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ABSTRACT 
Data center operators generally overprovision IT and 
cooling capacities to address unexpected utilization 
increases that can violate service quality commitments. 
This results in energy wastage.  To reduce this wastage, we 
introduce HCP (Holistic Capacity Provisioner), a service 
latency aware management system for dynamically 
provisioning the server and cooling capacity. Short-term 
load prediction is used to adjust the online server capacity 
to concentrate the workload onto the smallest possible set 
of online servers.  Idling servers are completely turned off 
based on a separate long-term utilization predictor.  HCP 
targets data centers that use chilled air cooling and varies 
the cooling provided commensurately, using adjustable 
aperture tiles and speed control of the blower fans in the air 
handler.  An HCP prototype supporting a server 
heterogeneity is evaluated with real-world workload 
traces/requests and realizes up to 32% total energy savings 
while limiting the 99th-percentile and average latency 
increases to at most 6.67% and 3.24%, respectively, against 
a baseline system where all servers are kept online. 
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1. Introduction 

Data center operators generally keep spare IT capacity on 
hand to deal with any sudden growth in the offered 
workload that can otherwise result in the violation of 
service commitments.  A report from Lawrence Berkley 
National Lab [38] and a study commissioned by the New 
York Times [20] indicates that many operators of online 
services keep all their servers on, irrespective of the 
instantaneous demand.  Agility, achieved through 
overprovisioning, leads to poor energy utilization across 
the data center, which may be as low as 12% for data centers 
offering online services [6].  In [30], the most recent across-
the-board study on data center utilization, on-premise data 
centers are reported to have utilizations in the 12% to 18% 
range.  Low average server utilization is also reported in 
[38].  Lightly utilized or idling servers have low energy 
efficiency - a direct consequence of the relatively large idle 
power consumption.  Even in the recent generation of 
servers, idle power is often over 20% of their peak power 
consumption.  Factors contributing to high idle power 
consumption in servers include power supplies that are 
inefficient at low utilization levels, use of dual power 
supplies (for reliability), continuous power draw by 
components such as RAM, server fans, multiple storage 
drives and by many components whose energy usage is 
utilization independent. 

1.1. Dynamic, Load-Dependent Server Capacity 
Adjustments 

Dynamic provisioning of server capacity matches the 
number of deployed servers (hereafter called online 
servers) to the current requests.  Using servers with low idle 
power is the obvious solution for avoiding efficiency losses 
at low utilization levels.  This is an option that is available 
at newer cloud datacenters operated by large cloud service 
providers with custom-built servers. Alternatively, servers 
with ACPI S3 power state support are usable, as they can 
be suspended quickly into a quiescent state and can be 
revived from the quiescent rapidly.  Unfortunately, both 
options are not viable for a significant number of data 
centers owned by enterprises and organizations that have 
to rely on widely available, stock servers without these 
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features.  Many of such data centers have also not been 
migrated to the cloud, for a variety of valid reasons [17, 38].  
These “private” data centers using stock servers also lack 
the extensive instrumentation, monitoring and scalable 
management facilities used in the mega data centers [38] 
for reducing the energy needs.  Finally, private data centers 
account for about 60% of the energy used by all data centers 
even though they handle a smaller volume of requests [11].  
The solution presented here addresses the needs of such 
private enterprise datacenters. 

1.2. Goals and Scope of this Work 
This paper presents HCP, an automated and dynamic 
Holistic Capacity Provisioner that tracks and matches the 
deployed server and cooling capacity to the workload 
demands.  This leads to improved energy savings and 
energy proportionality. HCP incorporates two modules, a 
Dynamic Capacity Provisioner (DCP) for rightsizing the 
deployed online server capacity and Automatic Cooling 
Provisioner (ACP) that provides adequate cooling for the 
active servers.  DCP and ACP both use a Short-Term 
utilization Predictor (STP) to activate servers and adjust 
the cooling provided to handle the instantaneous workload. 
STP is geared specifically to predict rapid fluctuations in 
the offered load, including rapid changes lasting for short 
durations.  Rapid server deployment based on the 
prediction is supported using a pool of recently offlined 
servers and a small pool of standby, turned-on servers (hot 
spares).  While the recently offlined servers and the hot 
spares absorb the sudden utilization growth, the increased 
utilization is gradually shifted onto the servers that are 
activated in the meantime to effectively hide the large turn-
on time of servers.  DCP turns off idling servers 
conservatively using a separate Long-Term Predictor 
(LTP) that ignores the impact of short-lived transients and 
focuses on the longer-term utilization trends. 

DCP's goal is to realize IT energy savings compared to a 
baseline system where all servers are kept active, while 
maintaining the average tail latency of the requests as close 
as possible to that of a fully-provisioned baseline system.  
In addition to DCP, ACP also dynamically matches the 
cooling to the provisioned servers to save energy compared 
to a fully provisioned baseline system or a reactively 
controlled cooling system.  A prototype implementation of 
HCP using 247 heterogeneous servers realized energy 
savings up to 32% while limiting the average and 99th-
percentile tail latency increases to less than 3.24% and 
6.67%, respectively, compared to the fully-provisioned 
baseline system. 

2. Related Work and Comparison with HCP 

In this section, representative related work is presented and 
contrasted to the two major components of HCP: DCP, the 

online server capacity provisioner and ACP, the automated 
cooling capacity provisioner, both of which rely on the 
prediction of the incoming requests. 

2.1. Server Capacity Provisioning 

In provisioning server capacity, DCP makes use of the 
actual system utilization to account for the service time 
variations that are inevitable even within a single job class 
and also to account for any unrelated background activity 
within the online servers.  If these variations are not 
accounted for, service quality can be adversely affected.  For 
example, Autoscale [19] considers the number of live 
connections to online servers as an estimate of the system 
load and experiences serious increases in the tail latencies 
of the requests served (over 200%, as reported in [19]).  
Similarly, Facebook’s Autoscale [43], a different approach 
with the same name, relies on a typical diurnal load pattern 
and uses a simple linear extrapolation of the observed load 
to adjust the server capacity without offering hard service 
quality guarantees. PEGASUS improves energy 
proportionality with explicit CPU power state control, 
based on the actual request latencies to limit the tail 
latencies, without any server shutdown [26].  Idle servers 
contribute to power wastage and the impact on service 
latencies with complete server shutdowns (as supported in 
DCP) is unclear.  Sleepscale [25] selects policies based on 
state transition latencies for sleep states to reduce power 
consumption. DCP does not rely on the existence of 
multiple sleep states and shuts off idle servers while still 
guaranteeing service quality. 

Paragon [14] uses collaborative filtering to quickly 
recognize the similarities between an incoming workload 
and previously scheduled workload classes.  It schedules 
the incoming requests to improve server utilization with 
reduced interference. Idle servers are put to sleep after a 
predetermined interval.  The delay, however small, that 
Paragon’s filtering technique has, makes it challenging to 
handle very short-duration requests.  Incorrect job 
scheduling can result from rapid phase changes in the job, 
requiring rescheduling and further isolation steps [14].  
Paragon claims to satisfy the latency requirements of 91% 
of the jobs.  In contrast, DCP consciously provides the 
latency guarantees for short as well as longer duration jobs 
by monitoring online server utilization and predicting rapid 
utilization shifts. 

Request replication or replaying is used in Google’s 
hedging [16] to cap the very highest percentile latencies but 
this results in additional energy usage.  DCP does not 
require such rescheduling, because it addresses tail latency 
increases very explicitly (Sec. 3).  UBIS [22] uses resource 
needs and clustering techniques to improve the throughput 
and utilization, avoiding resource overprovisioning.  In 
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[48], a linear programming model, along with DVFS is used 
to trade off network slack for computational capacity to 
reduce the energy consumed on latency sensitive jobs.  
DCP handles energy savings and latency guarantees 
directly and jointly using its predictors. 

Other recent efforts focusing on minimizing power 
consumption and SLA violations in virtualized data centers 
are presented in [42, 47, 52].  Predicting the offered 
workload for data centers - the basis for proactive control 
is exemplified in [15, 48]. These predict the workload 
arrival pattern without looking at the system utilization.  
Most of these techniques look at the long-term data center 
workload patterns but are unable to deal with sudden 
utilization variations (“flash crowds”) and previously 
unseen traffic patterns.  DCP uses its short-term predictor 
to handle unseen traffic and flash crowds.  Some 
techniques, such as [29], attempt to predict incoming 
request rates on a shorter time scale.  DCP, in contrast, 
relies on the actual load imposed on the online servers for 
its predictions, accounting for the inevitable demand 
variations within a workload class from one request to 
another.  Other server capacity management techniques are 
generally integrated into data center infrastructure 
management tools as operator-specified rule-based server 
onlining and offlining techniques [21, 36, 41].  Rule-based 
server capacity provisioning is only effective on predictable 
workload patterns (such as known hourly profiles during a 
day); these techniques fail to deal with unexpected 
workload patterns, such as flash crowds [22, 33, 44]. 

DCP is also unique among similar existing techniques in 
using two separate predictors, STP and LTP.  STP is used to 
predict the short-term increases in the utilization caused by 
rapid, short-lived utilization variations and is used for 
making decisions related to increasing the online server 
capacity.  DCP uses LTP for predicting the long-term load 
and taking online server capacity reduction decisions.  The 
results from our full-system prototype implementation 
demonstrates DCP’s success in providing tight service 
quality guarantees using STP and LTP. 

2.2. Cooling Capacity Provisioning 

Cooling management techniques have been studied 
extensively in the thermal community, largely without 
integration with the server management systems.  Thermal 
awareness in managing a data center and its relation to 
workload/server management is explored in [13] to reduce 
the cooling costs.  Explicit control of CRACs (computer 
room air conditioners) to reduce the cooling costs is 
presented in [2, 29] using temperature sensors within the 
server.  Other examples of thermally-aware data center 
cooling management are seen in [29, 34, 35, 43].  Distributed 
sensors can monitor the temperature of IT equipment and 

adjust the CRAC supply air temperature and air flow rate 
[4].  Data center cooling microgrids are used in [49] to 
provision cooling. Workloads can be scheduled to a specific 
data center to take advantage of their environmental 
conditions and cooling efficiency [46].  Workload 
assignment using power and thermal models of the servers 
can result in cooling cost reduction [31].  For both [31] and 
[46], the impact on tail latencies and overall performance is 
not clear.  A control framework for provisioning, transport, 
and distribution of cooling resources at both zonal and local 
levels using adjustable aperture tiles is presented in [50] 
without consideration of the IT workload or performance.    
An integrated management of data center involving 
performance, power, and cooling which uses VMs for 
shifting the workloads to avoid hot spots or for workload 
consolidation is presented in [12].  Rack inlet temperatures 
are used as an indicative for controlling CRAC supply air 
temperature and flow rates but a significant fraction of the 
requests experienced latencies higher than targeted. 

ACP, the cooling capacity provisioner of HCP, takes a 
different approach compared to the above techniques.  
First, ACP relies on the short-term load prediction made by 
the STP and is thus a pro-active approach.  Existing 
techniques, in this regard, are reactive, as they use 
temperature sensors and actuate controls for provisioning 
the cooling, rather than predicting any trend whatsoever.  
Second, ACP adjusts the supplied chilled air based on the 
sensed air pressure in the contained cold aisle and in the 
plenum, rather than controlling the supply indirectly (and 
reactively) using sensed temperatures.  Finally, DCP, by 
limiting the core temperatures of the servers also avoids the 
formation of localized hot spots by temporarily limiting 
requests to a hot server, thus implementing objectives 
similar to those of [31] and [46], discussed above. 

2.3. Other Differences with Existing Work 

Two other unique attributes of HCP that stand out against 
existing work are now presented.  The short-term load 
predictor, STP, is used by both DCP and ACP.   STP relies 
on a regression-based machine learning technique and is 
unique in using the load trend on recently-onlined servers 
as one of the features used in predicting system utilization 
(Sec. 3.3).  We are not aware of any other load predictor for 
similar applications that make use of this specific feature to 
predict the system utilization.  Finally, DCP also stands out 
from most of the existing work in turning off servers to 
avoid energy wasted by idling servers and hides the long 
server turn-on times by: (a) quickly onlining recently 
offlined servers that are recently offlined but serving 
already-assigned requests, and, (b) using a small set of hot-
spares.  While servers from these two lists address 
utilization increases, the powered off servers are turned on 
in the background (Sec. 3.6).  Overall, to the best of our 
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knowledge, HCP represents a unique service quality-aware 
dynamic provisioner for both server and cooling capacity 
management. 

3. DCP: The  Server Capacity Provisioner 

Dynamic server capacity provisioning is used for matching 
the deployed online server capacity to the offered 
workload.  This is accomplished by operating just the right 
number of online servers at high utilization levels to 
improve the overall energy efficiency and to reduce the 
power consumed by idle or poorly-utilized servers.  HCP’s 
approach to dynamic server capacity adjustments is 
proactive in nature and the online server capacity is 
dynamically adjusted by its DCP module.  DCP performs 
the capacity adjustments based on two predictions derived 
from the periodically-reported utilizations from individual 
online servers.   The first of the two predictions is provided 
by STP, a random forest based machine learning predictor 
that predicts the load growth a few tens of seconds into the 
future, particularly, accounting for very bursty load 
increases.  STP makes a new prediction periodically at fixed 
scheduling intervals.  STP’s utilization prediction is 
extrapolated to determine if the online server capacity must 
be increased and how rapidly it has to be increased in order 
to avoid service quality degradations.  STP also corrects for 
mispredictions very quickly by capturing the impact of 
rapid, short-lived utilization changes.   

The second predictor used by DCP, LTP, is a far simpler 
predictor that uses a weighted moving average of the 
observed history of the actual system utilization to predict 
utilization changes a few minutes into the future.  Capacity 
reductions are made only when the utilization is 
consistently predicted to be lowered for several consecutive 
scheduling intervals.  It is to be noted that the long-term 
prediction cannot be derived from STP, as STP’s prediction 
accuracy drops sharply when the duration of the prediction 
window increases beyond several tens of seconds. 

3.1. Quantifying Server and System Utilization 
DCP addresses service latency requirements by capping the 
utilization of the active servers at level 𝑈𝑚𝑎𝑥  to guarantee 
that the service latencies of the 99th-percentile requests are 
not increased appreciably compared to the request latencies 
of a fully provisioned system where all servers are online. 
𝑈𝑚𝑎𝑥  is chosen through a calibration process to determine 
the maximum CPU utilization allowed on a server for given 
application without jeopardizing the service latency 
guarantees (Sec. 3.7).  𝑈𝑚𝑎𝑥  is a function of the server 
model and the application.  Thus, it is different for each pair 
of the server model and application running in the data 
center.    Second, DCP eliminates the need to have fast 
wakeup servers by employing a small number of already 
powered-on servers. 

DCP relies on the concept of scaled system utilization.  
For a single server, this metric is defined as 𝑈𝑠  / 𝑈𝑚𝑎𝑥 , 
where 𝑈𝑠 is the conventionally reported server utilization.  
Servers in a typical data center are unlikely to be identical 
and thus have different 𝑈𝑚𝑎𝑥 values when used to serve a 
given class of requests.  To deal with such heterogeneity, 
servers are divided into virtual groups, consisting servers 
of identical type/configuration within each such group.  
Each virtual group has its own specific 𝑈𝑚𝑎𝑥  and the 
average utilization of a virtual server group is defined as 
the average scaled utilization of all servers currently 
serving requests within the virtual group. 

DCP distributes the incoming requests evenly across online 
servers within multiple permissible virtual groups.  The 
service capacity of a virtual group (say, group i) is 
defined by the product of the maximum permitted 
utilization (𝑈𝑚𝑎𝑥) of the server in the virtual group and the 
total number of active servers (say, 𝑁𝑖) in the group.  Put in 
other words, the load balancer distributes a fraction 𝑊𝑖 =
(𝑈𝑚𝑎𝑥𝑖

 × 𝑁𝑖)/ ∑ (𝑈𝑚𝑎𝑥𝑖
 × 𝑁𝑖)𝑖  of the requests to virtual 

group i, where the summation is performed over all virtual 
groups.  𝑊𝑖 represents the fraction of incoming requests 
that the group can serve at any time without exceeding its 
service capacity.  Once the load balancer selects a group, 
the request is assigned to the online server of the group that 
has the least number of client connections.  The 
instantaneous system utilization, 𝑈𝑠𝑦𝑠, is thus the mean 
of the average scaled utilization of all groups serving online 
requests. 

The resulting technique guarantees that the overall 
utilization of all turned-on servers is kept in the range 
(𝑈𝑚𝑎𝑥  – ) to 𝑈𝑚𝑎𝑥  at all times, with  providing the 
necessary hysteresis for control.  The value of  is chosen 
to provide enough hysteresis to avoid frequent server 
activations and deactivations. 

3.2. Accommodating Server Heterogeneity  
Server capacity provisioners need to consider the inevitable 
heterogeneity of servers in typical data centers with 
different classes, configurations and generations of servers.  
As indicated in Sec. 3.1, DCP uses the notion of virtual 
groups of servers, where members within each virtual 
group are identical in all respects.  Requests directed to the 
data center can be directed to online servers within any 
group by the load balancer.  Each virtual group also 
requires its own utilization predictor to determine when a 
server within a virtual group must be bought online or 
taken offline, based on the predicted utilization.  The use of 
virtual groups also enables different load balancing 
strategies to be implemented, for example, at lower system 
utilization levels, the most energy-efficient virtual groups 
can be deployed to save power.  In the specific system 
presented here, the load balancer did not implement any 
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policy that differentiated one server group from another 
and distribute the incoming requests across all existing 
virtual server groups uniformly. 

3.3. STP: The Short-term Utilization Predictor 
The goal of an utilization predictor, in general, is to use 
historical information of certain system parameters that 
have high correlation with the actual utilization to predict 
utilization at a future point in time.  What makes utilization 
prediction challenging for data centers serving online  
requests is the highly transient nature of the requests.  The 
request arrival pattern can be smooth, changing slowly or 
changing very rapidly; the transient utilization pattern over 
time can also be very bursty.  The implication of all of this 
is that simple extrapolations of the historical values of the 
observable system parameters (that have high co-
relationship to system utilization) cannot predict rapid 
changes in the actual utilization into the future.  To limit 
the average and 99-th percentile request service latencies 
compared to the corresponding values for a fully 
provisioned system (where all servers are kept online), we 
need a predictor capable of predicting rapid load variations 
with very high accuracy.  From a practical standpoint, this 
also means that one cannot expect to predict the utilization 
too much ahead into the future. 

Identification of Features for Prediction: To determine 
system parameters that have a high degree of correlation 
with the system utilization, the data of easily measurable 
system parameters and the actual utilization were collected 
from a variety of synthetically-generated utilization traces.  
The utilization traces had randomly-varying request rates 
that generated requests whose characteristics were equally 
varied: single-threaded as well as multi-threaded requests 
were used, with the request service latencies varying over 
a wide range.  The rate of utilization changes in these 
synthetic traces also varied over a wide range and included, 
but were not limited to, very sharp increases and decreases 
in the request arrival volume.  Stepped increases in 
utilization (taking place instantaneously) were not used as 
network and server queues in a real system will limit the 
rate at which requests ultimately get served. 

The measured (and logged) system parameters with the 
actual execution of the synthetic traces included the 
number of requests being served, total power consumption 
(measured in real-time using rack PDUs), highest and 
lowest utilization level of any online server, highest and 
average server core temperature and others.  All these 
parameters are fairly intuitive and correlate to the total 
system utilization.   The parameters values were collected 
at an interval of 500 milliseconds throughout the run. 

Recently-Activated Servers as Indicators of Transient 
Load Changes: To capture highly transient and short-

burst utilization spikes (utilization increases), another 
unique parameter was measured and logged – this is the 
average utilization of the Recently Activated Servers (RAS) 
within the past six measurement intervals.  The reason for 
using this parameter is best understood from the way load 
balancing switches typically operate.  Load balancing 
switches direct incoming request to servers based on the 
number of connections, usually weighted, such as weighted 
least connections.  When a server is activated, it has the 
least number of actual connections/requests assigned to it 
by the load balancer.  If the weighted least connection 
algorithm is used to direct incoming requests to the servers, 
the most recently-activated servers would get relatively 
more requests directed to them.  Thus, one would expect 
the utilization of recently-activated servers to be indicative 
of (that is, correlate to) the short-term trends in the volume 
of workload directed to the data center. 

To reduce the number of input parameters for the 
utilization prediction, Principal Component Analysis (PCA) 
[1] was performed to determine the most dominant 
measurable system parameters that will have a high 
correlation to the actual system utilization.  The result, 
shown in Figure 1, shows that the six dominant factors 
(labeled A through F) that affect the system utilization are: 

A: Total utilization of online servers that are serving 
requests and can accept new requests (this excludes servers 
taken offline that may still be running requests already 
assigned to them). 

B: Total number of requests being served. 

C: The average utilization of recently-activated servers. 

D: The total power consumption of the system. 

E: The highest utilization level of any server. 

F: The lowest utilization level of any server. 

For the short-term utilization prediction, we used a 
machine learning approach to predict the system utilization 
based on the Random Forest regression model [8] with 
adaptive boosting using the Adaboost algorithm [18].  The 

Figure 1: PCA on the training dataset 
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overall model was trained on the synthetically generated 
traces which resemble real-world workload traces, as noted 
earlier. 

Training and Validation:  The goal of DCP is to predict 
the overall system utilization N seconds ahead into the 
future based on the observed data of the six features in the 
last 30 seconds and uses the six features filtered with the 
PCA.  During the training process, the previous 30 seconds 
of data for all the six features are mapped to the target label 
(“avg. system utilization”) N seconds into the future.  In 
short, the six feature values at time T are mapped to the 
label at time T+N seconds.  For training, 80% of the entire 
data set was used and the remaining 20% was used for 
validation. 

Random Forest Regression Model of STP: A Random 
Forest Regression Model (RFRM) was used to predict the 
system utilization as it uses the ensemble learning method 
and combines predictions from multiple trees. Within the 
RFRM, each tree is created from a different sample of rows 
and at each node, a different sample of the features is 
selected for splitting.  Each tree makes its own individual 
prediction, and all these predictions are then averaged to 
produce a single result (prediction).  Hence, the prediction 
made by the RFRM is much more accurate than the 
prediction made by a single model.  The machine learning 
model used by STP uses a random forest with 1000 trees in 
the forest, each with a maximum depth of six 
(corresponding to number of selected features from PCA). 

Adaptive Boosting [18], which is an ensemble technique, 
was used to further improve the RFRM’s prediction by 
training a sequence of base models.  Each model 
compensates the weakness of its predecessors, and this 

allows any common errors produced by the decision trees 
in the RFRM to be removed.  In Adaptive Boosting, higher 
points are assigned to the data which is incorrectly 
predicted by the previous model.  For STP, a base model 
with 100 trees in the forest, similar to the RFRM was 
employed, with 30 stages of adaptive boosting and an 
(empirically-derived) learning rate of 0.02.  As expected, 
with the features used, the overall prediction accuracy 
decreased as the temporal range of prediction (N) was 
increased. 

3.4. LTP: The Long-term Workload Predictor 
When the system load drops, instead of idling servers, DCP 
powers off servers to avoid the overall low utilization of the 
remaining online servers and to eliminate power wastage.  
However, these shutdowns are done conservatively as 
premature server shutdowns can jeopardize service times 
by not leaving enough server capacity when the load goes 
up again. DCP uses LTP to reach server shutdown 
decisions more conservatively, looking at more consistent 
and relatively stable utilization trends and shutting off 
servers only when the utilization is consistently predicted 
to be lower over several consecutive predictions made at 
the end periodic scheduling intervals. 

For powering servers down, DCP estimates the minimum 
number of servers (𝑁𝑚𝑖𝑛) needed in each virtual group to 
maintain an overall system utilization at 𝑈𝑚𝑎𝑥 and to deal 
with the load projected for C scheduling cycles into the 
future based on short term load prediction.  To estimate the 
minimum servers needed for each virtual group, DCP first 
estimates the exponential moving average of the virtual 
group’s load (𝑈𝐿𝑜𝑎𝑑).  Once 𝑈𝐿𝑜𝑎𝑑  is estimated using 
𝑈𝑔𝑟𝑝 (utilization of the virtual group) , 𝑁𝑚𝑖𝑛 is determined 
based on the number of active servers (AS) currently 
serving requests: 

𝑈𝐿𝑜𝑎𝑑  (t) =  * 𝑈𝑔𝑟𝑝 + (1 – ) * 𝑈𝐿𝑜𝑎𝑑  (t -1) 

𝑁𝑚𝑖𝑛 (t) = (𝑈𝐿𝑜𝑎𝑑  * AS) / 𝑈𝑚𝑎𝑥  

The use of the exponential moving average effectively 
filters out the impact of sudden changes in the workload 
trends.  DCP maintains the estimated minimum server 
count at any time to avoid performance loss in case of a 
decreasing load trend reverse.  Figure 2 depicts how the STP 
and LTP are incorporated into DCP and ACP. 

3.5. Wear Leveling and Temperature Limiting 
To reduce the wear and tear on the servers due to power 
cycling, DCP employs a timeout strategy, where recently 
offlined servers that have completed their assigned requests 
need to spend at least 180 seconds in the free_list before 
going through another power on/power off cycle.  An 
exception to this timeout period is made only when there is 
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Figure 2: Use of utilization predictors in DCP and ACP 
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an immediate need for the servers that cannot be satisfied 
with deployments from other server lists (Sec. 3.6). 

3.6. Dynamic Server Management 
The dynamic server capacity management technique of 
DCP, summarized in Figure 3, is as follows. 

A statistics collection daemon (SCD) runs in each turned-
on server (at the user level) and collects the utilization, 
frequency, temperature, other critical information and 
sends it to a collector submodule within DCP.  The collector 
submodule aggregates the data from all the powered-on 
servers in the data center and stores them in a RAM-fs 
(RAM file system).  DCP gathers the required information 
from the collector submodule at the end of regularly-spaced 
scheduling intervals (of 500 milliseconds), computes the 
instantaneous system utilization and uses STP to predict 
the workload change expected.  DCP then estimates the 
right number of servers needed for processing the predicted 
workload and adjusts the number of online servers 
dynamically at an interval of half a second to match the 
expected workload. 

As mentioned in Sec. 3.1 and 3.2, servers are maintained in 
different virtual groups based on the server model and 
configuration.  Within each virtual group, servers are 
dynamically placed in five unique lists based on the server 
state.  The first list contains already turned-on servers that 
are online and serving requests (active list).  The second is 
the list of servers that are recently offlined when the 
workload level dropped and are still serving previously 
assigned requests (free list).  The third is the group of 
servers that are turning on to serve the expected increase 
in the workload (waking_up list).  The fourth list contains 
group of servers that are powered off (turned_off list).  
The final list is the group of servers that are always kept on 
in reserve, to deal with rapid increases in the workload and 
not serving any requests unless they are activated 
(hotspare list). 

On an increasing load trend, the prediction made from STP 
is linearly extrapolated to determine the time, 𝑡𝑚𝑎𝑥 , when 
the utilization of the deployed servers is going to exceed 
(𝑈𝑚𝑎𝑥  – ).  If the difference, C, between the current time 
and 𝑡𝑚𝑎𝑥  is higher than the time it takes to turn on a server 
(TON, expressed in terms of the number of scheduling 
intervals), a situation called “slow load growth”, in which 
case the function slow_load_growth( ) is invoked to turn 
on additional servers in the background to deal with the 
expected load increase.  If C is less than the time it takes to 
turn on servers, the situation is called “fast load growth” 
and the function fast_load_growth(  ) is invoked.  If the 
servers in the free list and waking_up list cannot serve the 
expected workload, additional servers are deployed from 
hotspare list in both the cases.  If the workload is predicted 

to increase even after using all the servers from free, 
hotspare and waking_up lists, then servers from the 
turned_off list are powered on.  When servers from the 
hotspare list are deployed, they are replaced, when possible, 
with servers from the turned_off list.  The function 
fast_load_growth(  ) also looks at the extent to which the 
fast load growth is taking place (based on the evaluated 
ratio of C/TON) and uses a preset table (activation table) 
to look up the number of servers that need to be activated 
simultaneously (called a bundle) for handling the load 
growth.  For lower values of C/𝑇𝑂𝑁 , more servers need to 
be activated compared to a situation when C/𝑇𝑂𝑁 is closer 
to unity. 

The process for turning off servers, follows a more 
conservative approach and uses LTP to look at utilization 
average over longer intervals in the past to eliminate the 
impact of utilization spikes or sharp utilization drops that 
occurred for a short duration.  Servers can be powered 
down, when the system utilization is expected not to cross  
𝑈𝑚𝑎𝑥  by turning off a group of servers.  This scenario is 
called “shrinking utilization”.  A minimum count of 
powered-on servers, Nmin, is always maintained to 
accommodate utilization increases below the utilization 
level of 𝑈𝑚𝑎𝑥 . 

Figure 3:  Flowchart for DCP 
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3.7. System Tuning 
System tuning is essential to guarantee stringent service 
latencies and is typically undertaken by all data center 
operators – DCP is no exception to this.  The parameter 
𝑈𝑚𝑎𝑥  is chosen to limit the utilization of servers while 
guaranteeing the service latencies.  This threshold should 
be as high as possible, but not high enough to jeopardize 
service latencies. 𝑈𝑚𝑎𝑥  is chosen by running exemplar 
instances of the application, as is typically done by data 
center operators as part of configuration tuning to 
guarantee average and tail request latencies.  The 
parameters K and , used, respectively, by STP and LTP are 
chosen by the operator based on how tight average and tail 
latency guarantees have to be.  With a lower value of K, the 
predicted utilization only accentuates the impact of recent 
bursty utilization, so K should be moderately high.  
Choosing K beyond a specific value does not help as recent 
bursts in utilization are de-emphasized in the prediction.  
Similar comments apply to the choice of   The exact 
values are again determined in the tuning process.  Finally, 
the contents of the activation table, including the number 
of entries and the value for each entry determines how 
aggressively DCP handles fast utilization growths. These 
are also determined in the system tuning process. 

Again, we note that the system tuning effort is not 
exclusive to DCP and instances of such parameters and the 
need to tune them appear in all similar techniques [14, 15, 
20, 37], many often buried in parameters used in machine 
learning artifacts and elsewhere.  In virtualized systems, 
similar tuning efforts are also needed to determine the 
amount of RAM and logical CPUs to be allocated for 
maintaining service quality.  Thus, DCP is not unique in 
any way for relying on the system tuning used in data 
centers that guarantee service quality. 

4. ACP: Dynamic Cooling Provisioning 

We focus on traditional air-cooled systems and assume that 
the data center is organized as alternating cold and hot 
aisles, with two adjacent rows of front-facing servers 
making up a cold aisle.  Chilled air is supplied to the servers 
by a Computer Room Air Handler (CRAH) via an 
underfloor plenum and perforated floor tiles in the cold 
aisles.  The chilled air passing through the servers picks up 
the heat generated in the server, comes into the hot aisle at 
the rear of the servers and is drawn back into the CRAH 
and re-cooled before it re-enters the supply plenum.  
Further, the cold aisle is contained, that is fully enclosed, to 
prevent hot air from recirculating back into the servers 
from the hot aisles before being cooled by the CRAH and 
avoid any consequential inefficiencies related to cooling.  
As is typical of many mid-sized air-cooled data centers, we 
assume that the CRAH uses chilled water from a physical 
facility and no provision exists for adjusting the supplied 

chilled water temperature.  Of course, further efficiencies 
are to be gained by having a dedicated chiller that enables 
the chilled water supply to be adjustable leading to further 
energy efficiency improvements, as discussed in [24].  This 
is beyond the scope of our work, as our experimental 
facility lacks this feature. 

The solution (Automatic Cooling Provisioner, ACP) also 
relies on the use of adjustable apertures floor tiles (AATs), 
whose aperture (opening) can be adjusted remotely to 
control the airflow rate from the plenum into the contained 
cold aisles.  Pressure sensors located within the cold aisle, 
outside the aisle and in the plenum are used to monitor the 
aisle’s positive air pressure, APAP (which is obtained by 
subtracting the pressure space outside the contained aisle 

from the pressure inside the cold aisle).  Similarly, we 
monitor the positive plenum air pressure, PPAP, into the 
cold aisle which is obtained by subtracting the cold aisle 
pressure from the plenum pressure.  The aisle and plenum 
contain three pressure sensors each that are located at their 
ends and their middle.  The air pressure in the space outside 
the aisle is averaged from two sensors for every aisle. 

The two control knobs for adjusting the provisioned 
cooling in our solution are: 1) the opening in the AATs and 
2) the speed of the blower fan (VFD speed, for Variable 
Frequency Drive speed) within the CRAH.  Unnecessary 
high positive air pressure results in wasting electrical 
power in the CRAH blower, which is primarily responsible 
for maintaining the air pressure within the aisle.  High 
positive air pressure also results in cold air escaping into 
the hot aisle via openings within the inactive servers.  
Keeping the positive air pressure too low can fail to provide 
adequate cooling and/or permit hot air to recirculate back 
into the cold aisle through the openings in the powered off 
servers.  It is thus imperative to operate with just enough 
positive air pressure to improve the overall efficiency of the 
cooling system.  AATs help in improving the energy 
efficiency further by opening apertures in front of the racks 
with active servers, so that most of the supplied air is drawn 
in by fans running in the active servers, with little escaping 
through the openings in the turned off servers. 

The basic tenet for the control system to adjust the amount 
of cooling based on utilization prediction is as follows: 

• Maintain sufficient capacity of chilled air supply in the 
plenum to permit additional cooling to be quickly 
provided by opening the tile aperture, well before the 
CRAH can react to the increase in demand when 
servers are onlined on a sudden workload increase.  
Simultaneously, the CRAH’s VFD speed has to be 
increased in the background to maintain the air supply 
in the plenum.  The PPAP is indicative of the amount 
of chilled air available in the plenum. 
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• At all times, a sufficient APAP must be maintained in 
the cold aisle to prevent hot air exiting the back of the 
servers to recirculate into the cold aisle via turned-off 
servers whose fans are also turned off.  The APAP is a 
function of the PPAP and the tile openings. 

ACP is pro-active in adjusting the required cooling based 
on the prediction made by STP (Fig. 2) for servers in the 
aisle and the sensed aisle and plenum pressures.  Based on 
these, ACP determines the settings of the adjustable 
aperture tiles and the CRAH VFD speed using a DNN 
regression model.  Although, a simpler neural network 
model could have sufficed for the current version of ACP, a 
proactive forward-looking design using a DNN was used to 
enable future capabilities for addressing physical 
configuration changes, transient hot spots, containment 
leaks and fan failures.  

The DNN-regression model used by ACP has 5 layers with 
3 hidden layers each using the Relu activation function and 
the Adam optimizer.  The model outputs the necessary 
aperture settings for the AATs and the VFD speed to meet 
the two requirements above.   

As the offered workload increases, DCP powers on a bundle 
of servers which changes the aisle and plenum pressures.  
As a result, if the pressure in the aisle or plenum falls below 
the required pressure levels as more fans are drawing in the 
cold air to cool different components of the server, the 
cooling provided is adjusted by either increasing AATs 
openness or by increasing CRAH blower fan speed using 
VFD.  Similarly, when DCP powers off idle servers, aisle 
pressure (APAP) increases as the same level of previously 
provisioned cooling is not needed.  Therefore, ACP 
decreases the CRAH blower fan speed and/or the AATs 
aperture to reduce the chilled air supply into the plenum. 

To train the DNN, a reactive approach was used to increase 
the workload in steps and at each step determine the AAT 
opening and the minimum VFD speed needed to meet the 
cooling needs to maintain the APAP and PPAP.  We 
emphasize the need to maintain the minimum necessary 
VFD speed as the power consumption of the CRAH’s VFD 
increases with the VFD speed albeit in a non-linear fashion.   

ACP improves its efficacy by relying on a systematic order 
used by DCP for activating and deactivating the servers.  
DCP uses a systematic activation and deactivation pattern 
for aisles, racks within an aisle and servers within a rack.  
Aisles may be activated one after another or together (to 
spread out the heat utilization across the aisles). Within an 
aisle, server activations take place in a rack that has already 
got some active servers.  A turned off rack is deployed when 
all servers within the active racks are deployed.  Server 
activations within a rack takes place in a consistent vertical 
direction – either from the bottom of the rack to the top or 

from the top to the bottom.  Server turnoffs or idling takes 
place in the opposite order.   An idle rack, when activated, 
toggles between these two activation orders to wear level 
servers from thermal stresses caused by activation and 
deactivation.  Finally, servers in racks facing each other 
within an aisle are activated as symmetrically as possible 
across the aisle to present symmetric cooling needs across 
the opposing racks. The systematic server activation and 
deactivation permits the amount of cooling needed to be 
estimated in advance as a function of the number and type 
of active servers based on their utilization.  ACP is trained 
using the data generated by the reactive approach which 
consists of  62,247 rows of dataset split into 80% for training 
and 20% for validation.  The loss and mean squared error of 
the trained model are 0.07 and 0.009, respectively. 

ACP is currently limited to data centers that use chilled air 
cooling and requires the use of variable aperture tile and 
pressure sensors.  It can be extended to systems that use 
direct-contact water cooling via coldplates that replace 
traditional CPU heatsinks and still rely on chilled air 
cooling for other server components. 

5. Experimental Assessment 

For the assessments of HCP, we used 247 heterogeneous 
severs which are classified into 4 virtual groups: 72 
identical Dell PowerEdge R530, 57 identical Dell PowerEdge 
R520, 74 HPE ProLiant DL360 G9 and 45 HPE ProLiant 
DL380G8 servers distributed across 14 racks within a single 
contained, cold aisle.  Servers run the Ubuntu 16.04.2 LTS 
and Linux Kernel 4.4.0-130.  Other servers are used to carry 
out various infrastructure related work in our experimental 
setup and are connected to an independent power delivery 
chain, to isolate them from the services performed on the 
heterogeneous server pool.  All of HCP runs on a single 
low-end server.   

A F5 Networks BIG-IP 5000s LTM programmable load-
balancer switch is used for load balancing at the front end.  
Its active target server list is adjusted dynamically by DCP 
to consolidate the incoming work onto the fewest number 
of online servers.  The networking equipment consists of 2 
Cisco Nexus 5672, 6 Cisco Nexus 3064 and 10 Cisco Nexus 
2248 TP switches; their power consumption is not 
considered in this study, as a major portion of these 
switches also support other aisles/parts of the facility that 
contain the servers used here.  Power consumption data of 
the servers is collected from a pair of Server Tech 
24V2C415A1 PDUs within each rack via polling through a 
per-PDU SNMP interface.   

A Leibert CRAH (Model CW114DC1A2B667) provides the 
chilled air via an underfloor plenum to the IT equipment in 
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the aisle.  The adjustable aperture tiles are located in the 
floor area between opposing rows of servers within the cold 
aisle.   The CRAH status and its blower fan speed are 
monitored through Siemens Insight system which allows 
changes to CRAH VFD.  Multiple zone pressure sensors [3] 
are used and read via the facilities of a DAQ [23]. 

5.1. Tunable Parameters 

Although the parameters mentioned in Section 3.6 can be 
tuned to every specific application, we used a fixed set of 
values across all our assessments (except for 𝑈𝑚𝑎𝑥 , which 
is tuned for each application and each server type) and 
these are: K=9, =0.45, N=10 and  = 10% of  𝑈𝑚𝑎𝑥 .  No 
significant gains were realized by fine tuning these 
parameters to individual applications.  Thus, deploying 
HCP requires only a one-time calibration for determining 
the 𝑈𝑚𝑎𝑥  value of individual pairs of server type and an 
application.  The bundle size (Sec. 3.7) for turning on 
servers on utilization increases was fixed at 4 (instead of 
varying the bundle size based on the slope of the load 
growth).  Finally, the number of hot spares in each virtual 
group was set at 1/8th of the total number of servers in the 
virtual group.  The values of these last two parameters are 
empirical and determine how aggressively HCP must deal 
with very sharp load spikes. A higher value of  enables 
early detection of the load approaching 𝑈𝑚𝑎𝑥  and permits 
DCP to turn on servers beforehand.  Using higher  and 
bundle size results in reduced impact on the 99th-percentile 
request latency but this reduces the energy savings. 

5.2. Utilization Patterns and Requests 

Three real-world utilization patterns (traces) are used for 
evaluating HCP and their temporal profiles are shown in 
Figure 4. The pattern shown in Fig. 4(a) comes from 
Microsoft Azure’s cloud computing platform [41] and 
includes different metrics collected from roughly 2.6 M 
VMs. A detailed analysis of this utilization trace, hereafter 
referred to as Azure trace (AT), appears in [14].  The 
second utilization pattern, Fig. 4(b), was obtained from a 
data center operator (who prefers to remain anonymous) 
and is hereafter referred to as DT.  DT represents data from 

an online transaction system.  The dataset from 1,750 VMs 
of Bitbrains [7] forms the final utilization trace, fastStorage 
(FT) [38]. The data of the Azure and fastStorage traces, 
which were collected at intervals of 300 seconds, is not 
suitable for the direct use in our evaluation.  This is because 
our solution is designed to handle workload level variations 
at finer sub-second granularity.  Because of this, in our 
evaluations, we scale these two patterns temporally to place 
the original data points at the end intervals of 0.3 seconds to 
match our evaluation requirements.  This allows for the 
requests generated to change at higher frequency and does 
not keep the utilization of the system constant for each 300 
second interval, as the original data implied. These traces 
all have bursty regions that enable the assessment of HCP’s 
guarantee for limiting the 99th -percentile tail latency. 

The actual requests serviced using these utilization patterns 
have average service times (as experienced by clients) that 
range from very short (around 120 milliSeconds) to 
relatively long (around 11 Seconds) and are summarized in 
Table 1, which shows the approximate average service time 
on a fully-provisioned system across the three traces.  
These requests are considered to be representative of 
typical online requests of different classes.  To generate 
requests based on the utilization patterns of Fig. 4, a harness 
tool was developed for generating a stream of request 
following the utilization patterns and to permit each 
sequence of requests to be replayed consistently for an 
apples-to-apples comparison of different variants of 
capacity provisioners.  The harness tool issues and 

Benchmark 
Name/Abbreviation 

Description/Average Service Time 

SPECjvm 
Crypto.rsa/Rsa 

Encrypts/decrypts input dataset/~0.74 
secs. 

SPECjvm 
Serial/Serial 

Producer-consumer processing using 
sockets/~5 secs. 

SPECjvm 
XmlV/Xmlv 

Compression and validation of the 
XML.xsd files/~11 secs. 

Memcached/Mem 

Query processing request for wiki 
database with thousands of 
concurrent requests/~120 
milliseconds 

Table 1: Description of benchmark requests used 

Figure 4: Load Profile of three real-world traces used for evaluation 
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measures the latency of each HTTP GET request that 
triggers the execution of the actual requests from a client 
to the servers - from the point just prior to the opening of 
the socket for sending the request to the closure of the 
socket following the delivery of the response. 

5.3. Evaluated Provisioner 

Experimental comparisons comparing other techniques 
were not possible, as some of their critical implementation 
details are unavailable, a fact that is true for most complex 
systems of this nature.  Instead, two DCP variants are used 
in the assessments. One is DCP, as presented earlier in Sec. 
3, where idling offline servers are powered off to save 
energy and the other is, DCP-NS (No Shutdown), where 
idle offline servers are not powered down.  DCP-NS has the 
advantage that offline idling servers can be quickly 
activated to handle utilization increases.  However, by 
idling unused servers, DCP-NS misses a significant 
opportunity to enhance the energy savings.  Two other 
provisioners were also compared.  One is Baseline, 
representative of the prevalent practice of keeping all 
servers on and where requests are dispensed among all 
servers based on least connections.  The second of the other 
provisioner used against DCP is called Reactive, where no 
utilization prediction is used, and servers are powered on 
or off in response to the current observed system 
utilization.  Reactive is implemented by disabling the 
predictors in DCP. 

5.4. Power Reductions and Energy Savings  

The variations in the total power consumption for all 
variants is presented in Fig. 5 for the Serial requests. As 
expected, Baseline has the highest power consumption and 
is closely followed by DCP-NS since it does not power off 
unused idle servers.  Even though all host servers are 
configured to run in “powersave” mode, DCP-NS has a 
power consumption pattern very close to Baseline 
demonstrating that idling at a lower DVFS setting is not 
enough to deliver considerable energy savings, as idle 
power consumption of a server is a significant fraction of 
its peak power consumption. 

Fig. 5 shows that across all three utilization traces, during 
low utilization periods, DCP’s power consumption is less 
than that of Baseline and DCP-NS.  During high utilization 
periods, since DCP activates all servers, the power 
consumption matches that of the others.  For the Azure 
trace (AT) the two power consumption peaks in Fig. 5(a) 
coincide with the utilization peaks seen in Fig. 4(a). During 
the period when the abrupt workload spikes occur, DCP is 
able to adjust the online server capacity in advance so as 
not to impact the 99th-percentile tail latencies, as will be 
seen later.  When the short-term workload predictor senses 
the onset of the spike and predicts an increase in the 
utilization level, DCP mostly activates servers from the free 
list for AT.  Sometimes, DCP also powers on additional 
servers to handle the load growth, leading to an increased 
power consumption.  Power consumption trends for other 
request classes are similar (see also Fig. 6(a)). 

The DT trace evaluates if DCP can handle a sudden and 
sustained transition from low utilization to high utilization.  
This is seen in Fig. 5 (b), where during the time when 
system utilization increases from ~10% to ~56% (as 
highlighted in Fig. 4 (b)), DCP rapidly turns on all available 
servers, and even make use of hot spares, to handle the 
sustained growth predictions made by STP over several 
consecutive scheduling intervals. For DT, DCP’s power 
consumption approaches that of the Baseline at high 
utilization levels. 

The FT (fastStorage) trace evaluates DCP’s ability to handle 
rapid short-lived workload fluctuations which are not 
necessarily abrupt in nature.  Fig. 5 (c) shows that DCP is 
able to match the server capacity to the utilization changes, 
shown separately in Fig. 4(c).  Reactive has the lowest 
power consumption of all the variants because it powers on 
and off the servers based on the current utilization. 

The energy consumption of the servers for all four 
applications for each of the three utilization traces is shown 
in Fig. 6(a).  Of all the three DCP variants, DCP-NS has the 
least average energy savings of 4.14%, 2.96% and 3.66% for 
AT, DT and FT traces, respectively.  Hence, relying solely 

Figure 5: Power consumption for the utilization traces for Baseline, Reactive, DCP-NS and DCP with Serial requests 
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on DVFS to adjust the CPU core frequency during idling 
period is not enough for reducing the energy expended. 

From the power consumption levels of DCP shown in Fig. 
5, we can establish that load traces dominated by the low 
utilization periods will have the highest energy savings 
with DCP.  This is confirmed in Fig. 6(a), where DCP’s 
average energy savings is the highest for the AT trace 
among the three utilization traces since AT’s average 
utilization of 11.24% is less than that of DT (38.15%) and FT 
(17.39%).  DCP’s average energy savings across all 
applications for each trace are 32.18%, 12.2%, 15.98% for the 
AT, DT and FT traces, respectively, and these are roughly 
inversely proportional to the average utilization of the load 
traces.  The average energy savings for Reactive are 50.8%, 
38.12%, 36.4%. These higher energy savings come at the cost 
of service quality to the end user (higher latencies) as seen 
in Figs. 6(b) and 6(c).  DCP consciously tries to avoid such 
service latency increases. 

5.5. Impact on Service Latencies 

Even though DCP powers off idle servers for significant 
energy savings, its use of short-term and long-term 

utilization predictors limit the impact on the request 
latencies effectively.  The mean and 99th-percentile request 
latencies for the four request classes for each of the three 
traces are shown in Figures 6 (b) and 6 (c).  DCP-NS has 
negligible impact on request latency when compared to 
Baseline, since DCP-NS sacrifices energy savings for 
performance by keeping all the servers online and idling.  
The highest increase in the mean and 99th-percentile 
request latencies across the AT, DT and FT for DCP-NS are: 
(a) 0.08% (mean) and 0.07% (99-th %) for Memcached; (b) 
0.6% and 0.5% for Rsa; (c) 0.9% and 0.27% for Serial, and (d) 
1.7% and 1.78% for Xmlv.  For latency-critical applications, 
DCP-NS can be used to realize a small energy savings (of 
up to 4.14%) with negligible impact on the request latencies. 

In contrast, even though DCP powers off idle servers for 
significant energy savings, DCP’s impact on the request 
latency is very limited.  The highest increase in the mean 
and 99th-percentile request latencies, respectively, across 
the three utilization traces are: (a) 2.6% and 5.3% for 
Memcached; (b) 1.5% and 4.65% for Rsa; (c) 3.24% and 5.02% 
for Serial, and (d) 2.02% and 6.67% for Xmlv.  Thus, for a load 
trace like AT, DCP can deliver significant IT energy savings 
of 29.3% with very little impact on mean request latency 
and less than 6.67% increase for the 99-th percentile request 
latency compared to a fully provisioned baseline system.  
Note that the 6.67% increase is the worst-case increase 
across ALL individual requests within the observed 
periods and does represent the average, which is 
considerably lower (about 4.1%).  This demonstrates that 
DCP can handle any class of service whose request latency 
ranges from milliseconds to tens of seconds with acceptably 
low increases in service latencies compared to the Baseline 
while realizing significant energy savings. 

Reactive’s impact on the mean and 99-th percentile request 
latencies, respectively, is very high compared to the 
Baseline: (a) 16.8% and 81.97% for Memcached; (b) 17.5% and 
136.81% for Rsa; (c) 19.28% and 44.26% for Serial, and (d) 
19.36% and 65.07% for Xmlv.  Reactive’s request latencies 
suffer the most, violating the service commitments severely 
because utilization of active servers has to often exceed 
𝑈𝑚𝑎𝑥  before Reactive can deploy additional servers. 

5.6. Savings on Cooling 

We now show how ACP, the cooling capacity provisioner, 
proactively matches the cooling to the IT utilization.  ACP 
is compared against a baseline system that uses setpoint 
control to maintain the cold aisle temperature.  With ACP, 
the lower and upper aisle pressure thresholds used in for 
evaluation are 1 and 1.6 Pa (Pa = Pascals), and plenum 
thresholds are 8.5 Pa and 12 Pa.  Fig. 7(a) shows that ACP 
maintains the average cold aisle and plenum pressures 
within these thresholds without either over provisioning or 

(AT) (DT) (FT

) 

(AT) (DT) (FT) 

(AT) (DT) (FT) 

(a) Energy Consumptions in Mega Joules 

(b) Average Latencies 

(c) 99-th Percentile Latencies 

Figure 6: Energy savings, average and 99th percentile  
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under provisioning for the AT.  ACP maintains an average 
cold aisle pressure of 1.29 Pa while Baseline’s cold aisle 
pressure averages at 3.11 Pa.  ACP’s average plenum 
pressure is 9.8 Pa against Baseline’s 16.36 Pa.  Figure 7(b) 
shows the average openness of all the adjustable aperture 
tiles AATs and CRAH VFD speed for the AT.  When the 
system utilization spikes for a brief period (Fig. 4(a)), ACP 
uses the predicted increase in utilization to adjust the AATs 
and CRAH VFD to match the cooling to the IT capacity. 

The energy consumption of the CRAH for Baseline and 
ACP-P is seen in Fig. 7(c). The average energy consumption 
of CRAH at full blower fan speed is 68.04 MJ (Mega Joules) 
and ACP is able to reduce this to 21.15 MJ, which represents 
a savings of 68.92%. For AT, DT and FT traces, the CRAH 
energy savings are 69.19%, 68.45% and 69.05%, respectively.  
For a data center operating 50 CRAH units and charged at 
10 cents per KWh, then the average annual operational cost 
savings for the CRAHs is thus $281,758.  Even if the 
Baseline CRAH blower fan speed is set at 75%, the energy 
consumption during an 8000-second long workload trace is 
40.32 MJ and the energy savings against this new Baseline 

is 47.55%, which represents a savings of $115,508 in costs 
across 50 CRAHs. 

5.7. Overall Energy Savings 

Finally, we summarize the overall energy savings due to 
HCP stemming from dynamic IT and cooling capacity 

provisioning. Averaged across all four request classes 
within the three request utilization traces, HCP realizes: 

• IT energy savings of 32.18% (AT), 12.2% (DT) and 
15.98% (FT). 

• Cooling energy savings of 69.19% (AT), 68.45% (DT), 
and 69.05% (FT). 

• Total IT and cooling energy savings of 41.18% (AT), 
17.54% (DT) and 22.2% (FT). 

These savings are realized with very little increase in the 
average and 99-th percentile request latencies against a 
fully provisioned system. The observed cooling energy 
savings are exaggerated as the CRAH used in our studies 
can   accommodate twice as many servers as used here.  
With a correspondingly scaled utilization, the cooling 
energy savings will be reduced to half of what is reported 
above (about 35%) as the CRAH air flow rate is almost 
linearly proportional to the blower power consumption. 
ACP also scales up with the number of aisles and servers 
using the server deployment/deactivation order of Sec.4. 

6. Conclusions and Discussions 

HCP dynamically provisions server and cooling capacities 
for chilled air-cooled datacenters to realize significant 
energy savings, with tight average and 99-th percentile 
guarantees against a fully provisioned baseline system.  
HCP also accommodates background and batch jobs, as it 
accounts for these by using the system utilization to drive 
request scheduling; results were excluded for brevity.  The 
tight resource provisioning in HCP requires failures to be 
handled.   Failure mitigation is beyond the scope of this 
paper, but some solutions are outlined below.  For aisles 
with independent CRAHs and plenum partitioning, 
requests that would have targeted a failed aisles are 
redirected to other aisles with spare capacity.  For CRAH 
failures with a shared plenum, a higher plenum pressure 
providing reserve cooling is used to allow for backup 
CRAHs to kick-in. Server failures with critical services 
require requests replication, as done in solution providing 
hard 24/7 service guarantees.  Conscious tracking of server 
health can avoid such service losses. 
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