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Abstract

We consider the asymptotic behavior of a family of gradient methods, which include the
steepest descent and minimal gradient methods as special instances. It is proved that each
method in the family will asymptotically zigzag between two directions. Asymptotic con-
vergence results of the objective value, gradient norm, and stepsize are presented as well. To
accelerate the family of gradient methods, we further exploit spectral properties of stepsizes
to break the zigzagging pattern. In particular, a new stepsize is derived by imposing finite
termination on minimizing two-dimensional strictly convex quadratic function. It is shown
that, for the general quadratic function, the proposed stepsize asymptotically converges to the
reciprocal of the largest eigenvalue of the Hessian. Furthermore, based on this spectral prop-
erty, we propose a periodic gradient method by incorporating the Barzilai-Borwein method.
Numerical comparisons with some recent successful gradient methods show that our new
method is very promising.

Keywords Gradient methods - Asymptotic convergence - Spectral property - Acceleration
of gradient methods - Barzilai-Borwein method - Unconstrained optimization - Quadratic
optimization

B Hongchao Zhang
hozhang @math.Isu.edu

Yakui Huang
huangyakui2006 @ gmail.com

Yu-Hong Dai
dyh@Isec.cc.ac.cn

Xin-Wei Liu
mathlxw @hebut.edu.cn
Institute of Mathematics, Hebei University of Technology, Tianjin 300401, China

LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049,
China

4 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

Published online: 19 November 2021 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01685-8&domain=pdf

7 Page2of29 Journal of Scientific Computing (2022) 90:7

1 Introduction

The gradient method is well-known for solving the following unconstrained optimization

min f(x), (n

xeR"

where f : R" — Ris continuously differentiable, especially when the dimension n is large.
In particular, at the k-th iteration gradient methods update the iterates by

Xk+1 = Xk — O gk 2)

where gr = V f(xx) and o > 0 is the stepsize determined by the method.
One simplest nontrivial nonlinear instance of (1) is the quadratic optimization

min f(x) = leAx —bTx 3)
xeRn 2 ’

where b € R" and A € R™*" is symmetric and positive definite. Solving (3) efficiently
is usually a pre-requisite for a method to be generalized to solve more general optimiza-
tion. In addition, by Taylor’s expansion, a general smooth function can be approximated
by a quadratic function near the minimizer. So, the local convergence behaviors of gradient
methods are often reflected by solving (3). Hence, in this paper, we focus on studying the
convergence behaviors and propose efficient gradient methods for solving (3) efficiently.
The classic steepest descent (SD) method proposed by Cauchy [4] solves (3) by using the
exact stepsize
81 8k
81 Agk

o’ = argmin f (i — age) =

“

Although a,f D minimizes f along the steepest descent direction, the SD method often per-
forms poorly in practice and has linear converge rate [1,18] as

fGren) = f* (x - 1)"‘
fao—f ~\e+1)

where f* is the optimal function value of (3) and ¥k = A, /A1 is the condition number of
A with A1 and A, being the smallest and largest eigenvalues of A, respectively. Thus, if
Kk is large, the SD method may converge very slowly. In addition, Akaike [1] proved that
the gradients will asymptotically alternate between two directions in the subspace spanned
by the two eigenvectors corresponding to A1 and A,. So, the SD method often has zigzag
phenomenon near the solution. Forsythe [18] generalized Akaike’s results to the so-called
optimum s-gradient method and Pronzato et al. [27] further generalized the results to the
so-called P-gradient method in the Hilbert space. Recently, by employing Akaike’s results,
Nocedal et al. [26] presented some insights for asymptotic behaviors of the SD method on
function values, stepsizes and gradient norms.

Contrary to the SD method, the minimal gradient (MG) method (see Dai and Yuan [10])
computes its stepsize by minimizing the gradient norm,

(&)

T
. 8i A8k
o' = argmin |V f(xx — ago)ll = = (6)
o 8k AZg
where || - || is the 2-norm. It is widely accepted that the MG method can also perform poorly

and has similar asymptotic behavior as the SD method, i.e., it will asymptotically zigzag in a
two-dimensional subspace. Zhou et al. [33] provided some interesting analyses on oc,f’[ G for
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minimizing two-dimensional quadratics. However, rigorous asymptotic convergence results
of the MG method for minimizing general quadratic functions are very limit in literature.

In order to avoid the zigzagging pattern, it is useful to determine the stepsize without using
the exact stepsize because it would yield a gradient perpendicular to the current one. Barzilai
and Borwein [2] proposed the following two novel stepsizes:

a,fBl = 7%;1%71 and a,fBz = 751;1)71(71 , @)
Sg—1Yk—1 Vi—1Yk—1

where sp_1 = xx — x;—1 and yx—1 = gr — gk—1. The Barzilai-Borwein (BB) method (7)
performs quite well in practice, though it generates a nonmonotone sequence of objective
values. Due to its simplicity and efficiency, the BB method has been widely studied [6—
8,17,28] and extended to general problems and various applications [3,22-25,29]. Another
line of research to break the zigzagging pattern and accelerate the convergence is occasionally
applying short stepsizes that approximate 1/, to eliminate the corresponding component of
the gradient. One seminal work is due to Yuan [31,32], who derived the following stepsize:

2
| 4lgi 2
+ =5+ =5 — T
SD SD akPl af? @” lgk-11n?

Dai and Yuan [11] further suggested a new gradient method with

ok Y (C))

DY _ apP,  ifmod(k, 4) < 2;
a; , otherwise.

The Dai-Yuan (DY) method (9) is a monotone method and appears very competitive with the
nonmonotone BB method. Recently, by employing the results in [1] and [26], De Asmundis
etal. [12] show that the stepsize « ,f converges to 1/, if the SD method is applied to problem
(3). This spectral property is the key to break the zigzagging pattern.

In [9], Dai and Yang developed the asymptotic optimal gradient (AOPT) method whose
stepsize is given by

al,(qop]‘ _ llgxll . (10)
Agkll
Unlike the DY method, the AOPT method only has one stepsize. In addition, they show
that aAOP T asymptotically converges to FYE +A , which is in some sense an optimal stepsize
since 1t minimizes ||/ — o A|| over @ [9,16]. However, the AOPT method also asymptotically
alternates between two directions. To accelerate the AOPT method, Huang etal. [21] derived a
new stepsize that converges to 1/, during the AOPT iterates and further suggested a gradient
method to exploit spectral properties of the stepsizes. For the latest developments of exploiting
spectral properties to accelerate gradient methods, see [12—14,20,21] and references therein.
In this paper, we present the analysis on the asymptotic behaviors of gradient methods
and the techniques for breaking the zigzagging pattern. For a uniform analysis, we consider
the following stepsize
gl (A)g

ap = ok~ o0 (11)
gl W (A)Agk

where ¥ is a real analytic function on [A1, A,;] and can be expressed by Laurent series

o0

V@)= ) a. ek,

k=—00
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suchthatO < Y 22 _ cxzk < +ooforallz € [Aq, A,]. Apparently, oy is a family of stepsizes
that would give a family of gradient methods. When ¥ (A) = A for some nonnegative integer
u, we get the following stepsize
T Au
oy = S8 (12)
8k Attigy
The (x,f D and oz,/cw G simply correspond to the cases u = 0 and u = 1, respectively.

We will present theoretical analysis on the asymptotic convergence on the family of
gradient methods whose stepsize can be written in the form (11), which provides justifications
for the zigzag behaviors of all these gradient methods including the SD and MG methods. In
particular, we show that each method in the family (11) will asymptotically alternate between
two directions associated with the two eigenvectors corresponding to A and A,. Moreover,
we analyze the asymptotic behaviors of the objective value, gradient norm, and stepsize. It

is shown that, when ¥ (A) # I, the two sequences [ AAZI;ZI ] and [%ﬁ] may converge at

Aoy ] Agin
Ak Aok
the same rate, where Ay = f(xx) — f*. Similar property is also possessed by the gradient
norm sequence. In addition, each method in the family (11) has the same worst asymptotic
convergence rate.

In order to accelerate the gradient methods (11), we investigate techniques for breaking
the zigzagging pattern. We derive a new stepsize & based on finite termination for mini-
mizing two-dimensional strictly convex quadratic functions. For the n-dimensional case, we
prove that @i converges to 1/4, when gradient methods (11) are applied to problem (3).
Furthermore, based on this spectral property, we propose a periodic gradient method, which,
in a periodic mode, alternately uses the BB stepsize, stepsize (11) and our new stepsize @y.
Numerical comparisons of the proposed method with the BB [2], DY [11], ABBmin2 [19],
SDC [12] methods and Alg. 1 in [30] show that the new gradient method is very promising.
Our theoretical results also significantly improve and generalize those in [1] and [26], where
only the SD method (i.e., ¥ (A) = I) is considered. We point out that [27] does not analyze
the asymptotic behaviors of the objective value, gradient norm, and stepsize, though (11) is
similar to their P-gradient method. Moreover, we develop techniques for accelerating these
zigzag methods with simpler analysis. Notice that « ,?OP T can not be written in the form (11).
Thus, our results are not applicable to the AOPT method. On the other hand, the analysis of
the AOPT method presented by [9] can not be applied directly to the family of methods (11).

The paper is organized as follows. In Sect. 2, we analyze the asymptotic behaviors of
the family of gradient methods (11). In Sect. 3, we accelerate the gradient methods (11) by
developing techniques to break the zigzagging pattern and propose a new periodic gradient
method. Numerical experiments are presented in Sect. 4. Finally, some conclusions and
discussions are made in Sect. 5.

different speeds, while the odd and even subsequences [ converge at

2 Asymptotic Behavior of the Family (11)

In this section, we present a uniform analysis on the asymptotic behavior of the family of
gradient methods (11) for general n-dimensional strictly convex quadratics.

Let {A1, A2, -+, A} be the eigenvalues of A, and {&1, &>, ..., &,} be the associated
orthonormal eigenvectors. Note that the gradient method is invariant under translations and
rotations when applying to a quadratic function. As pointed out by Fletcher in [17], we can
combine those gradient components if there are any multiple eigenvalues. Thus, for theoret-
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ical analysis, we assume without loss of generality that

A =diag{ii, ko, - L An}, O< Al <Ap <+ <Ay (13)
Denoting the components of g, along the eigenvectors &; by /L,(f), i=1,...,n,ie.,
n
ge= u&. (14)
i=1
The above decomposition of gradient g; together with the update rule (2) gives that
k n
gert =gk — o Ag = [ [ —ajA)g0 =Y w &, (15)
j=0 i=1
where }
wil = = = pug’ [T —a;m). (16)
j=0

Defining the vector gx = (qlgi)) with

N\ 2
%
i) _ (1)

q
k e

a7

and

1 g vWAn X w0k 18
Vi = o oJTw(A - n @ (18
k 8k ( )gk Zi:l q/(}‘l)qk

we can have from (16), (17) and (18) that

q(i) _ ri — )’k)qugl)
k+1 — i)
Y G — vi0qy)

In addition, by the definition of g, we know that qlgi) > 0 for all i and

n
Yg'=1 V=1
i=1

Before establishing the asymptotic convergence of the family of gradient methods (11),
we first give some lemmas on the properties of the sequence {g}.

(19)

Lemma 1 Suppose p € R" satisfies (i) p) > 0 foralli = 1,2, ..., n; (ii) there exist at
least two i's with p© > 0; and (iii) Y_'_, p) = 1. Define T : R" — R be the following
transformation:

*i —y(p)*p?

(Tp)" = ~ (20)
B S i =y ()2 p®
where s 0
i1 Y (Ai)Ai pY
i=1 L
=== 7" 21
v(p) ST WG pD 2D
Then we have
O(Tp) > O(p), (22)
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where )

I P0G — y(p)2p®
dim (i) p®

In add{tion, (22) holds with equality if and only if there are two indices, say i\ and iy, such

that p® =0 forall i ¢ {iy, i2} and

y(Tp)+y(p) =2 +Asy. 24

O(p) = (23)

Proof Tt follows from the definition of 7T p that
Y Y000 — y(Tp)*(Tp)?
2 (TP ®
Y 0D — v (Tp)* i — v (p)*pt?
B Y YD — v (p)2p®

Let us define two vectors w = (w;) € R" and z = (z;) € R" by

O(Tp) =

(25)

wi = V¥R i — y(Tp) i — ¥ (p)y/ p?

and

i = VW) pD.

Then, we have from the Cauchy-Schwarz inequality that

lwi?zl* = (Z W () (hi — y(Tp)* (ki — y(p))zp“)) (Z W(mp("))
i=1

i=1

" 2
> 'z’ = (Z W) (i =y (Tp) (i — y(p)>p<">> : (26)
i=1
Using the definition of y (p), we can obtain that

D WO =y (Tp)H i —y(p)p? =Y G0 — v (p)*p?

i=1 i=1

= () —y(Tp) Y ¥ —y(p)Hp? =0, 27)

i=1

which together with (26) gives

(Z W ()0 — y(Tp))* (ki — y(p))zp“") (Z m»p(“)
i=1

i=1
n 2

> (Z W () (hi — y(p))2p<">> : (28)
i=1

Then, the inequality (22) follows immediately.
The equality in (26) holds if and only if

VIR Qi =y (Tp)i —y(p)y pD = Cy¥ i/ p®, i=1,....n (29)
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for some nonzero scalar C. Clearly, (29) holds when p¥ = 0. Suppose that there exist two
indices i1 and i such that p("), p(’Z) > 0. It follows from (29) that

iy =y (T p) iy —y(p) = (hiy =y (Tp))(hiy — v ().

So, by the assumption (13), we have

)‘il + )‘iz = J/(TP) + V(P),

which again with assumption (13) imply that (29) holds if and only if p has only two nonzero
components and (24) holds. ]

Lemma2 Let p. € R" satisfy the conditions of Lemma I and T be the transformation (20).

If p« has only two nonzero components piil) and pfkiZ) , we have
. lI/Z()\' )p(lz)
(Tp.)™ = . s L (30)
V(i) px” + ¥ (hiy) s
) 11/2()\ )p(ll)
(Tp.) ™ = . s o 31
V(i) px” + ¥ (hiy) s
(T?p)™ = p{V, (1?p) @ = p{?, (32)
and
Y(Ps) + v (Tps) = Xiy + Xiy, (33)
where the function y is defined in (21). Moreover, p, = T py if and only if
. (A ; ¥ (A
P = e Giz) and p = — LG (34)
(Ri)) + ¥ (%) ¥ (hiy) + ¥ (Aiy)
Proof By the definition of y (p), we have
W i) ki P+ W iy )iy pE
y(po) = s 2P (35)
W()»il)P* + W(Aiz)p*
which indicates that
(i2)
V(i) ps” (hiy — i)
Aip — v(ps) = 2 (i;; d lz(l»z)
Y(Ai)ps " + Wiy px
and
@i1)
V(i) ps (hiy — Aiy)
hiy =y (py) = ——— b e Z A

@ i) pdV + W (hiy) pi?

Then, it follows from the definition of transformation 7' that

(W (i) pi2)2 p 0
P02 0 L ) piy2 )
(P ( 12)17* ) ps +( (zl)P* )= D
B w2 (1) pi

W20 piY + W2 (k) pi?

(Tp*)(il) —
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This gives (30). Equation (31) can be proved similarly. By (30) and (31), we have

U2 () (Tps) @

W2 () (T ) + W2 (0, ) (Tpy) @
20,2 (hiy) p
20,2 hiy) p 4+ w200 )2 (hiy) I

(i1)

—__Px (i)

==
i 4 pi?

(T2p0) ™ =

The result of (T2 p,) follows similarly. This proves (32).
Again by (30), (31) and the definition of function y in (21), we have

S (Tpey = H ¥ O P ¥ G )pi

() pi + W Oy) pl? o

Then, the equality (33) follows from (35) and (36). For (34), let

M _ W2 (i) pi?

T wa)p + W00 p?
Rearranging terms and using p\'" + p{» = 1, we have

w20 (p{)? = 2 0 (P22,
which implies that

04 P = W 0ay) i)

This together with the fact p{'¥ + pl? = 1 yields (34). |

Lemma3 Letr p € R” satisfy the conditions of Lemma 1 and T be the transformation (20).
Then, there exists a p satisfying

lim 7%p = p, and lim T?**'p = Tp,, (37)
k—o00 k—o00

where p, and T py have only two nonzero components satisfying

P 4 pli) =1 pD =0, i £iy, i, (38)
(Tp)W + (Tp) ™ =1, (Tp) P =0, i #iy,i, (39)

for some iy, iy € {1,...,n}. Hence, (30), (31), (32) and (33) hold.

Proof Let po = T%p = p and py = T pr—1 = T* po. Obviously, for all k > 0, py satisfies
(1) and (iii) of Lemma 1. Let iy, = min{i € N : p(()’) > 0} and ipax = max{i € N :
p(()l) > 0}, where N' = {1, ..., n}. From the definition of y, we know ;. < ¥ (P) < Ay -

Thus, by the definition of 7, we have pii"““) > 0 and pgi"‘“‘) > 0. Then, by induction,

for all k > 0, py satisfies (ii) of Lemma 1. So, by Lemma 1, {® (px)} is a monotonically
increasing sequence. Since A < y(p) < A,, we have (4; — y(p))2 < (Ay — A1) Hence,
we have from the definition of @ that @ (pr) < (A, — A1)2. Thus, {O(py)} is convergent.
Let ®, = limg_, 00 ©(pr) > 0.
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Denote the set of all limit points of { px } by P, with cardinality | P,|. Since { px} is bounded,
|P«| > 1. For any subsequence {py;} converging to some p, € Py, we have

lim ©(py,) = O(p,) and  lim O(Tpy,) = O(Tps),
j—o00 Jj—00

by the continuity of & and T. Notice pk;+1 = Tp;, we have @, = O (ps) = O(Tpx).

Since py satisfies (i)—(iii) of Lemma 1 for all k > 0, p, must satisfy (i) and (iii). If p
has only one positive component, we have & (p,) = 0 which contradicts @ (p,) = O, > 0.
Hence, by Lemmas 1, 2 and ®@(p,) = & (Tps), p« has only two nonzero components,
say p( ) and p( ") and their values are uniquely determined by the indices i, i; and the
eigenvalues A;, and Ai,. This implies | P«| < oo. Furthermore, by Lemma 2, for any p. € Py,
T p« is given by (30) and (31), and Tpy € Py.

We now show that | P,| < 2 by way of contradiction. Suppose | P«| > 3. For any p, € P,
and Tp, € Py, denote §; and §, to be the distance from p, to P, \ {p.} and from T p, to
P\ {Tp.}, respectively. Since 3 < | P,| < oo, we have §; > 0, 6 > 0 and there exists an
infinite subsequence {p;} such that

Pk; — DPx and Pkj+1 = Tpkj g Tp*v

but pi; 42 & B (pe. 58) U B (Tps, 58), where § = min{8;, 82} and B(ps.7) = {p : llp —
p«|l < r}. However, by (32) we have T2 P« = P«. Hence, by continuity of T,

. . . 2
lim pg10 = lim Tpg,41 = lim T py; = ps,

which contradicts the choice of py; 42 ¢ B ( )25 %8) Thus, {pr} has at most two limit points
P« and T p,., and both have only two nonzero components.

Now, we assume that p, is a limit point of {pox}. Since T2p, = ps, all subsequences of
{ pox } have the same limit point, i.e., pox = T%*p - p,. Similarly, we have T2+ p 5 Tp,.
Then, (38) and (39) follow directly from the analysis. ]

Based on the above analysis, we can show that each gradient method in (11) will asymp-
totically reduces its search in a two-dimensional subspace spanned by the two eigenvectors
& and §,.

Theorem 1 Assume that the starting point xo has the property that

8061 # 0 and g5 &, # 0. (40)
Let {xy} be the iterations generated by applying a method in (11) to solve problem (3). Then

L VS
i)y 142’ yi=1,
lim 7”— 0, fi=2....n-1 “D
k—00 Z/— (,LL J 62 .
Ty Fi=nm
and 202
W () ifi=1
WD 52 W2(hp) + 2P2(h,) ’
l'm¢= 7 ifi=2,....,n—1, (42)
k=oo 370 1(H2k+1 w2 (h) ifi=n

"IIZ()H) + Czl]/z()wl) '

where c is a nonzero constant and can be determined by the limit in (48).
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Proof By the assumption (40), we know that g¢ satisfies (i)—(iii) of Lemma 1. Notice that
gk = quo- Then, by Lemma 3, there exists a p, such that the sequences {g2x} and {gax+1}
converge to p, and T p,, respectively, which have only two nonzero components satisfying

(38), (39) for some iy, iz € {1,...,n}, and (32) holds. Hence, if 1 < i; < iy < n, we have
lim ¢ =0, lim 0’ _ 1 (43)
EREETE R,

and

kILH;O(V(QZk) + ¥ (qau+1) = v (ps) + ¥ (Tps) = iy + Ay

In addition, since q(()l) > (0 and q(()") > 0 by (40), we can see from the proof of Lemma 3 that

g"” > 0,4 > 0forall k > 0. Thus, we have

(n) i
e D G 40 On = @) O = v (g20)?
o0 g koo W gt T it Ghiy — g2k )2y — ¥ (@200)°

_ O =y (PO =y (Tp))?
iy = ¥ (P))? (i, = ¥ (Tps))?

> 1, (44)

where the inequality is due to A;; < Y (px«), ¥ (Tpx) < Aj, and A, > Ajy. So, qé’,? — +00,
which contradicts (43). Then, we must have i; = n. In a similar way, we can show that
i1 = 1. Finally, the equalities in (41) and (42) follow directly from Lemma 2. O

In the following, we refer ¢ as the same constant in Theorem 1. By Theorem 1 we can
directly obtain the asymptotic behavior of the stepsize.

Corollary 1 Under the conditions of Theorem I, we have

W (1) + AW (hy)

li = 45
koo 2 T LW ) + C2RW (o)) (45)
and 5
. Y(h) + ¥ (hn)
1 = , 46
koo SR = S W ) + W () (46)
where oy, is defined in (11) and k = ,, /A1 is the condition number of A. Moreover,
lim (— ) =XA + An. 47)
k—oo \ @2k O2k+1

The next corollary interprets the constant ¢. A special result for the case ¥ (A) = I (i.e.,
the SD method) can be found in Lemma 3.4 of [26].

Corollary 2 Under the conditions of Theorem 1, we have

(n) (1)
) . MK
e = tim P2 Yy, Mok (48)
k—o00 Moy lI’()»n) k—o00 /“L2k+1
Proof Tt follows from Theorem 1 that
(m)\2 2 M 2
Ue(A

(.ugk) o ) . (/'L2k+1) =2 (49)

1im =
1 2
k—00 (M;k))z Y2 (Ay) k—o0 (M(Zrllc)+l)2
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Note that 1/A,, < o < 1/A1 by the assumption (40). And we have by (16) that

2
1 1
Mék)ﬂ = H(l - 052k+i)\l)l/«;k)
=1
and
2
withs =[] = eas ety -
=1
0

}, and similarly for { M(z,f;f ! }, do not change its sign. Hence, without

Hojt1

()
Thus, the sequence {M 2%
Hog
loss of generality, we can assume by (49) that

c= lim —-. (50)
1
k—o00 Mék)

Then, by (16), (45) and (50), we have

1
Byl sy —amk) | W ()

koo ) ke y W — ) PO

which gives (48). O
We have the following results on the asymptotic convergence of the function value.

Theorem 2 Under the conditions of Theorem 1, we have

foorg1) — f* fxogg2) — f*

im = R} and lim = R}, (51)
k—oo  fxpx) — f* k—oo f(Xop41) — f*
where
gl _ Cl = DXW20.0) + ¥ ) 52)
! (W (M) + W Ou))2(c2 + k)
R Cl-DASC 000 53)
P (W (o) + 6W Q)2 W2 (M) + kW2 ()
In addition, if ¥ (A,) = W (A1) or ¢ = W (h1)/¥ (A,), then R} = R]%.
Proof Let € = x; — x*. Since g = Aeg, by (14), we have
n .
€ = Z/\i_lﬂl(f)&
i=1
By Theorem 1, we only need to consider the case ,u](:) =0,i=2,...,n—1, thatis,
=27 e+ A
Thus,
(12 ()2
1 1A, (g )" 4+ Ar(uy )
fa) = f* = el Agp = - ——E ko (54)

2 2 )\])»n
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Since
WO () + W ) ()
2@ ) ()2 + 2@ ) ()2

by the definition of €; and the update rule (2), we further have that

1
gk =n 6 +u"6 and o =

_ 1 _
€t = €k —age = (A — Olk)M;(C e+ 0 - ak)ﬂ](cn)Sn

W () O — A1) (;4’”)2 D )
(219 00 (1) 4 200 G (7))
L OG- () g n
o (Alw ) () 4 3 G (M,gm)z)
(kn = 21) (Anw () (Mgwf uWDey — o (1) (M;ﬁ”)zu,ﬁ")sn>

- e <k1lP (1) (M;ﬁl))z A () (“l(cn)y)

Hence, we obtain

1
flag) — f* = §€/<T+1A€k+1

0 =0 () () (10920 () + 1020 (7))

2

Mhn (mv (1) (u;il))z + AW () (“’gn))z)z
(55)

Combining (54) with (55) yields that

fOa) — f* el Aan
) — f* €l Ay

(1) (1) e =172 (xw2 G (1) + 02 ) (u;”)2>

(w ) (M,ﬁ”)z F KW (A) (u,ﬂ”))2>2 (K (M;ﬁl))z + (M/i"))2> |

2
which gives (51) by substituting the limits of (;L,((l))2 and (/L,((”)) in Theorem 1.

Notice x > 1 by our assumption. So, R} = R% is equivalent to

VI00) + AP 0n) (€ + )PP ()
(W () + W 02 + 1)~ (2T O) + k¥ A2 W200) + kW2 (M)
which by rearranging terms gives
M)W (A) — W (A1) = E2 (M) () — T ().

Hence, R} = R} holds if ¥ (A,) = W (A1) or ¢2 = W (A1) /¥ (hn). o
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Fig.1 Problem (56) with n = 10:

0sf T T T T T T T ]

convergence history of the o7t —1— AZ: SosllE
sequences {1 — A%ZZ]} and 060 —o—1— g2 ]
{1- 2k+2 } generated by 051 ]
gradlent method (11) with 04 L ]
Y (A) = A (i.e., the MG method)
0.3 1
02f .

Remark 1 Theorem 2 indicates that, when ¥ (A) = I (i.e., the SD method), the two sequences
{Aj";‘ } and { Zi“ } converge at the same speed, where Ay = f(x;) — f*. Otherwise, the
two sequences may converge at different rates.

To illustrate the results in Theorem 2, we apply gradient method (11) with ¥ (A) = A
(i.e., the MG method) to an instance of (3), where the vector of all ones was used as the initial
point, the matrix A is diagonal with

Aji=ivi, i=1,...,n, (56)

and b = 0. Fig. 1 clearly shows the difference between R; and R?.
The next theorem shows the asymptotic convergence of the gradient norm.

Theorem 3 Under the conditions of Theorem 1, the following limits hold,

llg2k+111% 1 llg2k-+21I% >
————— =R, and lim ————— = R?, 57

koo ||gax? § koo lgaks1l? 8

where
LAl = DFWE00) + AP (L) s
g8 2 2 27 ( )
(14 c*) (P (A) + c*c¥ (Ay))

P e o (Ul Vi A CNDL A ) 59

§ 7 (Y () + kW ()XW 2(A) + P2 (M)

In addition, if ¥ (M) = kW (A1) or ¢* = W (1)/W (), then R} = R2.
Proof Using the same arguments as in Theorem 2, we have

leel? = (™) + ()2

and

2T 42
lgk+1ll” = €1 A€kt

O =0 (") (") (uﬂ O (1) + 02 ) (u “))>
(MW(M)( “)) W (h) (M,E’”)z)2

’
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which give that

2 2
et € DR (‘1’2 o) (1) + 92 ) () )

el ( v 6 (1)} +00 ) (uf!‘))z)z ((ui”)z * (u,ﬁm)z) |

Thus, (57) follows by substituting the limits of (,u,({]))2 and (,u,(:') )2 in Theorem 1.

Notice ¥ > 1 by our assumption. So, R;, = R; is equivalent to

W2(Ay) + W2 (hy) _ (1+ AY20DP2 (M)
(14 A O) + AW (ha))? (W) + kF D)2 (W2 (01) + W2 (hn)

which by rearranging terms gives

V2 (KT (A1) — W () = 2D (KW (1) — ¥ (M)

Hence, Ry = R holds if ¥ (%,) = kW (A1) or ¢ = W (k1) /¥ (k). o
2 2
Remark 2 Theorem 3 indicates that the two sequences { %} [ % ] generated

by the method (11) with ¥ (A) = A (i.e., the MG method) converge at the same rate.
Otherwise, the two sequences may converge at different rates.

By Theorems 2 and 3, we can obtain the following corollary.

Corollary 3 Under the conditions of Theorem 1, we have

— * — *
im L) Sy SOwd) 2T g (60)
k—oo f(xok41) — f*  k—oo flxak) — f*
2 2
lgak+3ll" i lg2e+2lI" _ ; 527- 61)

k—>oo [lgart1ll? k=00 [lg2kll?

In addition,
e — DWW
RLR2 = RIR? = ck ! " . 62
FRLT 808 T (W () + W ()2 (CW (hn) + KW (A1))? (62)

Remark 3 Corollary 3 shows that the odd and even subsequences of objective values and
gradient norms converge at the same rate. Moreover, we have

Lor o (k — K —1\*

RyR} = R,R, = 55 < ; (63)
§°8  (I+k/t+tk+x?) Kk+1

where 1 = ¢>W(A,)/¥ (A1). Notice that the right side of (63) only depends on «, which

implies these odd and even subsequences generated by all the gradient methods (11) will

have the same worst asymptotic rate independent of ¥.

Now, as in [26], we define the minimum deviation

2h; — (A1 +Ap)

, 64
o — (64

0 = min
ieZ

where
T={i:h <k <hn, g & #0, and A; # oy for all k}.
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Clearly, o € (0, 1). We now close this section by deriving a bound on the constant ¢ defined
in Theorem 1. The following theorem generalizes the results in [1] and [26], where only the
case ¥ (A) = I (i.e., the SD method) is considered.

Theorem 4 Under the conditions of Theorem 1, and assuming that T is nonempty, we have

VoD 1 _ 5 _ W0

<c < b0 (65)
() 6o W)
where )
24 n, +/n2 +4n 1+o
bo = B > ~ and n, =4 T (66)
Proof Let p = qo. By the definition of 7', we have that
(T**2p) @ (T D i —y (T )i — y (T p))? 6N
(TH2p)D  (Tkp)D (A = y (TFp)2 (M — y (TFH p))?
It follows from Theorem 1 and Lemma 3 that
Tk 1))
%—w,i:z,...,n—l. (68)
By the continuity of 7" and (37) in Lemma 3, we always have that
G4 = y(T*p)* G —y (T )Y (i =y (pa)* (i = v (TP2)°
Ot =y (TEp)2(hy — y (T )2 =y (p))* (1 — v (Tpa))*’
which together with (67) and (68) implies that
A — 2(hi — y(Tps))?
i —y(P2))” (i —y(T'ps)) <li=2...n—1 69)

A1 =y (P —y(Tp))? —

where p, is the same vector as in Lemma 3. Clearly, (69) also holds fori = 1. As fori = n,
it follows from (33) in Lemma 2 and Theorem 1 that

v(ps) + v (Tps) = A1 + Ay, (70)
which yields that
(n = ¥ (P =y (Tp))> _
(M = Y (P2 (M1 — y(Tps))?
Thus, (69) holds fori = 1, ..., n. Hence, we have
(i =8 = (Y (ps) = 8)> (i =8 — (y(Tps) — 8))°
<=8 (p) =8> =8 — (¥(Tps) — ), (71)
where § = % By (70) and (71), we obtain

(i =8 = (Y (p) = ) (i — 8 + (¥ (ps) — §))°

A — An 20— A 2
5( 5 —(V(P*)—(S))( 2 +(J/(p*)—6)),

which implies that

A=A\
(%) + (i —8)% = 2(y(py) — 8)*. (72)
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By Lemma 2 and Theorem 1, we have that
@ ) ps + 2 ¥ ) pl”
; .
WO P + W O
Substituting y (py) into (72), we obtain

M=ha ) o Oa = ADPW ) — W (0))?
( 2 )“A’_‘S) =T WG+ Vo)

y(ps) =

’

which gives

1 +o? 2@ (h,) — W (h1))?
s L oo —van? 73
=0 W ()W ()
where o; = 27%154) Noting that (73) holds for all i € Z. Thus, we have
(AW (Ay) — ¥ (11))?
o <o (74)
Y AD)Y (M)
which implies (65). This completes the proof. O

3 Techniques for Breaking the Zigzagging Pattern

As shown in the previous section, all the gradient methods (11) asymptotically conduct the
searches in the two-dimensional subspace spanned by & and &,,. By (16), if either ,ul((l) or u,((”)
equals to zero, the corresponding component will vanish at all subsequent iterations. Hence,
in order to break the undesired zigzagging pattern, a good strategy is to employ some stepsize
approximating 1/1; or 1/, In this section, we will derive a new stepsize converging to 1/,

and propose a periodic gradient method using this new stepsize.

3.1 A New Stepsize

Our new stepsize will be derived by imposing finite termination on minimizing two-
dimensional strictly convex quadratic function, see [31] for the case of W (A) = I (i.e.,
the SD method).

To proceed, consider the quadratic optimization (3) with n = 2. Suppose x3 is the mini-
mizer after the following 3 iterations:

X1 = X0 — @080,
X2 = X1 — 181,
X3 =X2 — 282,
where g; # 0,1 = 0, 1,2, ap and «y are stepsizes given by (11), and « is a stepsize to be
derived.
By the stepsize definition (11), we have
g ¥ (A)g1 = g5 ¥ (A)go — aogg ¥ (A)Ago = 0. (75)

W(A)g YT (Mg
¥ (Agoll” [w!="(A)g1ll
Then, for all x € R2, x — x| can be expressed by this basis. Suppose there exist 7, / € R such

Hence, for any given r € R, [ } forms an orthonormal basis of R2.
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that ]
v (A)go T (A)g

t .
Ier(Agoll ¥ (Mgl

X —Xx] =

We expand f(x) at x| and obtain

r 1-r
f(x)=f<x1+t|w (A)go ; T (A)g )

¥ (A)goll ¥ 1= (A)gil
T
t 1 (1 t
= f(x) +07 (1) + 5 <z) H (1) =, 1), (76)
where
gl (A)go 1 r
_ _ | T @l . _ [ wrAg WA
U =Bg1=| fy1r(ay, | WithB = <II‘I/’(A)g0H’ IIlIII”(A)g1||> 77
o= (A)gr
and
5w (4)Ago W (A)Ag
_ T _ 1¥7(A)goll? ||W(A)gouuxv' (Mg
H=BAB" = 84w (A)Ag) " (A)Ag)
7 (A)golllP T (A)g nuﬂ T(A)g11?
bW (4)Ago sTw(A)g
_ 197 (A)gol? onI‘I/’(A)goHHlP‘ T(A)gll
-1 glw g gl w2U=r ) A, ’ (78)
ao[&7 (A)goll 1% (A)gil =" (A)g1112

where last equality is due to g, Tw(A)Ag = w which follows from g1 = go—apAgo

and (75). Note that BB = BBT = I. Then H is positive definite and has the same
*
eigenvalues as A. Consequently, the minimizer of ¢ is given by (;*) =—H ».
When x3 is the solution, we must have
U (A wl=rA
N A C)) I 1_( 8 _ —|—BT<*>. (79)
¥ (A)goll Iwi=rAeall [

Due to the fact that x3 = xp — ap g2, we know x3 — x3 is parallel to g». It follows from (79)
and xp = x1 — o1 g that

BY (l*)+a1g1 I g (80)

which, by noting go = g1 — 1 Ag1 and expressing the two vectors in (80) by the above basis,
is equivalent to

(;:) —(—a®) = —(H "9 —a1®) || 0+ H(—a19). 81)

Denote the components of & by ¥, and the components of H by H;;, i, j = 1,2. By (81),
we would have

Hypd — Hipty — a1 &t and U1 — a1 (Hi1t + Hiat)
Hy19 — Hip% — a8t Uy — o (Hipt + Hpnd) ) -

are parallel, where { = det(H) = det(A) > 0. It follows that

(Hn® — Hipty — a1$9)[P2 — a1 (Hi2t + Haotr)]
= (Hi192 — Hioth — a1 i) [0 — oy (Hi1 oy + Hizdo)],
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which gives
@ T —ay(Hy + Hp)T + T =0, (82)

where
I' = (Hi2t% + Hypt)d — (Hi1h + Hipt2)9).

On the other hand, if (82) holds, we have (80) holds, which by (77), H-! = BA-IBT
and BT B = I implies that

—BTH "W +aig1=-A""gi +a1g1 = —A" (g1 —a1Ag) = —A" '

is parallel to g>. Hence, g» is an eigenvector of A, i.e. Ago = Agp for some A > 0, since
g # 0. So, by (11), we get ap = lI/(A)gZng/(MI/()»)nggz) = 1/A. Therefore, g3 =
g2 — apAgr = g2 — axrgr = 0, which implies x3 is the solution. Thus, (82) guarantees x3
is the minimizer.
Based on the above analysis, to ensure x3 is the minimizer, we only need to choose «
satisfying
@}t —ai(Hy + Hyp) +1 =0, (83)

whose two positive roots are

(Hi1 + Hp) + V/(Hi1 + H»)? — 4
2 ’
These two roots are 1/A1 and 1/A;, where 0 < A; < Ay are two eigenvalues of A. For

numerical reasons (see next subsection), we would like to choose o] to be the smaller one
1/X2, which can be calculated as

2

1= =
(Hi1 + Hy) ++/(Hi + Hy)? — 4¢

2
= (84)

(Hi + Hy) + \/(Hu — Hy)? + 4H},

o

For general case, since g,(T_1 ¥ (A)gr = 0 we could propose our new stepsize at the k-th

iteration as ’
ay = ) (85)
(Hf, + Hy) + \/(Hﬁ — HY)? +4(H{)?

where Hi]; is the component of H*:

gl W (A)Agi W (A)gk
T A g1 T a1 1T (A g 1P (A)g
HF = " (A)gk—1l ax—tl k=1 8k 86
_ 8LV (MDgk s VUM Ag (86)
a1 17 (A) g NPT (A g T (A) g2

and a1 is given by (11). Clearly, a,f in (8) can be obtained by setting ¥ (A) = I in (86).
In addition, by (85) we have that

1 » 1
- <y <—
% % gk
Hiy + Hy, max{Hy,, Hy,}

IA

87)
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3.2 Spectral Property of the New Stepsize

The next theorem shows that the stepsize & enjoys desirable spectral property.

Theorem 5 Suppose that the conditions of Theorem 1 hold. Let {xy} be the iterations gener-
ated by any gradient method in (11) to solve problem (3). Then

1
lim G = — (88)

k—o00 A
Proof It follows from (41) and (42) of Theorem 1 that
T lI,ZrAA _ B 2
lim MY = Tim 8i1¥( )2 8k=1 llgk—1ll i
k—o0 k=00 lgk—1ll V7 (A)gr—1ll
M@ QDY) + kP ()W)
YO () + T (M)W (M)

and
glrwr =M Ag gkl
Il gkll? W 1= (A) gl
@200 + kW20 ()
w200 () + 2PN (4,)
MW@2ODEF (M) + kT2 )W (A1)
T T WION (h) + AP )Y ()

. k
lim Hy, =
k—o00

)

which give
lim (Hf; + HY) = A + 1) (89)
k—o00
and
M — D@2ADT (Ay) — A2 (M) P (1))
V2P (M) 4 W2 ()W (1) '
Then, by the definition of o, we have
gl (Agr = —a18]_ ¥ (A)Ag—1 + 18 W (A Agi1,
which together with (42) in Theorem 1 and (46) in Corollary 1 yields that
Ty(A TyA
lim (Hlkz)2= lim . 8k ( )8k 81;7 (A)gk .
k=00 k=00 o W7 (A)gr—1 1> P17 (A)gll
1 gl WMAg-1 gl | W(AA%gy gL W (A)gk
= lim { —— + .
k—oo \ ko1 W7 (A)gr—1]? W7 (Agr-1ll> ) W1 (A)gkl?
MG + AW (M) M (W MDY () + 6P (L) P2 (11))
a YD)+ AP0 AT ADYI0) + P ()P ()
M(AEEODP?00) + K28 Q)W) ] (W (M) + AT Q)P Q)P (M)
AV QDY) + 2 Q)W) (V200D (M) 4 AP 2P (M)
B k%CZ(K _ 1)211/2+2r()hl)lp2+2r(}\n)
T2 () + V0P ()2

lim (H, — HY,) = (90)
k— o0

Then, from the above equality and (90), we obtain that

lim \/(H{g — HY)2 +4(HE)? = 1k — D). 1)
k—00
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Fig.2 Problem (92) with 10° T

n = 1, 000: convergence history - |lgxll

of the sequences {@y} and {ay} e |G — ALl|
for the first 5,000 iterations of the — | — AL|

gradient method (11) with
Y (A) = A (i.e., the MG method)

0 1000 2000 3000 4000 5000

10710

Combining (89) and (91), we have that

2 1
lim o = = —.
k—o00 Mk +1D)+ Ak —1) An
This completes the proof. O

Remark4 When r = 1, we have from (87) that @ < l/Hf2 = a,fD. Hence, using the
stepsize & will give a monotone gradient method. Theorem 5 indicates that the general &y
will have the asymptotic spectral property (88), and hence will be asymptotically be smaller
than oz,f D independent of r. But a proper choice r will facilitate the calculation of &. This
will be more clear in the next section.

Using the similar arguments, we can also show the larger stepsize derived in Sect. 3.1
converges to 1/Aj.

Theorem 6 Let
2

a = .
(Hfy + Hpy) — \/(Hfl — H)? + 4(Hfy)?

Under the conditions of Theorem 5, we have

lim o = i
k—o00 M
To present an intuitive illustration of the asymptotic behaviors of &; and &y, we applied
the gradient method (11) with ¥ (A) = A (i.e., the MG method) to minimize the quadratic
function (3) with
A = diag{ay,a3,...,a,} and b =0, (92)

where a; = 1, a, = n and g; is randomly generated between 1 and n fori =2,...,n — 1.
From Fig. 2, we can see that & approximates 1/A, with satisfactory accuracy in a few
iterations. However, o converges to 1/A1 even slower than the decreasing of gradient norm.
This, to some extent, explains the reason why we prefer & to the short stepsize.
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------ run 20 BB2 steps before MG| |

1010 F

10710 1012

Fig.3 Problem (56) with n = 10: convergence history of objective values and stepsizes

Algorithm 1 Periodic gradient method

Choose an initial point xg € R”, initial stepsize «g, positive integers Kp, Ky, K, and termination tolerance
€>0.
Take one gradient step with o
while || g|| > € do
Take K}, BB steps
Take K, gradient steps with o in (11)
Take K short steps with &, where @; is the first stepsize after oy -steps
end while

3.3 A Periodic Gradient Method

A method alternately using o in (11) and & to minimize a two-dimensional quadratic
function will monotonically decrease the objective value, and terminates in 3 iterations.
However, for minimizing a general n-dimensional quadratic function, this alternating scheme
may not be efficient for the purpose of vanishing the component u,((”). One possible reason is
that, as shown in Fig. 2, it needs tens of iterations for & to approximate 1/A, with satisfactory
accuracy. In what follows, by incorporating the BB method, we develop an efficient periodic
gradient method using ¢.

Figure 3 illustrates a comparison of the gradient method (11) using ¥ (A) = A (i.e., the
MG method) with a method using 20 BB2 steps first and then MG steps on solving problem
(56). We can see that by using some BB2 steps, the modified MG method is accelerated
and the stepsize & will approximate 1/, with a better accuracy. Thus, our method will
run some BB steps first. Now, we investigate the affect of reusing a short stepsize on the
performance of the gradient method (11). Suppose that we have a good approximation of
1/Ap, say o = TI0e We compare MG method with its two variants by applying (i)
ap = aor (i) g = ... = a9 = « before using the MG stepsize. Figure 4 shows that
reusing « will accelerate the MG method. Hence, we prefer to reuse & for some consecutive
steps when & is a good approximation of 1/A,. Finally, our new method is summarized in
Algorithm 1, which periodically applies the BB stepsize, o in (11) and k. The R-linear
global convergence of Algorithm 1 for solving (3) can be established by showing that it
satisfies the property in [5], see the proof of Theorem 3 in [7] for example.

Remark5 The BB steps in Algorithm 1 can either employ the BB1 or BB2 stepsize in (7).

The idea of using short stepsizes to eliminate the component M,(c") has been investigated in
[12,13,20]. However, these methods are based on the SD method, i.e., occasionally applying
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Fig.4 Problem (56) with n = 10: 102 " .
the MG method (i.e., ¥ (A) = A) 11&2 , o )
H H H = x> with ag = n +107°
with different stepsizes 10k NG with ag, -+ 0o = 1/(Ar +10-%)| 1

E 10
1072
107
10 ;
0 10 20 30 40 50
k
Tablg 1 Average number of c Algorithm 1 (Kp, Ky, Ks)
iterations required by
Algorithm 1 with different values (10,0, 0) (0,60, 10) (50, 60, 0) (50, 60, 10)
of (Kp, K, Ks)
1070 290.3 331.2 327.1 301.7
1072 805.5 779.0 703.3 549.7
10~12 1411.0 1052.8 1077.0 781.5

short steps during the iterates of the SD method. One exception is given by [21], where a
method is developed by employing new stepsizes during the iterates of the AOPT method.
But our method periodically uses three different stepsizes: the BB stepsize, stepsize (11) and
the new stepsize ak.

The following example shows that both BB steps and & -steps are important to the effi-
ciency of our method. In particular, we consider ¥ (A) = I for o in (11) and &. We applied
Algorithm 1 to a 1000 dimensional quadratic problem in the form (92) with a; = 11i — 10
(see [11]). The iteration was stopped once the gradient norm reduces by a factor of €. Five
different values of the parameter pair (Kp, K,,,, Kg) were tested. Table 1 presents average
number of iterations over ten different initial points randomly chosen from [—10, 10] required
by the method to meet a given tolerance. We see that, when Algorithm 1 takes no BB steps,
i.e. using (0, 60, 10), it performs better than using (10, 0, 0) for a tight tolerance. Notice that
Algorithm 1 with (10, 0, 0) reduces to the BB method with oc,f BL_If Algorithm 1 takes no
ag-steps, i.e. using (50, 60, 0), it is comparable to the case (0, 60, 10). However, when both
BB steps and ay-steps are taken, i.e. using (50, 60, 10), Algorithm 1 clearly outperforms the
other choices especially for a tight tolerance.

4 Numerical Experiments
In this section, we present numerical comparisons of Algorithm 1 and the following methods:

BB with a}?Bl [2], DY [11], ABBmin2 [19], SDC [12], and Alg. 1 in [30] (A1 for short).
Notice that the stepsize rule for Algorithm 1 can be written as
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afB, ifmod(k, Kp + Ky + Ks) < Kp;

0 = ax(W(A)), if Ky <mod(k, Ky + Ky + Ky) < Kp + K ©93)
ax (W (A)), ifmod(k, Kp + Ky + Ky) = Kp + K
Ak—1, otherwise,

where afB can be either a,fB] or a,fBz, ar(W(A)) and ar (W (A)) are the stepsizes given

by (11) and (85), respectively. We tested the following four variants of Algorithm 1 using
combinations of the two BB stepsizes and ¥ (A) = [ or A:

— BBISD: 28! and W (A) = I in (93)
— BBIMG: 08" and ¥ (A) = A in (93)
— BB2SD: 252 and ¥ (A) = I in (93)
— BB2MG: o#5% and ¥ (A) = A in (93)

Now we derive a formula for the case ¥ (A) = A,i.e.,ax (¥ (A)) = a,i”G. If wesetr =0,
by (85), we have

- 2
ap = N G

. . 2 .
Ly gl Adgi I 1 A% n 4(g{ Agi)?
ol gl A% T @D lgk-1178{ A2
which is expensive to compute directly. However, if we set r = 1/2, we get
2

2
T
1 1 1 1 4g; Agk
—ic T+ = + — = | +t e T
affS T oo TN T o ) T Gl s

This formula can be computed without additional cost because ng_lAgk_l and ng Agy have

been obtained when computing the stepsizes a,/cvi (]; and a}c"’ G,

All the methods in consideration were implemented in Matlab (v.9.0-R2016a) and carried
out on a PC with an Intel Core 17, 2.9 GHz processor and 8 GB of RAM running Windows 10
system. We stopped the algorithm if the number of iteration exceeds 20,000 or the gradient
norm reduces by a factor of €.

We have tested five different sets of problems in the form of (92) with spectrum distribu-
tions described in Table 2, see [21,30] for example. The rand function in Matlab was used
for generating Hessian of the first three problem sets. To investigate performances of the
compared methods on different values of Hessian condition number « and tolerance factor €,
we set « to 104, 10°,10% and € to 107°, 1079, 10712, respectively. For each value of « or €,
average results over 10 different starting points with entries randomly generated in [—10, 10]
are presented in the following tables.

The parameter pair (K, K, Ky) of our four methods was set to (60, 60, 40) for the first
three problem sets, and (100, 60, 50) for the last two problem sets. As in [19], the parameter
7 of the ABBmin2 method was set to 0.9. For the SDC and A1 methods, we chose parameters
to achieve best performance. Particularly, the parameter pair (%, s) of SDC was set to (8, 6)
for the first three problem sets and (30, 2) for the last two problem sets, while m of Al was
set to 6.

Table 3 shows average number of iterations of the compared methods for the five sets of
problems listed in Table 2. We can see that, for the first problem set, our proposed methods
perform much better than the BB, DY, SDC and A1 methods, although the ABBmin2 method
seems surprisingly efficient among the compared methods. Similar results can be observed

o =

(95)
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Table 2 Distributions of aj

Set Spectrum

1 {az,....ap—1} C (L,1)
ar =1,a, =«

2 {va, ..., vy s5} C (1, 100)
{Un/5+l ----- v} C (%,K)
ay=1,ay, =«

3 {as, ..., an/s} C (1,100)
{an/s41s- -, ay4n/s) C (100, 5)
{agn/541> - an—1} C (5, %)
ay=1l,ay, =«

4 zﬁ:%(l—}—cos%{n)

n—j

5 aj=kn-l

for the fourth problem set, our proposed methods are comparable to ABBmin2 and faster than
other compared methods. Results on the second problem set are slightly different with the
former one, where A1 becomes the winner and our proposed methods outperform BB, DY,
ABBmin2 and SDC methods. For the third and last problems sets, those results show evidence
of our proposed methods over other compared methods, especially when the condition number
is large and a tight tolerance is required.

5 Conclusions and Discussions

We present theoretical analyses on the asymptotic behaviors of a family of gradient methods
whose stepsize is given by (11), which includes the steepest descent and minimal gradient
methods as special cases. It is shown that each method in this family will asymptotically
zigzag in a two-dimensional subspace spanned by the two eigenvectors corresponding to the
largest and smallest eigenvalues of the Hessian. In order to accelerate the gradient methods,
we exploit the spectral property of a new stepsize to break the zigzagging pattern. This new
stepsize is derived by imposing finite termination on minimizing two-dimensional strongly
convex quadratics and is proved to converge to the reciprocal of the largest eigenvalue of
the Hessian for general n-dimensional case. Finally, we propose a very efficient periodic
gradient method that alternately uses the BB stepsize, a4 in (11) and our new stepsize. Our
numerical results indicate that, by exploiting the asymptotic behavior and spectral properties
of stepsizes, gradient methods can be greatly accelerated to outperform the BB method and
other recently developed state-of-the-art gradient methods.

One may also break the zigzagging pattern by employing spectral property in (47). In
particular, we could use the following stepsize

R 1 1 \!
G =|—+ , (96)
a2k O2k+1
which, by (47), satisfies that
A 1
lim oy = ——.
k— 00 )\.1 + )\.”
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Hence, @y is also a good approximation of 1/, when the condition number k = A, /A; is
large. One may see [13] for the case of the SD method.
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