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Abstract
We consider the asymptotic behavior of a family of gradient methods, which include the
steepest descent and minimal gradient methods as special instances. It is proved that each
method in the family will asymptotically zigzag between two directions. Asymptotic con-
vergence results of the objective value, gradient norm, and stepsize are presented as well. To
accelerate the family of gradient methods, we further exploit spectral properties of stepsizes
to break the zigzagging pattern. In particular, a new stepsize is derived by imposing finite
termination on minimizing two-dimensional strictly convex quadratic function. It is shown
that, for the general quadratic function, the proposed stepsize asymptotically converges to the
reciprocal of the largest eigenvalue of the Hessian. Furthermore, based on this spectral prop-
erty, we propose a periodic gradient method by incorporating the Barzilai-Borwein method.
Numerical comparisons with some recent successful gradient methods show that our new
method is very promising.

Keywords Gradient methods · Asymptotic convergence · Spectral property · Acceleration
of gradient methods · Barzilai-Borwein method · Unconstrained optimization · Quadratic
optimization

B Hongchao Zhang
hozhang@math.lsu.edu

Yakui Huang
huangyakui2006@gmail.com

Yu-Hong Dai
dyh@lsec.cc.ac.cn

Xin-Wei Liu
mathlxw@hebut.edu.cn

1 Institute of Mathematics, Hebei University of Technology, Tianjin 300401, China

2 LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

3 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049,
China

4 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01685-8&domain=pdf


    7 Page 2 of 29 Journal of Scientific Computing             (2022) 90:7 

1 Introduction

The gradient method is well-known for solving the following unconstrained optimization

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable, especially when the dimension n is large.
In particular, at the k-th iteration gradient methods update the iterates by

xk+1 = xk − αkgk, (2)

where gk = ∇ f (xk) and αk > 0 is the stepsize determined by the method.
One simplest nontrivial nonlinear instance of (1) is the quadratic optimization

min
x∈Rn

f (x) = 1

2
xT Ax − bT x, (3)

where b ∈ R
n and A ∈ R

n×n is symmetric and positive definite. Solving (3) efficiently
is usually a pre-requisite for a method to be generalized to solve more general optimiza-
tion. In addition, by Taylor’s expansion, a general smooth function can be approximated
by a quadratic function near the minimizer. So, the local convergence behaviors of gradient
methods are often reflected by solving (3). Hence, in this paper, we focus on studying the
convergence behaviors and propose efficient gradient methods for solving (3) efficiently.

The classic steepest descent (SD) method proposed by Cauchy [4] solves (3) by using the
exact stepsize

αSD
k = argmin

α
f (xk − αgk) = gTk gk

gTk Agk
. (4)

Although αSD
k minimizes f along the steepest descent direction, the SD method often per-

forms poorly in practice and has linear converge rate [1,18] as

f (xk+1) − f ∗

f (xk) − f ∗ ≤
(

κ − 1

κ + 1

)2

, (5)

where f ∗ is the optimal function value of (3) and κ = λn/λ1 is the condition number of
A with λ1 and λn being the smallest and largest eigenvalues of A, respectively. Thus, if
κ is large, the SD method may converge very slowly. In addition, Akaike [1] proved that
the gradients will asymptotically alternate between two directions in the subspace spanned
by the two eigenvectors corresponding to λ1 and λn . So, the SD method often has zigzag
phenomenon near the solution. Forsythe [18] generalized Akaike’s results to the so-called
optimum s-gradient method and Pronzato et al. [27] further generalized the results to the
so-called P-gradient method in the Hilbert space. Recently, by employing Akaike’s results,
Nocedal et al. [26] presented some insights for asymptotic behaviors of the SD method on
function values, stepsizes and gradient norms.

Contrary to the SD method, the minimal gradient (MG) method (see Dai and Yuan [10])
computes its stepsize by minimizing the gradient norm,

αMG
k = argmin

α
‖∇ f (xk − αgk)‖ = gTk Agk

gTk A2gk
. (6)

where ‖ · ‖ is the 2-norm. It is widely accepted that the MG method can also perform poorly
and has similar asymptotic behavior as the SD method, i.e., it will asymptotically zigzag in a
two-dimensional subspace. Zhou et al. [33] provided some interesting analyses on αMG

k for
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minimizing two-dimensional quadratics. However, rigorous asymptotic convergence results
of the MG method for minimizing general quadratic functions are very limit in literature.

In order to avoid the zigzagging pattern, it is useful to determine the stepsize without using
the exact stepsize because it would yield a gradient perpendicular to the current one. Barzilai
and Borwein [2] proposed the following two novel stepsizes:

αBB1
k = sTk−1sk−1

sTk−1yk−1
and αBB2

k = sTk−1yk−1

yTk−1yk−1
, (7)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. The Barzilai-Borwein (BB) method (7)
performs quite well in practice, though it generates a nonmonotone sequence of objective
values. Due to its simplicity and efficiency, the BB method has been widely studied [6–
8,17,28] and extended to general problems and various applications [3,22–25,29]. Another
line of research to break the zigzagging pattern and accelerate the convergence is occasionally
applying short stepsizes that approximate 1/λn to eliminate the corresponding component of
the gradient. One seminal work is due to Yuan [31,32], who derived the following stepsize:

αY
k = 2

1
αSD
k−1

+ 1
αSD
k

+
√(

1
αSD
k−1

− 1
αSD
k

)2

+ 4‖gk‖2
(αSD

k−1‖gk−1‖)2

. (8)

Dai and Yuan [11] further suggested a new gradient method with

αDY
k =

{
αSD
k , if mod(k, 4) < 2;

αY
k , otherwise.

(9)

The Dai-Yuan (DY) method (9) is a monotone method and appears very competitive with the
nonmonotone BB method. Recently, by employing the results in [1] and [26], De Asmundis
et al. [12] show that the stepsize αY

k converges to 1/λn if the SDmethod is applied to problem
(3). This spectral property is the key to break the zigzagging pattern.

In [9], Dai and Yang developed the asymptotic optimal gradient (AOPT) method whose
stepsize is given by

αAOPT
k = ‖gk‖

‖Agk‖ . (10)

Unlike the DY method, the AOPT method only has one stepsize. In addition, they show
that αAOPT

k asymptotically converges to 2
λ1+λn

, which is in some sense an optimal stepsize
since it minimizes ‖I −αA‖ over α [9,16]. However, the AOPT method also asymptotically
alternates between two directions. To accelerate theAOPTmethod,Huang et al. [21] derived a
new stepsize that converges to 1/λn during theAOPT iterates and further suggested a gradient
method to exploit spectral properties of the stepsizes. For the latest developments of exploiting
spectral properties to accelerate gradient methods, see [12–14,20,21] and references therein.

In this paper, we present the analysis on the asymptotic behaviors of gradient methods
and the techniques for breaking the zigzagging pattern. For a uniform analysis, we consider
the following stepsize

αk = gTk Ψ (A)gk

gTk Ψ (A)Agk
, (11)

where Ψ is a real analytic function on [λ1, λn] and can be expressed by Laurent series

Ψ (z) =
∞∑

k=−∞
ckz

k, ck ∈ R,

123



    7 Page 4 of 29 Journal of Scientific Computing             (2022) 90:7 

such that 0 <
∑∞

k=−∞ ckzk < +∞ for all z ∈ [λ1, λn]. Apparently,αk is a family of stepsizes
thatwould give a family of gradientmethods.WhenΨ (A) = Au for somenonnegative integer
u, we get the following stepsize

αk = gTk Augk

gTk Au+1gk
. (12)

The αSD
k and αMG

k simply correspond to the cases u = 0 and u = 1, respectively.
We will present theoretical analysis on the asymptotic convergence on the family of

gradientmethodswhose stepsize can bewritten in the form (11), which provides justifications
for the zigzag behaviors of all these gradient methods including the SD and MGmethods. In
particular, we show that eachmethod in the family (11) will asymptotically alternate between
two directions associated with the two eigenvectors corresponding to λ1 and λn . Moreover,
we analyze the asymptotic behaviors of the objective value, gradient norm, and stepsize. It

is shown that, when Ψ (A) 	= I , the two sequences
{

Δ2k+1
Δ2k

}
and

{
Δ2k+2
Δ2k+1

}
may converge at

different speeds, while the odd and even subsequences
{

Δ2k+3
Δ2k+1

}
and

{
Δ2k+2
Δ2k

}
converge at

the same rate, where Δk = f (xk) − f ∗. Similar property is also possessed by the gradient
norm sequence. In addition, each method in the family (11) has the same worst asymptotic
convergence rate.

In order to accelerate the gradient methods (11), we investigate techniques for breaking
the zigzagging pattern. We derive a new stepsize α̃k based on finite termination for mini-
mizing two-dimensional strictly convex quadratic functions. For the n-dimensional case, we
prove that α̃k converges to 1/λn when gradient methods (11) are applied to problem (3).
Furthermore, based on this spectral property, we propose a periodic gradient method, which,
in a periodic mode, alternately uses the BB stepsize, stepsize (11) and our new stepsize α̃k .
Numerical comparisons of the proposed method with the BB [2], DY [11], ABBmin2 [19],
SDC [12] methods and Alg. 1 in [30] show that the new gradient method is very promising.
Our theoretical results also significantly improve and generalize those in [1] and [26], where
only the SD method (i.e., Ψ (A) = I ) is considered. We point out that [27] does not analyze
the asymptotic behaviors of the objective value, gradient norm, and stepsize, though (11) is
similar to their P-gradient method. Moreover, we develop techniques for accelerating these
zigzagmethods with simpler analysis. Notice that αAOPT

k can not be written in the form (11).
Thus, our results are not applicable to the AOPT method. On the other hand, the analysis of
the AOPT method presented by [9] can not be applied directly to the family of methods (11).

The paper is organized as follows. In Sect. 2, we analyze the asymptotic behaviors of
the family of gradient methods (11). In Sect. 3, we accelerate the gradient methods (11) by
developing techniques to break the zigzagging pattern and propose a new periodic gradient
method. Numerical experiments are presented in Sect. 4. Finally, some conclusions and
discussions are made in Sect. 5.

2 Asymptotic Behavior of the Family (11)

In this section, we present a uniform analysis on the asymptotic behavior of the family of
gradient methods (11) for general n-dimensional strictly convex quadratics.

Let {λ1, λ2, · · · , λn} be the eigenvalues of A, and {ξ1, ξ2, . . . , ξn} be the associated
orthonormal eigenvectors. Note that the gradient method is invariant under translations and
rotations when applying to a quadratic function. As pointed out by Fletcher in [17], we can
combine those gradient components if there are any multiple eigenvalues. Thus, for theoret-
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ical analysis, we assume without loss of generality that

A = diag{λ1, λ2, · · · , λn}, 0 < λ1 < λ2 < · · · < λn . (13)

Denoting the components of gk along the eigenvectors ξi by μ
(i)
k , i = 1, . . . , n, i.e.,

gk =
n∑

i=1

μ
(i)
k ξi . (14)

The above decomposition of gradient gk together with the update rule (2) gives that

gk+1 = gk − αk Agk =
k∏
j=0

(I − α j A)g0 =
n∑

i=1

μ
(i)
k+1ξi , (15)

where

μ
(i)
k+1 = (1 − αkλi )μ

(i)
k = μ

(i)
0

k∏
j=0

(1 − α jλi ). (16)

Defining the vector qk =
(
q(i)
k

)
with

q(i)
k =

(
μ

(i)
k

)2
‖μk‖2 (17)

and

γk = 1

αk
= gTk Ψ (A)Agk

gTk Ψ (A)gk
=

∑n
i=1 Ψ (λi )λi q

(i)
k∑n

i=1 Ψ (λi )q
(i)
k

, (18)

we can have from (16), (17) and (18) that

q(i)
k+1 = (λi − γk)

2q(i)
k∑n

i=1(λi − γk)2q
(i)
k

. (19)

In addition, by the definition of qk , we know that q(i)
k ≥ 0 for all i and

n∑
i=1

q(i)
k = 1, ∀ k ≥ 1.

Before establishing the asymptotic convergence of the family of gradient methods (11),
we first give some lemmas on the properties of the sequence {qk}.
Lemma 1 Suppose p ∈ R

n satisfies (i) p(i) ≥ 0 for all i = 1, 2, . . . , n; (ii) there exist at
least two i ′s with p(i) > 0; and (iii)

∑n
i=1 p

(i) = 1. Define T : Rn → R be the following
transformation:

(T p)(i) = (λi − γ (p))2 p(i)∑n
i=1(λi − γ (p))2 p(i)

, (20)

where

γ (p) =
∑n

i=1 Ψ (λi )λi p(i)∑n
i=1 Ψ (λi )p(i)

. (21)

Then we have
Θ(T p) ≥ Θ(p), (22)
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where

Θ(p) =
∑n

i=1 Ψ (λi )(λi − γ (p))2 p(i)∑n
i=1 Ψ (λi )p(i)

. (23)

In addition, (22) holds with equality if and only if there are two indices, say i1 and i2, such
that p(i) = 0 for all i /∈ {i1, i2} and

γ (T p) + γ (p) = λi1 + λi2 . (24)

Proof It follows from the definition of T p that

Θ(T p) =
∑n

i=1 Ψ (λi )(λi − γ (T p))2(T p)(i)∑n
i=1 Ψ (λi )(T p)(i)

=
∑n

i=1 Ψ (λi )(λi − γ (T p))2(λi − γ (p))2 p(i)∑n
i=1 Ψ (λi )(λi − γ (p))2 p(i)

. (25)

Let us define two vectors w = (wi ) ∈ R
n and z = (zi ) ∈ R

n by

wi = √
Ψ (λi )(λi − γ (T p))(λi − γ (p))

√
p(i)

and

zi = √
Ψ (λi )

√
p(i).

Then, we have from the Cauchy-Schwarz inequality that

‖w‖2‖z‖2 =
(

n∑
i=1

Ψ (λi )(λi − γ (T p))2(λi − γ (p))2 p(i)

) (
n∑

i=1

Ψ (λi )p
(i)

)

≥ (wT z)2 =
(

n∑
i=1

Ψ (λi )(λi − γ (T p))(λi − γ (p))p(i)

)2

. (26)

Using the definition of γ (p), we can obtain that

n∑
i=1

Ψ (λi )(λi − γ (T p))(λi − γ (p))p(i) −
n∑

i=1

Ψ (λi )(λi − γ (p))2 p(i)

= (γ (p) − γ (T p))
n∑

i=1

Ψ (λi )(λi − γ (p))p(i) = 0, (27)

which together with (26) gives(
n∑

i=1

Ψ (λi )(λi − γ (T p))2(λi − γ (p))2 p(i)

) (
n∑

i=1

Ψ (λi )p
(i)

)

≥
(

n∑
i=1

Ψ (λi )(λi − γ (p))2 p(i)

)2

. (28)

Then, the inequality (22) follows immediately.
The equality in (26) holds if and only if

√
Ψ (λi )(λi − γ (T p))(λi − γ (p))

√
p(i) = C

√
Ψ (λi )

√
p(i), i = 1, . . . , n (29)
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for some nonzero scalar C . Clearly, (29) holds when p(i) = 0. Suppose that there exist two
indices i1 and i2 such that p(i1), p(i2) > 0. It follows from (29) that

(λi1 − γ (T p))(λi1 − γ (p)) = (λi2 − γ (T p))(λi2 − γ (p)).

So, by the assumption (13), we have

λi1 + λi2 = γ (T p) + γ (p),

which again with assumption (13) imply that (29) holds if and only if p has only two nonzero
components and (24) holds. 
�

Lemma 2 Let p∗ ∈ R
n satisfy the conditions of Lemma 1 and T be the transformation (20).

If p∗ has only two nonzero components p(i1)∗ and p(i2)∗ , we have

(T p∗)(i1) = Ψ 2(λi2)p
(i2)∗

Ψ 2(λi1)p
(i1)∗ + Ψ 2(λi2)p

(i2)∗
, (30)

(T p∗)(i2) = Ψ 2(λi1)p
(i1)∗

Ψ 2(λi1)p
(i1)∗ + Ψ 2(λi2)p

(i2)∗
, (31)

(T 2 p∗)(i1) = p(i1)∗ , (T 2 p∗)(i2) = p(i2)∗ , (32)

and
γ (p∗) + γ (T p∗) = λi1 + λi2 , (33)

where the function γ is defined in (21). Moreover, p∗ = T p∗ if and only if

p(i1)∗ = Ψ (λi2)

Ψ (λi1) + Ψ (λi2)
and p(i2)∗ = Ψ (λi1)

Ψ (λi1) + Ψ (λi2)
. (34)

Proof By the definition of γ (p), we have

γ (p∗) = Ψ (λi1)λi1 p
(i1)∗ + Ψ (λi2)λi2 p

(i2)∗
Ψ (λi1)p

(i1)∗ + Ψ (λi2)p
(i2)∗

, (35)

which indicates that

λi1 − γ (p∗) = Ψ (λi2)p
(i2)∗ (λi1 − λi2)

Ψ (λi1)p
(i1)∗ + Ψ (λi2)p

(i2)∗
and

λi2 − γ (p∗) = Ψ (λi1)p
(i1)∗ (λi2 − λi1)

Ψ (λi1)p
(i1)∗ + Ψ (λi2)p

(i2)∗
.

Then, it follows from the definition of transformation T that

(T p∗)(i1) = (Ψ (λi2)p
(i2)∗ )2 p(i1)∗

(Ψ (λi2)p
(i2)∗ )2 p(i1)∗ + (Ψ (λi1)p

(i1)∗ )2 p(i2)∗

= Ψ 2(λi2)p
(i2)∗

Ψ 2(λi1)p
(i1)∗ + Ψ 2(λi2)p

(i2)∗
.
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This gives (30). Equation (31) can be proved similarly. By (30) and (31), we have

(T 2 p∗)(i1) = Ψ 2(λi2)(T p∗)(i2)

Ψ 2(λi1)(T p∗)(i1) + Ψ 2(λi2)(T p∗)(i2)

= Ψ 2(λi1)Ψ
2(λi2)p

(i1)∗
Ψ 2(λi1)Ψ

2(λi2)p
(i2)∗ + Ψ 2(λi1)Ψ

2(λi2)p
(i1)∗

= p(i1)∗
p(i1)∗ + p(i2)∗

= p(i1)∗ .

The result of (T 2 p∗)(i2) follows similarly. This proves (32).
Again by (30), (31) and the definition of function γ in (21), we have

γ (T p∗) = λi1Ψ (λi2)p
(i2)∗ + λi2Ψ (λi1)p

(i1)∗
Ψ (λi1)p

(i1)∗ + Ψ (λi2)p
(i2)∗

. (36)

Then, the equality (33) follows from (35) and (36). For (34), let

p(i1)∗ = Ψ 2(λi2)p
(i2)∗

Ψ 2(λi1)p
(i1)∗ + Ψ 2(λi2)p

(i2)∗
.

Rearranging terms and using p(i1)∗ + p(i2)∗ = 1, we have

Ψ 2(λi1)(p
(i1)∗ )2 = Ψ 2(λi2)(p

(i2)∗ )2,

which implies that

Ψ (λi1)p
(i1)∗ = Ψ (λi2)p

(i2)∗ .

This together with the fact p(i1)∗ + p(i2)∗ = 1 yields (34). 
�
Lemma 3 Let p ∈ R

n satisfy the conditions of Lemma 1 and T be the transformation (20).
Then, there exists a p∗ satisfying

lim
k→∞ T 2k p = p∗ and lim

k→∞ T 2k+1 p = T p∗, (37)

where p∗ and T p∗ have only two nonzero components satisfying

p(i1)∗ + p(i2)∗ = 1, p(i)∗ = 0, i 	= i1, i2, (38)

(T p∗)(i1) + (T p∗)(i2) = 1, (T p∗)(i) = 0, i 	= i1, i2, (39)

for some i1, i2 ∈ {1, . . . , n}. Hence, (30), (31), (32) and (33) hold.

Proof Let p0 = T 0 p = p and pk = T pk−1 = T k p0. Obviously, for all k ≥ 0, pk satisfies
(i) and (iii) of Lemma 1. Let imin = min{i ∈ N : p(i)

0 > 0} and imax = max{i ∈ N :
p(i)
0 > 0}, where N = {1, . . . , n}. From the definition of γ , we know λimin < γ (p) < λimax .

Thus, by the definition of T , we have p(imin)
1 > 0 and p(imax)

1 > 0. Then, by induction,
for all k ≥ 0, pk satisfies (ii) of Lemma 1. So, by Lemma 1, {Θ(pk)} is a monotonically
increasing sequence. Since λ1 ≤ γ (p) ≤ λn , we have (λi − γ (p))2 ≤ (λn − λ1)

2. Hence,
we have from the definition of Θ that Θ(pk) ≤ (λn − λ1)

2. Thus, {Θ(pk)} is convergent.
Let Θ∗ = limk→∞ Θ(pk) > 0.
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Denote the set of all limit points of {pk} by P∗ with cardinality |P∗|. Since {pk} is bounded,
|P∗| ≥ 1. For any subsequence {pk j } converging to some p∗ ∈ P∗, we have

lim
j→∞ Θ(pk j ) = Θ(p∗) and lim

j→∞ Θ(T pk j ) = Θ(T p∗),

by the continuity of Θ and T . Notice pk j+1 = T pk j , we have Θ∗ = Θ(p∗) = Θ(T p∗).
Since pk satisfies (i)–(iii) of Lemma 1 for all k ≥ 0, p∗ must satisfy (i) and (iii). If p∗

has only one positive component, we have Θ(p∗) = 0 which contradicts Θ(p∗) = Θ∗ > 0.
Hence, by Lemmas 1, 2 and Θ(p∗) = Θ(T p∗), p∗ has only two nonzero components,
say p(i1)∗ and p(i2)∗ , and their values are uniquely determined by the indices i1, i2 and the
eigenvalues λi1 and λi2 . This implies |P∗| < ∞. Furthermore, by Lemma 2, for any p∗ ∈ P∗,
T p∗ is given by (30) and (31), and T p∗ ∈ P∗.

We now show that |P∗| ≤ 2 by way of contradiction. Suppose |P∗| ≥ 3. For any p∗ ∈ P∗
and T p∗ ∈ P∗, denote δ1 and δ2 to be the distance from p∗ to P∗ \ {p∗} and from T p∗ to
P∗ \ {T p∗}, respectively. Since 3 ≤ |P∗| < ∞, we have δ1 > 0, δ2 > 0 and there exists an
infinite subsequence {pk j } such that

pk j → p∗, and pk j+1 = T pk j → T p∗,

but pk j+2 /∈ B (
p∗, 1

2 δ
) ∪ B (

T p∗, 1
2 δ

)
, where δ = min{δ1, δ2} and B(p∗, r) = {p : ‖p −

p∗‖ ≤ r}. However, by (32) we have T 2 p∗ = p∗. Hence, by continuity of T ,

lim
j→∞ pk j+2 = lim

j→∞ T pk j+1 = lim
j→∞ T 2 pk j = p∗,

which contradicts the choice of pk j+2 /∈ B (
p∗, 1

2 δ
)
. Thus, {pk} has at most two limit points

p∗ and T p∗, and both have only two nonzero components.
Now, we assume that p∗ is a limit point of {p2k}. Since T 2 p∗ = p∗, all subsequences of

{p2k} have the same limit point, i.e., p2k = T 2k p → p∗. Similarly, we have T 2k+1 p → T p∗.
Then, (38) and (39) follow directly from the analysis. 
�

Based on the above analysis, we can show that each gradient method in (11) will asymp-
totically reduces its search in a two-dimensional subspace spanned by the two eigenvectors
ξ1 and ξn .

Theorem 1 Assume that the starting point x0 has the property that

gT0 ξ1 	= 0 and gT0 ξn 	= 0. (40)

Let {xk} be the iterations generated by applying a method in (11) to solve problem (3). Then

lim
k→∞

(μ
(i)
2k )2∑n

j=1(μ
( j)
2k )2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + c2
, if i = 1,

0, if i = 2, . . . , n − 1,
c2

1 + c2
, if i = n,

(41)

and

lim
k→∞

(μ
(i)
2k+1)

2

∑n
j=1(μ

( j)
2k+1)

2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2Ψ 2(λn)

Ψ 2(λ1) + c2Ψ 2(λn)
, if i = 1,

0, if i = 2, . . . , n − 1,
Ψ 2(λ1)

Ψ 2(λ1) + c2Ψ 2(λn)
, if i = n,

(42)

where c is a nonzero constant and can be determined by the limit in (48).
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Proof By the assumption (40), we know that q0 satisfies (i)–(iii) of Lemma 1. Notice that
qk = T kq0. Then, by Lemma 3, there exists a p∗ such that the sequences {q2k} and {q2k+1}
converge to p∗ and T p∗, respectively, which have only two nonzero components satisfying
(38), (39) for some i1, i2 ∈ {1, . . . , n}, and (32) holds. Hence, if 1 < i1 < i2 < n, we have

lim
k→∞ q(n)

2k = 0, lim
k→∞

q(i2)
2k

q(i2)
2k+2

= 1, (43)

and

lim
k→∞(γ (q2k) + γ (q2k+1)) = γ (p∗) + γ (T p∗) = λi1 + λi2 .

In addition, since q(1)
0 > 0 and q(n)

0 > 0 by (40), we can see from the proof of Lemma 3 that

q(1)
k > 0, q(n)

k > 0 for all k ≥ 0. Thus, we have

lim
k→∞

q(n)
2k+2

q(n)
2k

= lim
k→∞

q(n)
2k+2

q(n)
2k

q(i2)
2k

q(i2)
2k+2

= lim
k→∞

(λn − γ (q2k+1))
2(λn − γ (q2k))2

(λi2 − γ (q2k+1))2(λi2 − γ (q2k))2

= (λn − γ (p∗))2(λn − γ (T p∗))2

(λi2 − γ (p∗))2(λi2 − γ (T p∗))2
> 1, (44)

where the inequality is due to λi1 < γ (p∗), γ (T p∗) < λi2 and λn > λi2 . So, q
(n)
2k → +∞,

which contradicts (43). Then, we must have i2 = n. In a similar way, we can show that
i1 = 1. Finally, the equalities in (41) and (42) follow directly from Lemma 2. 
�

In the following, we refer c as the same constant in Theorem 1. By Theorem 1 we can
directly obtain the asymptotic behavior of the stepsize.

Corollary 1 Under the conditions of Theorem 1, we have

lim
k→∞ α2k = Ψ (λ1) + c2Ψ (λn)

λ1(Ψ (λ1) + c2κΨ (λn))
(45)

and

lim
k→∞ α2k+1 = Ψ (λ1) + c2Ψ (λn)

λ1(κΨ (λ1) + c2Ψ (λn))
, (46)

where αk is defined in (11) and κ = λn/λ1 is the condition number of A. Moreover,

lim
k→∞

(
1

α2k
+ 1

α2k+1

)
= λ1 + λn . (47)

The next corollary interprets the constant c. A special result for the case Ψ (A) = I (i.e.,
the SD method) can be found in Lemma 3.4 of [26].

Corollary 2 Under the conditions of Theorem 1, we have

c = lim
k→∞

μ
(n)
2k

μ
(1)
2k

= −Ψ (λ1)

Ψ (λn)
lim
k→∞

μ
(1)
2k+1

μ
(n)
2k+1

. (48)

Proof It follows from Theorem 1 that

lim
k→∞

(μ
(n)
2k )2

(μ
(1)
2k )2

= Ψ 2(λ1)

Ψ 2(λn)
lim
k→∞

(μ
(1)
2k+1)

2

(μ
(n)
2k+1)

2
= c2. (49)
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Note that 1/λn < αk < 1/λ1 by the assumption (40). And we have by (16) that

μ
(1)
2k+2 =

2∏
�=1

(1 − α2k+�λ1)μ
(1)
2k

and

μ
(n)
2k+2 =

2∏
�=1

(1 − α2k+�λn)μ
(n)
2k .

Thus, the sequence
{

μ
(n)
2k

μ
(1)
2k

}
, and similarly for

{
μ

(1)
2k+1

μ
(n)
2k+1

}
, do not change its sign. Hence, without

loss of generality, we can assume by (49) that

c = lim
k→∞

μ
(n)
2k

μ
(1)
2k

. (50)

Then, by (16), (45) and (50), we have

lim
k→∞

μ
(1)
2k+1

μ
(n)
2k+1

= lim
k→∞

μ
(1)
2k (1 − α2kλ1)

μ
(n)
2k (1 − α2kλn)

= −c
Ψ (λn)

Ψ (λ1)
,

which gives (48). 
�
We have the following results on the asymptotic convergence of the function value.

Theorem 2 Under the conditions of Theorem 1, we have

lim
k→∞

f (x2k+1) − f ∗

f (x2k) − f ∗ = R1
f and lim

k→∞
f (x2k+2) − f ∗

f (x2k+1) − f ∗ = R2
f , (51)

where

R1
f = c2(κ − 1)2(Ψ 2(λ1) + c2κΨ 2(λn))

(Ψ (λ1) + c2κΨ (λn))2(c2 + κ)
, (52)

R2
f = c2(κ − 1)2(c2 + κ)Ψ 2(λ1)Ψ

2(λn)

(c2Ψ (λn) + κΨ (λ1))2(Ψ 2(λ1) + c2κΨ 2(λn))
. (53)

In addition, if Ψ (λn) = Ψ (λ1) or c2 = Ψ (λ1)/Ψ (λn), then R1
f = R2

f .

Proof Let εk = xk − x∗. Since gk = Aεk , by (14), we have

εk =
n∑

i=1

λ−1
i μ

(i)
k ξi .

By Theorem 1, we only need to consider the case μ
(i)
k = 0, i = 2, . . . , n − 1, that is,

εk = λ−1
1 μ

(1)
k ξ1 + λ−1

n μ
(n)
k ξn .

Thus,

f (xk) − f ∗ = 1

2
εTk Aεk = 1

2

λn(μ
(1)
k )2 + λ1(μ

(n)
k )2

λ1λn
. (54)
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Since

gk = μ
(1)
k ξ1 + μ

(n)
k ξn and αk = Ψ (λ1)(μ

(1)
k )2 + Ψ (λn)(μ

(n)
k )2

λ1Ψ (λ1)(μ
(1)
k )2 + λnΨ (λn)(μ

(n)
k )2

,

by the definition of εk and the update rule (2), we further have that

εk+1 = εk − αkgk = (λ−1
1 − αk)μ

(1)
k ξ1 + (λ−1

n − αk)μ
(n)
k ξn

=
Ψ (λn) (λn − λ1)

(
μ

(n)
k

)2
μ

(1)
k

λ1

(
λ1Ψ (λ1)

(
μ

(1)
k

)2 + λnΨ (λn)
(
μ

(n)
k

)2)ξ1

+
Ψ (λ1) (λ1 − λn)

(
μ

(1)
k

)2
μ

(n)
k

λn

(
λ1Ψ (λ1)

(
μ

(1)
k

)2 + λnΨ (λn)
(
μ

(n)
k

)2)ξn

=
(λn − λ1)

(
λnΨ (λn)

(
μ

(n)
k

)2
μ

(1)
k ξ1 − λ1Ψ (λ1)

(
μ

(1)
k

)2
μ

(n)
k ξn

)

λ1λn

(
λ1Ψ (λ1)

(
μ

(1)
k

)2 + λnΨ (λn)
(
μ

(n)
k

)2) .

Hence, we obtain

f (xk+1) − f ∗ = 1

2
εTk+1Aεk+1

= 1

2

(λn − λ1)
2
(
μ

(1)
k

)2 (
μ

(n)
k

)2 (
λnΨ

2 (λn)
(
μ

(n)
k

)2 + λ1Ψ
2 (λ1)

(
μ

(1)
k

)2)

λ1λn

(
λ1Ψ (λ1)

(
μ

(1)
k

)2 + λnΨ (λn)
(
μ

(n)
k

)2)2 .

(55)

Combining (54) with (55) yields that

f (xk+1) − f ∗

f (xk) − f ∗ = εTk+1Aεk+1

εTk Aεk

=

(
μ

(1)
k

)2 (
μ

(n)
k

)2
(κ − 1)2

(
κΨ 2 (λn)

(
μ

(n)
k

)2 + Ψ 2 (λ1)
(
μ

(1)
k

)2)
(

Ψ (λ1)
(
μ

(1)
k

)2 + κΨ (λn)
(
μ

(n)
k

)2)2 (
κ

(
μ

(1)
k

)2 +
(
μ

(n)
k

)2) ,

which gives (51) by substituting the limits of (μ
(1)
k )2 and

(
μ

(n)
k

)2
in Theorem 1.

Notice κ > 1 by our assumption. So, R1
f = R2

f is equivalent to

Ψ 2(λ1) + c2κΨ 2(λn)

(Ψ (λ1) + c2κΨ (λn))2(c2 + κ)
= (c2 + κ)Ψ 2(λ1)Ψ

2(λn)

(c2Ψ (λn) + κΨ (λ1))2(Ψ 2(λ1) + c2κΨ 2(λn))
,

which by rearranging terms gives

c4Ψ 2(λn)(Ψ (λn) − Ψ (λ1)) = Ψ 2(λ1)(Ψ (λn) − Ψ (λ1)).

Hence, R1
f = R2

f holds if Ψ (λn) = Ψ (λ1) or c2 = Ψ (λ1)/Ψ (λn). 
�
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Fig. 1 Problem (56) with n = 10:
convergence history of the

sequences
{
1 − Δ2k+1

Δ2k

}
and{

1 − Δ2k+2
Δ2k+1

}
generated by

gradient method (11) with
Ψ (A) = A (i.e., the MG method)

Remark 1 Theorem2 indicates that, whenΨ (A) = I (i.e., the SDmethod), the two sequences{
Δ2k+1
Δ2k

}
and

{
Δ2k+2
Δ2k+1

}
converge at the same speed, where Δk = f (xk) − f ∗. Otherwise, the

two sequences may converge at different rates.

To illustrate the results in Theorem 2, we apply gradient method (11) with Ψ (A) = A
(i.e., theMGmethod) to an instance of (3), where the vector of all ones was used as the initial
point, the matrix A is diagonal with

Aii = i
√
i, i = 1, . . . , n, (56)

and b = 0. Fig. 1 clearly shows the difference between R1
f and R2

f .
The next theorem shows the asymptotic convergence of the gradient norm.

Theorem 3 Under the conditions of Theorem 1, the following limits hold,

lim
k→∞

‖g2k+1‖2
‖g2k‖2 = R1

g and lim
k→∞

‖g2k+2‖2
‖g2k+1‖2 = R2

g, (57)

where

R1
g = c2(κ − 1)2(Ψ 2(λ1) + c2Ψ 2(λn))

(1 + c2)(Ψ (λ1) + c2κΨ (λn))2
, (58)

R2
g = c2(1 + c2)(κ − 1)2Ψ 2(λ1)Ψ

2(λn)

(c2Ψ (λn) + κΨ (λ1))2(Ψ 2(λ1) + c2Ψ 2(λn))
. (59)

In addition, if Ψ (λn) = κΨ (λ1) or c2 = Ψ (λ1)/Ψ (λn), then R1
g = R2

g.

Proof Using the same arguments as in Theorem 2, we have

‖gk‖2 = (μ
(1)
k )2 + (μ

(n)
k )2

and

‖gk+1‖2 = εTk+1A
2εk+1

=
(λn − λ1)

2
(
μ

(1)
k

)2 (
μ

(n)
k

)2 (
Ψ 2 (λn)

(
μ

(n)
k

)2 + Ψ 2 (λ1)
(
μ

(1)
k

)2)
(

λ1Ψ (λ1)
(
μ

(1)
k

)2 + λnΨ (λn)
(
μ

(n)
k

)2)2 ,
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which give that

‖gk+1‖2
‖gk‖2 =

(κ − 1)2(μ(1)
k )2(μ

(n)
k )2

(
Ψ 2 (λn)

(
μ

(n)
k

)2 + Ψ 2 (λ1)
(
μ

(1)
k

)2)
(

Ψ (λ1)
(
μ

(1)
k

)2 + κΨ (λn)
(
μ

(n)
k

)2)2 ((
μ

(1)
k

)2 +
(
μ

(n)
k

)2) .

Thus, (57) follows by substituting the limits of (μ
(1)
k )2 and (μ

(n)
k )2 in Theorem 1.

Notice κ > 1 by our assumption. So, R1
g = R2

g is equivalent to

Ψ 2(λ1) + c2Ψ 2(λn)

(1 + c2)(Ψ (λ1) + c2κΨ (λn))2
= (1 + c2)Ψ 2(λ1)Ψ

2(λn)

(c2Ψ (λn) + κΨ (λ1))2(Ψ 2(λ1) + c2Ψ 2(λn))
,

which by rearranging terms gives

c4Ψ 2(λn)(κΨ (λ1) − Ψ (λn)) = Ψ 2(λ1)(κΨ (λ1) − Ψ (λn)).

Hence, R1
g = R2

g holds if Ψ (λn) = κΨ (λ1) or c2 = Ψ (λ1)/Ψ (λn). 
�

Remark 2 Theorem 3 indicates that the two sequences
{ ‖g2k+1‖2

‖g2k‖2
}
and

{ ‖g2k+2‖2
‖g2k+1‖2

}
generated

by the method (11) with Ψ (A) = A (i.e., the MG method) converge at the same rate.
Otherwise, the two sequences may converge at different rates.

By Theorems 2 and 3, we can obtain the following corollary.

Corollary 3 Under the conditions of Theorem 1, we have

lim
k→∞

f (x2k+3) − f ∗

f (x2k+1) − f ∗ = lim
k→∞

f (x2k+2) − f ∗

f (x2k) − f ∗ = R1
f R

2
f , (60)

lim
k→∞

‖g2k+3‖2
‖g2k+1‖2 = lim

k→∞
‖g2k+2‖2
‖g2k‖2 = R1

g R
2
g. (61)

In addition,

R1
f R

2
f = R1

g R
2
g = c4(κ − 1)4Ψ 2(λ1)Ψ

2(λn)

(Ψ (λ1) + c2κΨ (λn))2(c2Ψ (λn) + κΨ (λ1))2
. (62)

Remark 3 Corollary 3 shows that the odd and even subsequences of objective values and
gradient norms converge at the same rate. Moreover, we have

R1
f R

2
f = R1

g R
2
g = (κ − 1)4

(1 + κ/t + tκ + κ2)2
≤

(
κ − 1

κ + 1

)4

, (63)

where t = c2Ψ (λn)/Ψ (λ1). Notice that the right side of (63) only depends on κ , which
implies these odd and even subsequences generated by all the gradient methods (11) will
have the same worst asymptotic rate independent of Ψ .

Now, as in [26], we define the minimum deviation

σ = min
i∈I

∣∣∣∣2λi − (λ1 + λn)

λn − λ1

∣∣∣∣ , (64)

where
I = {i : λ1 < λi < λn, gT0 ξi 	= 0, and λi 	= αk for all k}.
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Clearly, σ ∈ (0, 1). We now close this section by deriving a bound on the constant c defined
in Theorem 1. The following theorem generalizes the results in [1] and [26], where only the
case Ψ (A) = I (i.e., the SD method) is considered.

Theorem 4 Under the conditions of Theorem 1, and assuming that I is nonempty, we have

Ψ (λ1)

Ψ (λn)

1

φσ

≤ c2 ≤ Ψ (λ1)

Ψ (λn)
φσ , (65)

where

φσ = 2 + ησ + √
η2σ + 4ησ

2
and ησ = 4

(
1 + σ 2

1 − σ 2

)
. (66)

Proof Let p = q0. By the definition of T , we have that

(T k+2 p)(i)

(T k+2 p)(1)
= (T k p)(i)

(T k p)(1)
(λi − γ (T k p))2(λi − γ (T k+1 p))2

(λ1 − γ (T k p))2(λ1 − γ (T k+1 p))2
. (67)

It follows from Theorem 1 and Lemma 3 that

(T k p)(i)

(T k p)(1)
→ 0, i = 2, . . . , n − 1. (68)

By the continuity of T and (37) in Lemma 3, we always have that

(λi − γ (T k p))2(λi − γ (T k+1 p))2

(λ1 − γ (T k p))2(λ1 − γ (T k+1 p))2
→ (λi − γ (p∗))2(λi − γ (T p∗))2

(λ1 − γ (p∗))2(λ1 − γ (T p∗))2
,

which together with (67) and (68) implies that

(λi − γ (p∗))2(λi − γ (T p∗))2

(λ1 − γ (p∗))2(λ1 − γ (T p∗))2
≤ 1, i = 2, . . . , n − 1, (69)

where p∗ is the same vector as in Lemma 3. Clearly, (69) also holds for i = 1. As for i = n,
it follows from (33) in Lemma 2 and Theorem 1 that

γ (p∗) + γ (T p∗) = λ1 + λn, (70)

which yields that

(λn − γ (p∗))2(λn − γ (T p∗))2

(λ1 − γ (p∗))2(λ1 − γ (T p∗))2
= 1.

Thus, (69) holds for i = 1, . . . , n. Hence, we have

(λi − δ − (γ (p∗) − δ))2 (λi − δ − (γ (T p∗) − δ))2

≤ (λ1 − δ − (γ (p∗) − δ))2 (λ1 − δ − (γ (T p∗) − δ))2 , (71)

where δ = λ1+λn
2 . By (70) and (71), we obtain

(λi − δ − (γ (p∗) − δ))2 (λi − δ + (γ (p∗) − δ))2

≤
(

λ1 − λn

2
− (γ (p∗) − δ)

)2 (
λ1 − λn

2
+ (γ (p∗) − δ)

)2

,

which implies that (
λ1 − λn

2

)2

+ (λi − δ)2 ≥ 2 (γ (p∗) − δ)2 . (72)
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By Lemma 2 and Theorem 1, we have that

γ (p∗) = λ1Ψ (λ1)p
(1)∗ + λnΨ (λn)p

(n)∗
Ψ (λ1)p

(1)∗ + Ψ (λn)p
(n)∗

.

Substituting γ (p∗) into (72), we obtain
(

λ1 − λn

2

)2

+ (λi − δ)2 ≥ (λn − λ1)
2(Ψ (λn)c2 − Ψ (λ1))

2

2(Ψ (λn)c2 + Ψ (λ1))2
,

which gives

4

(
1 + σ 2

i

1 − σ 2
i

)
≥ (c2Ψ (λn) − Ψ (λ1))

2

c2Ψ (λ1)Ψ (λn)
, (73)

where σi = 2λi−(λ1+λn)
λn−λ1

. Noting that (73) holds for all i ∈ I. Thus, we have

(c2Ψ (λn) − Ψ (λ1))
2

c2Ψ (λ1)Ψ (λn)
≤ ησ , (74)

which implies (65). This completes the proof. 
�

3 Techniques for Breaking the Zigzagging Pattern

As shown in the previous section, all the gradient methods (11) asymptotically conduct the
searches in the two-dimensional subspace spanned by ξ1 and ξn . By (16), if eitherμ

(1)
k orμ(n)

k
equals to zero, the corresponding component will vanish at all subsequent iterations. Hence,
in order to break the undesired zigzagging pattern, a good strategy is to employ some stepsize
approximating 1/λ1 or 1/λn . In this section, wewill derive a new stepsize converging to 1/λn
and propose a periodic gradient method using this new stepsize.

3.1 A New Stepsize

Our new stepsize will be derived by imposing finite termination on minimizing two-
dimensional strictly convex quadratic function, see [31] for the case of Ψ (A) = I (i.e.,
the SD method).

To proceed, consider the quadratic optimization (3) with n = 2. Suppose x3 is the mini-
mizer after the following 3 iterations:

x1 = x0 − α0g0,

x2 = x1 − α1g1,

x3 = x2 − α2g2,

where gi 	= 0, i = 0, 1, 2, α0 and α2 are stepsizes given by (11), and α1 is a stepsize to be
derived.

By the stepsize definition (11), we have

gT0 Ψ (A)g1 = gT0 Ψ (A)g0 − α0g
T
0 Ψ (A)Ag0 = 0. (75)

Hence, for any given r ∈ R,
{

Ψ r (A)g0
‖Ψ r (A)g0‖ ,

Ψ 1−r (A)g1
‖Ψ 1−r (A)g1‖

}
forms an orthonormal basis of R2.

Then, for all x ∈ R
2, x − x1 can be expressed by this basis. Suppose there exist t, l ∈ R such
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that

x − x1 = t
Ψ r (A)g0

‖Ψ r (A)g0‖ + l
Ψ 1−r (A)g1

‖Ψ 1−r (A)g1‖ .

We expand f (x) at x1 and obtain

f (x) = f

(
x1 + t

Ψ r (A)g0
‖Ψ r (A)g0‖ + l

Ψ 1−r (A)g1
‖Ψ 1−r (A)g1‖

)

= f (x1) + ϑT
(
t
l

)
+ 1

2

(
t
l

)T

H

(
t
l

)
:= ϕ(t, l), (76)

where

ϑ = Bg1 =
⎛
⎝ gT1 Ψ r (A)g0

‖Ψ r (A)g0‖
gT1 Ψ 1−r (A)g1
‖Ψ 1−r (A)g1‖

⎞
⎠ with B =

(
Ψ r (A)g0

‖Ψ r (A)g0‖ ,
Ψ 1−r (A)g1

‖Ψ 1−r (A)g1‖
)T

(77)

and

H = BABT =
⎛
⎝

gT0 Ψ 2r (A)Ag0
‖Ψ r (A)g0‖2

gT0 Ψ (A)Ag1
‖Ψ r (A)g0‖‖Ψ 1−r (A)g1‖

gT0 Ψ (A)Ag1
‖Ψ r (A)g0‖‖Ψ 1−r (A)g1‖

gT1 Ψ 2(1−r)(A)Ag1
‖Ψ 1−r (A)g1‖2

⎞
⎠

=
⎛
⎝

gT0 Ψ 2r (A)Ag0
‖Ψ r (A)g0‖2 − gT1 Ψ (A)g1

α0‖Ψ r (A)g0‖‖Ψ 1−r (A)g1‖
− gT1 Ψ (A)g1

α0‖Ψ r (A)g0‖‖Ψ 1−r (A)g1‖
gT1 Ψ 2(1−r)(A)Ag1

‖Ψ 1−r (A)g1‖2

⎞
⎠ , (78)

where last equality is due to gT0 Ψ (A)Ag1 = − gT1 Ψ (A)g1
α0

which follows from g1 = g0−α0Ag0
and (75). Note that BT B = BBT = I . Then H is positive definite and has the same

eigenvalues as A. Consequently, the minimizer of ϕ is given by

(
t∗
l∗

)
= −H−1ϑ .

When x3 is the solution, we must have

x3 = x1 + t∗ Ψ r (A)g0
‖Ψ r (A)g0‖ + l∗ Ψ 1−r (A)g1

‖Ψ 1−r (A)g1‖ = x1 + BT
(
t∗
l∗

)
. (79)

Due to the fact that x3 = x2 − α2g2, we know x3 − x2 is parallel to g2. It follows from (79)
and x2 = x1 − α1g1 that

BT
(
t∗
l∗

)
+ α1g1 ‖ g2, (80)

which, by noting g2 = g1−α1Ag1 and expressing the two vectors in (80) by the above basis,
is equivalent to (

t∗
l∗

)
− (−α1ϑ) = −(H−1ϑ − α1ϑ) ‖ ϑ + H(−α1ϑ). (81)

Denote the components of ϑ by ϑi , and the components of H by Hi j , i, j = 1, 2. By (81),
we would have(

H22ϑ1 − H12ϑ2 − α1ζϑ1

H11ϑ2 − H12ϑ1 − α1ζϑ2

)
and

(
ϑ1 − α1(H11ϑ1 + H12ϑ2)

ϑ2 − α1(H12ϑ1 + H22ϑ2)

)
.

are parallel, where ζ = det(H) = det(A) > 0. It follows that

(H22ϑ1 − H12ϑ2 − α1ζϑ1)[ϑ2 − α1(H12ϑ1 + H22ϑ2)]
= (H11ϑ2 − H12ϑ1 − α1ζϑ2)[ϑ1 − α1(H11ϑ1 + H12ϑ2)],

123



    7 Page 18 of 29 Journal of Scientific Computing             (2022) 90:7 

which gives
α2
1ζΓ − α1(H11 + H22)Γ + Γ = 0, (82)

where

Γ = (H12ϑ1 + H22ϑ2)ϑ1 − (H11ϑ1 + H12ϑ2)ϑ2.

On the other hand, if (82) holds, we have (80) holds, which by (77), H−1 = BA−1BT

and BT B = I implies that

−BT H−1ϑ + α1g1 = −A−1g1 + α1g1 = −A−1(g1 − α1Ag1) = −A−1g2

is parallel to g2. Hence, g2 is an eigenvector of A, i.e. Ag2 = λg2 for some λ > 0, since
g2 	= 0. So, by (11), we get α2 = Ψ (λ)gT2 g2/(λΨ (λ)gT2 g2) = 1/λ. Therefore, g3 =
g2 − α2Ag2 = g2 − α2λg2 = 0, which implies x3 is the solution. Thus, (82) guarantees x3
is the minimizer.

Based on the above analysis, to ensure x3 is the minimizer, we only need to choose α1

satisfying
α2
1ζ − α1(H11 + H22) + 1 = 0, (83)

whose two positive roots are

(H11 + H22) ± √
(H11 + H22)2 − 4ζ

2ζ
.

These two roots are 1/λ1 and 1/λ2, where 0 < λ1 < λ2 are two eigenvalues of A. For
numerical reasons (see next subsection), we would like to choose α1 to be the smaller one
1/λ2, which can be calculated as

α1 = 2

(H11 + H22) + √
(H11 + H22)2 − 4ζ

= 2

(H11 + H22) +
√

(H11 − H22)2 + 4H2
12

. (84)

For general case, since gTk−1Ψ (A)gk = 0 we could propose our new stepsize at the k-th
iteration as

α̃k = 2

(Hk
11 + Hk

22) +
√

(Hk
11 − Hk

22)
2 + 4(Hk

12)
2
, (85)

where Hk
i j is the component of Hk :

Hk =
⎛
⎝

gTk−1Ψ
2r (A)Agk−1

‖Ψ r (A)gk−1‖2 − gTk Ψ (A)gk
αk−1‖Ψ r (A)gk−1‖‖Ψ 1−r (A)gk‖

− gTk Ψ (A)gk
αk−1‖Ψ r (A)gk−1‖‖Ψ 1−r (A)gk‖

gTk Ψ 2(1−r)(A)Agk
‖Ψ 1−r (A)gk‖2

⎞
⎠ (86)

and αk−1 is given by (11). Clearly, αY
k in (8) can be obtained by setting Ψ (A) = I in (86).

In addition, by (85) we have that

1

Hk
11 + Hk

22

≤ α̃k ≤ 1

max{Hk
11, H

k
22}

. (87)
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3.2 Spectral Property of the New Stepsize

The next theorem shows that the stepsize α̃k enjoys desirable spectral property.

Theorem 5 Suppose that the conditions of Theorem 1 hold. Let {xk} be the iterations gener-
ated by any gradient method in (11) to solve problem (3). Then

lim
k→∞ α̃k = 1

λn
. (88)

Proof It follows from (41) and (42) of Theorem 1 that

lim
k→∞ Hk

11 = lim
k→∞

gTk−1Ψ
2r (A)Agk−1

‖gk−1‖2
‖gk−1‖2

‖Ψ r (A)gk−1‖2

= λ1(c2Ψ 2r (λ1)Ψ
2(λn) + κΨ 2r (λn)Ψ

2(λ1))

c2Ψ 2r (λ1)Ψ 2(λn) + Ψ 2r (λn)Ψ 2(λ1)

and

lim
k→∞ Hk

22 = gTk Ψ 2(1−r)(A)Agk
‖gk‖2

‖gk‖2
‖Ψ 1−r (A)gk‖2

= λ1(Ψ
2(1−r)(λ1) + κc2Ψ 2(1−r)(λn))

Ψ 2(1−r)(λ1) + c2Ψ 2(1−r)(λn)

= λ1(Ψ
2(λ1)Ψ

2r (λn) + κc2Ψ 2(λn)Ψ
2r (λ1))

Ψ 2(λ1)Ψ 2r (λn) + c2Ψ 2(λn)Ψ 2r (λ1)
,

which give
lim
k→∞(Hk

11 + Hk
22) = λ1(κ + 1) (89)

and

lim
k→∞(Hk

11 − Hk
22) = λ1(κ − 1)(Ψ 2(λ1)Ψ

2r (λn) − c2Ψ 2(λn)Ψ
2r (λ1))

Ψ 2(λ1)Ψ 2r (λn) + c2Ψ 2(λn)Ψ 2r (λ1)
. (90)

Then, by the definition of αk , we have

gTk Ψ (A)gk = −αk−1g
T
k−1Ψ (A)Agk−1 + α2

k−1g
T
k−1Ψ (A)A2gk−1,

which together with (42) in Theorem 1 and (46) in Corollary 1 yields that

lim
k→∞(Hk

12)
2 = lim

k→∞
gTk Ψ (A)gk

α2
k−1‖Ψ r (A)gk−1‖2

gTk Ψ (A)gk
‖Ψ 1−r (A)gk‖2

= lim
k→∞

(
− 1

αk−1

gTk−1Ψ (A)Agk−1

‖Ψ r (A)gk−1‖2 + gTk−1Ψ (A)A2gk−1

‖Ψ r (A)gk−1‖2
)

gTk Ψ (A)gk
‖Ψ 1−r (A)gk‖2

=
[

− λ1(κΨ (λ1) + c2Ψ (λn))

Ψ (λ1) + c2Ψ (λn)

λ1(c2Ψ (λ1)Ψ
2(λn) + κΨ (λn)Ψ

2(λ1))

c2Ψ 2r (λ1)Ψ 2(λn) + Ψ 2r (λn)Ψ 2(λ1)

+ λ21(c
2Ψ (λ1)Ψ

2(λn) + κ2Ψ (λn)Ψ
2(λ1))

c2Ψ 2r (λ1)Ψ 2(λn) + Ψ 2r (λn)Ψ 2(λ1)

]
(Ψ (λ1) + c2Ψ (λn))Ψ

2r (λ1)Ψ
2r (λn)

Ψ 2(λ1)Ψ 2r (λn) + c2Ψ 2(λn)Ψ 2r (λ1)

= λ21c
2(κ − 1)2Ψ 2+2r (λ1)Ψ

2+2r (λn)

(Ψ 2(λ1)Ψ 2r (λn) + c2Ψ 2(λn)Ψ 2r (λ1))2
.

Then, from the above equality and (90), we obtain that

lim
k→∞

√
(Hk

11 − Hk
22)

2 + 4(Hk
12)

2 = λ1(κ − 1). (91)
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Fig. 2 Problem (92) with
n = 1, 000: convergence history
of the sequences {α̃k } and {ᾱk }
for the first 5,000 iterations of the
gradient method (11) with
Ψ (A) = A (i.e., the MG method)

Combining (89) and (91), we have that

lim
k→∞ α̃k = 2

λ1(κ + 1) + λ1(κ − 1)
= 1

λn
.

This completes the proof. 
�

Remark 4 When r = 1, we have from (87) that α̃k ≤ 1/Hk
22 = αSD

k . Hence, using the
stepsize α̃k will give a monotone gradient method. Theorem 5 indicates that the general α̃k

will have the asymptotic spectral property (88), and hence will be asymptotically be smaller
than αSD

k independent of r . But a proper choice r will facilitate the calculation of α̃k . This
will be more clear in the next section.

Using the similar arguments, we can also show the larger stepsize derived in Sect. 3.1
converges to 1/λ1.

Theorem 6 Let

ᾱk = 2

(Hk
11 + Hk

22) −
√

(Hk
11 − Hk

22)
2 + 4(Hk

12)
2
.

Under the conditions of Theorem 5, we have

lim
k→∞ ᾱk = 1

λ1
.

To present an intuitive illustration of the asymptotic behaviors of α̃k and ᾱk , we applied
the gradient method (11) with Ψ (A) = A (i.e., the MG method) to minimize the quadratic
function (3) with

A = diag{a1, a2, . . . , an} and b = 0, (92)

where a1 = 1, an = n and ai is randomly generated between 1 and n for i = 2, . . . , n − 1.
From Fig. 2, we can see that α̃k approximates 1/λn with satisfactory accuracy in a few
iterations. However, ᾱk converges to 1/λ1 even slower than the decreasing of gradient norm.
This, to some extent, explains the reason why we prefer α̃k to the short stepsize.
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Fig. 3 Problem (56) with n = 10: convergence history of objective values and stepsizes

Algorithm 1 Periodic gradient method
Choose an initial point x0 ∈ R

n , initial stepsize α0, positive integers Kb, Km , Ks , and termination tolerance
ε > 0.
Take one gradient step with α0
while ‖gk‖ > ε do

Take Kb BB steps
Take Km gradient steps with αk in (11)
Take Ks short steps with α̃t , where α̃t is the first stepsize after αk -steps

end while

3.3 A Periodic Gradient Method

A method alternately using αk in (11) and α̃k to minimize a two-dimensional quadratic
function will monotonically decrease the objective value, and terminates in 3 iterations.
However, for minimizing a general n-dimensional quadratic function, this alternating scheme
may not be efficient for the purpose of vanishing the component μ(n)

k . One possible reason is
that, as shown in Fig. 2, it needs tens of iterations for α̃k to approximate 1/λn with satisfactory
accuracy. In what follows, by incorporating the BB method, we develop an efficient periodic
gradient method using α̃k .

Figure 3 illustrates a comparison of the gradient method (11) using Ψ (A) = A (i.e., the
MG method) with a method using 20 BB2 steps first and then MG steps on solving problem
(56). We can see that by using some BB2 steps, the modified MG method is accelerated
and the stepsize α̃k will approximate 1/λn with a better accuracy. Thus, our method will
run some BB steps first. Now, we investigate the affect of reusing a short stepsize on the
performance of the gradient method (11). Suppose that we have a good approximation of
1/λn , say α = 1

λn+10−6 . We compare MG method with its two variants by applying (i)
α0 = α or (ii) α0 = . . . = α9 = α before using the MG stepsize. Figure 4 shows that
reusing α will accelerate the MGmethod. Hence, we prefer to reuse α̃k for some consecutive
steps when α̃k is a good approximation of 1/λn . Finally, our new method is summarized in
Algorithm 1, which periodically applies the BB stepsize, αk in (11) and α̃k . The R-linear
global convergence of Algorithm 1 for solving (3) can be established by showing that it
satisfies the property in [5], see the proof of Theorem 3 in [7] for example.

Remark 5 The BB steps in Algorithm 1 can either employ the BB1 or BB2 stepsize in (7).
The idea of using short stepsizes to eliminate the component μ

(n)
k has been investigated in

[12,13,20]. However, these methods are based on the SD method, i.e., occasionally applying
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Fig. 4 Problem (56) with n = 10:
the MG method (i.e., Ψ (A) = A)
with different stepsizes

Table 1 Average number of
iterations required by
Algorithm 1 with different values
of (Kb, Km , Ks )

ε Algorithm 1 (Kb, Km , Ks )

(10, 0, 0) (0, 60, 10) (50, 60, 0) (50, 60, 10)

10−6 290.3 331.2 327.1 301.7

10−9 805.5 779.0 703.3 549.7

10−12 1411.0 1052.8 1077.0 781.5

short steps during the iterates of the SD method. One exception is given by [21], where a
method is developed by employing new stepsizes during the iterates of the AOPT method.
But our method periodically uses three different stepsizes: the BB stepsize, stepsize (11) and
the new stepsize α̃k .

The following example shows that both BB steps and α̃k-steps are important to the effi-
ciency of our method. In particular, we consider Ψ (A) = I for αk in (11) and α̃k . We applied
Algorithm 1 to a 1000 dimensional quadratic problem in the form (92) with ai = 11i − 10
(see [11]). The iteration was stopped once the gradient norm reduces by a factor of ε. Five
different values of the parameter pair (Kb, Km, Ks) were tested. Table 1 presents average
number of iterations over ten different initial points randomly chosen from [−10, 10] required
by the method to meet a given tolerance. We see that, when Algorithm 1 takes no BB steps,
i.e. using (0, 60, 10), it performs better than using (10, 0, 0) for a tight tolerance. Notice that
Algorithm 1 with (10, 0, 0) reduces to the BB method with αBB1

k . If Algorithm 1 takes no
α̃k-steps, i.e. using (50, 60, 0), it is comparable to the case (0, 60, 10). However, when both
BB steps and α̃k-steps are taken, i.e. using (50, 60, 10), Algorithm 1 clearly outperforms the
other choices especially for a tight tolerance.

4 Numerical Experiments

In this section, we present numerical comparisons of Algorithm 1 and the followingmethods:
BB with αBB1

k [2], DY [11], ABBmin2 [19], SDC [12], and Alg. 1 in [30] (A1 for short).
Notice that the stepsize rule for Algorithm 1 can be written as
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αk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αBB
k , if mod(k, Kb + Km + Ks) < Kb;

αk(Ψ (A)), if Kb ≤ mod(k, Kb + Km + Ks) < Kb + Km;
α̃k(Ψ (A)), if mod(k, Kb + Km + Ks) = Kb + Km;
αk−1, otherwise,

(93)

where αBB
k can be either αBB1

k or αBB2
k , αk(Ψ (A)) and α̃k(Ψ (A)) are the stepsizes given

by (11) and (85), respectively. We tested the following four variants of Algorithm 1 using
combinations of the two BB stepsizes and Ψ (A) = I or A:

– BB1SD: αBB1
k and Ψ (A) = I in (93)

– BB1MG: αBB1
k and Ψ (A) = A in (93)

– BB2SD: αBB2
k and Ψ (A) = I in (93)

– BB2MG: αBB2
k and Ψ (A) = A in (93)

Nowwe derive a formula for the caseΨ (A) = A, i.e., αk(Ψ (A)) = αMG
k . If we set r = 0,

by (85), we have

α̃k = 2(
1

αSD
k−1

+ gTk A3gk
gTk A2gk

)
+

√(
1

αSD
k−1

− gTk A3gk
gTk A2gk

)2

+ 4(gTk Agk )2

(αMG
k−1 )

2‖gk−1‖2gTk A2gk

, (94)

which is expensive to compute directly. However, if we set r = 1/2, we get

α̃k = 2

1
αMG
k−1

+ 1
αMG
k

+
√(

1
αMG
k−1

− 1
αMG
k

)2

+ 4gTk Agk
(αMG

k−1 )
2gTk−1Agk−1

. (95)

This formula can be computed without additional cost because gTk−1Agk−1 and gTk Agk have
been obtained when computing the stepsizes αMG

k−1 and αMG
k .

All the methods in consideration were implemented in Matlab (v.9.0-R2016a) and carried
out on a PC with an Intel Core i7, 2.9 GHz processor and 8 GB of RAM runningWindows 10
system. We stopped the algorithm if the number of iteration exceeds 20,000 or the gradient
norm reduces by a factor of ε.

We have tested five different sets of problems in the form of (92) with spectrum distribu-
tions described in Table 2, see [21,30] for example. The rand function in Matlab was used
for generating Hessian of the first three problem sets. To investigate performances of the
compared methods on different values of Hessian condition number κ and tolerance factor ε,
we set κ to 104, 105, 106 and ε to 10−6, 10−9, 10−12, respectively. For each value of κ or ε,
average results over 10 different starting points with entries randomly generated in [−10, 10]
are presented in the following tables.

The parameter pair (Kb, Km, Ks) of our four methods was set to (60, 60, 40) for the first
three problem sets, and (100, 60, 50) for the last two problem sets. As in [19], the parameter
τ of the ABBmin2method was set to 0.9. For the SDC and A1methods, we chose parameters
to achieve best performance. Particularly, the parameter pair (h, s) of SDC was set to (8, 6)
for the first three problem sets and (30, 2) for the last two problem sets, while m of A1 was
set to 6.

Table 3 shows average number of iterations of the compared methods for the five sets of
problems listed in Table 2. We can see that, for the first problem set, our proposed methods
performmuch better than the BB, DY, SDC and A1methods, although the ABBmin2 method
seems surprisingly efficient among the compared methods. Similar results can be observed
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Table 2 Distributions of a j Set Spectrum

1 {a2, . . . , an−1} ⊂ (1, κ)

a1 = 1, an = κ

2 {v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , vn−1} ⊂ ( κ
2 , κ)

a1 = 1, an = κ

3 {a2, . . . , an/5} ⊂ (1, 100)

{an/5+1, . . . , a4n/5} ⊂ (100, κ
2 )

{a4n/5+1, . . . , an−1} ⊂ ( κ
2 , κ)

a1 = 1, an = κ

4 a j = κ
2

(
1 + cos n− j

n−1π
)

5 a j = κ
n− j
n−1

for the fourth problem set, our proposedmethods are comparable to ABBmin2 and faster than
other compared methods. Results on the second problem set are slightly different with the
former one, where A1 becomes the winner and our proposed methods outperform BB, DY,
ABBmin2 and SDCmethods. For the third and last problems sets, those results show evidence
of our proposedmethods over other comparedmethods, especiallywhen the condition number
is large and a tight tolerance is required.

5 Conclusions and Discussions

We present theoretical analyses on the asymptotic behaviors of a family of gradient methods
whose stepsize is given by (11), which includes the steepest descent and minimal gradient
methods as special cases. It is shown that each method in this family will asymptotically
zigzag in a two-dimensional subspace spanned by the two eigenvectors corresponding to the
largest and smallest eigenvalues of the Hessian. In order to accelerate the gradient methods,
we exploit the spectral property of a new stepsize to break the zigzagging pattern. This new
stepsize is derived by imposing finite termination on minimizing two-dimensional strongly
convex quadratics and is proved to converge to the reciprocal of the largest eigenvalue of
the Hessian for general n-dimensional case. Finally, we propose a very efficient periodic
gradient method that alternately uses the BB stepsize, αk in (11) and our new stepsize. Our
numerical results indicate that, by exploiting the asymptotic behavior and spectral properties
of stepsizes, gradient methods can be greatly accelerated to outperform the BB method and
other recently developed state-of-the-art gradient methods.

One may also break the zigzagging pattern by employing spectral property in (47). In
particular, we could use the following stepsize

α̂k =
(

1

α2k
+ 1

α2k+1

)−1

, (96)

which, by (47), satisfies that

lim
k→∞ α̂k = 1

λ1 + λn
.
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Hence, α̂k is also a good approximation of 1/λn when the condition number κ = λn/λ1 is
large. One may see [13] for the case of the SD method.
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