1 witnesses ν-correctness of νD,PAt ,�,R(d1, a−1, z̄, q) = 1, where
d1 := |δT (Q1)| and zi := |δG≤(�,a−1)(Q1

i )| for every i ∈ [k]. Furthermore, Q2

witnesses ν-correctness of fta (RAta
, x̄, d2) = 1,where xi := |δGta

(Q2
i )| for all i ∈ [k]

and d2 := |δT (Q2)|. We note that d1, d2 ∈ {0, 1, . . . , 2k2} and z̄, x̄ ∈ {0, 1, . . . , λ}k
since the number of crossing edges in the corresponding subgraph is at most the
number of crossing edges in the graph G≤(�, a).

Hence, the pair ((d1, a−1, z̄, q), (RAta
, x̄, d2)) is present inZa . Consider the pair

of permutations (σ1, θ), where σ1 is the identity permutation on [k], i.e. σ1(i) = i for
every i ∈ [k].

We will first prove that (σ1, θ) is an eligible pair of permutations for the algorithm.
We note that by definition of θ , for all i ∈ [k] such that Ri ∩ Ata �= ∅, the part Q0

i con-
sists of Q2

θ−1(i)
and Q1

i , and Q1
i further contains Ri and R′

γ −1(i)
. Since each part ofQ0

intersects at most one part ofRAta
, we know that R′

γ −1(i)
= Q0

i ∩ V (Gta ) = Q2
θ−1(i)

.

By definition of Q2, we know that γ −1(i) = θ−1(i). This implies that θ(γ −1(i)) =
i = σ1(i) for all i ∈ [k] such that Ri ∩ Ata �= ∅, which proves (N1). Since σ1 is the
identity permutation, it also satisfies (N2).

For this choice of permutations, we will show that our algorithm will set
νD,PAt ,�,R(d, a, w̄, q) = 1. By compactness of the tree decomposition (τ, χ), there
are no edges between any two distinct members among V (Gt1)\At1, . . . , V (Gta )\Ata .
Consequently, our algorithm indeed sets νD,PAt ,�,R(d, a, w̄, q) = 1 due to the fol-
lowing relationships:

d ≥ |δT (Q0)| = d1 + d2 − |δT (RAta
)|, and

wi = |δG≤(�,a)(Q
0
i )|

= |δG≤(�,a−1)(Q
1
i )| + |δGta

(Q2
θ−1(i))| − 1[θ−1(i) ≤ ka] · |δG[Ata ](R′

θ−1(i))|
= zi + xθ−1(i) − 1[θ−1(i) ≤ ka] · |δG[Ata ](R′

θ−1(i))| for all i ∈ [k].

Next suppose that ((d1, a − 1, z̄, q), (RAta
, x̄, d2)) ∈ Za and let (σ1, σ2) be a

pair of permutations satisfying (N1) and (N2). We will exhibit a k-subpartition Q0

of V (G≤(�, a)) that witnesses ν-soundness of ν(d3, a, w̄, σ1(q)) = 1 for all d3 ≥
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d1 + d2 and w̄ as described above. LetQ1 = (Q1
1, . . . , Q

1
k) andQ2 = (Q2

1, . . . , Q
2
k)

be k-subpartitions of V (G≤(�, a − 1)) and V (Gta ) that witnesses ν-soundness of
νD,PAt ,�,R(d1, a − 1, z̄, q) and f -soundness of fta (RAta

, x̄, d2), respectively. Then,
by definition, we have Q2

i ∩ Ata = R′
i for all i ∈ [ka].

Consider the k-subpartition Q0 := (Q0
1, . . . , Q

0
k) of V (G≤(�, a)) obtained by

setting Q0
i := Q1

σ−1
1 (i)

∪ Q2
σ−1
2 (i)

. Let d3 ≥ d1 + d2 and w̄ be as described

above. We will show that Q0 witnesses ν-soundness of νD,PAt ,�,R(d3, a, w̄, σ1(q))

by showing that it satisfies the five conditions in the definition of ν-soundness of
νD,PAt ,�,R(d3, a, w̄, σ1(q)).

We first show thatQ0 is indeed a k-subpartition of V (G≤(�, a)). It suffices to show
that if a part Ri ofR has non-empty intersection with Ata , then the part containing Ri

in Q1, i.e., the part Q1
i , is in the same part in Q0 with the part containing Ri ∩ Ata =

R′
γ −1(i)

inQ2, i.e. the part Q2
γ −1(i)

. This is equivalent to requiring σ1(i) = σ2(γ
−1(i))

for all i ∈ [k]with Ri ∩Ata �= ∅, which is satisfied due to condition (N1). Additionally,
for all i ∈ [k] such that Ri �= ∅, we have that Q0

i ∩(O∪P�) = Q1
σ−1
1 (i)

∩(O∪P�) = Ri

due to (N2). For all i ∈ [k] such that Ri = ∅, we have Q0
i ∩ (O ∪ P�) = Q1

σ−1
1 (i)

∩
(O ∪ P�) = ∅ = Ri , where Q1

σ−1
1 (i)

∩ (O ∪ P�) = ∅ follows from condition (i) ofQ1

witnessing ν-soundness of νD,PAt ,�,R(d1, a − 1, z̄, q). Hence, this implies condition
(i) needed to witness ν-soundness of νD,PAt ,�,R(d3, a, w̄, σ1(q)).

By compactness of the tree decomposition (τ, χ), we know that there is no edge
between any two distinct members of V (Gt1)\At1 , . . . , V (Gta )\Ata . This implies that
for a part Q0

i ofQ0, if Q2
σ−1
2 (i)

, which is contained in Q0
i , does not intersect Ata , then

|δG≤(�,a)(Q
0
i )| = |δG≤(�,a−1)(Q

0
σ−1
1 (i)

)| + |δGta
(Q0

σ−1
2 (i)

)| = z
σ−1
1 (i) + x

σ−1
2 (i).

If Q2
σ−1
2 (i)

intersects Ata , then

|δG≤(�,a)(Q
0
i )| = z

σ−1
1 (i) + x

σ−1
2 (i) − |δG[Ata ](R′

σ−1
2 (i)

)|.

Since Q2
σ−1
2 (i)

intersects Ata if and only ifσ
−1
2 (i) ≤ ka , combining these two equations,

we get

|δG≤(�,a)(Q
0
i )| = z

σ−1
1 (i) + x

σ−1
2 (i) − 1[σ−1

2 (i) ≤ ka] · |δG[Ata ](R′
σ−1
2 (i)

)| = wi .

The above holds for every i ∈ [k], thus implying condition (ii) needed to wit-
ness ν-soundness of νD,PAt ,�,R(d3, a, w̄, σ1(q)). The part in Q0 that contains
O is Q0

σ1(q), thus implying condition (iv) needed to witness ν-soundness of

νD,PAt ,�,R(d3, a, w̄, σ1(q)).

123



K. Chandrasekaran, W. Wang

By definition of the tree decomposition (τ, χ), we know that there are no edges
between V (Gta )\Ata and V (G≤(�, a − 1))\Ata . This implies that

|δT (Q0)| = |δT (Q1)| + |δT (Q2)| − |δT (RAta
)| ≤ d1 + d2 − |δT (RAta

)|,

thus implying condition (iii) needed towitness ν-soundness of νD,PAt ,�,R(d3, a, w̄, σ1
(q)). This shows thatQ0 indeedwitnesses ν-soundness of νD,PAt ,�,R(d3, a, w̄, σ1(q))

= 1, where d3 and w̄ are in the range given in our algorithm. ��

3.3.4 Proof of Lemma 8

In this subsection, we complete the Proof of Lemma 8.

Proof of Lemma 8 Let the inputs be as stated inLemma8.Firstwewill consider the case
where t ∈ V (τ ) is a leaf node.ByLemma10,we can compute hD,PAt : {0, 1, . . . , p}×
{0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is h-correct and h-sound in time
(λk)O(k2)nO(1).

If t ∈ V (τ ) is not a leaf node, then by Lemma 11, we can compute a function
hD,PAt : {0, 1, . . . , p} × {0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is h-
correct and h-sound in (λk)O(k2)nO(1) time.

Therefore, in either case, to compute a desired function hD,PAt : {0, 1, . . . , p} ×
{0, 1, . . . , 2k2}×{0, 1, . . . , λ}k×[k] → {0, 1} that is h-correct and h-sound takes total
time (λk)O(k2)nO(1). ByLemma 9,we can compute a function gD,PAt : {0, 1, . . . , p}×
{0, 1, . . . , 2k2} × {0, 1, . . . , λ}k × [k] → {0, 1} that is g-correct and g-sound with an
additional (λk)O(k2)n time. This completes the Proof of Lemma 8. ��

3.4 Generating nice decompositions and Proof of Lemma 6

In this section, we restate and prove Lemma 6.

Lemma 6 There exists an algorithm that takes as input the spanning tree T , the tree
decomposition (τ, χ), a tree node t ∈ V (τ ), and runs in time (λk)O(k2)nO(1) to return a
familyD of nice decompositions ofχ(t)with |D| = (λk)O(k2)nO(1). Additionally, if a k-
subpartitionΠ of V (Gt ) realizes f -correctness of ft (PAt , x̄, d) for somePAt ∈ F At ,
x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then D contains a nice decomposition
(Pχ(t),Qχ(t), O) where Qχ(t) refines a restriction of Π to χ(t).

Our definition of nice decomposition closely resembles the definition of [23]. Our
way to generate nice decompositions and thereby prove Lemma 6 will also closely
resemble the proof approach of [23]. We need the following lemma.

Lemma 13 (Lemma 2.1 of [23]) There exists an algorithm that takes as input a set S
and positive integers s1, s2 ≤ |S|, and runs in time O((s1 + s2)O(s1)|S|O(1)) to return
a family S ⊆ 2S of size O((s1 + s2)O(s1) log |S|) such that for every pair of disjoint
subsets X1, X2 ⊆ S where |X1| ≤ s1 and |X2| ≤ s2, there exists a set X ∈ S with
X1 ⊆ X ⊆ S\X2.
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Let the inputs be as stated in Lemma 6. We will start with notations followed by
the algorithm with bound on the runtime and a proof of correctness.

Notations. We refer the reader to Definition 7 for the definition of proj(T , χ(t)). Let
A ⊆ E(proj(T , χ(t))). We let RA denote the partition of V (proj(T , χ(t))) whose
parts are the connected components of proj(T , χ(t))\A. Let P and P ′ be disjoint
subsets of vertices of proj(T , χ(t)). We say that P shares adhesion with P ′ if there
exists some descendant t ′ of t (inclusive) such that P ∩ At ′ �= ∅ and P ′ ∩ At ′ �= ∅.
When it is necessary to specify which adhesion is shared by P and P ′, we will say that
P shares adhesion with P ′ via At ′ if t ′ is a descendant of t (inclusive) such that At ′
intersects both P and P ′. Moreover, we say that P shares Gt -edge with P ′ if there is
an edge in Gt with one end-vertex in P and another end-vertex in P ′. For a partition
R of V (proj(T , χ(t))), we define the graph H(R) whose vertices correspond to the
parts of R and two vertices are adjacent in H(R) if and only if the corresponding
parts inR share either an adhesion or a Gt -edge with each other.

Algorithm.Wenowdescribe the algorithm.We initializeD to be the empty set. The first
step of our algorithm is to generate a family C using Lemma 13 on set E(proj(T , χ(t)))
with s1 = min{|E(proj(T , χ(t)))|, 4k2} and s2 = min{|E(proj(T , χ(t)))|, (4k2+1) ·
2((λk + 1)5 + 4k2 + 1)}. The next step of our algorithm depends on the size of the
bag χ(t).

Case 1: Suppose |χ(t)| ≤ (λk + 1)5. For each C ′ ∈ C, if RC ′ has at most 4k2 + 1
parts, then we add the following triple to D:

DC ′ := (Pχ(t) := (χ(t)),Qχ(t) := RC ′ |χ(t), O := ∅)
,

where the partition RC ′ |χ(t) is a restriction of RC ′ to χ(t). If RC ′ has more than
4k2 + 1 parts, then we do not add anything into D.

Case 2: Suppose |χ(t)| > (λk+1)5. For each C ′ ∈ C, we generate a family SC ′ using
Lemma 13 on the set {P : P is a part of RC ′ } with s1 = min{|RC ′ |, 4k2 + 1} and
s2 = min{|RC ′ |, (4k2 + 1)(λ2k2 + 2λk + 4k2 + 1)}. For each C ′ ∈ C and each set
X ′ ∈ SC ′ , we use the following steps to update D.

1. Starting from the partition Q0 := RC ′ , we merge all parts that are not in X ′
together to be one part called O1. Call the resulting partition Q1.

2. In the graph H(Q1), for each connected component of H(Q1)\{O1} that has
more than 4k2 + 1 vertices, we merge the parts corresponding to the vertices of
the component with O1. LetQ2 be the resulting partition and let O2 be the part of
Q2 that contains O1.

3. In the graph H(Q2), for each connected component of H(Q2)\{O2}, we merge
the parts corresponding to vertices in that component. Let Q3 be the resulting
partition.

4. Add the triple DC ′,X ′ := (Pχ(t),Qχ(t), O) to D, where Pχ(t),Qχ(t) and O are
restrictions of Q3, Q2, and O2 to χ(t), respectively.
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This completes the description of our algorithm.

Run-time.We now bound the run time of this algorithm. The family C can be computed
in O((4k2 + O(k2(λk + 1)5))4k

2
nO(1)) = (λk)O(k2)nO(1) time, and the size of C is

(λk)O(k2) log n using Lemma 13. In the next step, Case 1 runs in nO(1) time for each
C ′ ∈ C. Case 2 requires O((4k2 + 1 + (4k2)((λk)2 + 2λk + 4k2 + 1))4k

2+1nO(1)) =
(λk)O(k2)nO(1) time to generate SC ′ for each C ′ ∈ C, and the size of each SC ′ is
bounded by (λk)O(k2) log n. The rest of the steps in Case 2 take nO(1) time. Therefore,
the total time needed for this algorithm is

(λk)O(k2)nO(1) + (λk)O(k2) log n · (λk)O(k2)nO(1) = (λk)O(k2)nO(1).

Correctness. We now prove the correctness of the algorithm. We first show that the
algorithm indeed outputs a family of nice decompositions.

Claim 1 1. If |χ(t)| ≤ (λk + 1)5, then the triple DC ′ is indeed a nice decomposition
for every C ′ ∈ C for which DC ′ is defined.

2. If |χ(t)| > (λk + 1)5, then, for every C ′ ∈ C and X ′ ∈ SC ′ , the triple DC ′,X ′ is
indeed a nice decomposition.

Proof Suppose |χ(t)| ≤ (λk + 1)5 andRC ′ has at most 4k2 + 1 parts. ThenRC ′ |χ(t)

also has at most 4k2 + 1 parts, which verifies condition 2 in Definition 9. The remain-
ing conditions in the definition hold immediately, and hence, DC ′ is indeed a nice
decomposition.

We henceforth consider the case where |χ(t)| > (λk + 1)5. Let C ′ ∈ C be fixed
and X ′ ∈ SC ′ , yielding a triple DC ′,X ′ := (Pχ(t),Qχ(t), O) to be included intoD. We
will prove that DC ′,X ′ satisfies the conditions in Definition 9. We note thatQ2 refines
Q3, so Qχ(t) refines Pχ(t).

For i = 0, 1, 2, let H ′
i denote the subgraph of H(Qi ) induced by vertices whose

corresponding parts intersect χ(t). By compactness of the tree decomposition (τ, χ),
the subgraph Gt is connected. Therefore, there exists a path in Gt between every pair
of vertices of χ(t). This implies that there exists a path in Gt between every pair of
vertices of H ′

0 as every vertex of H
′
0 corresponds to a part that intersects χ(t). Hence,

the graph H ′
0 is connected.

Let us first consider the case where O = O2 ∩ χ(t) = ∅. In this case the parts
merged to become O1 do not intersect χ(t), and hence H ′

0 = H ′
1. If H

′
0 = H ′

1 has
more than 4k2 + 1 vertices, then H ′

1 will be merged into O2. Therefore, we conclude
that H ′

0 = H ′
1 has no more than 4k2 + 1 vertices and H ′

0 = H ′
1 = H ′

2. In step 3, H ′
2

is in one component of H(Q2)\{O2}. Therefore, in Q3, only one part intersects χ(t)
and this part consists of at most 4k2 + 1 parts in Q2 intersecting χ(t). This implies
Pχ(t) has only one part, and this part contains at most 4k2 + 1 parts ofQχ(t). The rest
of the conditions in the definition of nice decomposition hold immediately.

Next we consider the case where O = O2 ∩ χ(t) �= ∅. Since O2 is a part of Q2,
we know that O is a part ofQχ(t), which proves condition (i) of the definition of nice
decomposition. Every part of Q3 consists of at most 4k2 + 1 parts of Q2 due to step
3, so every part of Pχ(t) consists of at most 4k2 + 1 parts ofQχ(t), proving condition
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(ii). For two distinct parts P and P ′ of Q3, P and P ′ share either an adhesion or a
Gt -edge only if the corresponding vertices in H(Q3) are adjacent. In graph H(Q3),
each edge has one end-vertex being O2. This implies that one of P and P ′ has to be
O2. Therefore, no two parts other than O in Pχ(t) share an adhesion or a Gt -edge,
thus proving conditions (iii) and (iv) in the definition of nice decomposition. This
completes the Proof of Claim 1. ��

The following lemma completes the Proof of Lemma 6.

Lemma 14 If a k-subpartition Π of V (Gt ) witnesses f -correctness of ft (PAt , x̄, d)

for some PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, then D contains a
nice decomposition D = (Pχ(t),Qχ(t), O) such that Qχ(t) refines a restriction of Π
to χ(t).

Proof Webeginwith somenotations. LetΠ be a k-subpartitionofV (Gt ) thatwitnesses
f -correctness of ft (PAt , x̄, d) for some PAt ∈ F At , x̄ ∈ {0, 1, . . . , λ}k , and d ∈
{0, 1, . . . , 2k2}. Then, Π is a restriction of Ω to V (Gt ) and |δT (Π)| ≤ d ≤ 2k2. Let
Πχ(t) denote a partition of χ(t) that is a restriction of Π to χ(t). By definition, the
partition PAt is a restriction of Π to At .

Claim 2 There exists a partition Π̃χ(t) of proj(T , χ(t)) such that Πχ(t) is a restriction
of Π̃χ(t) to χ(t) and |δproj(T ,χ(t))(Π̃χ(t))| ≤ 4k2.

Proof Since PAt is T -feasible, there exists a partition B of V that 2k2-respects T
and its restriction to At is PAt . Without loss of generality we may assume that B has
exactly k′ parts B1, . . . , Bk′ (recall that PAt = (P̃1, . . . , P̃k′)) such that Bi ∩ At = P̃i
for all i ∈ [k′]. Moreover, we may assume that Π has exactly k′ parts π1, . . . , πk′
such that πi ∩ At = P̃i for all i ∈ [k′]. With these two partitions, we can define a
partition B′ = (B ′

1, . . . , B
′
k′) of V by B ′

i = (Bi\V (Gt )) ∪ πi for each i ∈ [k′]. The
partition Πχ(t) is a restriction of B′ to χ(t). Moreover, there are no edges between
V (Gt )\At and V \V (Gt ), and PAt is a restriction of both B and Π to At . Hence, we
have |δT (B′)| ≤ |δT (B)| + |δT (Π)| ≤ 4k2.

Now by Lemma 3, given partition B′ of V , there exists a partition Π̃χ(t) of
proj(T , χ(t)) such that its restriction to χ(t) is Πχ(t) and |δproj(T ,χ(t))(Π̃χ(t))| ≤
|δT (B′)| ≤ 4k2. This completes the Proof of Claim 2. ��

From now on we will fix Π̃χ(t) to be a partition of V (proj(T , χ(t))) that satisfies
the conditions of Claim 2. Let C̃ denote the set of edges δproj(T ,χ(t))(Π̃χ(t)), which is
a subset of E(proj(T , χ(t))). It follows that |C̃| ≤ 4k2.

Removing C̃ from proj(T , χ(t)) yields a partition of V (proj(T , χ(t)))whose parts
are connected components of proj(T , χ(t))\C . We denote this partition as Π̃ ′

χ(t), and

observe that Π̃ ′
χ(t) is necessarily a refinement of Π̃χ(t). Moreover, we may assume

that each part of Π̃ ′
χ(t) intersects χ(t). If some parts of Π̃ ′

χ(t) do not intersect χ(t),

then there exist two parts P and P ′ of Π̃ ′
χ(t) such that P intersects χ(t) while P ′ does

not, and there is an edge in C̃ ⊆ E(proj(T , χ(t))) with one end-vertex in P and the
other end-vertex in P ′. We can modify Π̃χ(t) so that P ′ belongs to the part containing
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Table 1 Notations used for the
Proof of Lemma 14 Π k-subpartition of V (Gt )

Πχ(t) Partition of χ(t)

Π̃χ(t) Partition of V (proj(T , χ(t)))

Π̃ ′
χ(t) Partition of V (proj(T , χ(t)))

C̃ Subset of E(proj(T , χ(t)))

Sχ(t) Subset of χ(t)

S̃ Subset of V (proj(T , χ(t)))

S̃E Subset of E(proj(T , χ(t)))

P . After such modification, the size of δproj(T ,χ(t))(Π̃χ(t)) does not increase (because
grouping P ′ into the part containing P does not require us to cut any edge not in
C̃) and Πχ(t) is still a restriction of Π̃χ(t) to χ(t). By doing this repeatedly, we may
assume that each part of Π̃ ′

χ(t) intersects χ(t) while the size of C̃ does not increase.
SinceΩ is an optimumMinmax k-cut inG, we have that |δG(Ω)| ≤ kOPT ≤ kλ.

Since Πχ(t) is a restriction of Ω to χ(t), by the edge-unbreakability property of χ(t),
we know that at most one part of Πχ(t) has size exceeding (λk + 1)5. Now, let Sχ(t)

denote the union of the parts of Πχ(t) whose sizes are at most (λk + 1)5, i.e.,

Sχ(t) :=
⋃

π is a part of Πχ(t),

|π |≤(λk+1)5

π.

Furthermore, we use S̃ to denote the union of parts of Π̃χ(t) whose intersection
with Sχ(t) is non-empty. Each part of Π̃χ(t) included in S̃ induces a set of edges
in proj(T , χ(t)) whose both end-vertices are in this part. We use S̃E to denote the
union of such edges, i.e.,

S̃ :=
⋃

π is a part of Π̃χ(t),

π∩Sχ(t) �=∅

π and

S̃E :=
⋃

π is a part of Π̃χ(t),

π∩Sχ(t) �=∅

E(proj(T , χ(t))[π ]).

We remark that S̃E ∩C̃ = ∅ because every edge in C̃ has end-vertices in different parts
of Π̃χ(t). For convenience, we summarize the nature of notations introduced here in
Table 1.

Now that we have introduced these notations and definitions, our next goal is to
bound the size of S̃E . We will use the following claim.

Claim 3 For every part P of Π̃ ′
χ(t), we have that |P| ≤ 2(|P ∩ χ(t)| + 4k2 + 1).
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Proof If P is a part of Π̃ ′
χ(t), then by definition of Π̃ ′

χ(t), the subgraph induced by
P in proj(T , χ(t)), i.e., proj(T , χ(t))[P], is a connected subtree of proj(T , χ(t)). To
bound the size of P , we will bound the sizes of the following types of vertices:

1. vertices of P with degree at least 3 in proj(T , χ(t))[P],
2. vertices of P that are not in χ(t) and have degree at most 2 in the subtree

proj(T , χ(t))[P], and
3. vertices in P ∩ χ(t).

These three types together form a superset of the vertices of P .
In order to bound the number of Type 2 vertices, we note that these vertices are in

V (proj(T , χ(t)))\χ(t), which means they are of degree at least 3 in proj(T , χ(t)).
For each Type 2 vertex, some edge in proj(T , χ(t)) adjacent to it which connects P to
some other component is not included in proj(T , χ(t))[P], resulting it to have degree
at most 2 in proj(T , χ(t))[P]. Since each part of Π̃ ′

χ(t) induces a connected subtree

of proj(T , χ(t)), each Type 2 vertex serves to connect P to a unique part of Π̃ ′
χ(t).

Here Π̃ ′
χ(t) has at most 4k2 + 1 parts as |C̃| ≤ 4k2, and hence the number of Type 2

vertices is at most 4k2 + 1.
In order to bound the number of Type 1 vertices, we will first bound the number of

leaves of proj(T , χ(t))[P]. Leaves of proj(T , χ(t))[P] are either inχ(t) or not inχ(t).
The number of leaves in χ(t) is at most |P∩χ(t)|. The leaves of proj(T , χ(t))[P] that
are not in χ(t) are Type 2 vertices. So the total number of leaves of proj(T , χ(t))[P]
is at most |P ∩ χ(t)| + 4k2 + 1.

Next we bound the number of Type 1 vertices. We have the following inequality,
where all degrees are with respect to the subgraph proj(T , χ(t))[P]:

2|P| − 2 = 2|E(proj(T , χ(t))[P])| =
∑

v∈P

deg(v)

≥ |{v ∈ P : deg(v) = 1}| + 2|{v ∈ P : deg(v) = 2}|
+ 3|{v ∈ P : deg(v) ≥ 3}|

= 2|P| − |{v ∈ P : deg(v) = 1}| + |{v ∈ P : deg(v) ≥ 3}|.

where the last equation holds due to the fact that |{v ∈ P : deg(v) = 1}| + |{v ∈ P :
deg(v) = 2}| + |{v ∈ P : deg(v) ≥ 3}| = |P|. This implies that the number of Type
1 vertices can be bounded by the following relationship:

|{v ∈ P : deg(v) ≥ 3}| ≤ |{v ∈ P : deg(v) = 1}| ≤ |P ∩ χ(t)| + 4k2 + 1.

The number of Type 3 vertices is exactly |P ∩ χ(t)|, and hence the size of P is at
most

(4k2 + 1) + (|P ∩ χ(t)| + 4k2 + 1) + |P ∩ χ(t)| = 2(|P ∩ χ(t)| + 4k2 + 1).

��
Claim 4 |S̃|, |S̃E | ≤ (4k2 + 1) · 2((λk + 1)5 + 4k2 + 1).
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Proof We will start by bounding the size of S̃. Let us fix π to be a part of Π̃χ(t) such
that π ∩ Sχ(t) �= ∅, and π ′ to be a part of Π̃ ′

χ(t) contained in π . Here, we notice that

π ∩ χ(t) is a part of Πχ(t) and |π ∩ χ(t)| ≤ (λk + 1)5. Then by Claim 3, we know
that

|π ′| ≤ 2(|π ′ ∩ χ(t)| + 4k2 + 1)

≤ 2(|π ∩ χ(t)| + 4k2 + 1) ≤ 2((λk + 1)5 + 4k2 + 1).

The set S̃ is the union of all such parts π ′, i.e., it is the union of parts π ′ of Π̃ ′
χ(t) where

π ′ is contained in some part π of Π̃χ(t) such that π ∩ Sχ(t) �= ∅. There are at most
4k2 + 1 such candidates for π ′ because Π̃ ′

χ(t) has at most 4k2 + 1 parts. Hence,

|S̃| ≤ (4k2 + 1) · 2((λk + 1)5 + 4k2 + 1).

To bound the size of S̃E , we observe that S̃E forms a forest over the vertex set S̃, and
thus |S̃E | ≤ |S̃| ≤ (4k2 + 1) · 2((λk + 1)5 + 4k2 + 1). ��

The first step of our algorithm generates a family C using Lemma 13 on
the set E(proj(T , χ(t))) with s1 = min{|E(proj(T , χ(t)))|, 4k2} and s2 =
min{|E(proj(T , χ(t)))|, (4k2+1)·2((λk+1)5+4k2+1)}. ByClaim 4 andLemma 13,
this implies that C contains a set C such that C̃ ⊆ C and C ∩ S̃E = ∅. For the rest of
the proof, let us fix C ∈ C such that C̃ ⊆ C and C ∩ S̃E = ∅. We now introduce some
more more notations and prove certain useful properties of C .

Here, we note that the partition RC refines Π̃ ′
χ(t) because C̃ ⊆ C . We use LC to

denote the set of parts of RC that are contained in S̃. We use NC to denote the set
of parts of RC outside S̃ that either share adhesion with some part in LC or share
Gt -edges with some part in LC . We will use the following observation and claim to
bound the size of NC .

Observation 3 Every edge in C\C̃ necessarily has both end-vertices in V (proj(T ,

χ(t)))\S̃. This is because every edge between V (proj(T , χ(t)))\S̃ and S̃ belongs to
C̃, and every edge whose both end-vertices are in S̃ are either in S̃E (which does not
intersect C) or in C̃. This implies that when restricted to S̃, the partitionRC and Π̃ ′

χ(t)
are the same.

Claim 5 |NC | ≤ (4k2 + 1)((λk)2 + 2λk + 4k2 + 1).

Proof Let us fix one part R in LC and bound the number of parts of RC that could
share adhesion or Gt -edge with R. By Observation 3, we know that R is also a part
of Π̃ ′

χ(t). We will use π to denote the part of Π̃χ(t) that contains R. The parts of RC

that share either an adhesion or a Gt -edge with R can be enumerated by the following
four types:

1. parts outside π that share adhesion with R via At ′ , where t ′ is a child of t ,
2. parts outside π that share adhesion with R via At ,
3. parts outside π that share Gt -edge with R, and
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4. parts in π .

We bound the number of parts of Type 1. For this, we will first bound the number
of children t ′ of t such that At ′ intersects both R and some part outside π . Let t ′ be
a child of t such that At ′ intersects R and a part R′ that is outside π . Then R ∩ At ′
and R′ ∩ At ′ are in different parts of Π . By compactness of τ , we know that R ∩ At ′
has a neighbor v in V (Gt ′)\At ′ , and R′ ∩ At ′ has a neighbor v′ in V (Gt ′)\At ′ . Since
V (Gt ′)\At ′ induces a connected subgraph in G, there is a path between v and v′ in
G[V (Gt ′)\At ′ ]. Hence, in order to separate R ∩ At ′ and R′ ∩ At ′ , the k-subpartition
Π must cut some edge with at least one end-vertex in V (Gt ′)\At ′ . We fix one such
edge and denote it as et ′ . Then et ′ is contained in δG(Π). We associate one such edge
et ′ for each child t ′ of t such that At ′ intersects R and a part R′ that is outside π .

We now show that the edge et ′ associated the child t ′ is unique. For the sake of
contradiction, suppose that et ′ = et ′′ = e for twochildren t ′ and t ′′ of t . Let e = {u′, u′′}
with u′ ∈ V (Gt ′) \ At ′ and u′′ ∈ V (Gt ′′) \ At ′′ . Then, e is contained in some bag
χ(t0). The bags containing u′ induce a connected subtree, and u′ /∈ χ(t), so t0 must
be a descendant of t ′ (inclusive). Similarly t0 must be a descendant of t ′′ (inclusive).
This is a contradiction because t ′ and t ′′ are distinct children of t .

Therefore, the number of children t ′ of t such that At ′ intersects both R and some
other part outside π is at most |δG(Π)| ≤ λk. Each such adhesion has size at most λk,
so it contributes at most λk to the number of adjacent parts that R could have. Hence
the size of type 1 is bounded above by (λk)2.

In order to bound the number of parts of Type 2, we use the fact that |At | ≤ λk and
conclude that the the number of parts of Type 2 is at most λk.

In order to bound the number of parts of Type 3, we observe that a Gt -edge with
one end-vertex in π and the other end-vertex not in π is necessarily in δG(Π). Each
part outside π that shares Gt -edge with R connects R to a unique edge in δG(Π), and
hence the number of parts of Type 3 is at most |δG(Π)| ≤ λk.

Lastly, we bound the number of parts of Type 4. Since R is a part in LC , by definition
we know that π is contained in S̃. This means that every part in π is also a part of
Π̃ ′

χ(t) by Observation 3. Therefore, the size of type 4 is at most 4k2 + 1.

We conclude that R shares an adhesion or a Gt -edge with at most (λk)2 + λk +
λk + 4k2 + 1 parts of RC . Hence, the size of NC is at most

|LC | · ((λk)2 + λk + λk + (4k2 + 1)).

Since parts in LC are also parts in Π̃ ′
χ(t), we know that |LC | ≤ 4k2 + 1. This yields

the desired bound:

|NC | ≤ (4k2 + 1)((λk)2 + 2λk + 4k2 + 1).

��
We now have the ingredients to show that D contains a nice decomposition D =

(Pχ(t),Qχ(t), O) such that Qχ(t) refines Πχ(t). We begin with the easier case where
the size of the bag is small.

123



K. Chandrasekaran, W. Wang

Claim 6 If |χ(t)| ≤ (λk+1)5, then the nice decomposition DC = ((χ(t)),RC |χ(t),∅)

is contained in D and the partition RC |χ(t) refines Πχ(t).

Proof If |χ(t)| ≤ (λk + 1)5, then we note that Sχ(t) = χ(t) and hence S̃ =
V (proj(T , χ(t))). By Observation 3, we know that RC = Π̃ ′

χ(t). This guarantees

that RC has at most 4k2 + 1 parts, and thus the triple ((χ(t)),RC |χ(t),∅) is defined
and added into D. Moreover, we know that RC = Π̃ ′

χ(t) refines Π̃χ(t), and hence
RC |χ(t) refines Πχ(t). ��

We now handle the case where the size of the bag is large. For the rest of the proof,
suppose that |χ(t)| > (λk + 1)5. We recall that C̃ ⊆ C and C ∩ S̃E = ∅. Since
|LC | ≤ 4k2 + 1, by Claim 5 and Lemma 13, the family SC is guaranteed to contain a
set X such that LC ⊆ X and X ∩ NC = ∅. Let us fix such a set X in the remainder of
the proof. The next claim states that the nice decomposition DC,X yields a refinement
of Πχ(t) as desired, thereby completing the Proof of Lemma 14. ��
Claim 7 If |χ(t)| > (λk+1)5, then the nice decomposition DC,X = (Pχ(t),Qχ(t), O)

yields a partition Qχ(t) of χ(t) that refines Πχ(t).

Proof By definition of the set X , at the end of step 1 of the algorithm, the part O1
contains all parts in NC and no parts in LC . Moreover, in the graph H(Q1), we have
NH(Q1)(LC ) = {O1}. Since LC contains at most 4k2 + 1 parts, we know that no part
in LC is merged into O1 in step 2. Therefore, every part ofRC in LC remains a single
part in Q2. This implies that every part of Π̃ ′

χ(t) in S̃ remains a single part in Q2. If a

part π of Π̃χ(t) is contained in S̃, then π is the union of some parts of Π̃ ′
χ(t) in S̃, and

hence the union of some parts ofQ2. If a part π of Π̃χ(t) is not contained in S̃, then π

is the unique part of Π̃χ(t) that is not contained in S̃. This implies that π is the union
of parts ofQ2 that are not contained in LC . Thus, we conclude thatQ2 refines Π̃χ(t),
and hence Qχ(t) refines Πχ(t). ��

4 Reduction to unweighted instances with logarithmic optimum
value

In this section, we show a (1+ ε)-approximation preserving reduction to unweighted
instances with optimum value O((k/ε3) log n). The ideas in this section are somewhat
standard and are also the building blocks for the (1 + ε)-approximation for Minsum
k-cut. Our contribution to the reduction is simply showing that the ideas also apply
toMinmax k-cut.

Theorem 5 There exists an algorithm that takes as input a weighted instance G =
(V , E) of Minmax k-cut, namely an n-vertex simple graph G = (V , E) with edge
weights w : E → Z+, an integer k ≥ 2, and an ε ∈ (0, 1), and runs in time
poly(n, 1/ε) log2

(∑
e∈E we

)
to return a collectionC of unweighted instances of Min-

max k-cut such that with high probability

(i) for each instance in C, the number of vertices is at most n and the number of edges
is O(n4/ε),
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(ii) the number of instances in C is O(log(
∑

e∈E we) log(n/ε)), and
(iii) there exists an instance H ∈ C satisfying (a) OPT(H , k) = O((k/ε3) log n) and

(b) every optimum k-partition PH in H can be used to recover a k-partition P of
the vertices of G such that costGw(P) = (1 + O(ε))OPT(Gw, k) in time nO(1).

Proof We use Algorithm 3 to prove Theorem 5. Let the input instance be G = (V , E)

with edge weights w : E → Z+ along with an integer k ≥ 2 and ε ∈ (0, 1).

Algorithm 3 Algorithm for the Proof of Theorem 5
C ← ∅
for λ = 1, 2, 22, . . . , 2log(

∑
e∈E we) do

Compute an unweighted multigraph H = (V ′, E ′) using Lemma 15 with value λ

for λ′ = 1, 2, 22, . . . , 2log |E ′| do
count ← 0
while count < k − 1 and H has a cut set F ⊆ E ′ such that 0 < |F | ≤ ελ′/(2(k − 1)) do

H ← H − F , count ← count + 1
end while
if count = k − 1 then

Go to the next choice of λ′
end if
H1 ← H
Construct H2 from H1 by sampling each edge with probability p = 1000 log |V ′|/ε2μ, where
μ := min{OPT (Q, 2) : Q is a component of H1}
C ← C ∪ {H2}

end for
end for
Return C

We bound the run time of the algorithm. For each fixed λ ∈ {1, 2, 22, . . . ,
2log(

∑
e∈E we)}, the unweighted multigraph H = (V ′, E ′) can be constructed in

poly(n, 1/ε)
∑

e∈E logw(e) time, and satisfies |E ′| ≤ 8|E |2/ε by Lemma 15. Each
inner for-loop can be implemented to run in poly(n, 1/ε) time. Therefore, the total
run time is at most

log2
(

∑

e∈E
we

)

poly(n, 1/ε) · log(8|E |2/ε) = poly(n, 1/ε) log2
(

∑

e∈E
we

)

.

Next, we prove the correctness of Algorithm 3.We need to show that collection C of
unweighted instances constructed by the algorithm satisfies properties (i), (ii), and (iii).
For each λ ∈ {1, 2, 22, . . . , 2log(

∑
e∈E we)}, the unweighted multigraph H = (V ′, E ′)

has at most 8|E |2/ε ≤ 8n4/ε edges by Lemma 15. Each instance added to C in this
outer for-loop is a subgraph of H , and thus has at most 8n4/ε edges. This proves
property (i). The total number of inner for-loops is log(

∑
e∈E we) log(8n4/ε), and at

most one instance is added to C in each inner for-loop. Thus, we have

|C| = O

(

log

(
∑

e∈E
we

)

log(n/ε)

)

,

and this implies property (ii).
We now prove property (iii). We note that there exists λ ∈ {1, 2, 22, . . . ,

2log(
∑

e∈E we)} such that λ ∈ [OPT(Gw, k), 2OPT(Gw, k)]. Let us fix this choice of
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λ henceforth. Let H = (V ′, E ′) be the unweighted multigraph constructed using
Lemma 15 with value λ. We also fix the choice of λ′ ∈ {1, 2, 22, . . . , 2log(|E ′|)} such
that λ′ ∈ [OPT(H , k), 2OPT(H , k)].

For this choice of λ′, the algorithm repeatedly removes cut sets F (i.e., a subset F
of edges that cross some 2-partition of G) that have 0 < |F | ≤ ελ′/(2(k − 1)). If the
algorithm can remove k−1 such cut sets, then it would have removed at most ελ′/2 ≤
εOPT(H , k) edges while creating k connected components, thus contradicting the
optimum value. Hence, the while loop of the algorithm will terminate with count
< k−1 and with the number of edges being removed in the while loop being less than
ελ′/2 ≤ εOPT(H , k). Hence, we will have a subgraph H1 = (V ′, E1) of H such that
(1) |E ′ − E1| ≤ εOPT(H , k) and (2) the min-cut in each connected component of H1
is at least εOPT(H , k)/k ≥ εOPT(H1, k)/k. We note that if we can find a (1+O(ε))-
approximate optimum minmax k-partition (S1, . . . , Sk) for the unweighted instance
H1, then costH (S1, . . . , Sk) ≤ costH1(S1, . . . , Sk)+|E ′−E1| ≤ costH1(S1, . . . , Sk)+
εOPT(H , k) ≤ (1 + O(ε))OPT(H , k). We note that the components of H1 are well-
connected: each component of H1 has min-cut value at least εOPT(H1, k)/k.

The final step of the algorithm constructs H2 from H1 by subsampling the edges
of H1: it picks each edge with probability p = 1000 log |V ′|/(ε2μ), where n is the
number of vertices in H1 and μ := min{OPT (Q, 2) : Q is a component of H1}. Let
H2 := (V ′, E2).

By Karger [18], we know that for each component Q of H1, with probability at least
1−1/|V (Q)|p/pQ , we have |δH2(S)|/p ∈ [(1−ε)|δH1(S)|, (1+ε)|δH1(S)|] for every
subset S ⊆ V (Q), where pQ := 100 log |V (Q)|/(ε2OPT(Q, 2)). Let Q1, . . . , Qt be
the components of H1 with at least 2 vertices. Then, by union bound, with probability
at least

1 −
t∑

i=1

1

|V (Qi )|p/pQi

we have that |δH2(S)|/p ∈ [(1−ε)|δH1(S)|, (1+ε)|δH1(S)|] for every subset S ⊆ V ′.
We note that the components with a single vertex in H1 do not contain any edges, and
thus do not affect our argument. We bound this probability as follows:

t∑

i=1

1

|V (Qi )|p/pQi
=

t∑

i=1

1

|V (Qi )|10
log |V ′ |

log |V (Qi )| ·
OPT(Qi ,2)

μ

=
t∑

i=1

1

210 log n·OPT(Qi ,2)
μ

≤
t∑

i=1

1

210 log |V ′| (by definition of μ)

=
t∑

i=1

1

|V ′|10

≤ 1

|V ′|9 .
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Moreover, for each i ∈ [t], the number of edges in E(Qi ) that survive into H2 is
O(log |V ′|/ε2)|E(Q2)| with probability at least 1 − O( 1

|V ′|10 ) by Chernoff bound.

Thus, applying union bound again, with probability at least 1−O( 1
|V ′|9 ) ≥ 1−O( 1

n9
),

(I) the scaled cut-value of every 2-partition is preserved within a (1 ± ε)-factor, i.e.,
|δH2(S)|/p ∈ [(1 − ε)|δH1(S)|, (1 + ε)|δH1(S)|] for every S ⊆ V and (II) |E2| =
O(log |V ′|/ε2)|E1|.

We show that the instance H2 in the collectionC satisfies property (iii). The preserva-
tion of cut values immediately implies that OPT(H2, k)/p ∈ [(1−ε)OPT(H1, k), (1+
ε)OPT(H1, k)] and moreover,

OPT(H2, k) ≤ p(1 + ε)OPT(H1, k)

= O(1)
log |V ′|

ε2μ
· OPT(H1, k)

= O(1)
k log |V ′|

ε3

(

since μ ≥ εOPT(H1, k)

k

)

≤ O(1)
k log n

ε3
.

Thus, we obtain an instance (H2, k) whose optimum cost is O((k/ε3) log n). Sup-
pose that (S1, . . . , Sk) is an optimum k-partition for the instance (H2, k). Then, by
preservation of cut values, the partition (S1, . . . , Sk) is a (1 + O(ε))-approximate
optimum minmax k-partition on the instance (H1, k). Consequently, (S1, . . . , Sk) is a
(1 + O(ε))-approximate optimum minmax k-partition on the unweighted instance H
because

costH (S1, . . . , Sk) ≤ costH1(S1, . . . , Sk) + |E ′ − E1|
≤ costH1(S1, . . . , Sk) + εOPT(H , k)

≤ (1 + O(ε))OPT(H1, k) + εOPT(H , k)

≤ (1 + O(ε))OPT(H , k).

According to Lemma 15, this allows us to recover a (1+O(ε))-approximate minmax
k-partition in Gw in time nO(1), thus proving property (iii). ��

We emphasize that a constant factor approximation algorithm for Minmax k-cut
would help in shaving off a log(

∑
e∈E we) term from the run-time given in Theorem 5.

For the sake of completeness, we now give the details of the knapsack PTAS-style
rounding procedure to reduce the problem in a (1 + ε)-approximation preserving
fashion to an unweighted instance.

Lemma 15 There exists an algorithm that takes as input a graph G = (V , E) with
edge weights w : E → Z+, an ε ∈ (0, 1), and a value λ, and and runs in time
poly(n, 1/ε) log (

∑
e∈E w(e)) to return an unweighted multigraph H = (V ′, E ′) such

that |V ′| ≤ |V | and |E ′| ≤ 8|E |2/ε. Moreover, if λ ∈ [OPT(Gw, k), 2OPT(Gw, k)],
then an α-approximate minmax k-partition in H can be used to recover an α(1+ ε)-
approximate minmax k-partition in Gw in time nO(1) for any α ≥ 1.
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Proof We contract all edges e ∈ E with w(e) > λ and denote the resulting graph
as G0 = (V 0, E0). Let m := |E0|, θ = ελ/4m and w′(e) := �w(e)/θ
 for every
e ∈ E0. We construct the graph H = (V 0, E ′) by creating w′(e) copies of each edge
e ∈ E0. The time to construct H is poly(n, 1/ε) · log (

∑
e∈E w(e)). The bound on the

number of vertices in H is due to contraction. We bound the number of edges in H as
follows:

|E ′| =
∑

e∈E0

⌈
w(e)

θ

⌉

≤
∑

e∈E0

(
w(e)

θ
+ 1

)

= w(E0)

θ
+ m

= 4w(E0)m

ελ
+ m ≤ 4m2

ε
+ m ≤ 8m2

ε
.

The last but one inequality above is because w(e) ≤ λ for every e ∈ E0. The bound
on |E ′| follows now by observing that m ≤ |E |.

Next, suppose that λ ∈ [OPT(Gw, k), 2OPT(Gw, k)]. We will show that an α-
approximate minmax k-partition in H can be used to recover an α(1+ε)-approximate
minmax k-partition in Gw in polynomial time for any α ≥ 1. We may assume that
w(e) > λ for all edges e ∈ E since all edges e ∈ E with w(e) > λ do not cross an
optimumminmax k-partition. Now, we show that θOPT(H , k) ≤ (1+ε)OPT(Gw, k).
Let (S∗

1 , . . . , S
∗
k ) be an optimum minmax k-partition in Gw. Then, for every i ∈ [k],

we have that

θw′(δ(S∗
i )) =

∑

e∈δ(S∗
i )

⌈
w(e)

θ

⌉

θ ≤
∑

e∈δ(S∗
i )

(
w(e)

θ
+ 1

)

θ = w(δ(S∗
i )) + θ |δ(S∗

i )|

≤ OPT(Gw, k) + ελ|δ(S∗
i )|

4m
≤ OPT(Gw, k)(1 + ε).

Hence, (S∗
1 , . . . , S

∗
k ) is a k-partition of the vertices of H with θcostH (S∗

1 , . . . , S
∗
k ) ≤

OPT(Gw, k)(1 + ε).
Let (S1, . . . , Sk) be an α-approximate minmax k-partition in H . For every i ∈ [k],

we have

w(δ(Si )) =
∑

e∈δ(Si )

w(e) =
∑

e∈δ(Si )

(
w(e)

θw′(e)

)

θw′(e) ≤
∑

e∈δ(Si )

θw′(e)

≤ αOPT(H , k)θ ≤ α(1 + ε)OPT(Gw, k).

Thus, costGw(S1, . . . , Sk) ≤ α(1 + ε)OPT(Gw, k). If V ′ �= V (i.e., if some edges e
were contracted sincew(e) > λ), then the run time to recover an α(1+ε)-approximate
minmax k-partition in Gw from (S1, . . . , Sk) is nO(1). ��

5 Proof of Theorem 2

In this section, we restate and prove Theorem 2.
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Theorem 2 There exists a randomized algorithm that takes as input a weighted
instance of Minmax k-cut, namely an n-vertex simple graph G = (V , E) with
edge weights w : E → Z+ and an integer k ≥ 2, along with an ε ∈ (0, 1), and runs
in time (k/ε)O(k2)nO(1) log2(

∑
e∈E w(e)) to return a partition P of the vertices of G

such that costGw(P) ≤ (1 + ε)OPT(Gw, k) with high probability.

Proof Given the input, we compute a family C as described in Theorem 5. For each
instance H ∈ C, we use Theorem 3 with λ = O((k/ε3) log n) to find an optimum
to the instance or obtain that the optimum is Ω((k/ε3) log n). By conclusion (iii) of
Theorem5,we can then recover and output a k-partitionP of V such that costGw(P) =
(1 + O(ε))OPT(Gw, k) in time nO(1). The correctness probability comes from the
correctness probability in Theorem 5.

By Theorem 5, the time required to compute the collection C is

poly(n, 1/ε) log2
(

∑

e∈E
w(e)

)

.

For each H ∈ C, the total time to run the algorithm described in Theorem 3 with
λ = O((k/ε3) log n) is

((
k2

ε3

)

log n

)O(k2)

nO(1) =
(

k

ε3

)O(k2)

(log n)O(k2)nO(1)

=
(

k

ε3

)O(k2)

(kO(k2) + n)nO(1)

=
(
k

ε

)O(k2)

nO(1).

Finally, our algorithm requiresnO(1) time to recover a k-partition inG fromanoptimum
k-partition of an instance H ∈ C. Therefore, the total run time is

poly(n, 1/ε) log2
(

∑

e∈E
we

)

+ |C| · ((k/ε)O(k2)nO(1) + knO(1)/ε + nO(1))

= (k/ε)O(k2)nO(1) · poly(n, 1/ε) log2
(

∑

e∈E
w(e)

)

= (k/ε)O(k2)nO(1) log2
(

∑

e∈E
w(e)

)

.

��
6 NP-hardness

In this section, we restate and prove the hardness result.

Theorem 1 Minmax k-cut is strongly NP-hard and W[1]-hard when parameterized
by k.
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Fig. 6 The graph G′ constructed
in the Proof of Theorem 1 when
the input graph G is a 4-cycle

Proof Wewill show a reduction from h- clique in the unweighted case. In h- clique,
the input consists of a simple graph G = (V , E) and a positive integer h, and the goal
is to decide whether there exists a subset S of V of size |S| = h with G[S] being a
clique. The h- clique problem is NP-hard and W[1]-hard when parameterized by h.

Let (G = (V , E), h) be an instance of h- clique, where V = {v1, . . . , vn}. We
may assume that h ≥ 2. Let M := max{(n + 1)2, 3m} and N := Mn + 2, where m
is the number of edges in G. We construct a graph G ′ = (V ′, E ′) as follows: for each
vertex vi ∈ V , we create a clique of size N over the vertex set Ci := {ui, j : j ∈ [N ]}.
We also create a clique of size N over the vertex set W := {w j : j ∈ [N ]}. For
each edge e = vivi ′ ∈ E , we add the edge ui,1ui ′,1 (between the first copy of vertex
vi and the first copy of vertex vi ′ ). For each vi ∈ V , we also add M − degG(vi )

edges between arbitrary pair of vertices in Ci and W—for the sake of clarity, we
fix these M − degG(vi ) edges to be ui, jw j for every j ∈ [M − degG(vi )]. We set
V ′ := W ∪∪i∈[n]Ci . We note that the size of the graph G ′ is polynomial in the size of
the input graph G. See Fig. 6 for an example. The next claim completes the reduction.

��

Claim 8 The graphG contains an h-clique if and only if there exists an (h+1)-partition
P = (P1, . . . , Ph+1) of V ′ such that maxi∈[h+1] |δG ′(Pi )| ≤ Mh − h(h − 1).

Proof Suppose that G contains an h-clique induced by a subset V0 ⊆ V . We may
assume that V0 = {v1, . . . , vh} by relabelling the vertices of V . Consider the partition
P = (P1, . . . , Ph+1) given by

Pi := Ci ∀i ∈ [h] and
Ph+1 := V ′\(P1 ∪ . . . ∪ Ph).
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We observe that

|δG ′(Pi )| = (M − degG(vi )) + degG(vi ) = M for all i ∈ [h] and
|δG ′(Ph+1)| =

∑

v∈V0
(M − degG(v)) + |E[V0, V \V0]|

=
∑

v∈V0
(M − degG(v)) +

∑

v∈V0
degG(v) − 2|E[V0]|

= Mh − 2|E[V0]|
= Mh − h(h − 1).

By choice ofM , we know thatM ≤ Mh−h(h−1), and hencemaxi∈[h+1] |δG ′(Pi )| =
Mh − h(h − 1).

We now prove the converse. Suppose that we have an (h + 1)-partition P =
(P1, . . . , Ph+1) of V ′ such that maxi∈[h+1]{|δG ′(Pi )|} ≤ Mh − h(h − 1).

We now show that P does not separate any two vertices in Ci for all i ∈ [n] or
any two vertices inW . For the sake of contradiction, suppose that there exists vertices
u, v ∈ V ′ such that u and v are in the same set A ∈ {C1, . . . ,Cn,W } but they are
in different parts of P . Without loss of generality, let u ∈ P1 and v ∈ P2. Then
A ∩ P1 and A\P1 together forms a non-trivial 2-cut of G ′[A], and hence |δG ′(P1)| ≥
|δG ′[A](A∩ P1)| ≥ N −1. By our choice of N , we know that N −1 > Mh−h(h−1).
This contradicts the fact that |δG ′(Pi )| ≤ Mh − h(h − 1) for all i ∈ [h + 1].

From now on, let us fix Ph+1 to be the part of P that contains W . We will show
that Ph+1 contains exactly n− h sets among C1, . . . ,Cn . Since all parts of P are non-
empty, it follows that Ph+1 cannot contain more than n − h sets among C1, . . . ,Cn .
For the sake of contradiction, suppose that Ph+1 contains at most n−h−1 sets among
C1, . . . ,Cn . This implies that more than h sets among C1, . . . ,Cn are not contained
in Ph+1. Let Ci1 , . . . ,Cih′ be the sets outside Ph+1, where h′ > h. Then

|δG ′(Ph+1)| ≥
∑

�∈[h′]
|E ′[Ci� ,W ]|

=
∑

�∈[h′]
(M − degG(vi� ))

≥
∑

�∈[h′]
(M − n)

≥ (h + 1)(M − n)

> Mh − h(h − 1).

This contradicts the fact that |δG ′(Pi )| ≤ Mh − h(h − 1) for all i ∈ [h + 1]. Hence,
Ph+1 contains exactly n − h sets among C1, . . . ,Cn .

Let Ci1 , . . . ,Cih be the sets that are not in Ph+1. We will now show that S :=
{vi1, . . . , vih } induces a clique in G. Since maxi∈[h+1] |δG ′(Pi )| ≤ Mh − h(h − 1),
we know that
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Mh − h(h − 1) ≥ |δG ′(Ph+1)|
=

∑

�∈[h]
(M − degG(vi� )) + |E ′[∪�∈[h]Ci� , (∪i∈[n]Ci )\(∪�∈[h]Ci� )]|

=
∑

�∈[h]
(M − degG(vi� )) + |E[S, V \S]|

= Mh −
∑

�∈[h]
degG(vi� ) + |E[S, V \S]|

= Mh − 2|E[S]|.

Consequently, |E[S]| ≥ h(h − 1)/2, and thus S induces an h-clique in G. ��
Weremark that our hardness reduction also implies that an exact algorithm forMin-

max k-cut in no(k) time in simple graphs (i.e., unweighted graphs) would also imply
an no(h)-time algorithm for h- clique, thus refuting the exponential time hypothesis
(see Theorem 14.21 in [7]).

7 Conclusion

Our work adds to the exciting recent collection of works aimed at improving the
algorithmic understanding of alternative objectives in graph partitioning [1, 5, 17]. We
addressed the graph k-partitioning problem under the minmax objective. We showed
that it is NP-hard, W[1]-hard when parameterized by k, and admits a parameterized
approximation scheme when parameterized by k. Our algorithmic ideas generalize
in a natural manner to also lead to a parameterized approximation scheme for Min
�p-norm k-cut for every p ≥ 1: in Min �p-norm k-cut, the input is a graph
G = (V , E) with edge weights w : E → Z+, and the goal is to partition the vertices
into k non-empty parts V1, V2, . . . , Vk so as to minimize (

∑k
i=1 w(δ(Vi ))p)1/p. We

note thatMin �p-norm k-cut generalizesMinsum k-cut as well asMinmax k-cut.
Based on prior works in approximation literature for minmax and minsum objec-

tives, it is a commonly held belief that the minmax objective is harder to approximate
than the minsum objective. Our results suggest that for the graph k-partitioning prob-
lem, the complexity/approximability of the two objectives are perhaps the same. A
relevant question towards understanding if the two objectives exhibit a complex-
ity/approximability gap is the following: When k is part of input, is Minmax k-cut
constant-approximable?We recall that when k is part of inputMinsum k-cut does not
admit a (2− ε)-approximation for any constant ε > 0 under the Small Set Expansion
Hypothesis [24] and admits a 2-approximation [27]. The best approximation factor
that we know currently for Minmax k-cut is 2k (see Sect. 1.1). A reasonable step-
ping stone would be to show that Minmax k-cut is APX-hard. We note that having
a constant factor approximation for Minmax k-cut would immediately shave off the
logmaxe∈E w(e) term from the run-time mentioned in Theorem 2.

The 2-approximation for Minsum k-cut is based on solving the same problem in
the Gomory-Hu tree of the given graph. We note that solving Minmax k-cut on the
Gomory-Hu tree of the given graph could at best result in an O(n)-approximation:

123



Fixed parameter approximation scheme…

consider the complete graph K2n+1 on 2n + 1 vertices with unit edge weights. The
optimumpartition forMinmax k-cut for k = n is the partition that contains n−1 parts
each containing 2 vertices and one part containing 3 vertices leading to an optimum
value of 3(2n − 2) = Θ(n). The star graph on 2n + 1 vertices with all edge weights
being 2n is a Gomory-Hu tree for K2n+1. The optimum partition for Minmax k-cut
for k = n on the Gomory-Hu tree (i.e., the star graph with weighted edges) consists
of n − 1 parts corresponding to n − 1 leaves of the star graph and one part containing
the remaining leaves and the center, thus leading to an optimum value of Θ(n2).

Funding Supported in part by NSF grants CCF-1814613 and CCF-1907937.
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