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In this study, we analyze the impact of drain current ( IDS ) variation in 28 nm high-K metal-gate and 22 
nm fully-depleted silicon-on-insulator Ferroelectric FET devices on processing-in-memory (PIM) deep 
neural network (DNN) accelerators. When performing repeated read operations on several devices at 
various read frequencies and under various biasing and programming conditions, non-Normal variation 
in IDS is observed. Device-circuit co-analysis is used to emulate PIM performance subject to noise 
when classifying images. Marginal degradation is observed in Fashion-MNIST classification accuracy 
using LeNet-5, and more significant degradation is observed in CIFAR-10 classification accuracy using 
MobileNetV2. Variation-aware training is shown to fully recover minor drops in LeNet-5 accuracy but 
becomes difficult for large workloads like MobileNetV2. We demonstrate that IDS variation in individual 
FeFETs over many read cycles is not prohibitive to designing DNN accelerators with small workloads, but 
advanced design techniques are required to mitigate error for larger workloads.

Introduction
In various non von Neumann computing applications, ferro-
electric FETs (FeFETs) have been demonstrated as useful build-
ing blocks for functionality which surpasses the capabilities of 
MOSFETs alone [1–11]. These devices include a ferroelectric 
layer in the gate stack composed of silicon doped hafnium 
oxide (Si:HfO2 ), which can be electrically polarized to a high 
or low threshold voltage ( Vth ) state to effectively store a memory 
bit within the transistor itself, thus making FeFETs an excel-
lent candidate to fulfill both logic and memory functionalities 
in a wide variety of applications [1, 2]. Logic-in-memory [3], 
content-addressable memory [4], coupled oscillators [5], and 
reconfigurable computing [6, 7] are a few of many applications 
of this technology. For machine learning (ML) accelerators 
based on processing-in-memory (PIM) architectures, FeFETs 
have shown exceptional promise [8–11]. PIM accelerators are 
primarily used to perform vector matrix multiplication (VMM), 
in which the FeFET crossbar array (used as a memory) stores 
the synapse matrix (DNN weights), the input vector is applied 
via the rows to the gate voltages of the FeFETs, and the output 
is obtained from the columns each performing analog sum-
mation of IDS currents from each FeFET in that column. In 

some designs, the FeFETs are used as analog synapses where 
the channel transconductance behaves as an analog weight. As 
prior works have shown, this weight can be tuned to achieve 
symmetric potentiation and depression characteristics [8, 9].

Alternatively, some designs consider a digital approach 
where the weights are quantized to multiple bits and each FeFET 
in the crossbar is used to represent a single weight bit [10]. The 
ferroelectric oxide layer of Si:HfO2 in the gate stack of FeFET 
devices can be electrically polarized via a gate voltage pulse to 
distinct high and low threshold voltage ( Vth ) states, as shown in 
Fig. 1. Thus, these FeFET devices store logic states of ‘0’ or ‘1’ 
depending on how Vth is programmed. Combining this stored 
bit determined by Vth with the input bit provided by a high or 
low VGS , an AND function is produced with IDS as the output 
[10] using a system architecture such as Fig. 2. The input bit VGS 
and the stored weight bit Vth thus create single-bit multiplication 
to produce the output bit IDS . An analog summation of the IDS 
of each FeFET in each column enables multiply-and-accumulate 
operation for each bit as shown in Fig. 2. This analog current is 
then digitized using an analog-to-digital converter, and each of 
the columns are combined to produce the final multi-bit VMM 
result using a hierarchical shift-and-add logic. This full VMM 
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engine design can thus accelerate deep neural networks (DNNs) 
in hardware [10].

IDS variation within each individual FeFET device within 
the crossbar is a key challenge which can lead to inaccuracies 
in PIM computation [10]. We continue our prior work [12] in 
this study in order to characterize the impact of IDS variation in 
FeFETs on the system accuracy of PIM-based DNN accelera-
tors using hardware measurements of various individual FeFET 
devices. We differentiate from our original work by comparing 
measured IDS distributions from both 28 nm HKMG and 22 
nm FDSOI FeFET devices, by analyzing the effects of lowered 
VGS read voltage and partial Vth programming and by introduc-
ing more complex DNN acceleration tasks. Unlike other works 
which have acknowledged the issue of IDS variation in FeFETs 
and characterize variation from sources including VDS and VGS 
variation and retention loss over time [3, 13, 14], we utilize 
device-circuit co-analysis to determine the impact of this varia-
tion in practical FeFET system applications such as PIM-based 

DNN accelerators. We measure three 28 nm HKMG FeFETs 
and two 22 nm FDSOI FeFETs, each with different channel 
dimensions, and use the measured IDS distributions to emulate 
the performance of a PIM-based DNN accelerator architecture 
considering FeFET IDS variation under a variety of conditions 
(including various biasing and programming conditions and 
various read frequencies). We task our FeFET PIM architec-
ture with classifying images in the presence of these sources 
of variation, including classifying the Fashion-MNIST dataset 
[15] using the LeNet-5 convolutional neural network architec-
ture [16] and the CIFAR-10 dataset [17] using the MobileNetV2 
architecture [18].

Results
First, we characterize three 28 nm FeFET devices [19] with 
channel dimensions 500 nm × 80 nm (Devices 1a and 1b, or 
D1a and D1b) and 80 nm × 34 nm (D2). Note that D1a and D2 

Figure 1:   (a) HKMG and (b) FDSOI FeFET device structures including an electrically polarizable ferroelectric layer in the gate stack.

Figure 2:   An FeFET crossbar-based PIM architecture for DNN acceleration, similar to [10].
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are shown in our prior work as ‘D1’ and ‘D2’ [12]. The measured 
IDS–VGS hysteresis curves of D1a, D1b and D2 are shown in 
Fig. 3. The hysteresis is measured by applying a voltage sweep to 
the gate, 50 mV to the drain and ground to the source and body. 
The voltage sweep from −3 to 3 V on the gate implements a full 
erase and program cycle on the device. Based on the measured 
hysteresis, a logic 0 VGS of − 1 V and a logic 1 VGS of 0 V are cho-
sen to represent the input bits. The only combination of Vth and 
VGS which produces an output current greater than 1 μA (logic 
1) occurs where Vth is programmed low and VGS is 0 V (thus, 
Vth and VGS are both logic 1). All other cases produce a current 
less than 0.1 nA for D1a, approximately 10 nA for D1b, and less 
than 0.01 nA for D2, yielding an Ion/Ioff  ratio of greater than 104 
in D1a, approximately 102 in D1b, and greater than 105 in D2. A 
high Ion/Ioff  ratio leads to robustness in the full system to noise 
in IoffIoff  , so maximizing this parameter is desirable.

With this configuration, the logic 1 IDS , also called Ion , 
occurs only where VGS and Vth are logic 1. We perform repeated 
reads of Ion of the FeFET by first programming the Vth to its logic 
high state, then applying ground to the source and body termi-
nals, 50 mV to the drain, and a voltage pulse to the gate. The gate 
pulse has a base voltage of − 1 V (logic 0 VGS ), a peak voltage of 
0 V (logic 1 VGS ), and a pulse width of 10 μs. Vth of the device is 
not reprogrammed between read cycles, and thus over repeated 
read cycles we measure both read endurance (long term change 
in average IDS ) and cycle-to-cycle variation.

Measurements are performed with read frequencies of 15, 
30, 60, and 120 Hz. In a VMM engine as in Fig. 2, each weight 
in the FeFET crossbar is read once while processing an image. 
Therefore, the frequency at which each FeFET is read repre-
sents the frame rate of the VMM engine. In application spaces 
where the full DNN weight matrix can be loaded into the FeFET 
crossbars at once, the layers are accessed once per image, the 
outputs of that layer are fed to the next layer, and so on. Each 
layer is not accessed again until the next image is passed. Since 
the devices in that layer are accessed once per image, a 15 Hz 
read frequency of the individual FeFETs represents a 15 frames 
per second (FPS) image processing rate. Note that one could 
also consider a pipelined design, wherein one image is processed 
through a given layer, then passed to the next layer, at which 
point the next image is passed into the first layer, and so on. This 
allows for parallel processing of images in different layers, thus 
leading to a higher frame rate.

Figure  4 shows 30,000 IDS read measurements for the 
three 28 nm HKMG devices at various read frequencies. The 
measurement distributions are fit to normal distributions with 
mean 1 as shown in Fig. 4b. In all three devices and for all 
tested frequencies, there is a significant trend in the first 2000 
cycles where the average IDS increases which we call the ramp 
up period. We hypothesize that a parasitic capacitance present 
in the FeFET or the measurement system could be the cause 

of this ramp up period. Emulation of the PIM architecture’s 
performance subject to variation in both the ramp up period 
and in the long term case is performed by bootstrap sam-
pling the 2000 cycle ramp up period and the full IDS dataset, 
respectively. In certain instances such as in the 30 Hz meas-
urement of D1b and the 60 Hz measurement of D2, we also 
note the presence of abrupt drops in measured IDS . We attrib-
ute these sudden drops to ferroelectric breakdown causing 
Vth retention loss due to repeated measurement. The device 
characterization from GLOBALFOUNDRIES shows that fer-
roelectric breakdown of the low Vth case (which results in Ion 
as we measure here) can occur around 105 bipolar stress cycles 
[19]. While we do not perform full bipolar stress from −3 to 
3 V, the voltage swing of the read pulse from −1 to 0 V still 
appears to cause some breakdown, particularly in D2. The 
measurements are taken successively, i.e., 30,000 read cycles 
are measured at 15 Hz, then the device is reprogrammed and 
30,000 measurements are taken at 30 Hz, and so on. We note 
that in D2, the average value of IDS drops with each succes-
sive test, and the sudden drops occur near where 105 total 
read cycles have occurred between all tests, which is where we 
expect ferroelectric breakdown from bipolar stress. It is also 
possible that these abrupt IDS drops occur purely from PVT 
variations in some cases, such as in D1b where the drops occur 
in the 30 Hz case and the following tests restore their average 
IDS after reprogramming the device.

While the original characterization shows the Vth retention 
loss from bipolar stress leading to a drop in average IDS over 
time, it does not analyze variation due to repeated read opera-
tions on individual devices. All of the measured IDS distribu-
tions show some degree of non-Normality, shown by the 120 Hz 
distributions in Fig. 4b, for example. We expect that by measur-
ing many devices of the same dimension, these distributions 
would be drawn closer to Gaussian. Since we use distributions 
from single devices in our emulation of the PIM architecture, 
our study represents a possible worst case for PIM classification 
accuracy wherein each device demonstrates similar non-Normal 
variation.

The low output current Ioff  can be measured by applying 
VGS = −1 V. When VGS is low in any of the three devices, the 
measured Ioff  is below 0.1 nA or even as low as the pA range, 
which is the noise floor of the measurement system. The more 
problematic case of Ioff  occurs in D1b where the Vth is high 
(logic 0) and VGS is high, since Ioff  in this case is in the 10 nA 
range due to D1b’s low memory window for an Ion/Ioff  ratio 
near 102 . However, the Ion/Ioff  ratio remains larger than 104 in 
all other cases. In general use cases, we can assume noise in 
Ioff  is negligible, but D1b shows a case where noise in Ioff  may 
become noticeable due to its smaller Ion/Ioff  ratio compared 
to other devices. In this study, we primarily analyze how noise 
in Ion affects PIM accuracy, as this is representative of PIM 
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Figure 3:   Measured IDS–VGS hysteresis for 28 nm HKMG FeFET devices of various size: (a) Device 1a (or D1a) with dimensions 500 nm × 80 nm, (b) Device 
1b (D1b) with the same dimensions as D1a, and (c) Device 2 (D2) with dimensions 80 nm × 34 nm. VDS of 50 mV and a VGS sweep are applied to produce 
the hysteresis curves. Low VGS of − 1 V and high VGS of 0 V are chosen to maximize Ion/Ioff ratio. Vth is defined where IDS = 1 μA.
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architectures composed of FeFET devices designed with suf-
ficiently large memory windows.

According to the hysteresis curve in Fig.  3b, D1b is 
expected to produce a higher Ion/Ioff  ratio closer to 103 if the 
logic high VGS is lowered to −0.5 V instead of 0 V. There-
fore, we measure IDS variation in this case as well, as shown in 
Fig. 5. With the lowered VGS , we generally observe slightly less 
variation in the measured IDS distributions than when VGS of 0 
V is used. The compiled standard deviations and skew of every 

measured dataset for all three of the 28 nm HKMG devices is 
shown in Table 1a.

We also measure IDS variation in two 22 nm FDSOI devices 
[20]. Device 3 (or D3) has channel dimensions of 1 μm × 70 
nm, and Device 4 (D4) consists of ten parallel FeFETs, each 
with channel dimensions of 170 nm × 24 nm. The hysteresis 
curves for these devices are shown in Fig. 6. We follow a similar 
approach for logic parameter assignment for these devices as 
for the 28 nm devices, wherein the only state which produces a 

Figure 4:   (a) Measured IDS for D1a, D1b and D2. The devices are programmed only once before the first cycle. The distributions are normalized to 
Gaussian distributions of mean 1. (b) 120 Hz distributions for D1a, D1b and D2 are bootstrap sampled from the full 30,000 sample set and the 2000 
sample ramp up period.
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high IDS occurs where Vth is programmed low and VGS is high. 
We note that because of the large memory window of D4, a logic 
0 VGS near −1.5 V would be needed for successful PIM opera-
tion as opposed to the −1 V we have assigned for other devices. 
We also observe that the Ion/Ioff  ratio can be increased for both 
devices by lowering the high VGS to −0.5 V similarly to D1b, but 
we perform read endurance tests with a VGS waveform with a 
base of −1 V and a peak of 0 V at a pulse width of 10 µ s to main-
tain consistency with the tests performed on the 28 nm devices.

All tests performed on the 22 nm devices are performed at 
30 Hz, and we study the effects of partially programming Vth on 
the IDS distributions of D4. This process is performed by first 
erasing the device, then sweeping the VGS to a maximum pro-
gram voltage value between 1.5 V and 3 V, where 3 V represents 
a full program.

The 22 nm devices show significant variations in IDS in the 
first 2000 cycles, similarly to the 28 nm devices. D3 shows a 
ramp up followed by a drop to a value which stays relatively 
steady throughout the remainder of the cycles, whereas D4 
shows a steady drop in its early cycles. We hypothesize that these 
trends are also caused by parasitic capacitance in the devices, 
and the difference in the directions of these trends in D3 and D4 
may be explained by D4 being composed of ten parallel FeFETs 
rather than one single device. To capture these trends, we per-
form bootstrap sampling of both the first 2000 measurements 
and the full dataset, similarly to the 28 nm devices. The measure-
ment results for both D3 and D4 are shown in Fig. 7, and the 
standard deviation and skewness of each distribution when fit 
to mean 1 are shown in Table 1b and c.

By varying the program voltage of D4 as shown in Fig. 7b, 
we notice that the average IDS value depends greatly on the 
program voltage. Increasing the program voltage increases the 

average IDS value until a maximum point is reached near 2.25 
V. The 2.25 V and 2.5 V results show very similar average IDS 
results, while increasing the program voltage to 3 V actually 
results in a slight decrease in the average IDS . For maximum 
Ion/Ioff  , it may be beneficial therefore to choose a program volt-
age closer to 2.25 V. However, we also notice that the partial 
program at 1.5 V shows the least variation in IDS from cycle to 
cycle, as shown by its very low standard deviation and skew in 
Table 1c. Therefore, to minimize cycle to cycle variation, a lower 
program voltage may be beneficial for certain applications at the 
expense of the Ion/Ioff  ratio.

Using all of these results from both the 28 and 22 nm FeFET 
devices, we perform device-circuit co-simulation using PyTorch 
[21] to study the effects IDS variation on our PIM architecture’s 
accuracy when classifying the Fashion-MNIST dataset [15] 
using the LeNet-5 convolutional neural network model [16], 
as well as classifying the CIFAR-10 dataset [17] using Mobile-
NetV2 [18] (Fig. 8a). We specifically emulate the PIM archi-
tecture designed by Yun Long et al. [10], which is composed of 
many coupled FeFET crossbars to form the VMM engine, each 
of which are similar to Fig. 2. We consider two PIM operating 
modes, ASIC Mode and Accelerator Mode (shown in Fig. 8b), 
which introduce FeFET noise which is bootstrap sampled from 
the full measured distributions and the 2000 cycle ramp up 
period distributions, respectively.

We define ASIC mode as the mode of PIM operation where 
the system of coupled FeFET crossbar arrays is large enough 
to store the full DNN weight matrix at once. In this operation 
mode, the weights are written to the FeFET arrays once and 
streaming inputs (images) are used for inference. The FeFET Vth 
are thus programmed once at device startup and the IDS is meas-
ured many times during inference without rewriting Vth between 

Figure 5:   IDS for D1b is measured with a lower VGS of -0.5 V to achieve a higher Ion/Ioff ratio with a measurement setup similar to that of Fig. 4.
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image passes. Therefore, this operation mode is impacted most 
by long term variation in IDS , which we emulate by boostrap 
sampling the full 30,000 measurement set. As each FeFET in the 
weight matrix is read once during the passing of a single image, 
the read measurement frequency represents the frame rate of 
the full system. For example, a 15 Hz FeFET read frequency 
corresponds to a frame rate of 15 FPS.

We define accelerator mode as the mode of PIM operation 
where the on-chip storage of the VMM engine is not sufficient 
to store the entire weight matrix for the DNN. In this case, the 
weights are time-multiplexed to compute a large network (simi-
lar to the process used by Yun Long et al. [10]). In this mode 
of operation, the FeFET weights are programmed to contain 
the first neural network layer, each image is processed consecu-
tively, the weights are rewritten with the next DNN layer, and 

so on. As the cells are frequently rewritten as the weights are 
time-multiplexed, the system is most impacted by IDS variation 
shortly after reprogramming, and we therefore bootstrap sample 
IDS values from the 2000 cycle ramp up period distributions. The 
frequency of read measurement in this operation mode repre-
sents the ratio of the size of the weight matrix to the total capac-
ity of the crossbar. Processing a batch of 20 images with a 20 FPS 
throughput with a 5 layer neural network in which only one 
layer is loaded into the FeFET crossbar at a time corresponds to 
a read frequency on each FeFET of 100 Hz. We note that since 
write operation occurs on the order of a few ns [19, 20] for these 
devices, write time is negligible by comparison to the read time 
when calculating this frequency. In cases where the batch size is 
equal to 1 (processing a single image as in a digital camera), the 
read frequency is irrelevant.

Figure 6:   IDS–VGS hysteresis for two 22 nm FDSOI FeFET devices: (a) Device 3 (D3) with channel dimensions of 1 μm × 70 nm and (b) Device 4 (D4) which 
consists of ten parallel devices with dimensions 170 nm × 24 nm. The hysteresis curves are measured with a measurement setup similar to that which 
is used for the data in Fig. 3.
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We emulate our PIM architecture’s performance in the pres-
ence of IDS variation using device-circuit co-analysis. First, each 
model parameter is quantized to 8 bits, then the IDS variation 
is introduced to each logic 1 bit coming from the FeFET out-
puts to represent variation in Ion during PIM operation. The IDS 
variation in each of the individual devices accumulates in the 
columns of the crossbar and leads to degradation of the classifi-
cation accuracy of the system. Two emulation tests are studied 
in this work. The Fashion-MNIST dataset [15] is classified using 
the LeNet-5 convolutional neural network architecture [16], 
and the CIFAR-10 dataset [17] is classified using MobileNetV2 
[18]. The baseline, noiseless classification accuracy of the 8-bit 
quantized networks are shown to be 85.86% for Fashion-MNIST 
classification using LeNet-5, and 90.06% for CIFAR-10 classifi-
cation using MobileNetV2. Table 2 shows the full results of the 

emulation using each of the measured distributions, including 
the mean and standard deviation in the PIM architecture’s clas-
sification accuracy due to IDS variation.

In most cases of the Fashion-MNIST classification on 
LeNet-5, we see only a marginal drop in classification accuracy 
of about 1 to 3% depending on the standard deviation and skew-
ness of the measurement distributions. The primary outlier is 
the 30 Hz case of D1b with VGS = 0 V, in which the measure-
ments show a nearly trimodal distribution caused by the sudden 
drops in average IDS at regular intervals in the test due to Vth 
retention loss. In most devices, there is not a clear dependence 
on measurement frequency, although we do observe a generally 
decreasing accuracy trend as frequency increases specifically in 
accelerator mode for D1a and D2. In the program voltage tests 
for D4, we observe high accuracy with low variance in the cases 

Figure 7:   (a) Measured IDS variation for D3 and D4 at 30 Hz read frequency. (b) Measured IDS variation in D4 due to various program voltages in the 
initial ERS-PGM cycle. All measurements are acquired utilizing a similar measurement setup to that which is used for the data in Fig. 4.
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where IDS remains steadiest, showing further evidence that tun-
ing VGS to certain values with stable IDS (typically lower than 
the maximum allowable program voltage) can be beneficial for 
system accuracy.

When classifying CIFAR-10 with MobileNetV2, the deg-
radation of the classification accuracy due to IDS variation is 
much more pronounced. In general, the trends in accuracy 
reduction with respect to frequency and program voltage tend 
to follow the trends shown in the Fashion-MNIST results, 
wherein test cases with degraded accuracy on Fashion-MNIST 
show significant degradation under this larger workload. In 
the worst case of 30 Hz measurement in D1b as mentioned 
previously, where a nearly trimodal IDS distribution occurs, 
the CIFAR-10 accuracy drops to a miniscule 12.14%. Another 
case in which the CIFAR-10 classification shows significant 
degradation as compared to Fashion-MNIST classification is 
in D3, where the large IDS spike in the first 1000 cycles drops 
the classification accuracy as low as 26.61% in accelerator 
mode. However, there are also many test cases which show 
accuracy over 85%, showing that our PIM design still has very 
reasonable accuracy even for highly complex workloads when 

the IDS variation is minor. This is especially true in the case 
of D1b with lowered VGS read voltage, which shows some of 
the highest accuracy results, demonstrating that lowering the 
read voltage can improve system accuracy if the Ion/Ioff  ratio 
is kept sufficiently high.

To recover the accuracy loss caused by IDS variation, we 
can sample the IDS measurements to add noise while train-
ing the DNN. This process, called variation-aware training, 
is documented by Yun Long et al. in a similar DNN accel-
erator design using ReRAM [22]. We observe full accuracy 
recovery to the 85.86% baseline by using variation aware 
training in the LeNet-5 emulation for Fashion-MNIST clas-
sification. This accuracy recovery becomes much more dif-
ficult in the MobileNetV2 classification of CIFAR-10 due to 
the significantly larger network and the large accuracy reduc-
tions caused by noise [23]. Therefore, the drop in classifica-
tion accuracy caused by the FeFET IDS variation measured 
in this study is shown to not be a limiting factor to our PIM 
accelerator design in the case of small workloads, but larger 
workloads present challenges which require more advanced 
design techniques to remedy.

Figure 8:   (a) Analysis algorithm for device-circuit co-analysis using IDS variation in PIM architecture emulation and (b) the two PIM architecture 
operating modes. The two operating modes depend on the size of the DNN weight matrix. In ASIC mode, the DNN is small enough to be fully stored in 
the FeFET crossbars at once. Alternatively in accelerator mode, the DNN is too large to be loaded into the array at once, so a single layer is written into 
the array at a time and then overwritten by the next layer.
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Discussion
In this study, measured IDS variation in 28 nm HKMG and 22 
nm FDSOI FeFET devices in both the short term and the long 
term is applied to the emulation of a PIM-based DNN accelera-
tor. The accuracy of the accelerator is tested when classifying 
the Fashion-MNIST dataset using the LeNet-5 convolutional 
neural network and when classifying the CIFAR-10 dataset 
with MobileNetV2. In each measured IDS dataset, we tend to 
see the largest variation in the initial read cycles, which we use 
to emulate a mode of PIM operation we call accelerator mode. 
In the 28 nm HKMG devices, this initial variation manifests as 
a ramp up period before the average IDS settles to a steady aver-
age, which we attribute to a parasitic capacitance present in the 
device or measurement system. In the 22 nm FDSOI devices, we 
notice a ramp up period in D3 followed by a sudden drop, and 
a ramp down period in D4. The differences in these responses 
can likely be explained by the device structure, as D4 is com-
posed of ten parallel FeFETs instead of a single device as in D3. 
Additionally, we study long term variation in IDS to emulate PIM 
operation in ASIC mode. In most of the test cases demonstrated 
in this study, ASIC mode outperforms accelerator mode in the 
metric of classification accuracy, with the few exceptions occur-
ring where sudden drops in average IDS create skewed or multi-
modal distributions.

In the 28 nm HKMG FeFETs, we analyze the effects of dif-
ferent read frequencies on the IDS variation to determine how a 
higher frame rate of the system impacts device variation. In D1a 
and D2 we observe a decreasing PIM classification accuracy for 
both of the tested classification tasks as frequency increases in 
accelerator mode, but this trend does not hold in ASIC mode, 
nor does it hold for D1b. In D1a and D2, the decreasing trend is 
caused by higher frequencies showing more significant variation 
in the ramp up period. However, since this trend is not consist-
ent in D1b, we cannot say with certainty that this trend will hold 
for all HKMG FeFET devices across varying frequencies.

Although they are theoretically identical devices with the 
same channel dimensions, we see significant differences between 
the memory windows and measured IDS variations of D1a and 
D1b. D1a and D1b show a similar IonIon on the order of 1 µA , 
but D1b has a lower Vth in the logic 0 state, leading to a signifi-
cantly higher Ioff  . This is likely caused by manufacturing vari-
ability in the fabrication process, particularly in the ferroelectric 
layer, leading to a lower degree of electrical polarization in the 
gate stack differentiating the programmed and erased states and 
thus a narrower memory window. As clearly evidenced by just 
these two devices, device-to-device variation within the FeFET 
crossbar could be a very critical component leading to inaccura-
cies in overall computation, and is an avenue we do not explore 
in depth in this study. With more devices to characterize, this 
could be a very interesting avenue for future work.
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To address some of these differences, we test D1b with 
a lower VGS of −0.5 V which helps to raise its Ion/Ioff  ratio. 
Through this test, we observe that the lower VGS actually leads 
to less cycle-to-cycle variation in the IDS measurements, thereby 
leading to improved PIM performance with a higher classifi-
cation accuracy. When assigning and tuning VGS parameters, 
designers can choose to lower VGS in order to lower cycle-to-
cycle IDS variation, while also considering the tradeoff between 
VGS and Ion/Ioff  ratio in specific devices.

The results shown by D2 clearly show that Vth retention loss 
from ferroelectric breakdown can occur due to repeated read 
operation. As each successive test is performed, the average IDS 
for this device decreases, including abrupt drops in the 60 Hz 
test. These drops occur near the range of 105 total read cycles, 
which is the same range shown in the original device characteri-
zation [19] where Vth reduction can occur due to bipolar stress. 
Although our test does not perform true bipolar stress since the 
voltage swing between −1  and 0 V is smaller than the full bipo-
lar stress voltage swing from the device characterization [19], it 
is still evident that this voltage swing, when repeated over many 
cycles, can lead to Vth loss. This is a critical source of degradation 
to consider when designing PIM systems and could severely 
limit system accuracy over the life of the device.

We expect this effect to be compounded by write endurance 
effects in accelerator mode. In accelerator mode, we assume that 
the FeFET crossbar will be frequently rewritten as each layer of 
weights in the network overwrite the previous layer. Performing 
repeated program and erase operations to overwrite the weights 
stored in the FeFETs produces bipolar stress effects which 
degrade the low-Vth state by steadily increasing Vth (reducing 
Ion ). As shown by the original characterizations of both devices 
[19, 20], bipolar stress effects become significant in the range 
of 104 to 105 cycles. In another work studying SiON and SiO2 
FeFET devices, the effects of repeated program and erase cycles 
in isolation are also observed to cause significant breakdown in 
IDS due to charge trapping effects [24]. Therefore, we expect that 
in accelerator mode, IDS would show additional decay as read 
and write cycles both increase.

When measuring 22 nm FDSOI devices, we study the 
impact of partial Vth programming on IDS variation. We 
observe the highest accuracy in the measurement cases where 
IDS remains the steadiest, typically for VGS programming pulses 
lower than the maximum program voltage. In fact, the lowest 
PIM classification accuracy for both ASIC and accelerator mode 
tends to occur where the highest program voltage of VGS = 3 
V is used. For the MobileNetV2 classification of CIFAR-10 in 
particular, a 15 to 18% improvement is observed when using 
a program voltage of 2.5 or 2.25 V rather than the full 3 V in 
ASIC mode, and an improvement of over 21% is observed when 
using 2.5 V rather than 3 V in accelerator mode. This is a cru-
cial result showing that partial programming of the Vth of the 

FeFETs can be beneficial to reduce IDS variation in the system 
and thereby improve overall classification accuracy for the PIM 
system. However, lowering the program voltage can also lead to 
reduced Ion/Ioff  , so this decision must be optimized for maxi-
mum performance.

As shown by the 28 nm devices and as confirmed by D3 and 
D4, the memory windows of each device can vary significantly 
based on channel dimension and device-to-device variation. 
Devices used to create a full PIM architecture in hardware must 
therefore be carefully designed and tuned to maintain a high 
Ion/Ioff  ratio and optimal memory window for operation based 
on chosen VGS parameters. For example, the memory window of 
D4 was too large to keep the same VGS parameters as the other 
devices, and would thus create different design constraints if a 
full PIM system were to be created from this device structure.

In spite of non-Normal variation in IDS in all test cases, the 
accuracy of the PIM architecture remains very close to the base-
line quantization accuracy with only a 1 to 3% accuracy drop in 
most cases for the classification of Fashion-MNIST with LeNet-
5. An approximately 7% drop in D1b at 30 Hz with VGS = 0 V 
occurs due to abrupt IDS drops, which we call an outlier since 
these drops are recovered when D1b is reprogrammed for the 60 
and 120 Hz cases. In larger workloads such as classifying CIFAR-
10 with MobileNetV2, the accuracy drops become significantly 
worse when modeling with IDS datasets which have significant 
noise. However, the PIM architecture still shows promise with 
accuracy well over 80% in many cases. Noise aware training can 
fully recover the accuracy drops observed in PIM emulation of 
LeNet-5, although this becomes more challenging for the larger 
and less accurate MobileNetV2 classification of CIFAR-10 [23]. 
We determine that these sources of noise are not preventative 
of PIM architecture design for small workloads, and that larger 
workloads may require further advanced design techniques to 
ensure high accuracy.

A significant area of future work includes exploring these 
advanced design techniques to mitigate PIM errors due to IDS 
variation. In our emulation, we assume that the crossbar array 
is large enough to hold the entire weight matrix of each layer 
in accelerator mode, and the entire weight matrix for the full 
network in ASIC mode. Reducing the array size would reduce 
the sum of the noise in each column, leading to higher accu-
racy at the cost of computation time and more write endur-
ance-induced drift due to the need to cycle through the array 
more frequently per network pass. This need for rewriting the 
arrays can be avoided by using many networked FeFET arrays 
as demonstrated by Yun Long et al [10]. With this networked 
design, one could also explore tuning the size of each array, as 
too large of an array leads to higher summed error and slower 
read times, while using too small of an array leads to increased 
errors from inter-array communication. One could also explore 
using refresh operations to reduce average IDS drift in the case 



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
36

  
 I

ss
ue

 2
1 

 N
ov

em
be

r 2
02

1 
 w

w
w

.m
rs

.o
rg

/jm
r

Invited Paper

© The Author(s), under exclusive licence to The Materials Research Society 2021 4392

of ASIC mode, with the clearest area of need for this being dem-
onstrated by the 30 Hz measurements from D1b which drift far 
below their starting value and are refreshed for the 60 Hz and 
120 Hz measurements.

Future work in the area of device measurement includes 
deeper study of device-to-device variation and parameter tun-
ing which would be crucial to developing an FeFET PIM-based 
DNN accelerator in hardware. Variation observed between 
devices that should be theoretically identical, as in the case of 
D1a and D1b, is especially crucial to study. Should a hardware 
DNN accelerator be developed from many devices of these same 
dimensions, it is possible that there will be large variations in the 
memory windows and Ion/Ioff  ratios of each individual device 
due to material and process variations, leading to inaccuracies 
in overall system accuracy. Testing many more devices would 
improve understanding of this issue. Additionally, this work has 
not explored FeFETs built on TFTs or FeFETs with different fer-
roelectric materials than Si:HfO2 . Performing IDS measurement 
for these other types of FeFETs would provide further insight 
into noise behavior in devices outside of the small sample tested 
in this study.

Conclusion
In conclusion, measurements of the IDS of individual 28 nm 
HKMG and 22 nm FDSOI FeFET devices over many read 
cycles show non-Gaussian variation which can lead to errors 
in the overall accuracy of PIM-based DNN accelerators. Based 
on measurements of three 28 nm and two 22 nm FeFETs in this 
work, the IDS variations do not show conclusive dependence on 
read frequency, nor is there a stark difference between the two 
process technology nodes. Device-circuit co-analysis demon-
strates that the PIM classification accuracy reductions caused 
by these measured IDS variations are only marginal (between 
1 to 3%) when classifying the Fashion-MNIST dataset with 
LeNet-5, and can be worse in more difficult workloads such 
as classifying CIFAR-10 with MobileNetV2. Some crucial ele-
ments of system design shown in this study include that partially 
programming the Vth of the FeFETs or using a lowered read 
voltage can both lead to improved accuracy in certain cases as 
long as the Ion/Ioff  ratio of the device is preserved, and that 
short term variation (shown in accelerator mode) tends to lead 
to worse PIM accuracy degradation than long term variation 
(shown in ASIC mode). Using variation-aware DNN training, 
wherein the measured IDS variations are used to introduce noise 
during the DNN training phase, we observe that accuracy loss 
caused by IDS variation can be fully recovered back to its noise-
less baseline in the case of Fashion-MNIST classification with 
LeNet-5, though this noise aware training becomes less effec-
tive for larger networks like MobileNetV2. Therefore, individual 
FeFET device current variation due to many read cycles is shown 

to not be preventative of our FeFET-based DNN accelerator 
design in either 28 nm HKMG or 22 nm FDSOI technology 
nodes when accelerating small PIM workloads, but advanced 
design techniques are required to mitigate error in the case 
larger workloads.

Materials and Methods
The FeFET devices measured in this study are provided by 
GLOBALFOUNDRIES for both 28 nm HKMG and 22 nm 
FDSOI process technology nodes [19, 20]. Both devices include 
a ferroelectric layer of doped HfO2 which is studied as the main 
source of material and process variation. Further study of both 
devices can be found in their original technology characteri-
zations [19, 20], while we perform measurements which are 
designed with the PIM-based DNN accelerator application 
space in mind. All device measurements are performed using 
a Keysight Technologies B1530A Waveform Generator/Fast 
Measurement Unit.

To create a more accurate method for sampling small IDS 
measurement datasets for PIM emulation, we perform bootstrap 
sampling of each of the measured datasets by sampling with 
replacement until each bootstrapped set contains 15,000,000 
samples. These datasets are then sampled by our emulation 
system in PyTorch, in which we add the noise from IDS to the 
1 bits in the outputs to emulate noisy FeFETs within the cross-
bar which composes the VMM engine. During variation-aware 
training, this IDS variation is also added during the training 
process in order to train the model to recover inaccuracies pro-
duced by noisy weights.
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