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AN ADAPTIVE FINITE ELEMENT DTN METHOD FOR THE ELASTIC WAVE
SCATTERING BY BIPERIODIC STRUCTURES

GANG Bao!, XUE J1ANG?, PELJUN Li** AND XIAOKAI YUANM

Abstract. Consider the scattering of a time-harmonic elastic plane wave by a bi-periodic rigid surface.
The displacement of elastic wave motion is modeled by the three-dimensional Navier equation in an
unbounded domain above the surface. Based on the Dirichlet-to-Neumann (DtN) operator, which is
given as an infinite series, an exact transparent boundary condition is introduced and the scattering
problem is formulated equivalently into a boundary value problem in a bounded domain. An a posteriori
error estimate based adaptive finite element DtN method is proposed to solve the discrete variational
problem where the DtN operator is truncated into a finite number of terms. The a posteriori error
estimate takes account of the finite element approximation error and the truncation error of the DtN
operator which is shown to decay exponentially with respect to the truncation parameter. Numerical
experiments are presented to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

This paper concerns the scattering of a time-harmonic elastic plane wave by a bi-periodic surface in three
dimensions. Due to the wide and significant applications in seismology and geophysics, the elastic wave scattering
problems have received ever increasing attention in both mathematical and engineering communities [1,2, 33].
Compared with the acoustic and electromagnetic wave scattering problems, the elastic wave scattering problems
are less studied due to the fact that the elastic wave consists of coupled compressional and shear wave components
with different wavenumbers, which makes the analysis of the problems more complicated. In addition, there are
two challenges for the elastic surface scattering problem: the solution may have singularity due to a possible
non-smooth surface; the problem is imposed in an unbounded domain. In this paper, we intend to address both
of these two issues by proposing an a posteriori error estimate based adaptive finite element method with the
transparent boundary condition.

The a posteriori error estimates are computable quantities from numerical solutions. They can be used to
measure the solution errors of discrete problems without requiring any a priori information of exact solutions
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[4,34]. Since the a posteriori error estimate based adaptive finite element method has the ability to control the
error and to asymptotically optimize the approximation, it is crucial for mesh modification such as refinement
and coarsening [19, 35, 38]. The method has become an important numerical tool for solving boundary value
problems of partial differential equations, especially for those where the solutions have singularity or multiscale
phenomena.

The key of overcoming the second issue is to reformulate the unbounded domain problem into a boundary
value problem in a bounded domain without generating artificial wave reflection. One possible approach is to
make use of the perfectly matched layer (PML) techniques. The basic idea of the PML is to surround the
domain of interest by a layer of finite thickness of fictitious medium that may attenuate the waves propagating
from inside of the computational domain. When the waves reach the outer boundary of the PML region,
their amplitudes are so small that the homogeneous Dirichlet boundary condition can be imposed. Due to the
effectiveness and simplicity, since Bérenger proposed the technique to solve the time domain Maxwell equations
[7], it has undergone a tremendous development of designing various PML methods to solving a wide range of
unbounded domain scattering problems [5,8,9,16-18,22,23,30]. Combined with adaptive finite element methods,
the PML method has been investigated to solve the two- and three-dimensional obstacle scattering problems
[12,13,15] and the two- and three-dimensional diffraction grating problems [6, 14, 26]. The a posteriori error
estimates based adaptive finite element PML methods take account of the finite element discretization errors
and the PML truncation errors which decay exponentially with respect to the PML parameters.

Alternatively, another effective approach to truncate the unbounded domain is to construct the Dirichlet-to-
Neumann (DtN) map and introduce the transparent boundary condition to enclose the domain of interest [21].
Since the DtN operator is exact, the transparent boundary condition can be imposed on the boundary which
is chosen as close as possible to the scattering structure. Compared to the PML method, the DtN method can
reduce the size of the computational domain. As a viable alternative to the PML method, the adaptive finite
element DtN methods have also been developed recently to solve many two- and three-dimensional scattering
problems, such as the acoustic scattering problems [25,27,39], the three-dimensional electromagnetic scattering
problem [29], and the two-dimensional elastic wave scattering problems [31, 32].

It is worth mentioning that the scattering problems by unbounded surfaces can also be solved by using integral
equation based methods such as the boundary variation method [10,11] and the integral equation method [40].
One of the advantages of these methods is that the radiation condition is satisfied automatically in the integral
formulation. But it may be difficult to handle the problem with a nonsmooth boundary or an inhomogenous
medium.

This paper concerns the numerical solution of the elastic wave scattering by biperiodic structures in three
dimensions. It is a non-trivial extension of the elastic wave scattering by periodic structures in two dimensions
[32]. There are two challenges for the three-dimensional problem. First, the Helmholtz decomposition of the
elastic wave equation gives two two-dimensional Helmholtz equations in the two-dimensional case; however, for
the Helmholtz decomposition in the three-dimensional case, we have to consider a three-dimensional Helmholtz
equation and a three-dimensional Maxwell equation, which makes the analysis much more complicated. Second,
from the computational point of view, it is much more time-consuming to solve the three-dimensional problem
than to solve the two-dimensional problem.

Specifically, we consider the scattering of a time-harmonic plane elastic wave by a biperiodic rigid surface.
The elastic wave propagation is modeled by the three-dimensional Navier equation in the unbounded domain
above the scattering surface. By the Helmholtz decomposition, a DtN operator is constructed in terms of
Fourier series expansions for the compressional and shear wave components, then an exact transparent boundary
condition is introduced to reduce the unbounded domain problem into an equivalent boundary value problem
in a bounded domain. The nonlocal DtN operator needs to be truncated into a sum of finitely many terms in
actual computation. However, it is known that the convergence of the truncated DtN operator could be arbitrary
slow to the original DtN operator in the operator norm [24]. By carefully examining the properties of the exact
solution, we observe that the truncated DtN operator converges exponentially to the original DtN operator when
acting on the solution of the elastic wave equation, which enables the analysis of exponential convergence for this
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FIGURE 1. Problem geometry of the elastic scattering by a biperiodic surface.

work. Combined with the truncated DtN operator and finite element method, the discrete problem is studied.
We develop a new duality argument to deduce the a posteriori error estimate. The a posteriori error estimate
takes account of the finite element approximation error and the DtN operator truncation error which is shown
to decay exponentially with respect to the truncation parameter N. Moreover, an a posteriori error estimate
based adaptive finite element algorithm is presented to solve the discrete problem, where the estimate is used
to design the algorithm to choose elements for refinements and to determine the truncation parameter N. Due
to the exponential convergence of the truncated DtN operator, the choice of the truncation parameter N turns
out not to be sensitive to the given tolerance of accuracy. Numerical examples are presented to demonstrate the
effectiveness of the proposed method.

The paper is organized as follows. In Section 2, the model equation is introduced for the scattering problem.
Section 3 concerns the variational problem. By the Helmholtz decomposition, the DtN operator is constructed
and the transparent boundary condition is introduced to reformulate the scattering problem into a boundary
value problem in a bounded domain, and the corresponding weak formulation is presented. In Section 4, the
discrete problem is studied by using the finite element method with the truncated DtN operator. Section 5 is
devoted to the a posteriori error analysis for the discrete problem and the exponential convergence is proved
for the truncated DtN operator. In Section 6, an adaptive finite element algorithm is described and numeri-
cal experiments are carried out to illustrate the competitive behavior of the proposed method. The paper is
concluded with some general remarks and directions for future work in Section 7.

2. PROBLEM FORMULATION

Consider the scattering of a time-harmonic plane elastic wave by a rigid biperiodic surface. Due to the
biperiodic structure, the scattering problem can be restricted into a single biperiodic cell, as shown in Figure 1.
Let

S = {w = (z1,72,73) " €R3: (x1,22) € (0,A1) x (0, As), 23 = f(wl,xg)}

be the scattering surface, where f is a Lipschitz continuous biperiodic function with periods A; and As in the
1 and xo directions, respectively. Denote the open space above S by

Qf = {:1: € Rg : (.231,.%‘2) € (O,Al) X (O,AQ),Z‘:), > f(xl,xg)},

which is assumed to be filled with an isotropic and homogeneous elastic medium. The medium can be char-
acterized by the Lamé parameters A, and the mass density p which is assumed to be unit for simplicity.
Furthermore, we assume that the Lamé constants satisfy p > 0, A + p > 0. Define

Iy, = {:L‘ eR3: (a)‘l,xg) € (0,1\1) X (O,AQ),x?) = h}’
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where h is a constant satisfying h > max;, 2,)e(0,A1)x(0,45) f (21, 72). Denote by  the bounded domain enclosed
by S and T'y, i.e.,
Q= {m eR?: (w1, 22) € (0,A1) x (0,Ag), f(z1,22) < 23 < h}
Let a compressional plane wave
uinc(m) _ qeifslq»m
be sent from the above to impinge the surface, where
g = (sin 6y cos 0o, sin 0y sin Oy, — cos 01)T,

01 € [0,7/2) and 6, € [0,27] are the incident angles, and k1 = w/y/A + 2 is the compressional wavenumber
with the angular frequency w. We mention that the results obtained in the paper are same for the incidence of
a shear plane wave u!"®(x) = pel*29® where p is a unit vector satisfying p-q = 0 and xy = w/4/It is the shear
wavenumber, or a linear combination of the shear and compressional plane waves.

Denote the displacement of the scattered wave by w, which satisfies the Navier wave equation

pAu+ A+ p)VV-u +w?u =0 in Q. (2.1)

Since the surface is assumed to be elastically rigid, we have

mc

u=—u" onS. (2.2)

In addition, the scattered wave w is assumed to satisfy the bounded outgoing wave condition as zz — o0.
Motivated by uniqueness, we seek the so-called quasi-periodic solutions of (2.1) and (2.2), i.e., u(x)e 1*7 is
a biperiodic function of r = (x4, xg)T with periods A; and Ay in the x; and x5 directions, respectively, where
a = (a1,a2) ", a1 = Ky sinfy cos by, ay = K1 sin b sin Oy.

Define a quasi-periodic function space

Hép(Q) = {u e H'Y(Q): eio‘lAlu(O,xg,mg) = u(A1, z2,x3), eiaQAQu(xl,O,xg) = U(.’Bl,Ag,l‘?,)}
and its subspace
H () = {ue Hy () :u=0on S}
Let
Lép(Fh) ={ue L*(Ty): e My (0,29, h) = u(Ay, 29, h), €9 2u(zy,0,h) = u(wy,Ag, h)}.

For any u € Lgp(Fh ), it has the Fourier series expansion

. 1 A1 pA2 '

nez?

where n = (n1,n2)" € Z2, ay = (a1, 2n) ", jn = o + 27n5/A5, 5 = 1,2.
Define a trace function space H*(I';),s € Rt by

H*(Ty) = {ue L*(Th) : |ulg=(r,) < 0},

where the norm is given by
s 2
[ullFreryy = ArAz Y5 (1+ anl?) [un(h).

nez?

It is clear that the dual space of H*(T'},) is H—*(T',) with respect to the scalar product in L?(T';) given by
{u, vy, = J uvds.
Tn

Let Hép(Q),H}g,qp(Q) and H?*(T',) be the Cartesian product spaces equipped with the corresponding 2-
norms of Hép(Q),Hé7qp(Q) and H*(T'y), respectively. Throughout the paper, the notation a < b stands for
a < Cb, where C' is a positive constant whose value is not required but should be clear from the context.
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3. THE BOUNDARY VALUE PROBLEM

In this section, we introduce the DtN operator to reduce the problem (2.1) and (2.2) into a boundary value
problem in the bounded domain €2 and present the well-posedness of its variational formulation.
Consider the Helmholtz decomposition

u=Vé+Vxep, V-p=0 inQ, (3.1)

where ¢ is a scalar potential function and ¥ = (¢1, 9, 13) is a vector potential function. Substituting (3.1) into
the Navier wave equation (2.1), we may verify that ¢ and @ satisfy the following Helmholtz equation and the
Maxwell equation, respectively:

Ap+rK2p=0, Vx(Vxah)—rdp=0. (3.2)

It is easy to verify from the Helmholtz decomposition (3.1) and the boundary condition (2.2) that ¢ and 1
satisfy the following coupled boundary conditions on S:

O+ (V x ) -v=—ut®.p, (VX)) xv+Voxv=—u® xv, (3.3)

where v is the unit normal vector on S.
The potential functions ¢ and v are required to be quasi-periodic in 7 and x5 directions with periods Aq
and As. Hence they have the Fourier series expansions

o(x) = Y dulas)d ™™, plx)= Y. b, (z3)e . (3.4)

nez? nezZ?

Plugging (3.4) into (3.2) and using the bounded outgoing wave condition, we have from a straight forward
calculation that ¢ and 1 admit the following expansions for z3 > h:
@) = ), du(h)elCnmHOmEmi) (@) = BT ap,, (R)ell O (), (3.5)
nez? nez?
where
P D2 | <y,
. i(\an|2 - ﬁ?)l/Q if |ap| > K;.

It follows from (3.4) and (3.5) that

(3.6)

On(w3) = G (h)eP 737N gy (w5) = ahjn (R)eP2 (7™M = 1,23, (3.7)

We observe from (3.5) and (3.6) that 3;, is a pure imaginary number and thus ¢,, and 1,, are known as surface
wave modes when |ou,| > k;.

Substituting (3.5) into (3.1), we obtain the representation of the scattered field w in terms of the Fourier
coefficients of the potential functions ¢ and p:

A1y a2nw3n(h) - ﬁ2nw2n(h)
u(@) =1 Y < [ agn | dn ()P | Byihrn (h) — arpthsn(h) |eP2n @) b gl (3.8)
n€Z? (| B, a1 an(h) — aoptin(h)

Noting V - @ = 0, we may represent conversely the coefficients of the potential functions of ¢ and % by the
coefficients of the scattered field u = (uy,ug,us) '
i
¢n(h) = _;(alnuln(h) + a2nu2n(h) + ﬂZnudn(h))a (39)
n



2926 G. BAO ET AL.

wln(h) = _XL (};alna?n(ﬁln - ﬁQn)uln(h) - a2nu3n(h) + %[a%nﬁ%l + agnﬁln + ﬁlnﬁgn]u%l(h))z (310)

n 2 2

Yan(h) = _XL ( - %[a%nﬂln + agnﬁzn + 51nﬂ§n]uln(h) - %alnoﬂn(ﬂln — Ban)u2n(h) + aanSn(h))a

2 2
(3.11)
i
w3n(h) = _?(OQnuln(h) - alnu2n(h)>7 (3.12)
2
where x,, = |ozn|2 + BinfBon. It is easy to verify that x, # 0 for n € Z2.
Define a differential operator
Du = poy,u+ A+ p)(V-u)es onTy, (3.13)

where e3 = (0,0,1) . Substituting (3.8)—(3.12) into the differential operator D, we may deduce the DtN operator

Tu= > Muu,(h)e*7, (3.14)
nez?
where the matrix M, is defined as
. a%nﬁYQl) + /82an alna2nﬁ§g) alnﬂQnﬁig)
i
M= =1 oy 0303 + Banxn  azefanfly |- (8.15)
*alnﬂ2nﬂig) *QQHBQnﬂYQI) ’456277,

Here Big) = B1n — Pan. The details can be found in [28] for the derivation.
Based on the DtN operator (3.14), the scattering problem (2.1) and (2.2) can be equivalently reduced to the
following boundary value problem:

pAu+ A+ p)VV-u+w?u=0  inQ,
Du=Tu on Iy, (3.16)

inc

u=—u on S.
The variational problem of (3.16) is to find u € Hép(Q) with u = —u'" on § such that
a(u,v) =0 Vwve Hqup(Q), (3.17)

where the sesquilinear form a : H} (Q) x H} (€) — C s

a(u,v) :,uf Vu:Vﬁd:I:—l—()\—i—u)J (V-u)(V~ﬁ)dw—w2J u-@dm—J. Tu -vds.
Q ) Q r

h

Here A : B = tr(ABT) is the Frobenius inner product of two square matrices A and B.
The well-posedness of the variational problem (3.17) was discussed in [20]. It was shown that the variational
problem has a unique weak solution for all incident waves. Thus, the solution satisfies the estimates

lul g @) S [u™ gz S 1w g @)

By the general theory of Babuska and Aziz [3], there exists a v > 0 such that the following inf-sup condition
holds:

a(u,v
sup AN Yue HL ().

oxver? (@) [V (o)
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4. THE FINITE ELEMENT APPROXIMATION

Since the non-local DtN operator (3.14) is given as an infinite series, in practice, it needs to be truncated
into a sum of finitely many terms

Thu = Z My, (h)e* ™ on Ty, (4.1)

[n1l,[n2|<N

where N > 0 is a sufficiently large integer. Using (4.1), we arrive at the truncated finite element approximation:
find uy € H, () with uy = —u™ on S such that

an(un,v) =0 YveHg,, (4.2)

where the sesquilinear form ay : H'(Q) x H'(Q) — C is

ax(uv) = p |

Vu:Vﬁdac+()\+u)J
Q

-u ‘v alcfw2
(V-w)(¥ o) f

u-vde ff Thu -vds.
Q Tn

Let Mp, be a regular tetrahedral mesh of the domain €2, where h denotes the maximum diameter of all the
elements in Mj,. To handle the quasi-periodic solution, we assume that the mesh is periodic in both x; and
9 directions, i.e., the surface meshes on the planes 1 = 0 and x5 = 0 coincide with the surface meshes on
the planes 1 = A; and xo = Ag, respectively. We also assume for simplicity that S is polygonal to keep from
using the isoparametric finite element space and deriving the approximation error of the boundary S in order
to avoid being distracted from the main focus of the a posteriori error analysis.

Let V, Hép(Q) be a conforming finite element space, i.e.

Vi, = {v € Cp(Q)® : v|g € Pr(K)* VK € My},

where Cyp(2) is the set of all continuous functions satisfying the quasi-periodic boundary condition, m is a
positive integer, and P,, denotes the set of all polynomials with degree no more than m.

Then the finite element approximation to the variational problem (4.2) is to find u’ﬁ, € V}, such that u?\, =—g
on S and satisfies the variational problem

h

an (uly,v") =0 Vo' eV, (4.3)

where Vj, s = {v €V}, : v = 0on S} and g" is the finite element approximation of u!c.

Following the argument in [24], it can be shown that for sufficiently large N the variational problem (4.2) is
well-posed. And for sufficient large N and small enough h, the discrete inf-sup condition of the sesquilinear form
an can be established by following the approach in [37]. Based on the general theory in [3], it can be shown
that the discrete variational problem (4.3) has a unique solution u% € Vj,. The details are omitted for brevity
since our focus is on the a posteriori error estimate.

5. THE A POSTERIORI ERROR ANALYSIS

For any tetrahedral element K € My, denote by hx its diameter. Define the operator residual in K as

Riufy = (uAuly + (N + p)VV - ufy + w?uf)| ..

Let F}, be the set of all the faces on My,. Given any interior face F' € Fj,, which is the common face of tetrahedral
element K; and K5, we define the jump residual across I’ as

Jruf = [[pVull, -+ A+ ) (V- ui|k,)n]],
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where v;, 7 = 1,2 is the unit outward normal vector on the face of K;. For any boundary face F' € Fj, n L'y,
define the jump residual as
Jrul, = 2(TNu}]§, - Dufjﬁ,)

Denote the four lateral boundary surfaces by

To={zeR’ a1 =0,0<zs < Ao, f(0,22) <3 < h},
Iy ={xeR®: 2 =A;,0 <2 < Ag, f(A1,22) < 23 < h},
Py = {$ER310<$1 <Ai,z0 =0, f(21,0) < 3 <h},
Typ = {xeR®: 0 <21 < Ay, 20 = Ay, f(21,A2) < w3 < h}.

For any boundary face F' € I';g and the corresponding face F’ € I'11, if F € K; and F’ € Ky, then the jump
residual is defined as

Ty [Wm“?v\;(l + A+ ) (V- U?v\Kl)el] — et [uaxlu’fv\m +A+p)(V- u}JLV'Kz)el}
J}(T‘I/)U}Jil = eialAl [/U‘(}flu}]HKl + (>‘ + N)(v ! u}]i/|K1)el] - [:u‘awlu}]i/‘}(z + ()‘ + M) (v ! u}]</|Kz)elj|a

where e; = (1,0,0)". Similarly, for any face F € I'yg and its corresponding face F’ € I's1, the jump residual is
defined as

Sl

|00y, + O+ 0)(F -l Jea | = 7020 (o, uly |, + O ) (V- ulbl i) es .
TS uly = el [M%U}Mm + A+ ) (V- U%le)ez] — [0, ul i, + (A + 1) (V- uly|k, ) es],

where ez = (0,1,0) 7.
For any tetrahedral element K € My, denote by nx the local error estimator as follows:

1 2
nk = Wl Rl Bagiey + b D (18 uk By + 1820k ) )-
FcoK

For convenience, we introduce a weighted H'(£2) norm

H|u|H§{1(Q) = ,uj |Vu|*>dz + (A + ) J |V - ul?dx + wQJ |u|? da. (5.1)
Q Q Q
Since p and A\ + p are positive, it is easy to check that

which implies that the weighted H' () norm (5.1) is equivalent to the standard H'(2) norm.
The following theorem is the main result of the paper. It presents the a posteriori error estimate between
the solutions of the original scattering problem (3.17) and the truncated finite element approximation (4.3).

Theorem 5.1. Let w and u®; be the solutions of the variational problems (3.17) and (4.3), respectively. Then

for any h such that max,cg2 flr) < h < h and for sufficiently large N, the following a posteriori error estimate
holds:

1/2
|Hu - u}ﬁf|HH1 (Q) S ( Z 7]%() + Huinc - thHl/Q(S) + lnlrn.a);N(|n|rnaxe_|52n‘(h_h)) HuinCHHl(Q)? (52)
KeMy, i

where |n|min = min(|n1], |n2|) and |n|max = max(|nq|, |nal).
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The a posteriori error (5.2) contains three parts: the first two parts arise from the finite element discretization
error; the third part accounts for the truncation error of the DtN operator. Since h < h, the latter is almost
exponentially decaying. Hence the DtN truncated error can be controlled to be small enough so that it does not
contaminate the finite element discretization error.

To prove Theorem 5.1, let us begin with the following trace result in H ép(Q). The proof can be found in
Lemma 3.3 of [28].

Lemma 5.2. Let a = mingegz f(r). Then for any u € Hép(Q) the following estimate holds:
H'U'HHU?(Fh) < Cllull g,
where C = (1 + (h—a)~1)Y2.

Denote by € = u — u® the error between the solutions of (3.17) and (4.3), then a simple calculation yields
lesoy =t | V€: VEda+ () [ (7-9(V-Edo+o? | ¢-Edo
=Ra(,€) + 2wQJ £€-€dx + %J TE-€ds
Q r

h

— Ra(€, &) + R (T—TN)gfderszf E~Edm+§)%f Twé - Eds. (5.3)
Q T'n

I'n

Due to the equivalence of the weighted norm || - || g1 () to the standard norm || - || g1 (o), it suffices to estimate
the four terms on the right hand side of (5.3) one by one. The estimates of the first two terms are given in
Lemmas 5.3 and 5.4.

Lemma 5.3. Let u € H(llp(Q) be the solution of variational problem (3.17). For any v € Hép(Q) and a
sufficiently large N, the following estimate holds:

f (T —Tyn)u-vds
I'n

< | max (Indmace™ 2= ) 11 0] 1 -
N min

Proof. Tt follows from (3.7) that we have
D) = b ()P ) i (h) = g ()™ (1), G =123 (5.4)

Substituting (5.4) into (3.8), we obtain the Fourier coefficients of u at x3 = h in terms of the Fourier coefficients
of ¢ and @ at x3 = h:

Uln(h) 704171 0 _6271 Qon ] ¢n(h)
u2n(h) — asn Bon 0 —ain wln(h)
u3n(h) 5177, —Q2np Uip 0 '@Z}Qn(h)
0 L 0 Qa1p O2p ﬂQn _ ¢3n(h)
i —h i n ]Al 1
*aln 0 _5271 Qo ] eﬁln(h }Al) ¢ (A)
— i Qop ﬁQn 0 —x1n dia €i52”(h_h) ’lpln <h)
ﬂln —Q2n (ln 0 & eiﬁ%r(h*il) w2n (B)
L 0 a1n azn Bon iBan (h—h) .
R O]
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= iA, (¢n (E),¢1n (ﬁ),w% (ﬁ),%n (/&))T. (5.5)

Replacing h by h in (3.9)-(3.12), we may equivalently have the matrix form

[(bn (fz),z/:n (h)] _ _ianun (h) (5.6)

where the entries of the 4 x 3 matrix B,, are
BY;) = U1n, BYQL) = Oigp, B;g) = ﬂ?nv Bég) = —Qp, Bég) = 1n, BA(LEL) =Y,

Bé?) = _B§2) = ;%aanQn(ﬁln - ﬁQn)7 34(11) = ;%OQan, Big) = _;%alana

n 1 " 1
By = 2 (af,B2n + 03,810 + B1nB3,), B} = ) (a3, B1n + 03,820 + B1nf3,)-
2 2

Plugging (5.5) into (5.6) yields

O Uin (h) 1 Uiy (h)
uzn(h) | = ——(AnBu)laxs u2n<ﬁ) =P uzn(ﬁ) , (5.7)
ol wl®)] " )

where (A, B,)|3xs is the leading principal submatrix of order 3 of the matrix A, B,,. A straight forward com-
putation yields that

. 3 1 . 3 1 . 3
PI(IL) = a%nelﬁln(h h) + ?a%nxnelﬁzn(h h) + ? (a%nlgln + agn/@2n + 51nﬂ§n)62nelﬁ2"(h h)v
2 2

' E ! i _i 1 4 p
P1(;L) = a1na2nelﬁl"(h h) 4+ ?amazn(ﬁln — ﬁQn)QZnelﬁzn(h h) _ ?alnaQaneIBQH(h h)’
? 2
P = a1nfan (eiﬁln(h—ﬁ) — eiﬁzn(h—ﬁ))7

. 3 1 . 3 1 . 3
P2(IL) = aanQnelﬁln(h h) + ?alnan(ﬂln - ﬂ2n)ﬂ2nelﬁ2n(h h) - ?aanQanelﬁzn(h h)a
2 2

S | iy 1 By (hi
P2(;L) = a%nelﬁln(h h) + ?a%nxnelﬁbn(h h) + ?(a%nﬂbz + a%nﬁln + ﬂlnﬂ%n)ﬂ?nelﬁml(h h)7
2 2

PL = g B (€90 (1) (i (1))

. . 1 . . 1 . 3
P?)(?) = O‘lnﬂlnelﬁln(h h) B /{2 alnagn(ﬁln - BQn)6152”(h h) - Iﬁ?2 (a%nﬂln + agnﬂQn + ﬁlnﬂgn)alnelgzn(h h)7
2 2

. . 1 . . 1 . .
PB(;L) = O‘Qnﬂlnelﬁln(h h) - ?a%za%n(ﬁln - 62n)6152n(h h) - ? (a%nﬂQn + agnﬂln + ﬁlnﬂ%n)aQneIgzn(h h)7
2 2

P?Sg) = ﬁlnﬁQnewln(h_H) + (a%n + agn)eiﬁ%(h_ﬁ).

When |a, |2 = o2, + a3, > k3, it follows from (3.6) that both (31, and [32,, are pure imaginary numbers. We
may easily show

Xn = |04n|2 — (|ozn|2 — n§)1/2(|an|2 — H%)I/Q < Ii% + KJ%. (5.8)
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and

K5 — K

. 2 2)1/2 2 2\1/2
n— = (lan|* = — (lap]? = <—2 1 .
i(B2 Bin) (‘an| Kl) (|a ‘ &2) 2|0, |2 — /ﬁ%)l/z

Plugging (3.6) and (5.8), (5.9) into P,,, we obtain

. 3 1 . 3
Pl(;l) = a?nelﬁln(h h) + ?elﬁrzn(h h){|an|2ﬁ1nﬁ2n - a§n<|an|2 - I‘i%) - 61nﬁZn(|an|2 - K%) + a§n|an|2}
2

= a?neiﬁln(}b_ﬁ) + ¢ifon (h=h) (03, + BinfBon)
_ a?n<eu%n(h—ﬁ)__euhn(h—h)> +_eu%n(h—h)xn’
which gives
P] < [nlmaxe ™21 (=R),
Similarly, we may show that all the entries of the matrix P, have the estimates
1P| S [nfmace VP2l (R) g 5 — 12,3, (5.10)
Substituting (5.8) and (5.10) into (5.7) gives
(W e %0 O, () P, (5.11)

By (3.15), it can be verified from |av,|” > £32 that

[y

= ’a%n(lgln - 5277,) + /BQan‘

1/2 1/2
a%nl((|an2 - KJ%) - (|an|2 - ff%) ) + ﬁQan

i(k2 — K2
= |O‘1n‘2 (1/22 1) 12 + B2nXn
2 2 2 2
(loal = #2) "+ (lol = #3)
< |7 max- (5.12)
Following the same argument, we may show that
(M| < hnax, 4,4 = 1,2,3.
Substituting (5.11), (5.12) into (3.14), we obtain
Fh |n|min>N
1/2 1/2
2 2
S ( Z |1 max|wn (R)] > < Z |72 max |[vn ()] )
[72|min>N [72|min>N

A

1/2
( > name—zw%l(h—@m(fz)F) T

[1|min>N
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< max (Inhuaxe™ =0 ) g1 oy [0l 11y

~
|n\min>N

< max (‘n|max67‘ﬁ2"‘(h7h)) H’u,mC HHl(Q) H’UHHI Q)
In‘min>N

which completes the proof. O

Lemma 5.4. Let v be any function in H}iqp(ﬂ), the following estimate holds:

a(é,v) + f (T —Tn)E-vds

T'n

1/2
< (Z 77%() + max <|”|max€7|ﬁ2"‘(h7h))HuincHﬂl(Q) vl e 02y
|n|min>
KeM,;,

which gives by taking v = & that

a(€,€) +J (T — Ty)¢ - Eds

Iy

1/2
< << > 77%() + |u™ — g" | gz s)

KeMy,

+ max (|n|max6_|52”‘(h_h)) |uincH1(Q)> HS”Hl(Q)

[7]min>

Since the proof of Lemma 5.4 is essentially the same as that for Lemma 5.4 of [32], we omit it for brevity.
The following two lemmas are to estimate the last term in (5.3).

Let M, = —2(M,, + M}). Note that M,, = R(—iW,) which is defined in (3.13) of [20]. By Lemma 2 of [20],
we have the following lemma.

Lemma 5.5. M, is positive definite for |au,| > ks.

Lemma 5.6. Let Q' = {:c e R : (x1,22) € (0,A1) x (0,A3),h < 3 < h} Then for any § > 0, there exists a
positive constant C(0) independent of N such that

R’ Twe +€£ds < CO)ElT2 (@) + 01€1F (@)-
h
Proof. Tt follows from the definition of the DtN operator (3.14) that we have

R| Tw€-€ds=MAR D (ME,) €,

Tn In,|n2|<N

=—MAy ) (M€, &,

[n1],In2|<N

By Lemma 5.5, M, is positive definite for sufficiently large |n|max. Hence for fixed w, A, p, there exists a positive
integer N* such that

R | Twe Eds < —AA, 3 (Mngn) &) Y |nfmax > N¥.

Lo N max <min(N, N*)

On the other hand, there exists a constant C' depending only on w, u, A such that

(W, ) & < ClELP ¥ Inlmax < min(N*, N).
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For any ¢ > 0, it follows from Young’s inequality that

(h h |¢ f |(x3) | d$3+J .[ |p(s) dsdatg
< fﬁ [0(ws)* das + (;) jﬁ [0(ws)|* das + 6 (h — b) Lh|¢/(ff3)|2dx3a

which gives that
2 (" 2 g 2
ol < o7 4 (n=0) | [loten) 45 [ o e e
h h
Let ¢(x) = X, cp2 n(x3)el® ™. 1t is easy to get

V613 = Mihe 3 f 65 (a5)[” + leca 16 s)|?) s,

nez?

6122y = Arho 3 j [ s)? .

nez?

Hence, we have for any ¢ € H*(Q') that

||¢H%2(Fh) = A1y Z |6 (h)[?

nez?

<4A1A2[5 1y (h h ] J‘|¢n $3| dzs + A1A26 2: J“¢ $3| dzs

nez? nez?
<tuafF s - m ] 3 [ ars - ainas 3 [ ol o lonteo P
nez? nez?

< |o7 (=) ]|¢|iz<m + 81Vl e
C@) DIz + 01Vl 720

Combining the above estimates, we obtain

R| Tw&-€ds <Cl€|T2r,) < CO)EIL20r) + 1€ R 0y

'
which completes the proof. O

To estimate the third term of (5.3), we introduce the dual problem

a(v,p) = J v-&€dx Vove Hé-,qp(Q). (5.13)
Q
It is easy to check that p is the weak solution of the boundary value problem

pAPp + A+ ) VV -p+w?p=—€¢  inQ
p=0 onS (5.14)
Dp =T*p onl,
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where T* is the adjoint operator to T under the scalar product in L?(I';). Taking v = £ in (5.13), we have

€22 = alé,p) —f

) (T—TN)§~13ds+J (T — Tyn)€ - pds. (5.15)

Ty

It is clear that the evaluation of p is essential to the error estimate. Lemmas 5.7-5.9 give the asymptotic
analysis of p. First, we introduce the Helmholtz decomposition of € in Q':

E=V(+VxZ, V-Z=0, (5.16)

where Z = (Z1,Z2,75)" and

(@)= Y Culas)e ™, Zj@) = Y Zjulws)e ™.

nez? nez?

Substituting the above Fourier series expansions into (5.16) gives

Zin(x3) 0 0 i, —loon | [ Zin(xs) Eon(3)
Zh (x 0 0 ig, ioin Zon(x —&n(z
?n( 3) | . . 2 1 on(23) N E1n(z3) (5.17)
Z3n(x3) —1ln —lQon 0 0 Zgn(.’tg) 0
C;,(‘TB) iaQn 710[171 0 0 Cn 1’3) EBn(xB)

In addition, the homogeneous Dirichlet boundary condition is imposed for the Fourier coefficients at x3 = h:
Lemma 5.7. The solutions of the problem (5.17) and (5.18) in [h, h] satisfy the following estimates:

1
[6n(3)] % Wenllpo gy T 7

|

1 o
[ Zjn(23)] < ||£nHLoo([;L,h])aie‘a"‘(h 9, j=1,2,3

o

Proof. A straight forward calculation shows that the solution of problem (5.17) and (5.18) is

1 h 1 h
Zin(z3) = —56‘%‘“ J emlonltey, (t) dt — §€_|a"|z3f elenley, (t) dt

x3 x3

. h . h
1 az, |an\zsf et L@ ooy [ Janlt

+-—e e En(t)dt — ———e e'*nltes, (t) dt, (5.19)
2 |an| T3 2 ‘an| z3

1 h 1 h

Z2n($3) = 56“1”'13 f e_lanltfln(t) dt + §€_|a"‘zs f elanltfln(t) dt
xrs3 xrs3

. h . h
L a |an\zsf —lanlt Lo agles [ Janlt

—= e e En(t)dt + = e e'*nltes, (t) dt, (5.20)
2 |an| T3 2 ‘an| z3

. h .

1 1 _ 1 o

1 oy J elenligy, () ar — 1 2
T3

Zan =
an(72) 2 ||

h
el [ el 1) a
T3

2 ||

. h . h
1 Qiop |a,l\mgf —|an |t 1 Q2n —\an\m3j |, |t
———e¢ e 1n(t)dt + = e e 1n () dt 5.21
2| ol o in(t) 2‘ n| " Ein(t) ( )
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and

1 h 1 h
Cnlzs) = fie\an\rsf e~lonltes (¢)dt — ieflanlmzj elenltes (1) dt
x3

z3

L0 e Jh elenltey (1) dt 4 £ 02 olenles Jh elxnltey, (1) dt
a1 2 a 2
2 |ay| x3 " 2 |ay| x3 "

. h . h
_lom ela"'”f emlonltey, () dt 4 = i ool f elonltey, (1) dt.

2 || z3 2 || z3

It is easy to check from (5.19)—(5.22) that

L leanl(hss)

(G (@3)| < 1€ Lo ([0 o] ;

|Zin(@3)] < 1€l Lo ([hn]) oy elanlth=as) =5 — 1 93

[
which complete the proof.

Consider the following boundary value problem for p in '

pAp + A+ ) VV -p+w?p=—€¢  in Y,

p=p on I';,

Dp =T*p on I'y,.
Lemma 5.8. Let ¢ = (q1,42,q3)" and g have the Fourier series expansions

qj(x) = Z an(xs)eia"w’ g(x) = Z gn(x3)el®" ™, eV

nez? nez?

and satisfy
(A +2p) (Ag + Kig) = —C in O,
u(Vx(qu)—m%q):Z, V-q=0 in &,
q=q, g=49 on F}*L

Moreover, the Fourier coefficients are assumed to satisfy the following boundary conditions on T'y:
gn(h) = =iBrngn(h)
and

@i (h) = =1B2nqin(h),  dh,(h) = —iBangan(h),
@i (h) = ia1,q1n(h) + idongan (h).

Then p has Helmholtz decomposition p = Vg + V x q and satisfies boundary value problem (5.23).

Proof. Substituting p = Vg + V x g into the elastic wave equation, we obtain

pA(Vg+V x q) + A+ p)VV - (Vg+V x q) +w* (Vg + V x q)
=V(pAg+ A+ p)Ag + wg) + V x (uAq + wq)
= (A +20)V(Ag + Kig) + 1V x (=V x (V x q) + K3q)
=-V(-VxZ=-¢

2935

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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Since g(x) = >,cz2 gn(23)e'* ™, we get from taking the second order partial derivatives of g that

07,9(®) = = Y o, galws)e ™,

nez

(ﬁzg(x) = - Z o‘%ngn(x?))eianwv

nez

Zg 1a7,7'

nez

Substituting the above three expansions into (A + 2u) (Ag + n%g) = —( yields

_
A+ 20

Similarly, we may verify that g, satisfies the second ordinary differential equation

In(w3) = o> gn(@s) + Kign(rs) = -

Cn(3). (5.27)

1

@ (x3) = |an*gjn(x3) + K3qjn(23) = _;Zjn(x3)~ (5.28)
Letting p= > p, (23)e!*" " and plugging it into p = Vg + V x g, we get
nez?
Pin(T3) ia1,0™ (23) + ia2nqsn(23) — ¢b,, (23)
p2n(x3) = ia2ngn(m3) - ialnq3n(733) + qlln(xi%) . (529)
P3n(23) i1nGon(23) — idonqin(es) + g, (x3)

Substituting the above expressions into the boundary operator (3.13) gives

,uaxap + (>\ + [L)(O, Oa I)Tv P

1D,
= Y e [Py,
ne? | 11, + (A + p)icinpin + (A + p)iaznpan + (A + p)ps,
[ pliarng,, +i02nds, — 45,
= e pliozng, —icings, + qi,)
nez? _()‘ + 2p) (ialnqén - ia2nqin + gn) (A + ) (lalnpln + ia2np2n)
[ ipaingl, + ipaends, + Zzn + (k3 — |on]?) gon
= 2 elon ipanng, — ipoings, — — (K3 — o |?) qin
ne? | —Cn — (A +2p) (“% - |an|2)gn + lﬂaln(hn - 1Na2nq11n - (A + N)‘an|29n

Substituting (5.18) and (5.25), (5.26) into the above equation and evaluating it at x3 = h, we get

Dp = (102, + (A + 11)(0,0,1)TV - p

—HO1nO2n (ﬂQn a2n) Malnm qln(h)

= > e —u(f}, —a3,)  pornasn (102, B1n g2n(h)
) -

ner —pan Bon 11001 B2, — i3 + plog 2] | gn(h)

On the other hand, substituting (5.29) into (3.15) gives

T*p = Y, Mip, ()"

nez?
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0 ifon,  icuop iy, h )
= Y MF| i 0 —ione daaa || = S KL [P
nez? i, i 0  —iBin wnlh) | e | aon(h)
2n in in gn(h) gn(h)
where _ L L
0 15§n iﬂ?noﬂn iﬂlnaln
K’ﬂ = _I/J/ _1@ 0 —iﬁam iﬂ?azn . (530)

_iEQQn iﬂaln 0 _1@

It follows from V - g = 0 that
q;;n (333) = io‘ln‘]ln(x?)) + iaan2n (%3)

Taking the derivative of the above equation and combining the result with (5.28), we get

. . 1

1041n‘]in(x3) + 1a2nql2n(~7;3) = _;Zfin(xfi) - (ng - |an|2)q3n($3)~ (531)
Evaluating g3, (z3) at 23 = h, we have from (5.25) and (5.26) that

— (83 = |an|?) g3n(h) = io1n (—1B2n ) qin(h) + i, (—iB2n) g2n (h),
which gives

aQnﬂQn

B3

o alnﬂZn

QSn(h) = B% q1n(h) - an(h)- (5'32)

Substituting (5.32) into (5.30), we obtain
Dp=T*p onTy,
which completes the proof. O

Consider the general two-point boundary value problem for the second order ordinary differential equation

u"(y) = |BPuly) = —c&,  ye (hh),
{u(h) - u(h) W'(h) = —|Blu(h),

which has a unique solution given by

- ﬂ h h h

h h

h . .
u(y) = — [_C fy IBI=5)g (5 ds + CF 81— ¢ (5 ds — CJ IBICh=y=5)¢ (5 ds + 2|ﬁ|e|ﬁ<h—y>u<,;>]_

Lemma 5.9. Let p = (p1,p2,p3)| be the solution of (5.23). Then for sufficiently large |n|max, the following
estimate holds:

1

[pn ()] € lmacel 210715 (B)]+ > 1mlpe ia;

7=1,2,3 \ﬂ|max j=1,2,3

where pjn are the Fourier coefficients of p;,j = 1,2,3.
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Proof. Let ¢; = 1/(A+2p) and ¢o = 1/u. We solve the two-point boundary value problems of (5.27), (5.28)

and get the solutions

1 xr3 xrs3
gn(23) = o] [_ cl L elPinl@s=s) ¢ (s)ds + Clj elPnlls=zs) e () ds

h
h . . .
h
1 B T3 T3
Gin(x3) = ——| — 2 J elBQ"Ll(wrs)Zln(s) ds + ¢ f elﬁz"‘(S*IS)Zln(s) ds
2|ﬁ2n‘ h h

h 7 7 A
— JA e\ﬂzn\(Zh—xa—s)Zln(S) ds + 2|ﬁ2n|elﬁzn\(h—x3)qln (h)],
h

1 B T3 T3
gon (23) — . J 12019 7, (5)ds + o3 f B2l (=23) 7, (5) ds
2|B2nl | h h
h . - ~
— Ca J e‘ﬁ"’"‘(Qh*I?’*S)ZQn(s) ds + 2|/6’2n|e"62"|(h7“"3)q2n (h)]
h

Taking the derivatives of (5.33)-(5.35) and then evaluating at 3 = h gives

h

Qin (iz) =cy L el l(h=2) 7, (5} ds — |Ban|q1n (ﬁ),
G (iz) = Cy Lh elﬁ%l(i‘*s)Zgn(s) ds — | Ban|gon (ﬁ),
gu(h) =1 Lh el 1=, (5) ds — [Bualga ()

Evaluating (5.31) at 3 = h and then using (5.36)(5.37), we get

7 iy, 7 g, > 1 1 A
asn(h) = = 15 a1 (h) = 152 o he) + 5 Zan (1)
s Fan Bon 20 12) T 13, 2
. h ) ; h )
2n h 2n h

Plugging (5.25), (5.26) and (5.31) into (5.29) yields

(P1n(h), P2n(h), psn(h)) | = L‘T;AKn (qln (h) G2 (h) . 9n (h) ) ’

where
Q1 Qop |Bonl® + 03, iain|Ban|
Kp=|—|fml? —af,  —oipaz,  iazn|fe]
7ia2n|52n| iO‘1n|62n| 7‘/6171”6211‘

It follows from a straightforward calculation that the inverse of K, is

1 A
K,

K;! =
" |ﬂ2n|2Xn(|ﬂ2n|2 + |an|2)

where the entries of the matrix K,, are

K = a1n020|Bon| (1Bl + 1Banl), K% = iaan|Ban| (1B2n]* + |an]?),

(5.33)

(5.34)

(5.35)

(5.36)
(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
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K8 = —ad,1B2al? + |Bunl|Benl® + a2, 1B1nlBonl,

KSY = a3, 1B20l? — [B1nl|B2n > — 02, 1B1nl | B2nl,

K = 0100 |Banl (1810] + |B2nl). K55 = —ionn|Bon] (1820 + laal?),
K = —iaralBonl (182nl? + lenl?),  KS) = —iazu|Banl (182l + lea]?),
K3 = 1Bonl?(1B2al® + lta]?).

Evaluating (5.33)—(5.35) at 3 = h, we get

an(m)] [0 o 0 (0| g,
e[ =| 0 eemllom) g asn(B) | + | b2n | (5.42)
gn(h) 0 0 eloml(h=n) [ | o ( ;L> Wsn

where

e h h
Wiy = J elBQ"‘(S*h)Zln(s) ds — J

|ﬁ2n ‘ (2};’7}7’75) Z d
e n(s)ds|,
2|62n| h ' ( ) 1

h h
Lo 1Banl(s=h) 7 (<) ds — J
i = g f c s = |

elﬁan\(ZﬁfhfS)ZM(S) ds] 7

h

h
.o__a Bral(s=) ¢ (g)d J
W3y, = e n(s)ds —
= 5| | Gals)ds— |

elﬁlnl(ﬂ}*hﬂ)gn(s) ds] )
h

Similarly, we evaluate (5.29) at 23 = h and get

@] [0
‘p2n() =®Kn q2n(il) + | wan |, (5.43)

7 w:
P3n gnlh an

o> S

~
>
~_

where

1 h A_g . 1 h Ai
Win = —W (Cgamaznﬁ e'ﬁQ”‘(h ‘)Zln(s) ds — 1a2n;23n (h) + 62(|ﬂ2n|2 + agn) f elPanl(h S)Zzn(s) ds),
n h h

1 h R 1 . h N
Wop = T <02a1na2nﬁ elBenl(h=s) Zon(8)ds — iap— Z3n (h) + cz(|ﬁ2n|2 + afn) J el’gz”l(h*S)Zm(S) d3>7
|52n| h H

h

W3y, = C1 fh e‘ﬁl"l(ﬁ_s)g}l(s) ds.

h

It follows from (5.41) that we have

0. ) (1)

aon (1) | = 1820l 55 | D2 (B) | = 1Bonl B | 2 |- (5.44)

NG 1)

paybl

>
SN—
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Substituting (5.42) into (5.40) leads to

pln(h) 1 _qln(h)
p2n(h) = WK (I2n(h)
p3n(h) L gn(h)

el 2l(h=h) 0 0 ain (1) Bin

1 . ~
= —K "anl(hih) n h + = n U) n
o] 0 e OA q2 (A) |52n| 2
L0 0 0= | g, (i) @3n

Plugging (5.44) into the above equation gives

Pin (h) Pin (E) Win Wip
pan(h) | = P, | pon (ﬁ) — P, | way, |52n| Wap |,
p3n(h) i ( E) Wy, W3,

where the matrix P, is given in (5.7).
Following the same proof as that for Lemma 5.8 of [32], we may show that

1 1

Z ”gjnHLoc([iL,h])v |w3n| Z ngn”Lec([ﬁ,h])-

bl S S Tp
max ;—1 23 max j=1,2,3

By (5.10) and (5.46), we have

ollen] 1820 ) (h—P) Z [T

|”‘max j=1,2,3
For sufficiently large |n|max, it is easy to get

K3 1
12
3)"

1/2
|| = |Bon| = |otn| — (|an|2 - "33) =

|| + (|2 — & 72l max

Plugging the above estimate into (5.47) gives

Z P(" Win| < In] Z ngnHLoo([h )
Jj=1,2,3 max ;77 3
It is also easy to check
1
T3 Bl ~ O(In|max
‘ﬂ%l n (Inlmax)
By (5.46), we have
1 (), 1
K; ", < 1€l oo (T mTh
|ﬂ2n| j:1272)3 1) J |n|max j:%73 Jnlir, ([;7;1])

which completes the proof after substituting (5.10) and (5.48), (5.49) into (5.45).

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)
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Using Lemma 5.9 and the same arguments as those in [32], we may show that

1
< yl€ln @) (5.50)

f (T - Ty)€ - pds
I'n

The details are omitted for brevity.
Now we are ready to show the proof of Theorem 5.1.

Proof. By (5.3), Lemmas 5.4 and 5.6, we obtain

1/2
(Z 77%) + max (|n\maxe—lﬁznl(h—h))HuiHCHHI(Q)

€N @) < €
KeM,, |n|min>

+Ju gh|Hm<S)1 €] 511 ) + (Ca + CODIEIZ ) + 51€ 1 -

where C1, Cy, C(8) are positive constants. Choosing a small enough ¢ such that §/min(u,w?) < 1/2 gives

1/2
|H£‘H%—Il(ﬂ) < 201[< Z n%) + max (|n|maxe*\52n\(h7h))HuincHHl(Q)

KeM,, Inlmin>N
+ u — gh|H1/2(S)1 [€ e @) + 2(C2 + C(8)) €] 72 (- (5.51)

Substituting (5.50) into (5.15) and using Lemma 5.4, we have

1/2
HE”%?(Q)S l( Z T]%() + max (‘n|max€_‘f82n|(h—h)>HuincHHl(Q)

KEMh ‘n‘min>
inc h 1 2
+ [w™ = g™ gz 1€l mr @) + N”é-HHl(Q)' (5.52)
The proof is completed after substituting (5.52) into (5.51) and taking N be a sufficiently large number. O

6. NUMERICAL EXPERIMENTS

In this section, we introduce the algorithmic implementation of the adaptive finite element DtN method and
present two numerical examples to demonstrate the effectiveness of the proposed method.

6.1. Adaptive algorithm

It is shown in Theorem 5.1 that the a posteriori error consists of two parts: the finite element discretization
error ¢, and the DtN operator truncation error €y, where

1/2
€n = ( > ni) + ™ = g"| e,

KGM;,, (6.1)

€N = max (\n|max67‘ﬁ2"|(h*h)> [w™| g1 (-
|7 min>N

In the implementation, we choose the parameters h, h and N based on (6.1) to make sure that the DtN operator

truncation error is smaller than the finite element discretization error. In the following numerical experiments,

h is chosen such that h = max,er2 f(r) and N is the smallest positive integer that makes ex < 1078, The

adaptive finite element DtN algorithm is shown in Table 1.
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TABLE 1. The adaptive finite element DtN method.

Given the tolerance € > 0 and the parameter 7 € (0,1).
Fix the computational domain 2 by choosing h.
Choose h and N such that en <1078,
Construct an initial triangulation M}, over {2 and compute error estimators.
While €, > € do
refine mesh M), according to the following strategy:
if ny > 7 max nx, refine the element Ke My,
KeMy,

NN NN S
S O W N
D O

(7) denote refined mesh still by My, solve the discrete problem (4.3) on the new mesh My,
(8) compute the corresponding error estimators.
(9) End while.

6.2. Numerical examples

In this section, we present two examples (cf. [28]) to demonstrate the numerical performance of the DtN
method. The first-order linear element is used for solving the problem. Our implementation is based on parallel
hierarchical grid (PHG) [36], which is a toolbox for developing parallel adaptive finite element programs on
unstructured tetrahedral meshes. The linear system resulted from the finite element discretization is solved by
the Supernodal LU (SuperLU) direct solver, which is a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations.

Example 6.1. Consider a simple biperiodic structure, a plane surface, where the exact solution is available.
We assume that a plane compressional plane wave u"® = ge!(®7=6%3) is incident on the plane surface z3 = 0,
where o = (a1, 2) ", q = (1,42, q3) T with

a1 = K18in 6y cos s, ap = K1 sin by sin by, 8 = k1 cos by,

q1 = sin#q cos By, go = sin by sin by, g3 = — cos .

Here 60 € [0,7/2),05 € [0, 27] are incident angles. It follows from the elastic wave equation and the Helmholtz
decomposition that we may obtain the exact solution for the scattered field

a1 aibs — Baobo
'U.,((B) :1 o) aei(a'r+ﬁlﬂ3) +1 /6201)1 _ ale ei(a.r+ﬁ2013)7
ﬂ Oélbg — 04261
where
i
a= ;(Oll(h + aaqa + B2093),
i
by = £ (0102(8 = Bao)ar /w3 + (B0 + 38 + B30) 42/ 3 — 26s).
i
b =~ (~ (030 + 030 + B550) 01/ — 102(8 — Bao)aa/w3 + 0nas).
i
bs = 7(%% —a1¢2),
K3
where

X = |af? + Bf0.
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FIGURE 2. Example 6.1: The mesh and surface plots of the amplitude of the associated solution
for the scattered field wy. Left: amplitude of the real part of the solution |Ruy|; right: amplitude
of the imaginary part of the solution |Suy|.
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FIGURE 3. Example 6.1: Left: grating efficiencies; right: error of the grating efficiency.

In our experiments, the parameters are chosen as A = 1,u = 1,01 = 6 = 7/6,w = 27. The computational
domain ©Q = (0,1) x (0,1) x (0,0.3). The mesh and surface plots of the amplitude of the scattered field vy,
are shown in Figure 2. The mesh has 228 400 tetrahedrons and the total number of degrees of freedom (DoF's)
on the mesh is 253200. The grating efficiencies are displayed in Figure 3, which verifies the conservation of
the energy in Theorem 2.1 of [28]. Figure 4 shows the curves of log||V(u — ug)|on versus log Ny for both
the a priori and the a posteriori error estimates with different frequencies, where N is the total number of
DoF's of the mesh. It indicates that the meshes and the associated numerical complexity are quasi-optimal, i.e.,
log [V(u—ug)lo,0 = O(N, Y %) is valid asymptotically. But the results also show that is is less accurate to solve
the problem with a higher frequency as the solution becomes more oscillatory.

Example 6.2. This example concerns the scattering of a time-harmonic compressional plane wave u" on a
flat grating surface with two square bumps, as seen in Figure 5. The parameters are chosenas A = 1,y = 1,01 =
0 = 7/6, w = 2m. The computational domain is = (0,1) x (0,1) x (0,0.6). Since there is no exact solution
for this example, we plot in Figure 6 the curves of log |V (u — uy)|o,q versus log Ny for the a posteriori error
estimates with different frequencies, where Ny, is the total number of DoFs of the mesh. Again, the result shows
that the meshes and the associated numerical complexity are quasi-optimal for the proposed method; but it is
less accurate to solve the higher frequency problem. We also plot the grating efficiencies against the DoFs in
Figure 7 to verify the conservation of the energy. Figures 8 and 9 show the meshes and the amplitude of the
associated solution for the scattered field u;, when the mesh has 346 734 tetrahedrons.
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FicURE 4. Example 6.1: Left: quasi-optimality of the a priori error estimates; right: quasi-
optimality of the a posteriori error estimates.

FI1GURE 5. Example 6.2: Problem geometry of the domain.
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F1GURE 6. Example 6.2: Quasi-optimality of the a posteriori error estimates.
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FicUure 7. Example 6.2: Left: grating efficiencies; right: error of the grating efficiency.
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FIGURE 8. Example 6.2: The mesh and surface plots of the amplitude of the associated solution
for the scattered field wy: left: amplitude of the real part of the solution |Rupl|; right: the
amplitude of the imaginary part of the solution |Suy|.
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for the scattered field v, from a view of the x3-axis: left: amplitude of the real part of the solution
|Rvp|; right: amplitude of the imaginary part of the solution |Swy|.
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7. CONCLUSION

In this paper, we have presented an adaptive finite element DtN method for the elastic scattering problem in
bi-periodic structures. Based on the Helmholtz decomposition, a new duality argument is developed to obtain the
a posteriori error estimate. It takes account of both the finite element discretization error and the DtN operator
truncation error, which is shown to decay exponentially with respect to the truncation parameter. Numerical
results show that the proposed method is effective and accurate. This work provides a viable alternative to the
adaptive finite element PML method for solving the elastic surface scattering problem. It also enriches the range
of choices available for solving elastic wave propagation problems imposed in unbounded domains. Along the
line of this work, a possible continuation is to extend our analysis to the adaptive finite element DtN method for
solving the three-dimensional obstacle scattering problem and acoustic-elastic interactive problem. The progress
will be reported elsewhere on these problems in the future.
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