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STABILITY FOR AN INVERSE SOURCE PROBLEM OF THE
BIHARMONIC OPERATOR*
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Abstract. In this paper, we study for the first time the stability of the inverse source problem
for the biharmonic operator with a compactly supported potential in R3. An eigenvalue problem
is considered for the bi-Schrédinger operator A% + V(z) on a ball which contains the support of
the potential V. A Weyl-type law is proved for the upper bounds of spherical normal derivatives
of both the eigenfunctions ¢ and their Laplacian A¢ corresponding to the bi-Schrédinger operator.
These types of upper bounds was proved by Hassell and Tao [Math. Res. Lett., 9 (2012), pp. 289—
305] for the Schrodinger operator. The meromorphic continuation is investigated for the resolvent
of the bi-Schrodinger operator, which is shown to have a resonance-free region and an estimate of

L(Q:omp — L120c type for the resolvent. As an application, we prove a bound of the analytic continuation

of the data with respect to the frequency. Finally, the stability estimate is derived for the inverse
source problem. The estimate consists of the Lipschitz-type data discrepancy and the high-frequency
tail of the source function, where the latter decreases as the upper bound of the frequency increases.
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1. Introduction. Consider the scattering problem for the biharmonic operator
in three dimensions

(1.1) Hu(z, k) — k*u(z, k) = f(z), ze€R3,

where H := A% + V, A is the Laplacian and V(z) is the potential, x > 0 is
the wavenumber, and f is the real-valued source term. We assume that V(z) €
C*(R?),V(x) > 0 and that both f and V have a compact support contained in
Br ={x € R® : |z| < R}, where R > 0 is a constant. Let dBr be the boundary
of Bg. An analogue of the Sommerfeld radiation condition is imposed to ensure the
well-posedness of the problem (cf. [26])
(1.2) lim r(Oru —iku) =0, lim 7(0,(Au) —ik(Au)) =0
T—>00 r—00

uniformly in all directions & = z/|x| with r» = |z|. This paper is concerned with an
inverse source problem, which is to determine f from the boundary measurements of
u(z, k), Au(z, k) on OBg corresponding to the wavenumber £ given in a finite interval.

The inverse scattering problems have played a fundamental role in diverse sci-
entific areas such as radar and sonar, geophysical exploration, and medical imaging.
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The inverse problems for biharmonic operators have important applications in elas-
ticity and the theory of vibration of beams, e.g., the beam equation [12], the hinged
plate configurations [12], and the scattering by grating stacks [23]. Compared with
the inverse scattering problems for acoustic, elastic, and electromagnetic waves, the
inverse scattering problems for the biharmonic operators are much less studied. In
fact, not only the increase of the order leads to the failure of the methods which work
for the second-order equations, but also the properties of the solutions themselves
become more involved [22]. We refer the reader to [1, 16, 17, 25, 26] for the inverse
scattering problems of higher-order operators. The inverse boundary value problems
for bi- and polyharmonic operators can be found in [2, 7, 15, 18, 19, 28]. The available
results are mainly concerned with the inverse problem of determining the first-order
perturbation of the form A(x) -V + ¢(z) of the bi- and polyharmonic operators by
using either the far-field pattern or the Dirichlet-to-Neumann map on the boundary.
A numerical study can be found in [13] for an inverse random source for the bihar-
monic equation. To the best of our knowledge, the uniqueness and stability are open
on the inverse source problem for the biharmonic operators.

In general, it is known that there is no uniqueness for the inverse source prob-
lems at a fixed frequency. For example, if the source term f := Hy — x*p, where
v € C§°(BR), it is easy to know that the uniqueness does not hold in this case.
Computationally, a more serious issue is the lack of stability; i.e., a small variation
of the data might lead to a huge error in the reconstruction. Hence, it is crucial
to study the stability of the inverse source problems. Recently, it has been realized
that the use of multifrequency data is an effective approach to overcome the diffi-
culties of nonuniqueness and instability which are encountered at a single frequency.
The first stability result was obtained in [5] for the inverse source problem of the
Helmholtz equation by using multifrequency data. The increasing stability was stud-
ied for the inverse source problems of the acoustic, elastic, and electromagnetic wave
equations [4, 6, 9, 10, 20, 21]. A topic review can be found in [3] on the general inverse
scattering problems with multifrequency.

Motivated by [21], we intend to study the stability on the inverse source prob-
lem for the perturbed biharmonic operator by using multifrequency data. First,
we consider an eigenvalue problem for the biharmonic operator with a zeroth-order
perturbation and deduce an integral equation which connects the scattering data
u(z, k)|opg, Au(z, kK)|op, and the unknown source function f. Then we study the
corresponding resolvent of the biharmonic operator to obtain a resonance-free region
of the data with respect to the complex wavenumber s and examine the bound of
the analytic continuation of the data with respect to the wavenumber. It is worth
mentioning that we obtain a resonance-free region for the resolvent and prove the
resolvent estimate in this region. As a consequence, the well-posedness of the direct
scattering problem follows. Moreover, the results on the resolvent play a crucial role
in the study of the inverse scattering problem, and they are also interesting in them-
selves. The stability estimate consists of the Lipschitz type of data discrepancy and
the high-frequency tail of the source function. The latter decreases as the wavenum-
ber of the data increases, which implies that the inverse problem is more stable when
the higher-wavenumber data are used. We also mention that only the Dirichlet data
are required for the analysis.

The paper is organized as follows. In section 2, we show the increasing stability of
the inverse source problem for the biharmonic operator without the zeroth-order per-
turbation. Section 3 is devoted to the general case where the biharmonic operator has
a nontrivial potential. In both sections, the resolvent is studied for the corresponding
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biharmonic operator, and its resonance-free region and upper bound are obtained,
which lead to the well-posedness of the direct scattering problems and are crucial for
the stability analysis of the inverse source problem. The paper concludes with some
general remarks in section 4.

2. Stability without zeroth-order perturbation. In this section, we discuss
the well-posedness of the direct and inverse problems for the biharmonic operator
without the zeroth-order perturbation.

2.1. Resolvent estimate. We begin with the resolvent estimate of Hy := A2,
which is the biharmonic operator without the zeroth-order perturbation. Clearly, the
operator Hy is self-adjoint on L?(R3) with the Sobolev domain H*(R3). It follows
from the Fourier transform that

Hof(€) = |€1*/(), | € H'(R),
which immediately deduces the spectrum of Hy:
o(Ho) = {z = [¢|* - £ € R*} = [0, +00).

Hence, the resolvent (Ho—z) ! of Hy is analytic for z € C\[0, +00) in the uniform op-
erator topology of B(L?, L?), where B(L?, L?) denotes the set of all bounded operators
of L*(R3).

It is clear to note that the holomorphic map F : A — A\?* takes the first quadrant

E::{AE(C:O<arg>\<g}

bijectively onto the set o(Hy) = C\[0, +00), which is shown in Figure 1.
Let z = A*. The family of operators Ro()\) := (Hg — A*)~1 are analytical on the
first quadrant ¥ and satisfy the resolvent estimate
1
Ro(A : < —————— AEN
IR0 (M2 es) —r2es) < dist(M, [0,00))" €

Recall that the operator (—A — A\?)~! is well-defined on L?*(R?) for I\ > 0 via the
explicit expression

(—A =237 / A
AT = | ———fy)dy.
rs 47|z — y|
For A € ¥, using the identity (cf. [11])
1
Ro(V) = (A% = AN7" = 55 [(-A = A7 = (A + A7) 7,
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we have a bounded operator L?(R3) — L?(R3) for A € ¥ such that

(Bo(A\)f) (@) = . Ro(z,y,A) f(y)dy,
where
1 / ere—yl e~ Az—yl
2.1 = — — 2.
21) Bo(A @.y) 22 (47r|xfy\ 47r\x—y\)’ A€

It is easy to verify that the kernel Ro(\, z,y) satisfies the radiation condition (1.2)
for fixed « or y and A > 0. Furthermore, we can see from (2.1) that for fixed z and
y, Ro(\) is a meromorphic function of A on C and defines an operator C§°(R3) —
C*°(R?), which is unbounded on L?(R3) for SA < 0 or R\ < 0. However, if we

consider Ry()) as an operator mapping LZ,,,,(R?) onto L{ (R?) in the sense that for

any fixed y € C§°(R3) the operator yRo(\)x : L?(R?) — L?*(R3) is bounded, then
the operator Ry(A) can be extended into a meromorphic family of operators for all
A € C. We mention that meromorphic families of operators are defined on Banach
spaces. Here YRo(A\)x : L?(R3) — L2(R3) is a meromorphic family for any fixed
x € C°(R?).

The following theorem concerns a resonance-free region and an estimate for the
resolvent Ry(A), which play a crucial role in the stability analysis for the inverse
problem. Hereafter, the notation a < b stands for a < Cb, where C > 0 is a generic
constant which may change step-by-step in the proofs.

THEOREM 2.1. The resolvent operator Ro(\) for A € X has the following estimate:

1
(2.2) [Ro (M2 Rs)— L2 (r3) < PEGNGN AeX.

Moreover, the operator Ro(\) can be extended into an analytic family of operators for
all A € C\{0} as
Ro(\) : L2, ,(R®) — L2 (R?)

comp loc

such that for each p; € C§°(R3) with supp(p1) C Br and A\ # 0,
o1 Ro(N)p1llL2(Br)—mi(Br)
(2:3) SR AN E(2RON- 4 2ROW-) 5 =0,1,2,3,4,

where t_ = max{—t,0}.

Proof. First, we show (2.2). Following the identity
M= RN+ (SN = 6(RN)Z(SA)2 +4i(RN) (SA)((RA)? — (SN)?),
we have
dist(\, [0, 00))

_ {4(?)%)\)(9y>\)|(9%>\)2 — (SN (RN (SN
A4 if (RA)+ (SN

Note that when (RA)* + (SA)* > 6(RA)2(SA)2, one has
IA[F = ((RA)? + (SN)?)? < 2((RN)? = (SN2,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/12/22 to 128.210.107.129 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

STABILITY FOR AN INVERSE SOURCE PROBLEM 2507

which yields |A|2 < v2|(RA\)? — (SA)?]|. On the other hand, when (RA)* + (SN)* <
6(RN)2(IN)?2, we have

AP = (RA)? + (SA)? 2 2(RA)(SN), Ae,
which gives (2.2).

Next is to show the analytical extension. Let p; € C5°(R?). Then for each A # 0,
we define the operator p; Ry(\)p1 by

1 iNz—y| _ o—Alz—yl
R4 RNNE) = g5 [ @) ) Wy,

It can be verified that p; Ro(\)p1 is bounded on L?(R?) and satisfies the estimate

||p1R0( )p1HL2(BR)—>L2(BR) < %r |)\|2 (€2R(%)\)7 +62R(3R)\),)

([, o, Aot

(2.5) < CA["2(2REN- 4 2R<§RA) )

which actually implies that the operator pyRo(A)p1 belongs to the Hilbert—Schmidt
class. Moreover, for any f,g € L?(R3), by the explicit expression (2.4) of p1 Ro()\)p1,
it is easy to prove that the function Io(A) := (p1Ro(A)p1f, g)r2(rs) is an analytic
function in C\{0} and A = 0 is the only simple pole. Thus, p1Ro(\)p1 is weak
analytic, which further implies the strong analyticity. Consequently, p; Ro(A\)p; is an
analytic family of compact operators for A € C\{0}.

It suffices to prove the case j = 4 in order to prove (2.3). Taking p; € C§°(BR)
such that gy = 1 near the support of p;, we obtain from [24, equation (7.13)] that

lo1ull gy < C(llprull L2 @s) + 151 A% L2 gs) ) -
Thus, letting u = Ro(A\)(p1f), f € L?*(Bg) gives
o1 Ro(N) (01 £) | 114 (Br) < C(llo1RoN) (p1.f) | 2@y + 1101 A% (Ro(N) (p1.1)) |22 3 ) -
Noting
16122 (Ro(N) (pr )| z2es) = llprf + A X Ro(N) (o1 f) || L2 es)
S (L4 AP (2RO 4 ROV £l 2y,
we obtain
o1 Ro(N)p1llL2(ry—mia) S IA72(1 4+ A2)? (2FEN - 4 2RO,

Finally, the cases for j = 1, 2, 3 follow by the interpolation between j = Oand j = 4. 0O

It follows from Theorem 2.1 that the scattering problem (1.1)—(1.2) has a unique
solution for all the positive wavenumbers when V(z) = 0, which is stated in the
following result.

COROLLARY 2.2. Let V(xz) = 0. For any k > 0, the scattering problem (1.1)—(1.2)
admits a unique solution u € H*(Bg) such that

lullzr4(Br) S N fllL2(BR)-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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2.2. Inverse problem. In this section, we discuss the uniqueness and stability
of the inverse problem without zeroth-order perturbation, i.e., V(z) = 0.

First, we study the spectrum of the operator Hy with the Navier boundary con-
dition. Let {\;, ¢; };‘;1 be the positive increasing eigenvalues and eigenfunctions of
Hy in Br, where ¢; and A; satisfy

A%pj(x) = Ajpj(z)  in B,

Apj(x) =¢;(x) =0 on JBg.
In fact, we can take {/\;/2, ©j };”:1 to be the spectrum of the Laplacian operator such
that "

—Apj(z) = A w;(x) in Bg,

pi(x)=0 on 0Bg,

where the eigenfunctions {¢;}72; form a complete basis in L%*(Bgr). Assume that ¢;
is normalized such that

\<pj(x)|2dx =1.

Br

Consequently, we obtain the spectral decomposition of f,

F@) =) fivi(),
j=1

where
fi= f(x)pj(x)dz.
Br
It is clear that
(2.6) 1£172 (50 = D I£il*
J

The following lemma gives a link between the values of an analytical function for
small and large arguments. The proof can be found in [6, Lemma 3.2].

LEMMA 2.3. Denote S = {z =x+iy € C: —§ <argz < 7}. Let J(z) be analytic
in S and continuous in S satisfying

|[J(2)| <€, z€(0, K],
|J(z)| <M, z€S,
|J(0)| = 0.

Then there exists a function 5(z) satisfying

B(z) > 4, ze (K, 2iK),
> 1 i

((%)4—1)_ , z2€ (21K, o0)

N

such that
|J(2)] < MP®) vz e (K, o).

Let rj = ;. The following result concerns an estimate for the normal derivatives
of the eigenfunctions on dBg. The proof can be found in [21, Lemma A.2].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 2.4. The following estimate holds:

10vpjllL20Br) < Ckj,

where the positive constant C' is independent of j. Moreover, the following Weyl-type
inequality holds for the Dirichlet eigenvalues {A,}22 -

-Elnzl/3 < >\n < E2n4/37
where By and Ey are two positive constants independent of n.
Let u(x, k;) be the solution to (1.1)—(1.2) with k = &;.
LEMMA 2.5. The following estimate holds:
P S RS llu(e, ki) 12208 + 75 12U, £) 17208,
forj=1,2.3,....

Proof. Multiplying both sides of (1.1) by ¢; and using the integration by parts
yields

/ f(@)@5(x)da = / (B0 (Au(z, 57))7; — Du(, 5;)0y ;) ds
Br

OBRr

+ / (Dvu(w, 1) NG5 — u(w, 5;)0, (AG;)) ds.
OBRr

Noting Ag; = ¢; =0 and 9, (Ag;) = —n?@,,@- on 0Bpg, we obtain

f@)p;(x)de = — Au(z, Kk;)0,p;ds + Ii?/ u(x, k;)0,@;ds.
Bpr OBRr OBRr
The proof is completed by using Lemma 2.4 and the Schwartz inequality. 0

Let 7 be a small positive constant such that 7 < 1, and denote 2, := (C\E The
following lemma gives the analytic continuation of the data from small wavenumber
to large wavenumber. The proof is based on the crucial result in Theorem 2.1.

LEMMA 2.6. Let f be a real-valued function and ||f|| 2, < Q. Then for any

two positive constants A and Ay satisfying A1 = A+ 7 < k1, there exists a function
B(k) such that

KOllulz, ©) 3208, + K2 11AU(E, 5) [ F20m, S Q2™ Vi € (A1, +00),
where
6? * = SUPke(r,A41) (/‘?6”“(33, H)HQLz(aBR) + ”2||AU($7 K)H%Q(aBR))
and (k) satisfies

27) Blr) > 1, ke (A, TH21A),
| = L) = D)7E ne (T 4204, o),

Proof. Let

I(k) = /aB (k%u(z, k)u(z,ik) + *Au(z, k) Au(z,ik)) ds, K € C.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/12/22 to 128.210.107.129 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2510 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO
Since f(x) is a real-valued function, it holds that u(x,x) = u(z,ik) and Au(z, k) =
Au(z,ik) for kK € RT. Thus, we have

(k) = &°||u(z, 8)l| 7205, + K lAu(@, K205, € RT.

It follows from Theorem 2.1 that I(x) is analytic in the sector domain S, := {z :
—7 <arg(z —7) < §}. By the estimate (2.3) in Theorem 2.1, we have for x € S;
that

6P lu(z, 8)ll208r) + |6l Au(z, £)l| 1208

< |6Pllul@, K| girzomg) + 16l Au(z, £)|| o208,

< (6P + 18D lull sy < A9 £l 2 ().

Since
[1(8)] < 6P lu(@, &) L2 08 K |ule, —&)| L2 (o)
+ sl Au(z, 5)|| L2085 |6l | Aul@, =£) || L2 (0B R)
S €6R|K|Hf||%2(BR)» K € 5y,
we get

e OFIFl (k) S Q% KkeS,.

It follows from Lemma 2.3 by shifting the interval [0,00) to the right by 7 and a
change of variables that there exists a function 8(k) satisfying (2.7) such that

|676RHI(I€)| < Qze?’@(”) VK € (A1, +00),
which completes the proof. ]

We state a simple uniqueness result for the inverse problem.

THEOREM 2.7. Let f € L?(Bg) and I C R* be an open interval. Then the source

term can be uniquely determined by the multifrequency data {u(z, k), Au(z, k) : © €
OBRr,k € I}

Proof. Let u(x, k) = Au(x,k) =0 for all z € 9Br and k € I. It suffices to prove
that f(x) = 0. Since by Theorem 2.1 it holds that u(x, %) is analytic in the whole
complex plane minus the origin, i.e., C\{0}, we obtain that u(x,x) = Au(z,k) =0
for all kK € C\{0}. Hence, we have u(z, ;) = Au(z,r;) =0 forall j =1,2,3....

Then by (2.6) and Lemma 2.5, we have f = 0. O

The following lemma is important in the stability analysis. The proof can be
found in [21, Lemma 3.4].

LEMMA 2.8. Let f € H" ™ (Bg) and ||f| gn+1(5y) < Q. The following estimate

holds: 0
12 < *
Z|f]| ~ s%(n+1).

j>s

Define a real-valued function space

Co={f € H""(BR) : |fllan+1(5n) < Q. suppf C Br, f: Br— R}.

Now we are in the position to present the stability of the inverse source problem.
Let f € Cqo. The inverse source problem is to determine f from the boundary data
u(z, k), Au(z, k), x € OBR, k € (1, A1) ULJ;-V:l/@j, where 1 < N € N, 7 and A; are the
constants given in Lemma 2.6.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 2.9. Let u(x, k) be the solution of the scattering problem (1.1)—(1.2)
corresponding to the source f € Cq. Then for sufficiently small €, the following
estimate holds:

QQ
2.8 2, < (N ,
(2.8) 1f72p,) S € (N)+ (|1nel|%N%)§‘2”+”
where
N
(N) = ZH?||U(»’U7KJ)H%2(63R) + “?HAU(%“J‘)H%%aBR),
j=1

el = 5P e r,a,) K@, 1) 12 0 + 571 A0, )2 (05,)-

Proof. For brevity, we write € instead of ¢(N) in the following proof. We can
assume that €; < e™!; otherwise, the estimate is obvious. Let

|1n€1|$7

[Ni|lne|s], N& < —
6
N, NE > 1o |lnels.

5
6

2
3

[ V)

2
3

[}

Using Lemmas 2.5 and 2.6 leads to

fi? S w§llu(z, 'fj)||2L2(aBR) + H?HAU(%@)H%?(E)BR)

S Q266Rnﬁiﬂ(ﬁ) 5 Q2€4n6726(n)|1n51|
< CQ264ne—%(,€4_1)’%\1n61\ < Q264n—%5*2‘1n61\
2, —2 3 —1 1
< CQQe—;fi [Ineq|(1—27K°|Iner| ™) = (T+21A7 OO)

Hence, we have

(2.9) 11512 S Q2 mezl CIal0=2nllmal™) 1y j e (14234, I).

If N§ < A |ln61|$7 then 27L?|Ine;| ™" < % and
26
(2.10)

2
3

e
9

1
_2_ Ilnel 2 [Ineq| 5 2574 Ineg O N
[Ineq] 3 pi —2lnerl® —2 2 |ng |INE

1 3
17 <e Nimald <e¢ T N3 <e N3 = ¢~64n°|lner|INT

wlo

—2
™

€

Combining (2.9) and (2.10), we obtain
1.3 1
52 S Q232 ImaldNT w74 954, [
It is easy to note that

o < (6 1) = 3)

_W fOI“.’L‘>O.

We have )

1 9\ 2n+1?
|Iney |3 N4
(6n—3)3

Ifi1? < Q° j=1,...,L.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Consequently, we obtain

3 1
L Ni|lne|s
2 2 2 1
‘f]| SJQ 1 o 2n+l SQ 1 9\ 2n+1
|lne1|3N4E |Ine;[3N4
(6n—3)3 (6n—3)3
<@ Q@

P 2n+1 g 2n+17
\lnel\%N% |ln61|%N%
(6n—3)3 (6n—3)3

3 1 3 1
where we have used |Ine;| > 1 when N5 < —Lo|lney|5. If N5 < -1 |Ine |7, we
26773 2673

also have
1 1

< .
([|1n61|%N%] +1)2 71 <|1n61|éNg>2 en

If N¢ > -1 |Ine |9, then L = N. It follows from Lemma 2.5 that

5 2

2613
L
S IHP S
i=1

Combining the above estimates, we obtain

o0 2
Z‘fj|2 S+ 1Q Intl
j=1 | In €1|§N%
(6n—3)3
+ o + &’
1.-3\2(2n+1 L s\ 2(2n+1)
(alsNHT (e’
QQ
< 62 + 5
~ N\ 2(2n+1)”
(| 1nel|éN§) ’
which completes the proof. 0

It can be observed that the stability estimate (2.8) consists of two parts: the
data discrepancy and the high-frequency tail. The former is of the Lipschitz type.
The latter decreases as N increases, which makes the problem an almost Lipschitz
stability. The result reveals that the problem becomes more stable when higher-
frequency data are used. Moreover, the stability estimate (2.8) implies the uniqueness
result of Theorem 2.7. In fact, if ; = 0, then it means that the high-frequency tail
part of (2.8) vanishes. On the other hand, it follows from Theorem 2.1 that u(z, k)
is analytic for k € C\{0}, which gives that e(N) = 0 and proves the uniqueness.

It is worth mentioning that the proof of Theorem 2.9 depends on Lemmas 2.5 and
2.6, where the constants are independent of the number of frequencies N. Therefore,
the constant implied in the stability estimate (2.8) is also independent of N. In
addition, it is possible to combine the two terms on the right-hand side of (2.8) into

a whole logarithmic-type estimate. Let F(N) = ¢(N) + €1, 8 = 747;{2,

In*(t) :=[In(t)|, 1 = 2, s =0 if t<e !,
Int(t):=t, a; =0, agz%—l—l if t>e L.
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Then it is easy to verify that the right-hand side of (2.8) can be combined into the
following logarithmic-type estimate:

11225, < [NO ¥ (B(N))] 777,

3. Stability with zeroth-order perturbation. In this section, we discuss the
well-posedness of the direct and inverse problems for the biharmonic operator with a

general potential, i.e., H = A% 4V (z), where V() € Lg,,,(R?, C).
3.1. Resolvent estimate. Denote by T': L2, (R*) — L{ (R?) an operator T

such that for any y € C§°(R?), the operator xT'x : L*(R?) — L?(R?) is bounded.
Below is the analytic Fredholm theory. The result is classical, and the proof may be
found in many references, e.g., [8, Theorem 8.26].

THEOREM 3.1. Let D be a domain in C, and let A: D — L(X) be an operator-
valued analytic function such that A(z) is compact for each z € D. Then either

(a) (I —A(2))"! does not exist for any z € D or

(b) (I —A(2))7! exists for all z € D\S, where S is a discrete subset of D.
Here X is a Banach space, and L(X) denotes the Banach space of bounded linear
operators mapping the Banach space X into itself.

The following theorem gives a meromorphic continuation of the resolvent of the
biharmonic operator H.

THEOREM 3.2. The resolvent
Ry = (A2 +V - A1 LA(R?) — LA(R?)

is a meromorphic family of operators with a finite number of poles on the first quadrant
Y. Moreover, the family Ry (X) can be extended into a meromorphic family of the
whole complex plane C in the sense that paRy(\)p2 : L*(R3) — H*(R3) is bounded
for any pa € CS°(R3) satisfying poV = V.

Proof. First, we consider the case Ry (\) for RA > 1 and SA > 1. Noting the
equality

(3.1) (A% +V(z) = AHRo(A) = (A% = X)Ro(A) + V(z)Ro(A) = I + V(z)Ro())
and recalling the free resolvent estimate (2.2)

1 - -
||R0( )||L2(R3)—>L2 R3) m < (%)\) 2(%)\) 2, rey,

we obtain for ’®A > 1 and S\ > 1 that

V oo (R3 ].
[V Ro(M L2 rs)y—r2@®s) < Ve ®s) [Ro(MlL2®s) s r2m@s) < % <35

Hence, the operator I + V Ry(A) is invertible, and the Neumann series reads

oo

(I+VRo(\)™" =) (=1)*(VRo(N)".
k=0

Combining with (3.1) gives that

Ry (A) = Ro(A) (I + VRo(N) ™!
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are well-defined bounded operators of B(L?, L?) for R\ > 1 and S\ > 1. Moreover,
it is easy to see that V Ro(\) is an analytic family of compact operators on . Conse-
quently, it follows from the analytic Fredholm theorem that (I +V Rg()\))~! is in fact
a meromorphic family of operators for A € ¥, which implies that Ry ()\) : L?(R3) —
L?(R3) is a meromorphic family of operators in 3.

Next, we consider the extension of Ry (\) from 3 to the whole complex plane C as
the operator L2, _(R3) — H; (R®). To this end, we define the following meromorphic

comp loc
family of operators:

T(A\) = VRy(\) : L2, (R®) — L2 (R?).

comp comp

Since V' € L5, (R?) with a compact support, we can choose py € Cg°(R?) such that

p2(z) = 1 on suppV. Thus, by checking paT(A) = p2VRo(A) = VRo(A) = T'(N), we
know that (1 — p2)T'(A\) =0,

(I+TNA = p2))™ =1 =TN(1 - p2),

and
(I+TW) =T +TN\)p2) (I =TA)(1 = p2)).

Therefore,
(32)  Rv(\) = Ro)(I +T(\) ™ = Ro(\)(I +T(N)pa2) " (I = T()(1 = p)).

Note that
I—-TW\)(1—po): L2 (RY — L2 (R?)

comp comp

and
Ro(\) : L2, (R3) — H;! (R?)

comp

are both meromorphic for A € C. Hence, in order to obtain the meromorphic extension
of Ry (\) to C, it suffices to prove

(I+T\)pa)~t: L2, (R?) — L2 (R?)

comp comp

is a meromorphic family of operators on C. Since V(xz) = V(x)p2(x), we have
T()\)pg = VpQRQ()\)pQ and

IT(Np2llrz,,,, 12, = IVo2RoM 2z, @3- 12, @)
< |Vlizellp2Ro(N)p2llrz,,, 5 —r2,,., (R2)

< C‘)\|—2<62R(S)\), + €2R(§R)\)’)
1

< —
-2
for RA > 1 and S\ > 1. Hence, it follows from the Neumann series that the operator
(I + T(\)p2)~! @ L2(R3) — L2(R?) exists for RA > 1 and S\ > 1. Moreover,
for any A € C\{0}, the operator T(A)pz = VpaRo(\)p2 is compact on L?(R?) by
(2.3). Therefore, it follows from the analytic Fredholm theorem that (I +7T(X)p2) ™! :
L?(R3) — L*(R?) is meromorphic on C.

Finally, it remains to show that (I+T'(X)p2) ™" is L2, (R?) — L2,,,,(R?). In fact,

we can choose x1, X1 € C§° such that x1p2 = p2 and x1x1 = x1. Then (1—x1)p2 = 0.
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Moreover, when A > 1,3\ > 1, by the Neumann series argument and Vs, = V,
we have

(I=X)T +TN)p2) "x1 = (1= X1)x1 + Z(—l)k(l — X)(T(N)p2)*x
k=1

(—D*(1 = x1)(Vp2Ro(A)p2) xa

M

=
Il
—

(—1)"(1 = X1)(Vp2Ro(A)p2) (V p2Ro (M) p2)* ' x1

I Il
ainet

(3.3)

)

where the last equality uses (1 — x1)p2 = 0. By the analytic continuation, (3.3)
remains true for all A € C. Therefore, by the expression (3.2) of Ry, we obtain that
Ry (\) is meromorphic of A on C as a family of operators L2 (R?) — H{ (R3),

comp loc

which completes the proof. 0

In the following theorem, we further give a resonance-free region and a resolvent
estimate of p3Ry (\)ps : L?(R3) — H*(R?) for a given p3 € C§°(R?), which play a
crucial role in the stability analysis for the inverse problem.

THEOREM 3.3. Let V(z) € L, (R3 C). Then for any given p3 € C5°(R3)

comp

satisfying psV =V, i.e., supp(V) C supp(ps) CC Br, there exists a positive constant
C depending on p3 and V such that

o3 Ry (M) psllL2(Br)— 1 (Br)
(3.4) < C|A72H (2RO - | 2RSN -y 5 —0.1,2,3,4,

where A € Q5. Here Qs denotes the resonance-free region defined as
Q5 == {)\ LGN > — A — dlog(1+ [A]), RA > —A — dlog(1 + [A), |\ > co},
where A and Cy are two positive constants and § satisfies 0 < § < ﬁ.
Proof. By the estimate (2.5), we obtain
(3.5) o3 Ro(N) sl 2 (rey—s L2(rey < CIA| 72 (2N 4 2RO -
for a given p3 € C5°(R?) such that p3V = V. Then we have

IV Ro(MpsllL2s)- L2 @s) = Vs Ro(A)psll L2 s) - 2 e9)
S/ ||V||L0°(R3)‘/\|72(62R(%)\)— + 623(8)\)7)
< ||V||L00(R3)‘)\|_2€QR(A+6log(1+\,\|))
_ 1
SVl pee @y A 7F < 3
provided that A € {25 with €25 being defined by

Q5 = {A SN > —A — dlog(1+ [A]), RA > —A — dlog(1 + |A]), |A| > Co},
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Re=-A-d log(1+|A]) N&

ImA=-A-d log(1+|A])

0 Re X

Fic. 2. The resonance-free region 5.

which is shown in Figure 2. Here we let A be a positive constant, Cy > 1 and § < ﬁ.
Hence, by the Neumann series argument, we can prove that the inverse operator
(I +VRo(N)p1)~! exists for all A € Qs and

(3.6) ||(I+ VR()()\)pg)il||L2(R3)_>L2(R3) = H(IJr Vleo()\)pg)il||L2(]R3)_>L2(]R3) < 2.

Then we have

psRy (N)ps = psRo(N)ps(I + VRo(N)p3) (I = VRo(A)(1 = p3))ps.
Consequently, combining (3.5) and (3.6), we obtain the desired estimate for j = 0 as

Hp3RV()\)ngLz(Rs)ﬁL%]RS) < C|/\|_2 (BQRGR)\)_ + EQR(C‘D‘)_).

For the case j = 4, let p3 € C§°(R3) such that g3 = 1 on suppps and suppps C Bg.
Then it holds that

o3 Ry pafllmasr) S (153 Rv (N psfllL2sr) + 15382 Ry (Mps fll L2 (84))
S (IpsRv (N ps fll2(r) + 18sHRY (N psfllr2(5m)
+ 1PV Ry (N)psfllL2(Br))
S (L+ X213 Ry (M) ps f 2 (8r)
S L+ NP2 (RO 4 2ROV £l 2y,
for A € Q5. Finally, the cases of j = 1, 2, 3 follow by an application of the interpolation
between j =0 and j = 4. O

By Theorem 3.3, the scattering problem (1.1)—(1.2) has a unique solution for all
positive wavenumbers k > Cy, which is stated below.

COROLLARY 3.4. Let V(z) € L, (R?, C). For all positive wavenumbers k > Cy

where Cy is specified in Theorem 3.3, the scattering problem (1.1)—(1.2) admits a
unique solution uw € H*(Bg) such that

lull sy S I1FllL2(Br)-

3.2. Inverse problem. In this section, we discuss the uniqueness and stability
of the inverse problem for the general case with a nontrivial potential V(z) > 0.

Again, we begin with the spectrum of the operator H with the Navier boundary
condition. Let {u;, ¢; };";1 be the positive increasing eigenvalues and eigenfunctions
of H in Bpr, where ¢; and p; satisfy

(A? +V(x))¢;(x) = pjpj(x)  in Br,
Agj(z) = ¢j(z) =0 on JBg.
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Assume that ¢; is normalized such that

| i@ =1.
Br

Consequently, we obtain the spectral decomposition of f,
oo
Fl@) =) fio;(),
j=1

where

fi= f(x);(x)dx.

Br
It is clear that
£ 1728y = D151
J

The following lemma gives a link between the values of an analytical function for
small and large arguments. The proof can be found in [21, Lemma A.1].

LEMMA 3.5. Let p(z) be analytic in the infinite rectangular slab
D={ze€C: (A, +o0) x (—d,d)},

where A is a positive constant and continuous in D satisfying

wherefi,fll,& and M are positive constants. Then there exists a function n(z) with
z € (A1, 400) satisfying

64ad
> —
n(z) 2 3m2(a? + 4d?)

where a = Ay — A such that
Ip(2)] < Me®) vze (jh,-l-oo).

The following lemma gives an estimate for the normal derivatives of the eigen-
functions on 0BRr and a Weyl-type inequality for the Dirichlet eigenvalues.

LEMMA 3.6. The following estimate holds:

(3.7) 1006 ll2080) < Ok, 1100(Ad))L2082) < O3,

where the positive constant C' is independent of j. Moreover, the following Weyl-type
inequality holds for the Dirichlet eigenvalues {pi,}5% 1+

(3.8) En3 <y, < Eon*/3,

where 1 and Ey are two positive constants independent of n.
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Proof. We begin with the estimate (3.7) for the eigenfunctions on the boundary.
Let u be an eigenfunction with eigenvalue p such that

Hu = pu, x € Bg,
u = Au =0, x € OBg.

Define a differential operator

1 3 3
A= 5(x-V+V-x):x-V+§ = |x|8y—|—§.
Denote the commutator of two differential operators by [, -] such that [O1,02] =

0105 — 050 for two differential operators O; and O,. Then we have
(3.9) [A% A] = 2kAF, ke NT.

Denote B = AA. A simple calculation gives

/ u[H, Bludz = / (w(A? + V)(Bu) — uB(A®* + V)u) dz
B

Br

R
= / (A%u + Vu — pu) Budx + / (u0y (ABu) — 0,uA(Bu)) ds
BR é)BR

+ / (Aud, (Bu) — 0, (Au)Bu) ds
OBRr
_ / (O,uA(Bu) + 8, (Au)Bu) ds
OBRr
_ / (B,uA(Bu) + R|9, (Auw)[?) ds,
OBRr

where we have used u = Au = 0 on 9Bpg and Green’s formula. Since by (3.9) we have
ABu = AAA = (AA +2A)A = AA? + 27,
it holds that

OyuA(Bu)ds = O u(AA? +2A%)uds
BBR aBR

= /,93R <8Vu((R8,, + %)AQ’(L) + 2A2U8Vu>ds

=R 0,ud,(A*u)ds = R Oyu 0y (pu — Vu)ds,
BBR 8BR

where we have used A2y = —Vu + pu =0 and v = 0 on 9Bg. Hence, we have

(3.10) OyulA(Bu)ds

\ > (o= Wilemin) [ 1o
SBR 8BR

On the other hand, we have

(3.11) 0, (Au)Buds — /

0, (Au)Buds = R/ |0, (Au)|*ds.
OBRr OBRr

OBRr
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Moreover, since by (3.9) it holds that [H, B] = 4A3 + [V, AA], we obtain

/ u[H, Bludz
Br

= ‘ / (4ulu + [V, AAJu) dx
Br

/ (AuA(=Vu+ pu) + [V, AAJu) dz
Br

(3.12) < Culluly ) < Cri®-

Here we have used the fact that the commutator [V, AA] has order of 2 at most. Using
(3.10)—(3.12), we obtain

10vullizopm) < 1 1100 (AW 1208, < 12

which completes the proof of (3.7).
Next, we prove the Weyl-type inequality (3.8). Assume py < ps < --- are the
eigenvalues of the operator H. Then we have following min-max principle:

: [y [AV1? + V]gp?da
np = max min .

By Prie1 VEDL,erby 1]t fBR Y2dx
YeHZ(BR)

Assume that ugl) < uél) < --- are the eigenvalues for the operator A%. By the
min-max principle, we have

Crpl) < pin < CopV, n=1,2,...,

where C1 and C; are two positive constants depending on ||V (p,). We have from
Weyl’s law [27] for A? that

!

lim —rp =
n—-+00 n4/3 ’

where D is a constant. Therefore, there exist two constants E; and E5 such that
Ein®3 <, < Epn/3,

which completes the proof. 0

Denote #j = p;. Let u(z,k;) be the solution to (1.1)~(1.2) with k = ;. In
general, due to the presence of the potential function V' (z), the resolvent Ry (k) may
have poles on RT which are restricted in the set {z : 0 < z < Cy} by Theorem 3.3.
However, a recent result [11] shows that for a certain class of nonnegative potential
functions, the resolvent has no poles on R*. On the other hand, since the first
eigenvalue p, of H in Bpg increases as the radius R decreases, if the supports of
the source f(x) and potential V(z) are small, we may shrink the ball By to make
p1 > Cy. Thus, in the following study of the inverse problem, we assume that the
resolvent Ry (k) has no poles in the set {; : k; < Cp}.

LEMMA 3.7. The following estimate holds:

|fj|2 N H?HU(% “j)||2L2(aBR) + ’@?HAU(% "fj)||2L2(aBR)

forj=1,2,3,....

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/12/22 to 128.210.107.129 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2520 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Im A
ReA=-A-d log(1+|\|)

R
—
—————

Co Re A

ImA=-A-8 log(1+|Al)

FiGc. 3. The region R.

Proof. Multiplying both sides of (1.1) by ¢; and using the integration by parts
yields

/ f(x)a_ﬁj(:c)dx = / (8V(Au(z, Iij))d_)j — Au(z, /@j)[)yd_)j) ds
Br

OBRr

+ / (auu(x, I*ij)A(;gj — u(x, /Qj)(?l,(A&j)) ds.
OBr
Moreover, noting that Ac;_Sj = d_>j =0, we arrive at

(z)¢j(z)dx = —/ (Au(z, k)0, d; + u(x, k;)0,(Ad;)) ds.

BR 8BR

The proof is completed by using Lemma 3.6 and the Schwartz inequality. O

LEMMA 3.8. Let f be a real-valued function and | f|12(p,) < Q. There exist

positive constant d and positive constants A, Ay satisfying Cy < A < Ay, which do
not depend on f and Q, such that

“8||U($75)||2L2(33R) + “4||AU(%“)H%2(613R) S QQﬁGRRg?n(K) V€ (A, +00).

Here Cy is specified in Theorem 3.3 and

& = rllu(@, 8)lI12 0p,) + £ AU, 5)l[1208,):

64ad

P —s 7{S O
= 3@ 14

Kl

n(k)

Here a = A, — A.
Proof. Let

I(k) := / (*u(z, k)u(z,ik) + *Au(z, k) Au(z,ik)) ds, K € C.
OBRr
By Theorem 3.3, we have that u(z, k) is analytic in the domain
Q5 = {A A > —A — dlog(1+ [A]), RA > —A — dlog(1 + |A]), [A] > |co\}.

Moreover, there exist d > 0 and A > Cj such that R = (A4, +00) x (—d,d) C Qs
and iR = {iz : z € R} C Qs. The geometry of the domain R is shown in Figure 3.
Therefore, I(x) is analytic in R. Moreover, since f(x) and V(x) are both real-valued
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functions, we have u(x, k) = u(z,ix) and Au(z, k) = Au(z,ik) for K > Cy. Hence, we
have
(k) = &*[[u(@, 6)l[7208,) + & Au@, 8)[T205,), K > Co.

By the estimate (3.4) in Theorem 3.3, we have for k € R that
|| |u(, &)l 22 0Bg) + |52 Auz, k)| 22(0Bx)

< |H|4||U($7“)||H1/2(83R) + |f€|2HAU($»H)||H3/2(aBR)

<20k ull gragrey < EF fllp2 (-

Since
[1(k)| < |6 lulz, ©)l| L2 @ Bg) K] |u(z, —K) || L2085
+ 6P Au(a, £)|| L2 (9. [P Aul@, —K)|| L2 (8.
< Ol ”fH%?(BR)? keR,
we have

le SBI®1(k)] < Q% keR.

An application of Lemma 3.5 shows that there exists a function n(x) such that
|676RHI(H)| < Q2€?n('€) VK € (/~11,+oo),

where

(%) 64ad
me) = 3m2(a? + 4d?)

which completes the proof. ]
Here we state the uniqueness result for the inverse problem.

THEOREM 3.9. Let f € L?(Bg) and I := (Cy,Co + () C RY be an open inter-
val, where Cy is the constant given in the definition of Qs in Lemma 3.8 and ¢ s
any positive constant. Then the source term f can be uniquely determined by the
multifrequency data {u(z, k), Au(z, k) : © € 0Br,k € I} U{u(z, kj), Au(z, k) 1 ¢ €
BBR7I€j S (O,Co]}

Proof. Let u(xz,k) =0 for x € 0Bg and k € TU{k; : ; € (0,Co])}. It suffices to

show that f(x) = 0. Since u(z, k) and Au(z, k) are both analytic in Qs for z € IBg,
it holds that u(z, k) = Au(z, k) = 0 for all eigenvalues k > Cy. Then we have that
u(z,k;) =0 for all k;,j =1,2,3,.... Hence, it follows from Lemma 3.7 that

(x)¢j(x)dr =0, j=1,2,3,...,
Br
which implies f = 0. a
The following lemma is important in the stability analysis.

LEMMA 3.10. Let f € H" ™ (Bg) and || f| gn+1(pp) < Q. It holds that

2
E ,2<Q7
|f.7| ~ s%(n+1).

Jjzs
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Proof. A simple calculation yields

2n+2
Q2

2 2 o 42| f (2 <
§ :‘f3| < § : 2n+2|f3‘ 2n+2 § : m lfil” £ 2nte”
S

j>s ]>S j>s

Noting
1F 1y 2 Y (K5 + 1)°1 £

Jj=1

2

and using the Weyl-type inequality in Lemma 3.6, we have k2 > E»s35 and complete
the proof. ]

Define a real-valued function space

@ ={f € H" ™ (Bg) : [|fllgn+1(Br) < Q, suppf C Bg, f: Br = R}.

Now we are in the position to discuss the inverse source problem for the biharmonic

operator with a general potential. Let f € Cq. The inverse source problem is to

determine f from the boundar~y da~ta u(I,iﬁ), Au(z, k), x € OBg, k € (4, Al)UU?LII{j,

where 1 < N € Nand ky > Ay, A, and A, are the constants specified in Lemma 3.8.
The following stability estimate is the main result of this paper.

THEOREM 3.11. Let u(x, k) be the solution of the scattering problem (1.1)—(1.2)
corresponding to the source f € Cqg. Then for sufficiently small €, the following
estimate holds:

2
2 < ~2 Q
(3.13) W20 = €N + N3+ (In | In & [)3 (1)’
where
N
EN) = K@, 5) 7208, + 551 Au(@, )15 208>
j=1

&= Supne(A,Al)’fSHU(% H)H%Z(QBR) + 1 Au(a, "5)||2L2(aBR)-

Proof. For brevity, we write € instead of é(IN) in the following proof. We can
assume that €; < e~!; otherwise, the estimate is obvious. First, we link the data
k4 u(x, Ii)”%z(aBR) + nsHAu(x,/i)H%z(aBR) for large wavenumber & satisfying x < L
with the given data é; of small wavenumber by using the analytic continuation in
Lemma 3.8, where L is some large positive integer to be determined later. By Lemma
3.8, we obtain

K8, 1) 12 oy + AU, K)o,y S Q2OHIMEN™)
< 2 6Rr — CoQ Cl(%,,{)l ~
<Q exp{ K a2—|—03e [lné; |
2
S Qzexp{ B 202& e (57" |Ing | (1 _ anla” +cs) 03)601(“3)|1n€11>}
a® 4+ c3 a
., L(a® Pa
S Q2exp{ B 2C2a e (571 |Ing, | (1 _ al(a®+c) 63)661(L_2)|1n€1_1>}
a® + c3 a
< QQexp{ — bpe~ L |Ing | (1 — by Le“ E|Iné, | 1> },
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where ¢, ¢;,i = 1,2 and by, b; are constants. Let

i [ﬁln\lnglq, N < 5= In|lné],
N, N>—1n|lnel|

If N < 5-In|Iné |, we obtain for € sufficiently small that

K8 |u(z, )220 + K 1 AU, )| 208,

< Qexp{—boe F|Iné;|(1 — by Le* F|né; | 1)}

1 ~
< Q? eXp{ - §b06_clL| 1n€1|}.

Noting e™® < (iZjEQ' for x > 0, we obtain

L

> (Wl 1) 32om) + K11 AU, 5) F205))
j=N+1

< ine(zms)cli‘ Iné, |—(2n+3).

Taking L = i In |In €|, combining the above estimates and Lemma 3.10, we get

N L “+oc0
1220 S DI+ D 6P+ D0 161

N
S (WSl )3 @) + £ 1A, 1) R0, )

j=1
3 1
£ 30 (Wl sl eron + 651805 aom) + Fim 11
j=N+
< T (2n+3)c1 L (2n+3) Q2
<E 4 LQ% |1n & | + E%(nJrl)
e+ Q? ((1n|1nq\)|1ne1 (1n\1n51|)-%<n+1>)
e+ Q2 ((1n|1ngl\)|1nglr2’zi Hlnung”)fg(m))
<@+ Q*(In|lng|)~5+Y)
2
Sé+ @

N%(n+l)(]n IIné |)%(n+1) )

where we have used |Iné;|'/2 > In|Iné&;| for sufficiently small &.
If N> i In|Iné |, we have from Lemma 2.8 that

N —+o0 2
o S+ Y IR S+ —2—
L2(Br) ~ J I~ N3(n+1)
=1 j=N+1
QQ
N3+D(In|Ing [)s(+D’

<é+

which completes the proof. 0
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It is also clear to note that the stability (3.13) consists of two parts: the data
discrepancy and the high-wavenumber tail. The former is of the Lipschitz type. The
latter decreases as N increases, which makes the problem have an almost Lipschitz
stability. The result reveals that the problem becomes more stable when higher-
wavenumber data are used. Compared with (2.8), the stability (3.13) has a double
logarithmic-type high-frequency tail, which makes the problem more ill-posed. The
reason is that, in the presence of the zeroth-order perturbation, the resonance-free
region obtained in Theorem 3.3 is not as good as that obtained in Theorem 2.1.

Similarly, it is also possible to combine the two terms on the right-hand side of
(3.13) into one logarithmic-type term. Let E(N) = é(N) + &, v = — 4L,

InTIn*(¢) :=In|In(t)], a3 =1, ay =0 for t <e !,
In*In*(t) :=¢, a3 =0, ay = =L +1 for t > e 1.

Then we may verify that the following estimate holds:
11725, S [N ™ In* (V)] 77

4. Conclusion. We have presented stability results on the inverse source prob-
lem for the biharmonic operators without and with a zeroth-order perturbation. The
analysis requires the Dirichlet data only at multiple wavenumbers. The increasing
stability is achieved to reconstruct the source term, and it consists of the data dis-
crepancy and the high-frequency tail of the source function. The result shows that
the ill-posedness of the inverse source problem decreases as the wavenumber increases
for the data. A possible continuation of this work is to extend the stability to the
case of polyharmonic operators. A related but more challenging problem is to study
the stability of the inverse potential problem, which is to determine V.
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