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In this study, we analyze the impact of drain current (Ips) variation in 28 nm high-K metal-gate and 22
nm fully-depleted silicon-on-insulator Ferroelectric FET devices on processing-in-memory (PIM) deep
neural network (DNN) accelerators. When performing repeated read operations on several devices at
various read frequencies and under various biasing and programming conditions, non-Normal variation
in Ips is observed. Device-circuit co-analysis is used to emulate PIM performance subject to noise

when classifying images. Marginal degradation is observed in Fashion-MNIST classification accuracy
using LeNet-5, and more significant degradation is observed in CIFAR-10 classification accuracy using
MobileNetV2. Variation-aware training is shown to fully recover minor drops in LeNet-5 accuracy but
becomes difficult for large workloads like MobileNetV2. We demonstrate that Ipg variation in individual
FeFETs over many read cycles is not prohibitive to designing DNN accelerators with small workloads, but
advanced design techniques are required to mitigate error for larger workloads.

In various non von Neumann computing applications, ferro-
electric FETs (FeFETs) have been demonstrated as useful build-
ing blocks for functionality which surpasses the capabilities of
MOSFETs alone [1-11]. These devices include a ferroelectric
layer in the gate stack composed of silicon doped hafnium
oxide (Si:HfO,), which can be electrically polarized to a high
or low threshold voltage (Vi) state to effectively store a memory
bit within the transistor itself, thus making FeFETs an excel-
lent candidate to fulfill both logic and memory functionalities
in a wide variety of applications [1, 2]. Logic-in-memory [3],
content-addressable memory [4], coupled oscillators [5], and
reconfigurable computing [6, 7] are a few of many applications
of this technology. For machine learning (ML) accelerators
based on processing-in-memory (PIM) architectures, FeFETs
have shown exceptional promise [8-11]. PIM accelerators are
primarily used to perform vector matrix multiplication (VMM),
in which the FeFET crossbar array (used as a memory) stores
the synapse matrix (DNN weights), the input vector is applied
via the rows to the gate voltages of the FeFETs, and the output
is obtained from the columns each performing analog sum-

mation of Ipg currents from each FeFET in that column. In
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some designs, the FeFETs are used as analog synapses where
the channel transconductance behaves as an analog weight. As
prior works have shown, this weight can be tuned to achieve
symmetric potentiation and depression characteristics [8, 9].
Alternatively, some designs consider a digital approach
where the weights are quantized to multiple bits and each FeFET
in the crossbar is used to represent a single weight bit [10]. The
ferroelectric oxide layer of Si:HfO, in the gate stack of FeFET
devices can be electrically polarized via a gate voltage pulse to
distinct high and low threshold voltage (Vy,) states, as shown in
Fig. 1. Thus, these FeFET devices store logic states of ‘0" or ‘I’
depending on how Vi, is programmed. Combining this stored
bit determined by Vi, with the input bit provided by a high or
low Vs, an AND function is produced with Ipg as the output
[10] using a system architecture such as Fig. 2. The input bit Vs
and the stored weight bit Vy, thus create single-bit multiplication
to produce the output bit Ips. An analog summation of the Ipg
of each FeFET in each column enables multiply-and-accumulate
operation for each bit as shown in Fig. 2. This analog current is
then digitized using an analog-to-digital converter, and each of
the columns are combined to produce the final multi-bit VMM
result using a hierarchical shift-and-add logic. This full VMM
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Figure 1: (a) HKMG and (b) FDSOI FeFET device structures including an electrically polarizable ferroelectric layer in the gate stack.
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Figure2: An FeFET crossbar-based PIM architecture for DNN acceleration, similar to [10].

engine design can thus accelerate deep neural networks (DNNs)
in hardware [10].

Ips variation within each individual FeFET device within
the crossbar is a key challenge which can lead to inaccuracies
in PIM computation [10]. We continue our prior work [12] in
this study in order to characterize the impact of Ipg variation in
FeFETs on the system accuracy of PIM-based DNN accelera-
tors using hardware measurements of various individual FeFET
devices. We differentiate from our original work by comparing
measured Ipg distributions from both 28 nm HKMG and 22
nm FDSOI FeFET devices, by analyzing the effects of lowered
Vs read voltage and partial Vy, programming and by introduc-
ing more complex DNN acceleration tasks. Unlike other works
which have acknowledged the issue of Ipg variation in FeFETs
and characterize variation from sources including Vpg and Vg
variation and retention loss over time [3, 13, 14], we utilize
device-circuit co-analysis to determine the impact of this varia-

tion in practical FeFET system applications such as PIM-based
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DNN accelerators. We measure three 28 nm HKMG FeFETs
and two 22 nm FDSOI FeFETs, each with different channel
dimensions, and use the measured Ipg distributions to emulate
the performance of a PIM-based DNN accelerator architecture
considering FeFET Ipg variation under a variety of conditions
(including various biasing and programming conditions and
various read frequencies). We task our FeFET PIM architec-
ture with classifying images in the presence of these sources
of variation, including classifying the Fashion-MNIST dataset
[15] using the LeNet-5 convolutional neural network architec-
ture [16] and the CIFAR-10 dataset [17] using the MobileNetV2

architecture [18].

First, we characterize three 28 nm FeFET devices [19] with
channel dimensions 500 nm x 80 nm (Devices 1a and 1b, or
Dlaand D1b) and 80 nm x 34 nm (D2). Note that D1a and D2
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are shown in our prior work as ‘D1’ and ‘D2’ [12]. The measured
Ips-Vgs hysteresis curves of D1la, D1b and D2 are shown in
Fig. 3. The hysteresis is measured by applying a voltage sweep to
the gate, 50 mV to the drain and ground to the source and body.
The voltage sweep from —3 to 3 V on the gate implements a full
erase and program cycle on the device. Based on the measured
hysteresis, a logic 0 Vgs of — 1 V and a logic 1 Vgs of 0 V are cho-
sen to represent the input bits. The only combination of Vi, and
Vs which produces an output current greater than 1 uA (logic
1) occurs where Vi, is programmed low and Vs is 0 V (thus,
Vin and Vs are both logic 1). All other cases produce a current
less than 0.1 nA for D1a, approximately 10 nA for D1b, and less
than 0.01 nA for D2, yielding an Ion/I,f ratio of greater than 10*
in D1a, approximately 10? in D1b, and greater than 10° in D2. A
high I,n/Iog ratio leads to robustness in the full system to noise
in I,gl,f, so maximizing this parameter is desirable.

With this configuration, the logic 1 Ips, also called I,
occurs only where Vs and Vi, are logic 1. We perform repeated
reads of Iy of the FeFET by first programming the Vy, to its logic
high state, then applying ground to the source and body termi-
nals, 50 mV to the drain, and a voltage pulse to the gate. The gate
pulse has a base voltage of — 1 V (logic 0 Vigs), a peak voltage of
0V (logic 1 Vigs), and a pulse width of 10 ps. Vi, of the device is
not reprogrammed between read cycles, and thus over repeated
read cycles we measure both read endurance (long term change
in average Ips) and cycle-to-cycle variation.

Measurements are performed with read frequencies of 15,
30, 60, and 120 Hz. In a VMM engine as in Fig. 2, each weight
in the FeFET crossbar is read once while processing an image.
Therefore, the frequency at which each FeFET is read repre-
sents the frame rate of the VMM engine. In application spaces
where the full DNN weight matrix can be loaded into the FeFET
crossbars at once, the layers are accessed once per image, the
outputs of that layer are fed to the next layer, and so on. Each
layer is not accessed again until the next image is passed. Since
the devices in that layer are accessed once per image, a 15 Hz
read frequency of the individual FeFETs represents a 15 frames
per second (FPS) image processing rate. Note that one could
also consider a pipelined design, wherein one image is processed
through a given layer, then passed to the next layer, at which
point the next image is passed into the first layer, and so on. This
allows for parallel processing of images in different layers, thus
leading to a higher frame rate.

Figure 4 shows 30,000 Ips read measurements for the
three 28 nm HKMG devices at various read frequencies. The
measurement distributions are fit to normal distributions with
mean 1 as shown in Fig. 4b. In all three devices and for all
tested frequencies, there is a significant trend in the first 2000
cycles where the average Ips increases which we call the ramp
up period. We hypothesize that a parasitic capacitance present
in the FeFET or the measurement system could be the cause
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of this ramp up period. Emulation of the PIM architecture’s
performance subject to variation in both the ramp up period
and in the long term case is performed by bootstrap sam-
pling the 2000 cycle ramp up period and the full Ipg dataset,
respectively. In certain instances such as in the 30 Hz meas-
urement of D1b and the 60 Hz measurement of D2, we also
note the presence of abrupt drops in measured Ips. We attrib-
ute these sudden drops to ferroelectric breakdown causing
Vin retention loss due to repeated measurement. The device
characterization from GLOBALFOUNDRIES shows that fer-
roelectric breakdown of the low Vy, case (which results in I,
as we measure here) can occur around 10° bipolar stress cycles
[19]. While we do not perform full bipolar stress from —3 to
3V, the voltage swing of the read pulse from —1to 0 V still
appears to cause some breakdown, particularly in D2. The
measurements are taken successively, i.e., 30,000 read cycles
are measured at 15 Hz, then the device is reprogrammed and
30,000 measurements are taken at 30 Hz, and so on. We note
that in D2, the average value of Ips drops with each succes-
sive test, and the sudden drops occur near where 10° total
read cycles have occurred between all tests, which is where we
expect ferroelectric breakdown from bipolar stress. It is also
possible that these abrupt Ips drops occur purely from PVT
variations in some cases, such as in D1b where the drops occur
in the 30 Hz case and the following tests restore their average
Ips after reprogramming the device.

While the original characterization shows the Vi, retention
loss from bipolar stress leading to a drop in average Ips over
time, it does not analyze variation due to repeated read opera-
tions on individual devices. All of the measured Ipg distribu-
tions show some degree of non-Normality, shown by the 120 Hz
distributions in Fig. 4b, for example. We expect that by measur-
ing many devices of the same dimension, these distributions
would be drawn closer to Gaussian. Since we use distributions
from single devices in our emulation of the PIM architecture,
our study represents a possible worst case for PIM classification
accuracy wherein each device demonstrates similar non-Normal
variation.

The low output current I can be measured by applying
Vgs = —1V. When Vs is low in any of the three devices, the
measured I,q is below 0.1 nA or even as low as the pA range,
which is the noise floor of the measurement system. The more
problematic case of Iog occurs in D1b where the Vy, is high
(logic 0) and Vs is high, since I,¢ in this case is in the 10 nA
range due to D1b’s low memory window for an Io,/Ig ratio
near 102. However, the Ion/I g ratio remains larger than 10%in
all other cases. In general use cases, we can assume noise in
I is negligible, but D1b shows a case where noise in I, may
become noticeable due to its smaller I,,/Iog ratio compared
to other devices. In this study, we primarily analyze how noise
in I,y affects PIM accuracy, as this is representative of PIM
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Figure3: Measured Ips—Vgs hysteresis for 28 nm HKMG FeFET devices of various size: (a) Device 1a (or D1a) with dimensions 500 nm x 80 nm, (b) Device
1b (D1b) with the same dimensions as D1a, and (c) Device 2 (D2) with dimensions 80 nm x 34 nm. Vps of 50 mV and a Vs sweep are applied to produce
the hysteresis curves. Low Vs of — 1V and high Vgs of 0V are chosen to maximize lop//oft ratio. Vi, is defined where Ips = 1 pA.
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Figure 4: (a) Measured Ips for D1a, D1b and D2. The devices are programmed only once before the first cycle. The distributions are normalized to
Gaussian distributions of mean 1. (b) 120 Hz distributions for D1a, D1b and D2 are bootstrap sampled from the full 30,000 sample set and the 2000

sample ramp up period.

architectures composed of FeFET devices designed with suf-
ficiently large memory windows.

According to the hysteresis curve in Fig. 3b, D1b is
expected to produce a higher Io, /I ratio closer to 10 if the
logic high Vs is lowered to —0.5 V instead of 0 V. There-
fore, we measure Ipg variation in this case as well, as shown in
Fig. 5. With the lowered Vs, we generally observe slightly less
variation in the measured Ipg distributions than when Vgg of 0
V is used. The compiled standard deviations and skew of every

© The Author(s), under exclusive licence to The Materials Research Society 2021

measured dataset for all three of the 28 nm HKMG devices is
shown in Table 1a.

We also measure Ipg variation in two 22 nm FDSOI devices
[20]. Device 3 (or D3) has channel dimensions of 1 pm x 70
nm, and Device 4 (D4) consists of ten parallel FeFETs, each
with channel dimensions of 170 nm x 24 nm. The hysteresis
curves for these devices are shown in Fig. 6. We follow a similar
approach for logic parameter assignment for these devices as
for the 28 nm devices, wherein the only state which produces a
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Figure 5: Ips for D1b is measured with a lower Vs of -0.5 V to achieve a higher lon /loff ratio with a measurement setup similar to that of Fig. 4.

high Ins occurs where Vy, is programmed low and Vs is high.
We note that because of the large memory window of D4, a logic
0 Vs near —1.5 V would be needed for successful PIM opera-
tion as opposed to the —1 V we have assigned for other devices.
We also observe that the I, /I,g ratio can be increased for both
devices by lowering the high Vigsto —0.5V similarly to D1b, but
we perform read endurance tests with a Vgg waveform with a
base of —1V and a peak of 0 V at a pulse width of 10 s to main-
tain consistency with the tests performed on the 28 nm devices.

All tests performed on the 22 nm devices are performed at
30 Hz, and we study the effects of partially programming Vy, on
the Ipg distributions of D4. This process is performed by first
erasing the device, then sweeping the Vs to a maximum pro-
gram voltage value between 1.5 V and 3 V, where 3 V represents
a full program.

The 22 nm devices show significant variations in Ipg in the
first 2000 cycles, similarly to the 28 nm devices. D3 shows a
ramp up followed by a drop to a value which stays relatively
steady throughout the remainder of the cycles, whereas D4
shows a steady drop in its early cycles. We hypothesize that these
trends are also caused by parasitic capacitance in the devices,
and the difference in the directions of these trends in D3 and D4
may be explained by D4 being composed of ten parallel FeFETs
rather than one single device. To capture these trends, we per-
form bootstrap sampling of both the first 2000 measurements
and the full dataset, similarly to the 28 nm devices. The measure-
ment results for both D3 and D4 are shown in Fig. 7, and the
standard deviation and skewness of each distribution when fit
to mean 1 are shown in Table 1b and c.

By varying the program voltage of D4 as shown in Fig. 7b,
we notice that the average Ipg value depends greatly on the

program voltage. Increasing the program voltage increases the

©The Author(s), under exclusive licence to The Materials Research Society 2021

average Ipg value until a maximum point is reached near 2.25
V. The 2.25 V and 2.5 V results show very similar average Ips
results, while increasing the program voltage to 3 V actually
results in a slight decrease in the average Ips. For maximum
Ion/Iof, it may be beneficial therefore to choose a program volt-
age closer to 2.25 V. However, we also notice that the partial
program at 1.5 V shows the least variation in Ips from cycle to
cycle, as shown by its very low standard deviation and skew in
Table 1c. Therefore, to minimize cycle to cycle variation, a lower
program voltage may be beneficial for certain applications at the
expense of the I, /Lo ratio.

Using all of these results from both the 28 and 22 nm FeFET
devices, we perform device-circuit co-simulation using PyTorch
[21] to study the effects Ipg variation on our PIM architecture’s
accuracy when classifying the Fashion-MNIST dataset [15]
using the LeNet-5 convolutional neural network model [16],
as well as classifying the CIFAR-10 dataset [17] using Mobile-
NetV2 [18] (Fig. 8a). We specifically emulate the PIM archi-
tecture designed by Yun Long et al. [10], which is composed of
many coupled FeFET crossbars to form the VMM engine, each
of which are similar to Fig. 2. We consider two PIM operating
modes, ASIC Mode and Accelerator Mode (shown in Fig. 8b),
which introduce FeFET noise which is bootstrap sampled from
the full measured distributions and the 2000 cycle ramp up
period distributions, respectively.

We define ASIC mode as the mode of PIM operation where
the system of coupled FeFET crossbar arrays is large enough
to store the full DNN weight matrix at once. In this operation
mode, the weights are written to the FeFET arrays once and
streaming inputs (images) are used for inference. The FeFET Vy,
are thus programmed once at device startup and the Ipg is meas-

ured many times during inference without rewriting Vi, between
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Figure 6: Ips—Vgs hysteresis for two 22 nm FDSOI FeFET devices: (a) Device 3 (D3) with channel dimensions of 1 um x 70 nm and (b) Device 4 (D4) which
consists of ten parallel devices with dimensions 170 nm x 24 nm. The hysteresis curves are measured with a measurement setup similar to that which

is used for the data in Fig. 3.

image passes. Therefore, this operation mode is impacted most
by long term variation in Ips, which we emulate by boostrap
sampling the full 30,000 measurement set. As each FeFET in the
weight matrix is read once during the passing of a single image,
the read measurement frequency represents the frame rate of
the full system. For example, a 15 Hz FeFET read frequency
corresponds to a frame rate of 15 FPS.

We define accelerator mode as the mode of PIM operation
where the on-chip storage of the VMM engine is not sufficient
to store the entire weight matrix for the DNN. In this case, the
weights are time-multiplexed to compute a large network (simi-
lar to the process used by Yun Long et al. [10]). In this mode
of operation, the FeFET weights are programmed to contain
the first neural network layer, each image is processed consecu-
tively, the weights are rewritten with the next DNN layer, and

©The Author(s), under exclusive licence to The Materials Research Society 2021

so on. As the cells are frequently rewritten as the weights are
time-multiplexed, the system is most impacted by Ipg variation
shortly after reprogramming, and we therefore bootstrap sample
Ips values from the 2000 cycle ramp up period distributions. The
frequency of read measurement in this operation mode repre-
sents the ratio of the size of the weight matrix to the total capac-
ity of the crossbar. Processing a batch of 20 images with a 20 FPS
throughput with a 5 layer neural network in which only one
layer is loaded into the FeFET crossbar at a time corresponds to
a read frequency on each FeFET of 100 Hz. We note that since
write operation occurs on the order of a few ns [19, 20] for these
devices, write time is negligible by comparison to the read time
when calculating this frequency. In cases where the batch size is
equal to 1 (processing a single image as in a digital camera), the

read frequency is irrelevant.
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Figure 7: (a) Measured Ipg variation for D3 and D4 at 30 Hz read frequency. (b) Measured Ips variation in D4 due to various program voltages in the
initial ERS-PGM cycle. All measurements are acquired utilizing a similar measurement setup to that which is used for the data in Fig. 4.

We emulate our PIM architecture’s performance in the pres-
ence of Ipg variation using device-circuit co-analysis. First, each
model parameter is quantized to 8 bits, then the Ipg variation
is introduced to each logic 1 bit coming from the FeFET out-
puts to represent variation in I, during PIM operation. The Ipg
variation in each of the individual devices accumulates in the
columns of the crossbar and leads to degradation of the classifi-
cation accuracy of the system. Two emulation tests are studied
in this work. The Fashion-MNIST dataset [15] is classified using
the LeNet-5 convolutional neural network architecture [16],
and the CIFAR-10 dataset [17] is classified using MobileNetV2
[18]. The baseline, noiseless classification accuracy of the 8-bit
quantized networks are shown to be 85.86% for Fashion-MNIST
classification using LeNet-5, and 90.06% for CIFAR-10 classifi-
cation using MobileNetV2. Table 2 shows the full results of the

© The Author(s), under exclusive licence to The Materials Research Society 2021

emulation using each of the measured distributions, including
the mean and standard deviation in the PIM architecture’s clas-
sification accuracy due to Ipg variation.

In most cases of the Fashion-MNIST classification on
LeNet-5, we see only a marginal drop in classification accuracy
of about 1 to 3% depending on the standard deviation and skew-
ness of the measurement distributions. The primary outlier is
the 30 Hz case of D1b with Vgs = 0V, in which the measure-
ments show a nearly trimodal distribution caused by the sudden
drops in average Ips at regular intervals in the test due to Vi,
retention loss. In most devices, there is not a clear dependence
on measurement frequency, although we do observe a generally
decreasing accuracy trend as frequency increases specifically in
accelerator mode for D1la and D2. In the program voltage tests

for D4, we observe high accuracy with low variance in the cases
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Figure 8: (a) Analysis algorithm for device-circuit co-analysis using Ips variation in PIM architecture emulation and (b) the two PIM architecture
operating modes. The two operating modes depend on the size of the DNN weight matrix. In ASIC mode, the DNN is small enough to be fully stored in
the FeFET crossbars at once. Alternatively in accelerator mode, the DNN is too large to be loaded into the array at once, so a single layer is written into

the array at a time and then overwritten by the next layer.

where Ips remains steadiest, showing further evidence that tun-
ing Vs to certain values with stable Ipg (typically lower than
the maximum allowable program voltage) can be beneficial for
system accuracy.

When classifying CIFAR-10 with MobileNetV2, the deg-
radation of the classification accuracy due to Ipg variation is
much more pronounced. In general, the trends in accuracy
reduction with respect to frequency and program voltage tend
to follow the trends shown in the Fashion-MNIST results,
wherein test cases with degraded accuracy on Fashion-MNIST
show significant degradation under this larger workload. In
the worst case of 30 Hz measurement in D1b as mentioned
previously, where a nearly trimodal Ipg distribution occurs,
the CIFAR-10 accuracy drops to a miniscule 12.14%. Another
case in which the CIFAR-10 classification shows significant
degradation as compared to Fashion-MNIST classification is
in D3, where the large Ing spike in the first 1000 cycles drops
the classification accuracy as low as 26.61% in accelerator
mode. However, there are also many test cases which show
accuracy over 85%, showing that our PIM design still has very

reasonable accuracy even for highly complex workloads when

©The Author(s), under exclusive licence to The Materials Research Society 2021

the Ips variation is minor. This is especially true in the case
of D1b with lowered Vs read voltage, which shows some of
the highest accuracy results, demonstrating that lowering the
read voltage can improve system accuracy if the I, /Lo ratio
is kept sufficiently high.

To recover the accuracy loss caused by Ips variation, we
can sample the Ipg measurements to add noise while train-
ing the DNN. This process, called variation-aware training,
is documented by Yun Long et al. in a similar DNN accel-
erator design using ReRAM [22]. We observe full accuracy
recovery to the 85.86% baseline by using variation aware
training in the LeNet-5 emulation for Fashion-MNIST clas-
sification. This accuracy recovery becomes much more dif-
ficult in the MobileNetV2 classification of CIFAR-10 due to
the significantly larger network and the large accuracy reduc-
tions caused by noise [23]. Therefore, the drop in classifica-
tion accuracy caused by the FeFET Ipg variation measured
in this study is shown to not be a limiting factor to our PIM
accelerator design in the case of small workloads, but larger
workloads present challenges which require more advanced

design techniques to remedy.
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(continued)

TABLE 2:

©The Author(s), under exclusive licence to The Materials Research Society 2021

(c) 22 nm FDSOI D4: 30 Hz, Varied PGM

Journal of

MATERIALS RESEARCH

Accel. mode

ASIC mode

Mean

Mean

PGM (V)

Classification

0.17
0.25
0.18
0.15
0.25
0.21
0.15
0.79
0.60
0.64
0.80
0.93

85.42
84.90
85.44
85.32
85.42
84.85

0.13
0.21
0.13
0.16
0.13
0.27
0.08
0.34
0.62
0.30
0.20
0.58

85.45
85.46
85.40
85.42
85.38
85.22

89.16

1.5
1.75
2.0
2.25

25

Fashion-MNIST with LeNet-5

3.0
1.5
1.75
2.0
2.25
2.5

89.15

CIFAR-10 with MobileNetV2

50.46
80.87

80.29

76.89
85.43
83.06
67.54

66.75

73.11

51.51

3.0

Note that the quantized, noiseless classification accuracy of Fashion-MNIST with LeNet-5 is 85.86%, and of CIFAR-10 with MobileNetV2 is 90.06%.

In this study, measured Ipg variation in 28 nm HKMG and 22
nm FDSOI FeFET devices in both the short term and the long
term is applied to the emulation of a PIM-based DNN accelera-
tor. The accuracy of the accelerator is tested when classifying
the Fashion-MNIST dataset using the LeNet-5 convolutional
neural network and when classifying the CIFAR-10 dataset
with MobileNetV2. In each measured Ipg dataset, we tend to
see the largest variation in the initial read cycles, which we use
to emulate a mode of PIM operation we call accelerator mode.
In the 28 nm HKMG devices, this initial variation manifests as
aramp up period before the average Ips settles to a steady aver-
age, which we attribute to a parasitic capacitance present in the
device or measurement system. In the 22 nm FDSOI devices, we
notice a ramp up period in D3 followed by a sudden drop, and
a ramp down period in D4. The differences in these responses
can likely be explained by the device structure, as D4 is com-
posed of ten parallel FeFETs instead of a single device as in D3.
Additionally, we study long term variation in Ipgs to emulate PIM
operation in ASIC mode. In most of the test cases demonstrated
in this study, ASIC mode outperforms accelerator mode in the
metric of classification accuracy, with the few exceptions occur-
ring where sudden drops in average Ips create skewed or multi-
modal distributions.

In the 28 nm HKMG FeFETs, we analyze the effects of dif-
ferent read frequencies on the Ipg variation to determine how a
higher frame rate of the system impacts device variation. In D1a
and D2 we observe a decreasing PIM classification accuracy for
both of the tested classification tasks as frequency increases in
accelerator mode, but this trend does not hold in ASIC mode,
nor does it hold for D1b. In D1a and D2, the decreasing trend is
caused by higher frequencies showing more significant variation
in the ramp up period. However, since this trend is not consist-
ent in D1b, we cannot say with certainty that this trend will hold
for all HKMG FeFET devices across varying frequencies.

Although they are theoretically identical devices with the
same channel dimensions, we see significant differences between
the memory windows and measured Ipg variations of D1a and
D1b. Dla and D1b show a similar I,,Io, on the order of 1 uA,
but D1b has a lower Vi, in the logic 0 state, leading to a signifi-
cantly higher Ig. This is likely caused by manufacturing vari-
ability in the fabrication process, particularly in the ferroelectric
layer, leading to a lower degree of electrical polarization in the
gate stack differentiating the programmed and erased states and
thus a narrower memory window. As clearly evidenced by just
these two devices, device-to-device variation within the FeFET
crossbar could be a very critical component leading to inaccura-
cies in overall computation, and is an avenue we do not explore
in depth in this study. With more devices to characterize, this

could be a very interesting avenue for future work.
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To address some of these differences, we test D1b with
a lower Vgg of —0.5 V which helps to raise its I,y /Iog ratio.
Through this test, we observe that the lower Vs actually leads
to less cycle-to-cycle variation in the Ips measurements, thereby
leading to improved PIM performance with a higher classifi-
cation accuracy. When assigning and tuning Vs parameters,
designers can choose to lower Vg in order to lower cycle-to-
cycle Ips variation, while also considering the tradeoff between
Vs and I, /Lo ratio in specific devices.

The results shown by D2 clearly show that Vy, retention loss
from ferroelectric breakdown can occur due to repeated read
operation. As each successive test is performed, the average Ipg
for this device decreases, including abrupt drops in the 60 Hz
test. These drops occur near the range of 10 total read cycles,
which is the same range shown in the original device characteri-
zation [19] where Vy, reduction can occur due to bipolar stress.
Although our test does not perform true bipolar stress since the
voltage swing between —1 and 0 V is smaller than the full bipo-
lar stress voltage swing from the device characterization [19], it
is still evident that this voltage swing, when repeated over many
cycles, can lead to Vi, loss. This is a critical source of degradation
to consider when designing PIM systems and could severely
limit system accuracy over the life of the device.

We expect this effect to be compounded by write endurance
effects in accelerator mode. In accelerator mode, we assume that
the FeFET crossbar will be frequently rewritten as each layer of
weights in the network overwrite the previous layer. Performing
repeated program and erase operations to overwrite the weights
stored in the FeFETs produces bipolar stress effects which
degrade the low-Vy, state by steadily increasing Vy, (reducing
Ion). As shown by the original characterizations of both devices
[19, 20], bipolar stress effects become significant in the range
of 10* to 10° cycles. In another work studying SiON and SiO;
FeFET devices, the effects of repeated program and erase cycles
in isolation are also observed to cause significant breakdown in
Ips due to charge trapping effects [24]. Therefore, we expect that
in accelerator mode, Ips would show additional decay as read
and write cycles both increase.

When measuring 22 nm FDSOI devices, we study the
impact of partial Vi, programming on Ips variation. We
observe the highest accuracy in the measurement cases where
Ips remains the steadiest, typically for Vs programming pulses
lower than the maximum program voltage. In fact, the lowest
PIM classification accuracy for both ASIC and accelerator mode
tends to occur where the highest program voltage of Vs = 3
V is used. For the MobileNetV2 classification of CIFAR-10 in
particular, a 15 to 18% improvement is observed when using
a program voltage of 2.5 or 2.25 V rather than the full 3 V in
ASIC mode, and an improvement of over 21% is observed when
using 2.5 V rather than 3 V in accelerator mode. This is a cru-
cial result showing that partial programming of the Vy, of the

©The Author(s), under exclusive licence to The Materials Research Society 2021

FeFETs can be beneficial to reduce Ips variation in the system
and thereby improve overall classification accuracy for the PIM
system. However, lowering the program voltage can also lead to
reduced Ion /I, so this decision must be optimized for maxi-
mum performance.

As shown by the 28 nm devices and as confirmed by D3 and
D4, the memory windows of each device can vary significantly
based on channel dimension and device-to-device variation.
Devices used to create a full PIM architecture in hardware must
therefore be carefully designed and tuned to maintain a high
Ion/Iof ratio and optimal memory window for operation based
on chosen Vg parameters. For example, the memory window of
D4 was too large to keep the same Vgs parameters as the other
devices, and would thus create different design constraints if a
full PIM system were to be created from this device structure.

In spite of non-Normal variation in Ipg in all test cases, the
accuracy of the PIM architecture remains very close to the base-
line quantization accuracy with only a 1 to 3% accuracy drop in
most cases for the classification of Fashion-MNIST with LeNet-
5. An approximately 7% drop in D1b at 30 Hz with Vgs =0V
occurs due to abrupt Ips drops, which we call an outlier since
these drops are recovered when D1b is reprogrammed for the 60
and 120 Hz cases. In larger workloads such as classifying CIFAR-
10 with MobileNetV2, the accuracy drops become significantly
worse when modeling with Ips datasets which have significant
noise. However, the PIM architecture still shows promise with
accuracy well over 80% in many cases. Noise aware training can
fully recover the accuracy drops observed in PIM emulation of
LeNet-5, although this becomes more challenging for the larger
and less accurate MobileNetV?2 classification of CIFAR-10 [23].
We determine that these sources of noise are not preventative
of PIM architecture design for small workloads, and that larger
workloads may require further advanced design techniques to
ensure high accuracy.

A significant area of future work includes exploring these
advanced design techniques to mitigate PIM errors due to Ipg
variation. In our emulation, we assume that the crossbar array
is large enough to hold the entire weight matrix of each layer
in accelerator mode, and the entire weight matrix for the full
network in ASIC mode. Reducing the array size would reduce
the sum of the noise in each column, leading to higher accu-
racy at the cost of computation time and more write endur-
ance-induced drift due to the need to cycle through the array
more frequently per network pass. This need for rewriting the
arrays can be avoided by using many networked FeFET arrays
as demonstrated by Yun Long et al [10]. With this networked
design, one could also explore tuning the size of each array, as
too large of an array leads to higher summed error and slower
read times, while using too small of an array leads to increased
errors from inter-array communication. One could also explore

using refresh operations to reduce average Ips drift in the case
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of ASIC mode, with the clearest area of need for this being dem-
onstrated by the 30 Hz measurements from D1b which drift far
below their starting value and are refreshed for the 60 Hz and
120 Hz measurements.

Future work in the area of device measurement includes
deeper study of device-to-device variation and parameter tun-
ing which would be crucial to developing an FeFET PIM-based
DNN accelerator in hardware. Variation observed between
devices that should be theoretically identical, as in the case of
D1la and D1b, is especially crucial to study. Should a hardware
DNN accelerator be developed from many devices of these same
dimensions, it is possible that there will be large variations in the
memory windows and Ion /Iof ratios of each individual device
due to material and process variations, leading to inaccuracies
in overall system accuracy. Testing many more devices would
improve understanding of this issue. Additionally, this work has
not explored FeFETs built on TFTs or FeFETs with different fer-
roelectric materials than Si:HfO,. Performing Ips measurement
for these other types of FeFETs would provide further insight
into noise behavior in devices outside of the small sample tested
in this study.

In conclusion, measurements of the Ips of individual 28 nm
HKMG and 22 nm FDSOI FeFET devices over many read
cycles show non-Gaussian variation which can lead to errors
in the overall accuracy of PIM-based DNN accelerators. Based
on measurements of three 28 nm and two 22 nm FeFETs in this
work, the Ing variations do not show conclusive dependence on
read frequency, nor is there a stark difference between the two
process technology nodes. Device-circuit co-analysis demon-
strates that the PIM classification accuracy reductions caused
by these measured Ips variations are only marginal (between
1 to 3%) when classifying the Fashion-MNIST dataset with
LeNet-5, and can be worse in more difficult workloads such
as classifying CIFAR-10 with MobileNetV2. Some crucial ele-
ments of system design shown in this study include that partially
programming the Vi, of the FeFETs or using a lowered read
voltage can both lead to improved accuracy in certain cases as
long as the Iy, /Iog ratio of the device is preserved, and that
short term variation (shown in accelerator mode) tends to lead
to worse PIM accuracy degradation than long term variation
(shown in ASIC mode). Using variation-aware DNN training,
wherein the measured Ipg variations are used to introduce noise
during the DNN training phase, we observe that accuracy loss
caused by Ipg variation can be fully recovered back to its noise-
less baseline in the case of Fashion-MNIST classification with
LeNet-5, though this noise aware training becomes less effec-
tive for larger networks like MobileNetV2. Therefore, individual

FeFET device current variation due to many read cycles is shown

©The Author(s), under exclusive licence to The Materials Research Society 2021

to not be preventative of our FeFET-based DNN accelerator
design in either 28 nm HKMG or 22 nm FDSOI technology
nodes when accelerating small PIM workloads, but advanced
design techniques are required to mitigate error in the case

larger workloads.

The FeFET devices measured in this study are provided by
GLOBALFOUNDRIES for both 28 nm HKMG and 22 nm
FDSOI process technology nodes [19, 20]. Both devices include
a ferroelectric layer of doped HfO, which is studied as the main
source of material and process variation. Further study of both
devices can be found in their original technology characteri-
zations [19, 20], while we perform measurements which are
designed with the PIM-based DNN accelerator application
space in mind. All device measurements are performed using
a Keysight Technologies B1530A Waveform Generator/Fast
Measurement Unit.

To create a more accurate method for sampling small Ipg
measurement datasets for PIM emulation, we perform bootstrap
sampling of each of the measured datasets by sampling with
replacement until each bootstrapped set contains 15,000,000
samples. These datasets are then sampled by our emulation
system in PyTorch, in which we add the noise from Ipg to the
1 bits in the outputs to emulate noisy FeFETs within the cross-
bar which composes the VMM engine. During variation-aware
training, this Ipg variation is also added during the training
process in order to train the model to recover inaccuracies pro-

duced by noisy weights.

A.IK. thanks GLOBALFOUNDRIES for providing FeFET
technology wafers.
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