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ABSTRACT

Data center operators generally overprovision IT and
cooling capacities to address unexpected utilization
increases that can violate service quality commitments.
This results in energy wastage. To reduce this wastage, we
introduce HCP (Holistic Capacity Provisioner), a service
latency aware management system for dynamically
provisioning the server and cooling capacity. Short-term
load prediction is used to adjust the online server capacity
to concentrate the workload onto the smallest possible set
of online servers. Idling servers are completely turned off
based on a separate long-term utilization predictor. HCP
targets data centers that use chilled air cooling and varies
the cooling provided commensurately, using adjustable
aperture tiles and speed control of the blower fans in the air
handler. An HCP prototype supporting a server
heterogeneity is evaluated with real-world workload
traces/requests and realizes up to 32% total energy savings
while limiting the 99th-percentile and average latency
increases to at most 6.67% and 3.24%, respectively, against
a baseline system where all servers are kept online.
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1. Introduction

Data center operators generally keep spare IT capacity on
hand to deal with any sudden growth in the offered
workload that can otherwise result in the violation of
service commitments. A report from Lawrence Berkley
National Lab [38] and a study commissioned by the New
York Times [20] indicates that many operators of online
services keep all their servers on, irrespective of the
instantaneous demand. Agility, achieved through
overprovisioning, leads to poor energy utilization across
the data center, which may be as low as 12% for data centers
offering online services [6]. In [30], the most recent across-
the-board study on data center utilization, on-premise data
centers are reported to have utilizations in the 12% to 18%
range. Low average server utilization is also reported in
[38]. Lightly utilized or idling servers have low energy
efficiency - a direct consequence of the relatively large idle
power consumption.
servers, idle power is often over 20% of their peak power
consumption. Factors contributing to high idle power
consumption in servers include power supplies that are

Even in the recent generation of

inefficient at low utilization levels, use of dual power
supplies (for reliability), continuous power draw by
components such as RAM, server fans, multiple storage
drives and by many components whose energy usage is
utilization independent.

1.1.Dynamic, Load-Dependent Server Capacity
Adjustments

Dynamic provisioning of server capacity matches the
number of deployed servers (hereafter called online
servers) to the current requests. Using servers with low idle
power is the obvious solution for avoiding efficiency losses
at low utilization levels. This is an option that is available
at newer cloud datacenters operated by large cloud service
providers with custom-built servers. Alternatively, servers
with ACPI S3 power state support are usable, as they can
be suspended quickly into a quiescent state and can be
revived from the quiescent rapidly. Unfortunately, both
options are not viable for a significant number of data
centers owned by enterprises and organizations that have
to rely on widely available, stock servers without these
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features. Many of such data centers have also not been
migrated to the cloud, for a variety of valid reasons [17, 38].
These “private” data centers using stock servers also lack
the extensive instrumentation, monitoring and scalable
management facilities used in the mega data centers [38]
for reducing the energy needs. Finally, private data centers
account for about 60% of the energy used by all data centers
even though they handle a smaller volume of requests [11].
The solution presented here addresses the needs of such
private enterprise datacenters.

1.2. Goals and Scope of this Work

This paper presents HCP, an automated and dynamic
Holistic Capacity Provisioner that tracks and matches the
deployed server and cooling capacity to the workload
demands. This leads to improved energy savings and
energy proportionality. HCP incorporates two modules, a
Dynamic Capacity Provisioner (DCP) for rightsizing the
deployed online server capacity and Automatic Cooling
Provisioner (ACP) that provides adequate cooling for the
active servers. DCP and ACP both use a Short-Term
utilization Predictor (STP) to activate servers and adjust
the cooling provided to handle the instantaneous workload.
STP is geared specifically to predict rapid fluctuations in
the offered load, including rapid changes lasting for short
durations.  Rapid server deployment based on the
prediction is supported using a pool of recently offlined
servers and a small pool of standby, turned-on servers (hot
spares). While the recently offlined servers and the hot
spares absorb the sudden utilization growth, the increased
utilization is gradually shifted onto the servers that are
activated in the meantime to effectively hide the large turn-
on time of servers. DCP turns off idling servers
conservatively using a separate Long-Term Predictor
(LTP) that ignores the impact of short-lived transients and
focuses on the longer-term utilization trends.

DCP's goal is to realize IT energy savings compared to a
baseline system where all servers are kept active, while
maintaining the average tail latency of the requests as close
as possible to that of a fully-provisioned baseline system.
In addition to DCP, ACP also dynamically matches the
cooling to the provisioned servers to save energy compared
to a fully provisioned baseline system or a reactively
controlled cooling system. A prototype implementation of
HCP using 247 heterogeneous servers realized energy
savings up to 32% while limiting the average and 99th-
percentile tail latency increases to less than 3.24% and
6.67%, respectively, compared to the fully-provisioned
baseline system.

2. Related Work and Comparison with HCP

In this section, representative related work is presented and
contrasted to the two major components of HCP: DCP, the
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online server capacity provisioner and ACP, the automated
cooling capacity provisioner, both of which rely on the
prediction of the incoming requests.

2.1.Server Capacity Provisioning

In provisioning server capacity, DCP makes use of the
actual system utilization to account for the service time
variations that are inevitable even within a single job class
and also to account for any unrelated background activity
within the online servers. If these variations are not
accounted for, service quality can be adversely affected. For
example, Autoscale [19] considers the number of live
connections to online servers as an estimate of the system
load and experiences serious increases in the tail latencies
of the requests served (over 200%, as reported in [19]).
Similarly, Facebook’s Autoscale [43], a different approach
with the same name, relies on a typical diurnal load pattern
and uses a simple linear extrapolation of the observed load
to adjust the server capacity without offering hard service
quality = guarantees. PEGASUS improves energy
proportionality with explicit CPU power state control,
based on the actual request latencies to limit the tail
latencies, without any server shutdown [26]. Idle servers
contribute to power wastage and the impact on service
latencies with complete server shutdowns (as supported in
DCP) is unclear. Sleepscale [25] selects policies based on
state transition latencies for sleep states to reduce power
consumption. DCP does not rely on the existence of
multiple sleep states and shuts off idle servers while still
guaranteeing service quality.

Paragon [14] uses collaborative filtering to quickly
recognize the similarities between an incoming workload
and previously scheduled workload classes. It schedules
the incoming requests to improve server utilization with
reduced interference. Idle servers are put to sleep after a
predetermined interval. The delay, however small, that
Paragon’s filtering technique has, makes it challenging to
handle very short-duration requests. Incorrect job
scheduling can result from rapid phase changes in the job,
requiring rescheduling and further isolation steps [14].
Paragon claims to satisfy the latency requirements of 91%
of the jobs. In contrast, DCP consciously provides the
latency guarantees for short as well as longer duration jobs
by monitoring online server utilization and predicting rapid
utilization shifts.

Request replication or replaying is used in Google’s
hedging [16] to cap the very highest percentile latencies but
this results in additional energy usage. DCP does not
require such rescheduling, because it addresses tail latency
increases very explicitly (Sec. 3). UBIS [22] uses resource
needs and clustering techniques to improve the throughput
and utilization, avoiding resource overprovisioning. In
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[48], a linear programming model, along with DVFS is used
to trade off network slack for computational capacity to
reduce the energy consumed on latency sensitive jobs.
DCP handles energy savings and latency guarantees
directly and jointly using its predictors.

Other recent efforts focusing on minimizing power
consumption and SLA violations in virtualized data centers
are presented in [42, 47, 52]. Predicting the offered
workload for data centers - the basis for proactive control
is exemplified in [15, 48]. These predict the workload
arrival pattern without looking at the system utilization.
Most of these techniques look at the long-term data center
workload patterns but are unable to deal with sudden
utilization variations (“flash crowds”) and previously
unseen traffic patterns. DCP uses its short-term predictor
to handle unseen traffic and flash crowds. Some
techniques, such as [29], attempt to predict incoming
request rates on a shorter time scale. DCP, in contrast,
relies on the actual load imposed on the online servers for
its predictions, accounting for the inevitable demand
variations within a workload class from one request to
another. Other server capacity management techniques are
generally integrated into data center infrastructure
management tools as operator-specified rule-based server
onlining and offlining techniques [21, 36, 41]. Rule-based
server capacity provisioning is only effective on predictable
workload patterns (such as known hourly profiles during a
day); these techniques fail to deal with unexpected
workload patterns, such as flash crowds [22, 33, 44].

DCP is also unique among similar existing techniques in
using two separate predictors, STP and LTP. STP is used to
predict the short-term increases in the utilization caused by
rapid, short-lived utilization variations and is used for
making decisions related to increasing the online server
capacity. DCP uses LTP for predicting the long-term load
and taking online server capacity reduction decisions. The
results from our full-system prototype implementation
demonstrates DCP’s success in providing tight service
quality guarantees using STP and LTP.

2.2.Cooling Capacity Provisioning

Cooling management techniques have been studied
extensively in the thermal community, largely without
integration with the server management systems. Thermal
awareness in managing a data center and its relation to
workload/server management is explored in [13] to reduce
the cooling costs. Explicit control of CRACs (computer
room air conditioners) to reduce the cooling costs is
presented in [2, 29] using temperature sensors within the
server. Other examples of thermally-aware data center
cooling management are seen in [29, 34, 35, 43]. Distributed
sensors can monitor the temperature of IT equipment and
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adjust the CRAC supply air temperature and air flow rate
[4]. Data center cooling microgrids are used in [49] to
provision cooling. Workloads can be scheduled to a specific
data center to take advantage of their environmental
conditions and cooling efficiency [46]. Workload
assignment using power and thermal models of the servers
can result in cooling cost reduction [31]. For both [31] and
[46], the impact on tail latencies and overall performance is
not clear. A control framework for provisioning, transport,
and distribution of cooling resources at both zonal and local
levels using adjustable aperture tiles is presented in [50]
without consideration of the IT workload or performance.
An integrated management of data center involving
performance, power, and cooling which uses VMs for
shifting the workloads to avoid hot spots or for workload
consolidation is presented in [12]. Rack inlet temperatures
are used as an indicative for controlling CRAC supply air
temperature and flow rates but a significant fraction of the
requests experienced latencies higher than targeted.

ACP, the cooling capacity provisioner of HCP, takes a
different approach compared to the above techniques.
First, ACP relies on the short-term load prediction made by
the STP and is thus a pro-active approach. Existing
techniques, in this regard, are reactive, as they use
temperature sensors and actuate controls for provisioning
the cooling, rather than predicting any trend whatsoever.
Second, ACP adjusts the supplied chilled air based on the
sensed air pressure in the contained cold aisle and in the
plenum, rather than controlling the supply indirectly (and
reactively) using sensed temperatures. Finally, DCP, by
limiting the core temperatures of the servers also avoids the
formation of localized hot spots by temporarily limiting
requests to a hot server, thus implementing objectives
similar to those of [31] and [46], discussed above.

2.3.Other Differences with Existing Work

Two other unique attributes of HCP that stand out against
existing work are now presented. The short-term load
predictor, STP, is used by both DCP and ACP. STP relies
on a regression-based machine learning technique and is
unique in using the load trend on recently-onlined servers
as one of the features used in predicting system utilization
(Sec. 3.3). We are not aware of any other load predictor for
similar applications that make use of this specific feature to
predict the system utilization. Finally, DCP also stands out
from most of the existing work in turning off servers to
avoid energy wasted by idling servers and hides the long
server turn-on times by: (a) quickly onlining recently
offlined servers that are recently offlined but serving
already-assigned requests, and, (b) using a small set of hot-
spares. While servers from these two lists address
utilization increases, the powered off servers are turned on
in the background (Sec. 3.6). Overall, to the best of our
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knowledge, HCP represents a unique service quality-aware
dynamic provisioner for both server and cooling capacity
management.

3. DCP: The Server Capacity Provisioner

Dynamic server capacity provisioning is used for matching
the deployed online server capacity to the offered
workload. This is accomplished by operating just the right
number of online servers at high utilization levels to
improve the overall energy efficiency and to reduce the
power consumed by idle or poorly-utilized servers. HCP’s
approach to dynamic server capacity adjustments is
proactive in nature and the online server capacity is
dynamically adjusted by its DCP module. DCP performs
the capacity adjustments based on two predictions derived
from the periodically-reported utilizations from individual
online servers. The first of the two predictions is provided
by STP, a random forest based machine learning predictor
that predicts the load growth a few tens of seconds into the
future, particularly, accounting for very bursty load
increases. STP makes a new prediction periodically at fixed
scheduling intervals. =~ STP’s utilization prediction is
extrapolated to determine if the online server capacity must
be increased and how rapidly it has to be increased in order
to avoid service quality degradations. STP also corrects for
mispredictions very quickly by capturing the impact of
rapid, short-lived utilization changes.

The second predictor used by DCP, LTP, is a far simpler
predictor that uses a weighted moving average of the
observed history of the actual system utilization to predict
utilization changes a few minutes into the future. Capacity
reductions are made only when the utilization is
consistently predicted to be lowered for several consecutive
scheduling intervals. It is to be noted that the long-term
prediction cannot be derived from STP, as STP’s prediction
accuracy drops sharply when the duration of the prediction
window increases beyond several tens of seconds.

3.1.Quantifying Server and System Utilization

DCP addresses service latency requirements by capping the
utilization of the active servers at level U,,,, to guarantee
that the service latencies of the 99t"-percentile requests are
not increased appreciably compared to the request latencies
of a fully provisioned system where all servers are online.
Upax 1s chosen through a calibration process to determine
the maximum CPU utilization allowed on a server for given
application without jeopardizing the service latency
guarantees (Sec. 3.7). Upqy is a function of the server
model and the application. Thus, it is different for each pair
of the server model and application running in the data
center. Second, DCP eliminates the need to have fast
wakeup servers by employing a small number of already
powered-on servers.
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DCP relies on the concept of scaled system utilization.
For a single server, this metric is defined as Us / Upqy,
where U is the conventionally reported server utilization.
Servers in a typical data center are unlikely to be identical
and thus have different U,,,, values when used to serve a
given class of requests. To deal with such heterogeneity,
servers are divided into virtual groups, consisting servers
of identical type/configuration within each such group.
Each virtual group has its own specific U4, and the
average utilization of a virtual server group is defined as
the average scaled utilization of all servers currently
serving requests within the virtual group.

DCP distributes the incoming requests evenly across online
servers within multiple permissible virtual groups. The
service capacity of a virtual group (say, group i) is
defined by the product of the maximum permitted
utilization (U4, ) of the server in the virtual group and the
total number of active servers (say, N;) in the group. Put in
other words, the load balancer distributes a fraction W; =
(Unmax; X Ni)/ Zi(Umax; X N;) of the requests to virtual
group i, where the summation is performed over all virtual
groups. W; represents the fraction of incoming requests
that the group can serve at any time without exceeding its
service capacity. Once the load balancer selects a group,
the request is assigned to the online server of the group that
has the least number of client connections. The
instantaneous system utilization, Usy;, is thus the mean
of the average scaled utilization of all groups serving online
requests.

The resulting technique guarantees that the overall
utilization of all turned-on servers is kept in the range
(Umax — A) to Uy, at all times, with A providing the
necessary hysteresis for control. The value of A is chosen
to provide enough hysteresis to avoid frequent server
activations and deactivations.

3.2. Accommodating Server Heterogeneity

Server capacity provisioners need to consider the inevitable
heterogeneity of servers in typical data centers with
different classes, configurations and generations of servers.
As indicated in Sec. 3.1, DCP uses the notion of virtual
groups of servers, where members within each virtual
group are identical in all respects. Requests directed to the
data center can be directed to online servers within any
group by the load balancer. Each virtual group also
requires its own utilization predictor to determine when a
server within a virtual group must be bought online or
taken offline, based on the predicted utilization. The use of
virtual groups also enables different load balancing
strategies to be implemented, for example, at lower system
utilization levels, the most energy-efficient virtual groups
can be deployed to save power. In the specific system
presented here, the load balancer did not implement any
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policy that differentiated one server group from another
and distribute the incoming requests across all existing
virtual server groups uniformly.

3.3.STP: The Short-term Utilization Predictor

The goal of an utilization predictor, in general, is to use
historical information of certain system parameters that
have high correlation with the actual utilization to predict
utilization at a future point in time. What makes utilization
prediction challenging for data centers serving online
requests is the highly transient nature of the requests. The
request arrival pattern can be smooth, changing slowly or
changing very rapidly; the transient utilization pattern over
time can also be very bursty. The implication of all of this
is that simple extrapolations of the historical values of the
observable system parameters (that have high co-
relationship to system utilization) cannot predict rapid
changes in the actual utilization into the future. To limit
the average and 99-th percentile request service latencies
compared to the corresponding values for a fully
provisioned system (where all servers are kept online), we
need a predictor capable of predicting rapid load variations
with very high accuracy. From a practical standpoint, this
also means that one cannot expect to predict the utilization
too much ahead into the future.

Identification of Features for Prediction: To determine
system parameters that have a high degree of correlation
with the system utilization, the data of easily measurable
system parameters and the actual utilization were collected
from a variety of synthetically-generated utilization traces.
The utilization traces had randomly-varying request rates
that generated requests whose characteristics were equally
varied: single-threaded as well as multi-threaded requests
were used, with the request service latencies varying over
a wide range. The rate of utilization changes in these
synthetic traces also varied over a wide range and included,
but were not limited to, very sharp increases and decreases
in the request arrival volume. Stepped increases in
utilization (taking place instantaneously) were not used as
network and server queues in a real system will limit the
rate at which requests ultimately get served.

The measured (and logged) system parameters with the
actual execution of the synthetic traces included the
number of requests being served, total power consumption
(measured in real-time using rack PDUs), highest and
lowest utilization level of any online server, highest and
average server core temperature and others. All these
parameters are fairly intuitive and correlate to the total
system utilization. The parameters values were collected
at an interval of 500 milliseconds throughout the run.

Recently-Activated Servers as Indicators of Transient
Load Changes: To capture highly transient and short-
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Figure 1: PCA on the training dataset

burst utilization spikes (utilization increases), another
unique parameter was measured and logged - this is the
average utilization of the Recently Activated Servers (RAS)
within the past six measurement intervals. The reason for
using this parameter is best understood from the way load
balancing switches typically operate. Load balancing
switches direct incoming request to servers based on the
number of connections, usually weighted, such as weighted
least connections. When a server is activated, it has the
least number of actual connections/requests assigned to it
by the load balancer. If the weighted least connection
algorithm is used to direct incoming requests to the servers,
the most recently-activated servers would get relatively
more requests directed to them. Thus, one would expect
the utilization of recently-activated servers to be indicative
of (that is, correlate to) the short-term trends in the volume
of workload directed to the data center.

To reduce the number of input parameters for the
utilization prediction, Principal Component Analysis (PCA)
[1] was performed to determine the most dominant
measurable system parameters that will have a high
correlation to the actual system utilization. The result,
shown in Figure 1, shows that the six dominant factors
(labeled A through F) that affect the system utilization are:

A: Total utilization of online servers that are serving
requests and can accept new requests (this excludes servers
taken offline that may still be running requests already
assigned to them).

B: Total number of requests being served.

C: The average utilization of recently-activated servers.
D: The total power consumption of the system.

E: The highest utilization level of any server.

F: The lowest utilization level of any server.

For the short-term utilization prediction, we used a
machine learning approach to predict the system utilization
based on the Random Forest regression model [8] with
adaptive boosting using the Adaboost algorithm [18]. The
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overall model was trained on the synthetically generated
traces which resemble real-world workload traces, as noted
earlier.

Training and Validation: The goal of DCP is to predict
the overall system utilization N seconds ahead into the
future based on the observed data of the six features in the
last 30 seconds and uses the six features filtered with the
PCA. During the training process, the previous 30 seconds
of data for all the six features are mapped to the target label
(“avg. system utilization”) N seconds into the future. In
short, the six feature values at time T are mapped to the
label at time T+N seconds. For training, 80% of the entire
data set was used and the remaining 20% was used for
validation.

Random Forest Regression Model of STP: A Random
Forest Regression Model (RFRM) was used to predict the
system utilization as it uses the ensemble learning method
and combines predictions from multiple trees. Within the
RFRM, each tree is created from a different sample of rows
and at each node, a different sample of the features is
selected for splitting. Each tree makes its own individual
prediction, and all these predictions are then averaged to
produce a single result (prediction). Hence, the prediction
made by the RFRM is much more accurate than the
prediction made by a single model. The machine learning
model used by STP uses a random forest with 1000 trees in
the forest, each with a maximum depth of six
(corresponding to number of selected features from PCA).

Adaptive Boosting [18], which is an ensemble technique,
was used to further improve the RFRM’s prediction by
training a sequence of base models. Each model
compensates the weakness of its predecessors, and this
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allows any common errors produced by the decision trees
in the RFRM to be removed. In Adaptive Boosting, higher
points are assigned to the data which is incorrectly
predicted by the previous model. For STP, a base model
with 100 trees in the forest, similar to the RFRM was
employed, with 30 stages of adaptive boosting and an
(empirically-derived) learning rate of 0.02. As expected,
with the features used, the overall prediction accuracy
decreased as the temporal range of prediction (N) was
increased.

3.4.LTP: The Long-term Workload Predictor

When the system load drops, instead of idling servers, DCP
powers off servers to avoid the overall low utilization of the
remaining online servers and to eliminate power wastage.
However, these shutdowns are done conservatively as
premature server shutdowns can jeopardize service times
by not leaving enough server capacity when the load goes
up again. DCP uses LTP to reach server shutdown
decisions more conservatively, looking at more consistent
and relatively stable utilization trends and shutting off
servers only when the utilization is consistently predicted
to be lower over several consecutive predictions made at
the end periodic scheduling intervals.

For powering servers down, DCP estimates the minimum
number of servers (N,,;,) needed in each virtual group to
maintain an overall system utilization at U,,,, and to deal
with the load projected for C scheduling cycles into the
future based on short term load prediction. To estimate the
minimum servers needed for each virtual group, DCP first
estimates the exponential moving average of the virtual
group’s load (Upyqq). Once Upyqq is estimated using
Ugrp (utilization of the virtual group) , Ny, is determined
based on the number of active servers (AS) currently
serving requests:

ULoaa (t) =a” Ugrp + (1 - OL) * ULoaa (t '1)
Niin (1) = (ULoad *AS)/ Unax

The use of the exponential moving average effectively
filters out the impact of sudden changes in the workload
trends. DCP maintains the estimated minimum server
count at any time to avoid performance loss in case of a
decreasing load trend reverse. Figure 2 depicts how the STP
and LTP are incorporated into DCP and ACP.

3.5.Wear Leveling and Temperature Limiting

To reduce the wear and tear on the servers due to power
cycling, DCP employs a timeout strategy, where recently
offlined servers that have completed their assigned requests
need to spend at least 180 seconds in the free_list before
going through another power on/power off cycle. An
exception to this timeout period is made only when there is
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an immediate need for the servers that cannot be satisfied
with deployments from other server lists (Sec. 3.6).

3.6. Dynamic Server Management

The dynamic server capacity management technique of
DCP, summarized in Figure 3, is as follows.

A statistics collection daemon (SCD) runs in each turned-
on server (at the user level) and collects the utilization,
frequency, temperature, other critical information and
sends it to a collector submodule within DCP. The collector
submodule aggregates the data from all the powered-on
servers in the data center and stores them in a RAM-fs
(RAM file system). DCP gathers the required information
from the collector submodule at the end of regularly-spaced
scheduling intervals (of 500 milliseconds), computes the
instantaneous system utilization and uses STP to predict
the workload change expected. DCP then estimates the
right number of servers needed for processing the predicted
workload and adjusts the number of online servers
dynamically at an interval of half a second to match the
expected workload.

As mentioned in Sec. 3.1 and 3.2, servers are maintained in
different virtual groups based on the server model and
configuration. Within each virtual group, servers are
dynamically placed in five unique lists based on the server
state. The first list contains already turned-on servers that
are online and serving requests (active list). The second is
the list of servers that are recently offlined when the
workload level dropped and are still serving previously
assigned requests (free list). The third is the group of
servers that are turning on to serve the expected increase
in the workload (waking_up list). The fourth list contains
group of servers that are powered off (turned_off list).
The final list is the group of servers that are always kept on
in reserve, to deal with rapid increases in the workload and
not serving any requests unless they are activated
(hotspare list).

On an increasing load trend, the prediction made from STP
is linearly extrapolated to determine the time, t,,,,, when
the utilization of the deployed servers is going to exceed
(Umax — A). If the difference, C, between the current time
and t,, 4, is higher than the time it takes to turn on a server
(Ton, expressed in terms of the number of scheduling
intervals), a situation called “slow load growth”, in which
case the function slow_load_growth() is invoked to turn
on additional servers in the background to deal with the
expected load increase. If C is less than the time it takes to
turn on servers, the situation is called “fast load growth”
and the function fast_load_growth( ) is invoked. If the
servers in the free list and waking_up list cannot serve the
expected workload, additional servers are deployed from
hotspare list in both the cases. If the workload is predicted
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No

‘ Yes

Handle fast load growth: invoke ]:
function fast_util_growth()

EXIT
Figure 3: Flowchart for DCP

to increase even after using all the servers from free,
hotspare and waking up lists, then servers from the
turned_off list are powered on. When servers from the
hotspare list are deployed, they are replaced, when possible,
with servers from the turned off list. The function
fast_load_growth( ) also looks at the extent to which the
fast load growth is taking place (based on the evaluated
ratio of C/Ton) and uses a preset table (activation table)
to look up the number of servers that need to be activated
simultaneously (called a bundle) for handling the load
growth. For lower values of C/Tyy , more servers need to
be activated compared to a situation when C/Tyy is closer
to unity.

The process for turning off servers, follows a more
conservative approach and uses LTP to look at utilization
average over longer intervals in the past to eliminate the
impact of utilization spikes or sharp utilization drops that
occurred for a short duration. Servers can be powered
down, when the system utilization is expected not to cross
Upax by turning off a group of servers. This scenario is
called “shrinking utilization”. A minimum count of
powered-on servers, Nmin, is always maintained to
accommodate utilization increases below the utilization
level of Upygy -
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3.7.System Tuning

System tuning is essential to guarantee stringent service
latencies and is typically undertaken by all data center
operators — DCP is no exception to this. The parameter
Upnax 1is chosen to limit the utilization of servers while
guaranteeing the service latencies. This threshold should
be as high as possible, but not high enough to jeopardize
service latencies. Uy, is chosen by running exemplar
instances of the application, as is typically done by data
center operators as part of configuration tuning to
guarantee average and tail request latencies.  The
parameters K and o, used, respectively, by STP and LTP are
chosen by the operator based on how tight average and tail
latency guarantees have to be. With a lower value of K, the
predicted utilization only accentuates the impact of recent
bursty utilization, so K should be moderately high.
Choosing K beyond a specific value does not help as recent
bursts in utilization are de-emphasized in the prediction.
Similar comments apply to the choice of a. The exact
values are again determined in the tuning process. Finally,
the contents of the activation table, including the number
of entries and the value for each entry determines how
aggressively DCP handles fast utilization growths. These
are also determined in the system tuning process.

Again, we note that the system tuning effort is not
exclusive to DCP and instances of such parameters and the
need to tune them appear in all similar techniques [14, 15,
20, 37], many often buried in parameters used in machine
learning artifacts and elsewhere. In virtualized systems,
similar tuning efforts are also needed to determine the
amount of RAM and logical CPUs to be allocated for
maintaining service quality. Thus, DCP is not unique in
any way for relying on the system tuning used in data
centers that guarantee service quality.

4. ACP: Dynamic Cooling Provisioning

We focus on traditional air-cooled systems and assume that
the data center is organized as alternating cold and hot
aisles, with two adjacent rows of front-facing servers
making up a cold aisle. Chilled air is supplied to the servers
by a Computer Room Air Handler (CRAH) via an
underfloor plenum and perforated floor tiles in the cold
aisles. The chilled air passing through the servers picks up
the heat generated in the server, comes into the hot aisle at
the rear of the servers and is drawn back into the CRAH
and re-cooled before it re-enters the supply plenum.
Further, the cold aisle is contained, that is fully enclosed, to
prevent hot air from recirculating back into the servers
from the hot aisles before being cooled by the CRAH and
avoid any consequential inefficiencies related to cooling.
As is typical of many mid-sized air-cooled data centers, we
assume that the CRAH uses chilled water from a physical
facility and no provision exists for adjusting the supplied
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chilled water temperature. Of course, further efficiencies
are to be gained by having a dedicated chiller that enables
the chilled water supply to be adjustable leading to further
energy efficiency improvements, as discussed in [24]. This
is beyond the scope of our work, as our experimental
facility lacks this feature.

The solution (Automatic Cooling Provisioner, ACP) also
relies on the use of adjustable apertures floor tiles (AATs),
whose aperture (opening) can be adjusted remotely to
control the airflow rate from the plenum into the contained
cold aisles. Pressure sensors located within the cold aisle,
outside the aisle and in the plenum are used to monitor the
aisle’s positive air pressure, APAP (which is obtained by
subtracting the pressure space outside the contained aisle
from the pressure inside the cold aisle). Similarly, we
monitor the positive plenum air pressure, PPAP, into the
cold aisle which is obtained by subtracting the cold aisle
pressure from the plenum pressure. The aisle and plenum
contain three pressure sensors each that are located at their
ends and their middle. The air pressure in the space outside
the aisle is averaged from two sensors for every aisle.

The two control knobs for adjusting the provisioned
cooling in our solution are: 1) the opening in the AATs and
2) the speed of the blower fan (VFD speed, for Variable
Frequency Drive speed) within the CRAH. Unnecessary
high positive air pressure results in wasting electrical
power in the CRAH blower, which is primarily responsible
for maintaining the air pressure within the aisle. High
positive air pressure also results in cold air escaping into
the hot aisle via openings within the inactive servers.
Keeping the positive air pressure too low can fail to provide
adequate cooling and/or permit hot air to recirculate back
into the cold aisle through the openings in the powered off
servers. It is thus imperative to operate with just enough
positive air pressure to improve the overall efficiency of the
cooling system. AATs help in improving the energy
efficiency further by opening apertures in front of the racks
with active servers, so that most of the supplied air is drawn
in by fans running in the active servers, with little escaping
through the openings in the turned off servers.

The basic tenet for the control system to adjust the amount
of cooling based on utilization prediction is as follows:

e Maintain sufficient capacity of chilled air supply in the
plenum to permit additional cooling to be quickly
provided by opening the tile aperture, well before the
CRAH can react to the increase in demand when
servers are onlined on a sudden workload increase.
Simultaneously, the CRAH’s VFD speed has to be
increased in the background to maintain the air supply
in the plenum. The PPAP is indicative of the amount
of chilled air available in the plenum.
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o At all times, a sufficient APAP must be maintained in
the cold aisle to prevent hot air exiting the back of the
servers to recirculate into the cold aisle via turned-off
servers whose fans are also turned off. The APAP is a
function of the PPAP and the tile openings.

ACP is pro-active in adjusting the required cooling based
on the prediction made by STP (Fig. 2) for servers in the
aisle and the sensed aisle and plenum pressures. Based on
these, ACP determines the settings of the adjustable
aperture tiles and the CRAH VFD speed using a DNN
regression model. Although, a simpler neural network
model could have sufficed for the current version of ACP, a
proactive forward-looking design using a DNN was used to
enable future capabilities for addressing physical
configuration changes, transient hot spots, containment
leaks and fan failures.

The DNN-regression model used by ACP has 5 layers with
3 hidden layers each using the Relu activation function and
the Adam optimizer. The model outputs the necessary
aperture settings for the AATs and the VFD speed to meet
the two requirements above.

As the offered workload increases, DCP powers on a bundle
of servers which changes the aisle and plenum pressures.
As aresult, if the pressure in the aisle or plenum falls below
the required pressure levels as more fans are drawing in the
cold air to cool different components of the server, the
cooling provided is adjusted by either increasing AATs
openness or by increasing CRAH blower fan speed using
VED. Similarly, when DCP powers off idle servers, aisle
pressure (APAP) increases as the same level of previously
provisioned cooling is not needed. Therefore, ACP
decreases the CRAH blower fan speed and/or the AATs
aperture to reduce the chilled air supply into the plenum.

To train the DNN, a reactive approach was used to increase
the workload in steps and at each step determine the AAT
opening and the minimum VFD speed needed to meet the
cooling needs to maintain the APAP and PPAP. We
emphasize the need to maintain the minimum necessary
VED speed as the power consumption of the CRAH’s VFD
increases with the VFD speed albeit in a non-linear fashion.

ACP improves its efficacy by relying on a systematic order
used by DCP for activating and deactivating the servers.
DCP uses a systematic activation and deactivation pattern
for aisles, racks within an aisle and servers within a rack.
Aisles may be activated one after another or together (to
spread out the heat utilization across the aisles). Within an
aisle, server activations take place in a rack that has already
got some active servers. A turned off rack is deployed when
all servers within the active racks are deployed. Server
activations within a rack takes place in a consistent vertical
direction — either from the bottom of the rack to the top or

343

SoCC 21, November 1-4, 2021, Seattle, WA, USA

from the top to the bottom. Server turnoffs or idling takes
place in the opposite order. An idle rack, when activated,
toggles between these two activation orders to wear level
servers from thermal stresses caused by activation and
deactivation. Finally, servers in racks facing each other
within an aisle are activated as symmetrically as possible
across the aisle to present symmetric cooling needs across
the opposing racks. The systematic server activation and
deactivation permits the amount of cooling needed to be
estimated in advance as a function of the number and type
of active servers based on their utilization. ACP is trained
using the data generated by the reactive approach which
consists of 62,247 rows of dataset split into 80% for training
and 20% for validation. The loss and mean squared error of
the trained model are 0.07 and 0.009, respectively.

ACP is currently limited to data centers that use chilled air
cooling and requires the use of variable aperture tile and
pressure sensors. It can be extended to systems that use
direct-contact water cooling via coldplates that replace
traditional CPU heatsinks and still rely on chilled air
cooling for other server components.

5. Experimental Assessment

For the assessments of HCP, we used 247 heterogeneous
severs which are classified into 4 virtual groups: 72
identical Dell PowerEdge R530, 57 identical Dell PowerEdge
R520, 74 HPE ProLiant DL360 G9 and 45 HPE ProLiant
DL380G8 servers distributed across 14 racks within a single
contained, cold aisle. Servers run the Ubuntu 16.04.2 LTS
and Linux Kernel 4.4.0-130. Other servers are used to carry
out various infrastructure related work in our experimental
setup and are connected to an independent power delivery
chain, to isolate them from the services performed on the
heterogeneous server pool. All of HCP runs on a single
low-end server.

A F5 Networks BIG-IP 5000s LTM programmable load-
balancer switch is used for load balancing at the front end.
Its active target server list is adjusted dynamically by DCP
to consolidate the incoming work onto the fewest number
of online servers. The networking equipment consists of 2
Cisco Nexus 5672, 6 Cisco Nexus 3064 and 10 Cisco Nexus
2248 TP switches; their power consumption is not
considered in this study, as a major portion of these
switches also support other aisles/parts of the facility that
contain the servers used here. Power consumption data of
the servers is collected from a pair of Server Tech
24V2C415A1 PDUs within each rack via polling through a
per-PDU SNMP interface.

A Leibert CRAH (Model CW114DC1A2B667) provides the
chilled air via an underfloor plenum to the IT equipment in
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Figure 4: Load Profile of three real-world traces used for evaluation
the aisle. The adjustable aperture tiles are located in the an online transaction system. The dataset from 1,750 VMs

floor area between opposing rows of servers within the cold
aisle.  The CRAH status and its blower fan speed are
monitored through Siemens Insight system which allows
changes to CRAH VFD. Multiple zone pressure sensors [3]
are used and read via the facilities of a DAQ [23].

5.1. Tunable Parameters

Although the parameters mentioned in Section 3.6 can be
tuned to every specific application, we used a fixed set of
values across all our assessments (except for Uy, , which
is tuned for each application and each server type) and
these are: K=9, a=0.45, N=10 and A = 10% of U,,,,. No
significant gains were realized by fine tuning these
parameters to individual applications. Thus, deploying
HCP requires only a one-time calibration for determining
the U,,q, value of individual pairs of server type and an
application. The bundle size (Sec. 3.7) for turning on
servers on utilization increases was fixed at 4 (instead of
varying the bundle size based on the slope of the load
growth). Finally, the number of hot spares in each virtual
group was set at 1/8% of the total number of servers in the
virtual group. The values of these last two parameters are
empirical and determine how aggressively HCP must deal
with very sharp load spikes. A higher value of A enables
early detection of the load approaching U,,,, and permits
DCP to turn on servers beforehand. Using higher A and
bundle size results in reduced impact on the 99th-percentile
request latency but this reduces the energy savings.

5.2.Utilization Patterns and Requests

Three real-world utilization patterns (traces) are used for
evaluating HCP and their temporal profiles are shown in
Figure 4. The pattern shown in Fig. 4(a) comes from
Microsoft Azure’s cloud computing platform [41] and
includes different metrics collected from roughly 2.6 M
VMs. A detailed analysis of this utilization trace, hereafter
referred to as Azure trace (AT), appears in [14]. The
second utilization pattern, Fig. 4(b), was obtained from a
data center operator (who prefers to remain anonymous)
and is hereafter referred to as DT. DT represents data from
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of Bitbrains [7] forms the final utilization trace, fastStorage
(FT) [38]. The data of the Azure and fastStorage traces,
which were collected at intervals of 300 seconds, is not
suitable for the direct use in our evaluation. This is because
our solution is designed to handle workload level variations
at finer sub-second granularity. Because of this, in our
evaluations, we scale these two patterns temporally to place
the original data points at the end intervals of 0.3 seconds to
match our evaluation requirements. This allows for the
requests generated to change at higher frequency and does
not keep the utilization of the system constant for each 300
second interval, as the original data implied. These traces
all have bursty regions that enable the assessment of HCP’s
guarantee for limiting the 99 -percentile tail latency.

The actual requests serviced using these utilization patterns
have average service times (as experienced by clients) that
range from very short (around 120 milliSeconds) to
relatively long (around 11 Seconds) and are summarized in
Table 1, which shows the approximate average service time
on a fully-provisioned system across the three traces.
These requests are considered to be representative of
typical online requests of different classes. To generate
requests based on the utilization patterns of Fig. 4, a harness
tool was developed for generating a stream of request
following the utilization patterns and to permit each
sequence of requests to be replayed consistently for an
apples-to-apples comparison of different variants of

capacity provisioners. The harness tool issues and

Benchmark Description/Average Service Time
Name/Abbreviation
SPECjvm Encrypts/decrypts input dataset/~0.74
Crypto.rsa/Rsa secs.
SPECjvm Producer-consumer processing using
Serial/Serial sockets/~5 secs.
SPECjvm Compression and validation of the
XmlV/Xmlv XML.xsd files/~11 secs.
Query processing request for wiki
Memcached/Mem database with thousands of
concurrent requests/~120
milliseconds
Table 1: Description of benchmark requests used
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Figure 5: Power consumption for the utilization traces for Baseline, Reactive, DCP-NS and DCP with Serial requests

measures the latency of each HTTP GET request that
triggers the execution of the actual requests from a client
to the servers - from the point just prior to the opening of
the socket for sending the request to the closure of the
socket following the delivery of the response.

5.3.Evaluated Provisioner

Experimental comparisons comparing other techniques
were not possible, as some of their critical implementation
details are unavailable, a fact that is true for most complex
systems of this nature. Instead, two DCP variants are used
in the assessments. One is DCP, as presented earlier in Sec.
3, where idling offline servers are powered off to save
energy and the other is, DCP-NS (No Shutdown), where
idle offline servers are not powered down. DCP-NS has the
advantage that offline idling servers can be quickly
activated to handle utilization increases. However, by
idling unused servers, DCP-NS misses a significant
opportunity to enhance the energy savings. Two other
provisioners were also compared. One is Baseline,
representative of the prevalent practice of keeping all
servers on and where requests are dispensed among all
servers based on least connections. The second of the other
provisioner used against DCP is called Reactive, where no
utilization prediction is used, and servers are powered on
or off in response to the current observed system
utilization.  Reactive is implemented by disabling the
predictors in DCP.

5.4.Power Reductions and Energy Savings

The variations in the total power consumption for all
variants is presented in Fig. 5 for the Serial requests. As
expected, Baseline has the highest power consumption and
is closely followed by DCP-NS since it does not power off
unused idle servers. Even though all host servers are
configured to run in “powersave” mode, DCP-NS has a
power consumption pattern very close to Baseline
demonstrating that idling at a lower DVES setting is not
enough to deliver considerable energy savings, as idle
power consumption of a server is a significant fraction of
its peak power consumption.
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Fig. 5 shows that across all three utilization traces, during
low utilization periods, DCP’s power consumption is less
than that of Baseline and DCP-NS. During high utilization
periods, since DCP activates all servers, the power
consumption matches that of the others. For the Azure
trace (AT) the two power consumption peaks in Fig. 5(a)
coincide with the utilization peaks seen in Fig. 4(a). During
the period when the abrupt workload spikes occur, DCP is
able to adjust the online server capacity in advance so as
not to impact the 99th-percentile tail latencies, as will be
seen later. When the short-term workload predictor senses
the onset of the spike and predicts an increase in the
utilization level, DCP mostly activates servers from the free
list for AT. Sometimes, DCP also powers on additional
servers to handle the load growth, leading to an increased
power consumption. Power consumption trends for other
request classes are similar (see also Fig. 6(a)).

The DT trace evaluates if DCP can handle a sudden and
sustained transition from low utilization to high utilization.
This is seen in Fig. 5 (b), where during the time when
system utilization increases from ~10% to ~56% (as
highlighted in Fig. 4 (b)), DCP rapidly turns on all available
servers, and even make use of hot spares, to handle the
sustained growth predictions made by STP over several
consecutive scheduling intervals. For DT, DCP’s power
consumption approaches that of the Baseline at high
utilization levels.

The FT (fastStorage) trace evaluates DCP’s ability to handle
rapid short-lived workload fluctuations which are not
necessarily abrupt in nature. Fig. 5 (c) shows that DCP is
able to match the server capacity to the utilization changes,
shown separately in Fig. 4(c). Reactive has the lowest
power consumption of all the variants because it powers on
and off the servers based on the current utilization.

The energy consumption of the servers for all four
applications for each of the three utilization traces is shown
in Fig. 6(a). Of all the three DCP variants, DCP-NS has the
least average energy savings of 4.14%, 2.96% and 3.66% for
AT, DT and FT traces, respectively. Hence, relying solely
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on DVFS to adjust the CPU core frequency during idling
period is not enough for reducing the energy expended.

From the power consumption levels of DCP shown in Fig.
5, we can establish that load traces dominated by the low
utilization periods will have the highest energy savings
with DCP. This is confirmed in Fig. 6(a), where DCP’s
average energy savings is the highest for the AT trace
among the three utilization traces since AT’s average
utilization of 11.24% is less than that of DT (38.15%) and FT
(17.39%). DCP’s average energy savings across all
applications for each trace are 32.18%, 12.2%, 15.98% for the
AT, DT and FT traces, respectively, and these are roughly
inversely proportional to the average utilization of the load
traces. The average energy savings for Reactive are 50.8%,
38.12%, 36.4%. These higher energy savings come at the cost
of service quality to the end user (higher latencies) as seen
in Figs. 6(b) and 6(c). DCP consciously tries to avoid such
service latency increases.

5.5.Impact on Service Latencies

Even though DCP powers off idle servers for significant
energy savings, its use of short-term and long-term
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utilization predictors limit the impact on the request
latencies effectively. The mean and 99-percentile request
latencies for the four request classes for each of the three
traces are shown in Figures 6 (b) and 6 (c). DCP-NS has
negligible impact on request latency when compared to
Baseline, since DCP-NS sacrifices energy savings for
performance by keeping all the servers online and idling.
The highest increase in the mean and 99™-percentile
request latencies across the AT, DT and FT for DCP-NS are:
(a) 0.08% (mean) and 0.07% (99-th %) for Memcached; (b)
0.6% and 0.5% for Rsa; (c) 0.9% and 0.27% for Serial, and (d)
1.7% and 1.78% for Xmlv. For latency-critical applications,
DCP-NS can be used to realize a small energy savings (of
up to 4.14%) with negligible impact on the request latencies.

In contrast, even though DCP powers off idle servers for
significant energy savings, DCP’s impact on the request
latency is very limited. The highest increase in the mean
and 99t™-percentile request latencies, respectively, across
the three utilization traces are: (a) 2.6% and 5.3% for
Memcached; (b) 1.5% and 4.65% for Rsa; (c) 3.24% and 5.02%
for Serial, and (d) 2.02% and 6.67% for Xmlv. Thus, for a load
trace like AT, DCP can deliver significant IT energy savings
of 29.3% with very little impact on mean request latency
and less than 6.67% increase for the 99-th percentile request
latency compared to a fully provisioned baseline system.
Note that the 6.67% increase is the worst-case increase
across ALL individual requests within the observed
periods and does represent the average, which is
considerably lower (about 4.1%). This demonstrates that
DCP can handle any class of service whose request latency
ranges from milliseconds to tens of seconds with acceptably
low increases in service latencies compared to the Baseline
while realizing significant energy savings.

Reactive’s impact on the mean and 99-th percentile request
latencies, respectively, is very high compared to the
Baseline: (a) 16.8% and 81.97% for Memcached; (b) 17.5% and
136.81% for Rsa; (c) 19.28% and 44.26% for Serial, and (d)
19.36% and 65.07% for Xmlv. Reactive’s request latencies
suffer the most, violating the service commitments severely
because utilization of active servers has to often exceed
U pnax before Reactive can deploy additional servers.

5.6.Savings on Cooling

We now show how ACP, the cooling capacity provisioner,
proactively matches the cooling to the IT utilization. ACP
is compared against a baseline system that uses setpoint
control to maintain the cold aisle temperature. With ACP,
the lower and upper aisle pressure thresholds used in for
evaluation are 1 and 1.6 Pa (Pa = Pascals), and plenum
thresholds are 8.5 Pa and 12 Pa. Fig. 7(a) shows that ACP
maintains the average cold aisle and plenum pressures
within these thresholds without either over provisioning or
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under provisioning for the AT. ACP maintains an average
cold aisle pressure of 1.29 Pa while Baseline’s cold aisle
pressure averages at 3.11 Pa. ACP’s average plenum
pressure is 9.8 Pa against Baseline’s 16.36 Pa. Figure 7(b)
shows the average openness of all the adjustable aperture
tiles AATs and CRAH VFD speed for the AT. When the
system utilization spikes for a brief period (Fig. 4(a)), ACP
uses the predicted increase in utilization to adjust the AATs
and CRAH VFD to match the cooling to the IT capacity.

The energy consumption of the CRAH for Baseline and
ACP-P is seen in Fig. 7(c). The average energy consumption
of CRAH at full blower fan speed is 68.04 MJ (Mega Joules)
and ACP is able to reduce this to 21.15 MJ, which represents
a savings of 68.92%. For AT, DT and FT traces, the CRAH
energy savings are 69.19%, 68.45% and 69.05%, respectively.
For a data center operating 50 CRAH units and charged at
10 cents per KWh, then the average annual operational cost
savings for the CRAHs is thus $281,758. Even if the
Baseline CRAH blower fan speed is set at 75%, the energy
consumption during an 8000-second long workload trace is
40.32 MJ and the energy savings against this new Baseline
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is 47.55%, which represents a savings of $115,508 in costs
across 50 CRAHs.

5.7.0verall Energy Savings

Finally, we summarize the overall energy savings due to
HCP stemming from dynamic IT and cooling capacity
provisioning. Averaged across all four request classes
within the three request utilization traces, HCP realizes:

e IT energy savings of 32.18% (AT), 12.2% (DT) and
15.98% (FT).

e Cooling energy savings of 69.19% (AT), 68.45% (DT),
and 69.05% (FT).

e Total IT and cooling energy savings of 41.18% (AT),
17.54% (DT) and 22.2% (FT).

These savings are realized with very little increase in the
average and 99-th percentile request latencies against a
fully provisioned system. The observed cooling energy
savings are exaggerated as the CRAH used in our studies
can accommodate twice as many servers as used here.
With a correspondingly scaled utilization, the cooling
energy savings will be reduced to half of what is reported
above (about 35%) as the CRAH air flow rate is almost
linearly proportional to the blower power consumption.
ACP also scales up with the number of aisles and servers
using the server deployment/deactivation order of Sec.4.

6. Conclusions and Discussions

HCP dynamically provisions server and cooling capacities
for chilled air-cooled datacenters to realize significant
energy savings, with tight average and 99-th percentile
guarantees against a fully provisioned baseline system.
HCP also accommodates background and batch jobs, as it
accounts for these by using the system utilization to drive
request scheduling; results were excluded for brevity. The
tight resource provisioning in HCP requires failures to be
handled.
paper, but some solutions are outlined below. For aisles
with independent CRAHs and plenum partitioning,
requests that would have targeted a failed aisles are

Failure mitigation is beyond the scope of this

redirected to other aisles with spare capacity. For CRAH
failures with a shared plenum, a higher plenum pressure
providing reserve cooling is used to allow for backup
CRAHs to kick-in. Server failures with critical services
require requests replication, as done in solution providing
hard 24/7 service guarantees. Conscious tracking of server
health can avoid such service losses.
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