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A HIGHLY ACCURATE BOUNDARY INTEGRAL METHOD FOR

THE ELASTIC OBSTACLE SCATTERING PROBLEM

HEPING DONG, JUN LAI, AND PEIJUN LI

Abstract. Consider the scattering of a time-harmonic plane wave by a rigid

obstacle embedded in a homogeneous and isotropic elastic medium in two di-
mensions. In this paper, a novel boundary integral formulation is proposed

and its highly accurate numerical method is developed for the elastic obstacle

scattering problem. More specifically, based on the Helmholtz decomposi-
tion, the model problem is reduced to a coupled boundary integral equation

with singular kernels. A regularized system is constructed in order to han-

dle the degenerated integral operators. The semi-discrete and full-discrete
schemes are studied for the boundary integral system by using the colloca-

tion method. Convergence is established for the numerical schemes in some

appropriate Sobolev spaces. Numerical experiments are presented for both
smooth and nonsmooth obstacles to demonstrate the superior performance

of the proposed method. Furthermore, we extend this numerical method to
the Neumann problem and the three-dimensional elastic obstacle scattering

problem.

1. Introduction

The phenomena of elastic scattering by obstacles have received increasing atten-
tion due to the significant applications in diverse scientific areas such as geological
exploration, nondestructive testing, and medical diagnostics [3, 21, 28]. There are
many mathematical and computational results available for the scattering problems
of elastic waves [1,11,22,25,27]. An accurate and efficient numerical method plays
an important role in many of these applications. This paper is concerned with
the scattering of a time-harmonic plane wave by a rigid obstacle embedded in a
homogeneous and isotropic elastic medium in two dimensions. We propose a novel
boundary integral formulation and develop a highly accurate numerical method for
solving the elastic obstacle scattering problem.

Given the importance of elasticity, various numerical methods have been pro-
posed to solve the associated scattering problems in the literature. The method
of boundary integral equations offers an attractive approach for solving the ex-
terior boundary value problems such as the obstacle scattering problems. The
discretization is only needed on the boundary of the domain and the radiation con-
dition at infinity can be satisfied exactly [25], although it requires the knowledge
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of Green function for the governing equation. As is known, the Green function of
the elastic wave equation is a second order tensor and the singularity is difficult
to be separated in the computation of boundary integral equations, especially for
the Neumann boundary condition and the three-dimensional problems. We refer
to [5, 6, 23] and the references cited therein for some of the recent advances along
this direction. To bypass this complexity, we introduce two scalar potential func-
tions and use the Helmholtz decomposition to split the displacement of the elastic
wave field into the compressional wave and the shear wave. The two wave com-
ponents, both of which satisfy the two-dimensional Helmholtz equation [8, 19, 29],
are only coupled at the boundary of the obstacle. Therefore, the boundary value
problem of the Navier equation is converted equivalently into a coupled boundary
value problem of the Helmholtz equations for the potentials. Such a decomposi-
tion reduces greatly the complexity for the computation of the elastic scattering
problem. Similar techniques have also been successfully applied to the equations of
unsteady and incompressible flow [10].

Another goal of this work is to carry out the convergence analysis of a high
order numerical discretization for the boundary integral system, which requires
special quadratures due to singular integral kernels [2]. The quadrature methods
for the logarithmic and hypersingular integral equations were studied in [15, 18]
to solve the acoustic obstacle scattering problems. Based on the trigonometric
interpolation to discretize the principal part of the hypersingular operator, a fully
discrete collocation method was proposed and the convergence was analyzed in [16].
In [26], the authors gave an error analysis for the collocation method used in more
general singular integral operators. The bending problem of an elastic plate was
discussed in [13]. A high order spectral algorithm was developed in [23] for the
three-dimensional elastic obstacle scattering problem. A Nyström method with a
local correction scheme was shown in [27] for the elastic obstacle scattering problem
in three dimensions. We refer to [24] for a comprehensive account of the singular
integral equations.

In this work, based on the Helmholtz decomposition, the exterior boundary value
problem of the elastic obstacle scattering is reduced to a coupled boundary inte-
gral equation with the Cauchy type singular integral operators. Motivated by the
recent works [8, 9, 19], we introduce an appropriate regularizer to the boundary
integral system and split the singular integral operator into an isomorphic oper-
ator plus a compact one, which enables the convergence analysis in appropriate
Sobolev spaces. The semi-discrete and full-discrete schemes are examined for the
boundary integral system via the collocation method. It should be emphasized
that the isomorphic operator, which consists of the modified Helmholtz single layer
potential operators, is only isomorphic between the spaces we construct but not
the usual L2 space. Hence numerically it still leads to a decay spectrum with the
rate of 1/N , where N is the number of collocation points. However, we demon-
strate that the proposed scheme converges exponentially fast when the boundary
of the obstacle and the incident wave are analytic. Numerical experiments for both
smooth and nonsmooth obstacles are provided to confirm our theoretical analysis.
We point out that the proposed method is able to achieve a very high precision
even for boundaries with corners by using the graded meshes [4, 7, 14]. It is also
worth mentioning that our method is extremely fast since the full-discrete scheme
is established via simple quadrature operators. The application of this formulation
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to the elastic multi-particle scattering with the fast multipole method and inverse
elastic obstacle problem have been investigated in [8, 19]. Furthermore, we extend
this numerical method to the Neumann problem and the three-dimensional elastic
obstacle scattering problem. This paper concerns both the theoretical analysis and
numerical computation for the elastic obstacle scattering problem. It contains three
contributions:

(1) prove the well-posedness of a novel boundary integral formulation by intro-
ducing a regularizer to the integral system;

(2) establish the convergence of the semi- and full-discrete schemes of the
boundary integral system via the collocation method;

(3) demonstrate the superior numerical performance by presenting examples of
smooth and nonsmooth obstacles, and extend this method to the Neumann
boundary and three-dimensional problems.

The paper is organized as follows. In Section 2, we introduce the problem formu-
lation. Section 3 presents the boundary integral equations, gives the decomposition
of integral operators, and deduces an operator equation. Section 4 is devoted to the
convergence analysis of the semi-discrete and full-discrete schemes for the bound-
ary integral system. Numerical experiments are presented to verify the theoretical
findings in Section 5. We extend this numerical method to the Neumann problem
and the three-dimensional elastic obstacle scattering problem in Section 6. The
paper is concluded with some general remarks and discussions on the future work
in Section 7.

2. Problem formulation

Consider a two-dimensional elastically rigid obstacle, which is described as a
bounded domain D ⊂ R2 with an analytic boundary ΓD. Denote by ν = (ν1, ν2)>

and τ = (τ1, τ2)> the unit normal and tangential vectors on ΓD, respectively,
where τ1 = −ν2, τ2 = ν1. The exterior domain R2 \D is assumed to be filled with
a homogeneous and isotropic elastic medium with a unit mass density.

Let the obstacle be illuminated by a time-harmonic compressional plane wave
uinc(x) = deiκpd·x or shear plane wave uinc(x) = d⊥eiκsd·x, where d = (cos θ, sin θ)>

is the unit propagation direction vector, θ ∈ [0, 2π) is the incident angle, d⊥ =
(− sin θ, cos θ)> is an orthonormal vector of d, and

κp = ω/(λ+ 2µ)1/2, κs = ω/µ1/2

are the compressional wavenumber and the shear wavenumber, respectively. Here
ω > 0 is the angular frequency and λ, µ are the Lamé constants satisfying µ >
0, λ+ µ > 0.

The displacement of the total field u satisfies the Navier equation

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 inR2 \D.

Since the obstacle is assumed to be rigid, the total field u satisfies the homogeneous
Dirichlet boundary condition

u = 0 on ΓD.

The total field u consists of the incident field uinc and the scattered field v, i.e.,

u = uinc + v.
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It is easy to verify that the scattered field v satisfies the boundary value problem

(2.1)

{
µ∆v + (λ+ µ)∇∇ · v + ω2v = 0 in R2 \D,
v = −uinc on ΓD.

In addition, the scattered field v is required to satisfy the Kupradze–Sommerfeld
radiation condition

lim
ρ→∞

ρ
1
2 (∂ρvp − iκpvp) = 0, lim

ρ→∞
ρ

1
2 (∂ρvs − iκsvs) = 0, ρ = |x|,

where

vp = − 1

κ2
p

∇∇ · v, vs =
1

κ2
s

curlcurlv,

are known as the compressional and shear wave components of v, respectively.
Given a vector function v = (v1, v2)> and a scalar function v, the scalar and vector
curl operators are defined by

curlv = ∂x1
v2 − ∂x2

v1, curlv = (∂x2
v,−∂x1

v)>.

For any solution v of (2.1), the Helmholtz decomposition reads

(2.2) v = ∇φ+ curlψ,

where φ, ψ are two scalar functions. Combining (2.1) and (2.2) yields the Helmholtz
equations

∆φ+ κ2
pφ = 0, ∆ψ + κ2

sψ = 0.

As usual, φ and ψ are required to satisfy the Sommerfeld radiation conditions

lim
ρ→∞

ρ
1
2 (∂ρφ− iκpφ) = 0, lim

ρ→∞
ρ

1
2 (∂ρψ − iκsψ) = 0, ρ = |x|.

It follows from the Helmholtz decomposition and the boundary condition on ΓD
that

v = ∇φ+ curlψ = −uinc.

Taking the dot product of the above equation with ν and τ , respectively, we get

∂νφ+ ∂τψ = f1, ∂τφ− ∂νψ = f2,

where
f1 = −ν · uinc, f2 = −τ · uinc.

In summary, the scalar potential functions φ, ψ satisfy the coupled boundary value
problem

∆φ+ κ2
pφ = 0, ∆ψ + κ2

sψ = 0, in R2 \D,
∂νφ+ ∂τψ = f1, ∂τφ− ∂νψ = f2, on ΓD,

lim
ρ→∞

ρ
1
2 (∂ρφ− iκpφ) = 0, lim

ρ→∞
ρ

1
2 (∂ρψ − iκsψ) = 0, ρ = |x|.

(2.3)

It is known that a radiating solution of (2.1) has the asymptotic behavior

(2.4) v(x) =
eiκp|x|√
|x|
v∞p (x̂) +

eiκs|x|√
|x|
v∞s (x̂) +O

(
1

|x| 32

)
, |x| → ∞

uniformly in all directions x̂ := x/|x|, where v∞p and v∞s , defined on the unit
circle Ω, are the compressional and shear far-field patterns of v, respectively. The
following result presents the relationship between the compressional (or shear) far-
field pattern of v and the far-field pattern of φ (or ψ). The proof may be found
in [8].
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Lemma 2.1. The far-field pattern (2.4) for the radiating solution v to the Navier
equation satisfies

(2.5) v∞p (x̂) = iκpφ∞(x̂)x̂, v∞s (x̂) = −iκsψ∞(x̂)x̂⊥,

where the complex-valued functions φ∞(x̂) and ψ∞(x̂) are the far-field patterns
corresponding to φ and ψ, respectively.

By Lemma 2.1 and the Helmholtz decomposition, it is clear to note that the
elastic scattered fields vp,vs and the corresponding far-field patterns v∞p ,v

∞
s can

be obtained by solving the coupled boundary value problem (2.3).

3. Boundary integral equations

In this section, a novel boundary integral formulation is proposed for the coupled
boundary value problem (2.3). In particular, a regularizer is constructed in order
to handle the degenerated integral operators.

3.1. Coupled integral equations. Denote the fundamental solution to the Helmholtz
equation in two dimensions by

Φ(x, y;κ) =
i

4
H

(1)
0 (κ|x− y|), x 6= y,

where H
(1)
0 is the Hankel function of the first kind with order zero. Let the solution

of (2.3) be given as the single-layer potentials with densities g1, g2:
φ(x) =

∫
ΓD

Φ(x, y;κp)g1(y) ds(y),

ψ(x) =

∫
ΓD

Φ(x, y;κs)g2(y) ds(y),
x ∈ R2 \ ΓD.(3.1)

Letting x ∈ R2 \ D approach the boundary ΓD in (3.1), and using the jump
relation of single-layer potentials and the boundary condition of (2.3), we deduce
for x ∈ ΓD that

−ν(x) · uinc(x) =− 1

2
g1(x) +

∫
ΓD

∂Φ(x, y;κp)

∂ν(x)
g1(y) ds(y)

+

∫
ΓD

∂Φ(x, y;κs)

∂τ(x)
g2(y) ds(y),

−τ(x) · uinc(x) =
1

2
g2(x) +

∫
ΓD

∂Φ(x, y;κp)

∂τ(x)
g1(y) ds(y)

−
∫

ΓD

∂Φ(x, y;κs)

∂ν(x)
g2(y) ds(y).

(3.2)

The corresponding far-field patterns can be represented by
φ∞(x̂) = γp

∫
ΓD

e−iκpx̂·yg1(y) ds(y),

ψ∞(x̂) = γs

∫
ΓD

e−iκsx̂·yg2(y) ds(y),
x̂ ∈ Ω,(3.3)

where γσ = eiπ/4/
√

8κσπ for σ = p or s.
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We introduce the single-layer integral operator and the corresponding far-field
integral operator expressed by

(Sσg)(x) = 2

∫
ΓD

Φ(x, y;κσ)g(y) ds(y),

(Sσ∞g)(x̂) = γσ

∫
ΓD

e−iκσx̂·yg(y) ds(y),
x ∈ ΓD, x̂ ∈ Ω.

In addition, we introduce the normal derivative and the tangential derivative bound-
ary integral operators

(Kσg)(x) = 2

∫
ΓD

∂Φ(x, y;κσ)

∂ν(x)
g(y) ds(y),

(Hσg)(x) = 2

∫
ΓD

∂Φ(x, y;κσ)

∂τ(x)
g(y) ds(y),

x ∈ ΓD.

Note that the operators Kσ and Hσ are defined in the sense of Cauchy principal
value. Based on the boundary integral operators, the coupled boundary integral
equations (3.2) can be written into the operator form{

−g1 +Kpg1 +Hsg2 = 2f1,

g2 +Hpg1 −Ksg2 = 2f2.
(3.4)

Once the system (3.4) is solved for the densities g1 and g2, the corresponding far-
field patterns of (3.3) can be represented as follows

φ∞(x̂) = (Sp
∞g1)(x̂), ψ∞(x̂) = (Ss

∞g2)(x̂), x̂ ∈ Ω.(3.5)

By [19, Theorems 4.1 and 4.8], the coupled system (3.4) is uniquely solvable if
neither κp nor κs is the eigenvalue of the interior Dirichlet problem for the Helmholtz
equation in D. Throughout, we assume that this condition is satisfied so that the
system (3.4) admits a unique solution.

3.2. Decomposition of the operators. We assume that the boundary ΓD is an
analytic curve with the parametric form

ΓD = {z(t) = (z1(t), z2(t)) : 0 ≤ t < 2π},

where z : R → R2 is analytic and 2π-periodic with |z′(t)| > 0 for all t. The
parameterized integral operators are still denoted by Sσ, Kσ, Hσ, and Sσ∞ for
convenience, i.e.,

(Sσϕ)(t) =
i

2

∫ 2π

0

H
(1)
0 (κσ|z(t)− z(ς)|)ϕ(ς) dς, (Kσϕ)(t) =

∫ 2π

0

kσ(t, ς)ϕ(ς) dς,

(Hσϕ)(t) =

∫ 2π

0

hσ(t, ς)ϕ(ς) dς, (Sσ∞ϕ)(t) = γσ

∫ 2π

0

e−iκσx̂(t)·z(ς)ϕ(ς) dς,

where

kσ(t, ς) =
iκσ
2

n(t) · [z(ς)− z(t)]H
(1)
1 (κσ|z(t)− z(ς)|)
|z(t)− z(ς)|

,

hσ(t, ς) =
iκσ
2

n⊥(t) · [z(ς)− z(t)]H
(1)
1 (κσ|z(t)− z(ς)|)
|z(t)− z(ς)|

,
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and

n(t)
def
= ν̃(t)|z′(t)| =

(
z′2(t),−z′1(t)

)>
, ν̃ = ν ◦ z,

n⊥(t)
def
= s̃(t)|z′(t)| =

(
z′1(t), z′2(t)

)>
, s̃ = τ ◦ z.

Multiplying |z′| on both sides of (3.4), we obtain the parametric form

Aϕ def
=

[
−I +Kp Hs

Hp I −Ks

] [
ϕ1

ϕ2

]
=

[
w1

w2

]
,(3.6)

where wj = 2(fj ◦ z)|z′|, ϕj = (gj ◦ z)|z′|, j = 1, 2, and I is the identity operator.
The kernel kσ(t, ς) of the parameterized normal derivative integral operator can

be written as

kσ(t, ς) = kσ1 (t, ς) ln
(

4 sin2 t− ς
2

)
+ kσ2 (t, ς),

where

kσ1 (t, ς) =
κσ
2π

n(t) ·
[
z(t)− z(ς)

]J1(κσ|z(t)− z(ς)|)
|z(t)− z(ς)|

,

kσ2 (t, ς) = kσ(t, ς)− kσ1 (t, ς) ln
(

4 sin2 t− ς
2

)
are analytic with diagonal entries given by

kσ1 (t, t) = 0, kσ2 (t, t) =
1

2π

n(t) · z′′(t)
|z′(t)|2

.

Hence, Kσϕ can be equivalently rewritten as

(Kσϕ)(t) = (Kσ
1 ϕ)(t) + (Kσ

2 ϕ)(t)

def
=

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
kσ1 (t, ς)ϕ(ς) dς +

∫ 2π

0

kσ2 (t, ς)ϕ(ς) dς.

Following [8], we split the kernel hσ(t, ς) of the parameterized tangential deriv-
ative integral operator into

hσ(t, ς) = h1(t, ς) cot
ς − t

2
+ hσ2 (t, ς) ln

(
4 sin2 t− ς

2

)
+ hσ3 (t, ς),(3.7)

where

h1(t, ς) =
1

π
n⊥(t) ·

[
z(ς)− z(t)

] tan ς−t
2

|z(t)− z(ς)|2
,

hσ2 (t, ς) =
κσ
2π
n⊥(t) ·

[
z(t)− z(ς)

]J1(κσ|z(t)− z(ς)|)
|z(t)− z(ς)|

,

hσ3 (t, ς) = hσ(t, ς)− hσ1 (t, ς) cot
ς − t

2
− hσ2 (t, ς) ln

(
4 sin2 t− ς

2

)
are analytic with diagonal entries given by

h1(t, t) =
1

2π
, hσ2 (t, t) = 0, hσ3 (t, t) = 0.

In order to show the convergence, based on (3.7), we split the singular integral
operator Hσ into

Hσ = H1 + EσH2 + H̃1 + H̃σ
2 + H̃σ

3 ,(3.8)
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where Eσψ = κ2
σ|z′|2ψ, and

(H1ψ)(t) =
1

2π

∫ 2π

0

cot
ς − t

2
ψ(ς) dς +

i

2π

∫ 2π

0

ψ(ς) dς,

(H2ψ)(t) =
1

4π

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
sin(t− ς)ψ(ς) dς +

i

2π

∫ 2π

0

ψ(ς) dς,

(H̃1ψ)(t) =

∫ 2π

0

h̃1(t, ς)ψ(ς) dς, (H̃σ
2 ψ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
h̃σ2 (t, ς)ψ(ς) dς,

(H̃σ
3 ψ)(t) =

∫ 2π

0

h̃σ3 (t, ς)ψ(ς) dς.

Here, the functions

h̃1(t, ς) = cot
ς − t

2

(
h1(t, ς)− 1

2π

)
,

h̃σ2 (t, ς) = hσ2 (t, ς)− κ2
σ/(4π)|z′(t)|2 sin(t− ς),

h̃σ3 (t, ς) = hσ3 (t, ς)− i
κ2
σ|z′(t)|2 + 1

2π

are analytic with diagonal entries h̃1(t, t) = h̃σ2 (t, t) = 0. We refer to the proof of

Theorem 3.3 for the analyticity of h̃1.

3.3. Operator equations. We reformulate the parametrized integral equations
(3.6) into a single operator form

Aϕ = (H+ B)ϕ = w,(3.9)

where ϕ = (ϕ1, ϕ2)>, w = (w1, w2)> and

H =

[
−I H1

H1 I

]
+

[
0 EsH2

EpH2 0

]
def
= H1 +H2,

B = B1 + B2 + B3
def
=

[
Kp

1 H̃s
2

H̃p
2 −Ks

1

]
+

[
Kp

2 H̃s
3

H̃p
3 −Ks

2

]
+

[
0 H̃1

H̃1 0

]
.

More specifically, we have

(B1ϕ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)[
kp1(t, ς) h̃s2(t, ς)

h̃p2(t, ς) −ks1(t, ς)

] [
ϕ1(ς)
ϕ2(ς)

]
dς,

(B2ϕ+ B3ϕ)(t) =

∫ 2π

0

[
kp2(t, ς) h̃s3(t, ς) + h̃1(t, ς)

h̃p3(t, ς) + h̃1(t, ς) −ks2(t, ς)

] [
ϕ1(ς)
ϕ2(ς)

]
dς.

Let Hp[0, 2π], p ≥ 0 denote the space of 2π-periodic functions u : R → C
equipped with the norm

‖u‖2p :=

∞∑
m=−∞

(1 +m2)p|ûm|2 <∞,

where

ûm =
1

2π

∫ 2π

0

u(t)e−imt dt, m = 0,±1,±2, · · ·
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are the Fourier coefficients of u. Define Sobolev spaces

Hp[0, 2π]2 =

{
w = (w1, w2)>;w1(t) ∈ Hp[0, 2π], w2(t) ∈ Hp[0, 2π]

}
,

Hp
∗ [0, 2π]2 =

{
w = (w1, w2)>;w(t) ∈ Hp[0, 2π]2, (H1w)(t) ∈ Hp+2[0, 2π]2

}
,

which are equipped with the norms

‖w‖p = ‖w1‖p + ‖w2‖p,
‖w‖p,∗ = ‖w1‖p + ‖w2‖p + ‖H1w2 − w1‖p+2 + ‖H1w1 + w2‖p+2.

(3.10)

It is easy to see the embedding relation Hp+2[0, 2π]2 ↪→ Hp
∗ [0, 2π]2 ↪→ Hp[0, 2π]2,

since H1 : Hp[0, 2π]→ Hp[0, 2π] is bounded (cf. Theorem 3.2).
It is difficult to analyze directly the operator equation (3.9) since the leading

term H1 is degenerated [19]. To overcome this difficulty, we introduce a regularizer
via multiplying both sides of (3.9) by A. Now, we consider the regularized equation

A2ϕ = (H2 +HB + BH+ B2)ϕ = Aw,(3.11)

which is equivalent to (3.9) since A is invertible.

Theorem 3.1. The operator Eσ : Hp[0, 2π]→ Hp[0, 2π] is bounded.

Proof. Recalling Eσϕ = κ2
σa(t)ϕ for σ = p, s, where a(t) = |z′(t)|2 and is analytic,

we may assume

a(t) =

∞∑
m=−∞

âmeimt,

where âm are the Fourier coefficients of a. The analyticity of a implies that

sup
m∈Z
|m|l|âm| <∞ ∀ l ≥ 0,

which, together with [17, Corollary 8.8], gives

‖Eσϕ‖p ≤ c1
∞∑

m=−∞
|âm||m|k‖ϕ‖p ≤ c1

∞∑
m=−∞

|âm|
(1 +m2)k/2+1

1 +m2
‖ϕ‖p ≤ c2‖ϕ‖p,

where the first inequality holds for all k ≥ p. �

Theorem 3.2. The operator H : Hp[0, 2π]2 → Hp
∗ [0, 2π]2 is bounded.

Proof. For the trigonometric basis functions fm(t) := eimt,∀m ∈ Z, noting

H1fm = ζmfm, ζm =

{
i sign(m), m 6= 0,

i, m = 0,

H2fm = ξmfm, ξm =


i
4

(
1

|m−1| −
1

|m+1|
)
, m = ±2,±3, · · · ,

− i
8 sign(m), m = ±1,

i, m = 0,

we observe that the integral operators H1 : Hp[0, 2π] → Hp[0, 2π] and H2 :
Hp[0, 2π] → Hp+2[0, 2π] are bounded for arbitrary p ≥ 0. Then, ∀ϕ = (ϕ1, ϕ2)> ∈
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Hp[0, 2π]2, using H1H1 + I = 0 and (3.10), we have

‖H1ϕ‖p,∗ = ‖(H1ϕ2 − ϕ1, H1ϕ1 + ϕ2)>‖p,∗
= ‖H1ϕ2 − ϕ1‖p + ‖H1(H1ϕ1 + ϕ2)− (H1ϕ2 − ϕ1)‖p+2

+ ‖H1ϕ1 + ϕ2‖p + ‖H1(H1ϕ2 − ϕ1) +H1ϕ1 + ϕ2‖p+2

= ‖H1ϕ2 − ϕ1‖p + ‖H1ϕ1 + ϕ2‖p ≤ C1‖ϕ‖p.
By Theorem 3.1, we get

‖H2ϕ‖p,∗ ≤ C2‖H2ϕ‖p+2 = C2‖EpH2ϕ1‖p+2 + C2‖EsH2ϕ2‖p+2

≤ C3(‖ϕ1‖p + ‖ϕ2‖p) = C3‖ϕ‖p,
where C1, C2, C3 are positive constants. Combining the above estimates shows that
H = H1 +H2 : Hp[0, 2π]2 → Hp

∗ [0, 2π]2 is bounded. �

Theorem 3.3. The operator B : Hp[0, 2π]2 → Hp+2[0, 2π]2 is compact.

Proof. First we show that B1 and B2 are compact. Noting

kσ1 (t, t) = ∂tk
σ
1 (t, t) = 0, h̃σ2 (t, t) = ∂th̃

σ
2 (t, t) = 0, σ = p, s,(3.12)

and using [17, Theorems 12.15, 13.20], we get thatKσ
1 , H

σ
2 : Hp[0, 2π]→ Hp+3[0, 2π]

are bounded for arbitrary p ≥ 0. Thus B1 : Hp[0, 2π]2 → Hp+3[0, 2π]2 is bounded
and consequently is compact from Hp[0, 2π]2 into Hp+2[0, 2π]2. Since the kernel

functions k2 and h̃3 are analytic, it follows from [12, Theorem A.45] and [17, The-

orem 8.13] that the operators Kσ
2 , H̃

σ
3 : Hp[0, 2π] → Hp+r[0, 2π] are bounded for

all integers r ≥ 0 and arbitrary p ≥ 0. Then the operator B2 : Hp[0, 2π]2 →
Hp+r[0, 2π]2 is bounded for all integers r ≥ 0 and arbitrary p ≥ 0. In particular,
the operator B2 : Hp[0, 2π]2 → Hp+3[0, 2π]2,∀p ≥ 0 is bounded and consequently
is compact from Hp[0, 2π]2 into Hp+2[0, 2π]2.

Next is to show the compactness of B3. It suffices to show that H̃1 has an analytic

kernel h̃1. In fact, for ς sufficiently close to t, by using the Taylor expansions

tan
ς − t

2
=

∞∑
k=1

ak

( ς − t
2

)2k−1

, ak > 0, a1 = 1,

n⊥(t) ·
[
z(ς)− z(t)

]
= |z′(t)|2(ς − t)

(
1 +

∞∑
k=1

bk(t)(ς − t)k
)
,

|z(t)− z(ς)|2 = |z′(t)|2(ς − t)2
(

1 +

∞∑
k=1

dk(t)(ς − t)k
)

def
= |z′(t)|2(ς − t)2(1 +Θ),

we have

h1(t, ς) =
1

π
n⊥(t) ·

[
z(ς)− z(t)

] tan ς−t
2

|z(t)− z(ς)|2

=
1

2π

(
1 +

∞∑
k=1

bk(t)(ς − t)k
)

(1−Θ +Θ2 −Θ3 + · · · )
∞∑
k=1

ak

( ς − t
2

)2k−2

=
1

2π
+

∞∑
k=1

ck(t)(ς − t)k.
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Moreover, it can be easily verified that

c1(t) =
b1(t)− d1(t)

2π
= −z

′
1(t)z′′1 (t) + z′2(t)z′′2 (t)

4π|z′(t)|2
6≡ 0.

Using the Taylor expansions for sine and cosine functions, we deduce that the kernel
function has the expansion

h̃1(t, ς) = cot
ς − t

2

∞∑
k=1

ck(t)(ς − t)k =

∞∑
k=1

ek(t)(ς − t)k, e1(t) = 2c1(t),

which implies that h̃1 is analytic and completes the proof. �

By [17, Theorem 8.24], the operator S0 : Hp[0, 2π]→ Hp+1[0, 2π], defined by

(S0ψ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
ψ(ς) dς +

√
2i

∫ 2π

0

ψ(ς) dς
def
= (S̃0ψ)(t) +M0,

is bounded and has a bounded inverse for all p ≥ 0. We denote the operators S0

and E by

S0 =

[
S0 0
0 S0

]
, E =

1

8π2

[
Ep + Es 0

0 Ep + Es

]
.

Clearly, S0S0 is an isomorphism from Hp[0, 2π]2 to Hp+2[0, 2π]2 and E is an iso-
morphism from Hp[0, 2π]2 to Hp[0, 2π]2 since a(t) is analytic and a(t) 6= 0.

Theorem 3.4. For any function ϕ ∈ Hp[0, 2π]2, the operator H2 : Hp[0, 2π]2 →
Hp+2[0, 2π]2 can be expressed as

H2ϕ = (ES0S0 + J )ϕ,

where J is a compact operator from Hp[0, 2π]2 into Hp+2[0, 2π]2.

Proof. It follows from a straightforward calculation that

H2 =

[
−I H1 + EsH2

H1 + EpH2 I

] [
−I H1 + EsH2

H1 + EpH2 I

]
=

[
H1E

pH2 + EsH2H1 0
0 H1E

sH2 + EpH2H1

]
+ J1,

where

J1 =

[
EsJp

1H2 0
0 EpJs

1H2

]
+

[
EsEpH2H2 0

0 EpEsH2H2

]
,

Jσ1 ψ = H2E
σψ − EσH2ψ

=
κ2
σ

4π

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
sin(t− ς)

(
|z′(ς)|2 − |z′(t)|2

)
ψ(ς) dς

+
iκ2
σ

2π

∫ 2π

0

(
|z′(ς)|2 − |z′(t)|2

)
ψ(ς) dς,

and J1 is bounded from Hp[0, 2π]2 to Hp+4[0, 2π]2 and consequently is compact
from Hp[0, 2π]2 into Hp+2[0, 2π]2.

For the first term of H2, we rewrite the first diagonal element by

H1E
pH2 + EsH2H1 = EpH1H2 + EsH2H1 + Jp

2 ,
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where Jp
2ψ = H1E

pH2ψ − EpH1H2ψ = J̃p
2H2ψ and

(J̃p
2ψ)(t) =

κ2
p

2π

∫ 2π

0

cot
t− ς

2

(
|z′(ς)|2 − |z′(t)|2

)
ψ(ς) dς

+
iκ2

p

2π

∫ 2π

0

(
|z′(ς)|2 − |z′(t)|2

)
ψ(ς) dς.

The operator Jp
2 is compact from Hp[0, 2π]2 into Hp+2[0, 2π]2, since the operator

J̃p
2 has an analytic kernel and H2 is bounded. In addition, for ψ ∈ Hp[0, 2π], we

have

(H1H2ψ)(t) =
1

2π

∫ 2π

0

cot
t− ς

2
(H2ψ)(ς) dς +

i

2π

∫ 2π

0

(H2ψ)(ς) dς

=
1

2π

∫ 2π

0

ln
(

4 sin2 t− ς
2

) d

dς
(H2ψ)(ς) dς +

i

2π
ξ0ψ̂02π

=
1

8π2

∫ 2π

0

ln
(

4 sin2 t− ς
2

)∫ 2π

0

ln
(

4 sin2 ς − s
2

)
ψ(s) dsdς

− ψ̂0 +
1

8π2
(J3ψ + J4ψ)(t)

=
1

8π2
(S0S0ψ)(t) +

1

8π2
(J3ψ)(t) +

1

8π2
(J4ψ)(t),

where

(J3ψ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)∫ 2π

0

cot
ς − s

2
sin(ς − s)ψ(s) ds

def
= (S̃0J̃3ψ)(t),

(J4ψ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)∫ 2π

0

ln
(

4 sin2 ς − s
2

)
(cos(ς − s)− 1)ψ(s) ds

def
= (S̃0J̃4ψ)(t),

are compact from Hp[0, 2π]2 into Hp+2[0, 2π]2, since the operator J̃3 has an analytic

kernel, and the operators S̃0 : Hp[0, 2π]2 → Hp+1[0, 2π]2 and J4 : Hp[0, 2π]2 →
Hp+3[0, 2π]2 are bounded. Clearly it also holds that H2H1 = H1H2.

Similarly, we can analyze the second diagonal element as the first one. Therefore,
we obtain the assertion of the theorem by defining the operator

J = J1 + J2 + J3 + J4,

where

J2 =

[
Jp

2 0
0 Js

2

]
, J3 =

κ2
p + κ2

s

8π2
|z′|2

[
J3 0
0 J3

]
,

J4 =
κ2
p + κ2

s

8π2
|z′|2

[
J4 0
0 J4

]
.

�

4. Collocation method

Consider the following equivalent formulation of the operator equation (3.11):

S0S0ϕ+ E−1(J +K)ϕ = E−1Aw,(4.1)
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where K def
= HB+BH+B2 is a compact operator from Hp[0, 2π]2 into Hp+2[0, 2π]2

by Theorems 3.2 and 3.3. In this section, we examine the convergence of the semi-
and full-discretization of (4.1) by using the collocation method.

4.1. Semi-discretization. Let Xn be the space of trigonometric polynomials of
degree less than or equal to n of the form

ϕ(t) =

n∑
m=0

αm cosmt+

n−1∑
m=1

βm sinmt.(4.2)

Denote by Pn : Hp[0, 2π]→ Xn the interpolation operator, which maps 2π-periodic
scalar function g into a unique trigonometric polynomial Png at the equidistant

interpolation points ς
(n)
j := πj/n, j = 0, · · · , 2n − 1, i.e., (Png)(ς

(n)
j ) = g(ς

(n)
j ).

Then, Pn is a bounded linear operator.
Let X2

n = {ϕ = (ϕ1, ϕ2)> : ϕ1 ∈ Xn, ϕ2 ∈ Xn} and define the interpolation
operator Pn : Hp[0, 2π]2 → X2

n by

Png = (Png1, Png2)>, ∀ g = (g1, g2) ∈ Hp[0, 2π]2.

Clearly, X2
n is unisolvent with respect to the points {ς(n)

j }
2n−1
j=0 . Moreover, we have

from [17, Theorem 11.8] that

‖Png − g‖q ≤
C

np−q
‖g‖p, 0 ≤ q ≤ p, 1

2
< p(4.3)

for all g ∈ Hp[0, 2π]2 and some constant C depending on p and q.
Now we approximate the solution ϕ = (ϕ1, ϕ2)> by a trigonometric polynomial

ϕn = (ϕn1 , ϕ
n
2 )> ∈ X2

n, which is required to satisfy the projected equation

S0S0ϕ
n + Pn[E−1(J +K)]ϕn = Pn(E−1A)w,(4.4)

where ϕn satisfies Pn(S0S0)ϕn = S0S0ϕ
n.

Theorem 4.1. For sufficiently large n, the approximate equation (4.4) is uniquely
solvable and the solution satisfies the error estimate

‖ϕn − ϕ‖p ≤ L‖PnS0S0ϕ− S0S0ϕ‖p+2,

where L is a positive constant depending on E−1J , E−1K and S0S0.

Proof. By the proofs of Theorems 3.3 and 3.4, we know that the operators J ,K :
Hp[0, 2π]2 → Hp+3[0, 2π]2,∀p ≥ 0 are bounded. With the aid of (4.3), we deduce
that

‖Pn[E−1(J +K)]ϕ− E−1(J +K)ϕ‖p+2 ≤
c1
n
‖E−1(J +K)ϕ‖p+3 ≤

c2
n
‖ϕ‖p

for all p ≥ 0 and some constants c1 and c2, which implies

‖Pn[E−1(J +K)]− E−1(J +K)‖p+2 → 0 as n→∞.

The proof is completed by noting [17, Theorem 13.12]. �

The above theorem implies that the semi-discrete collocation method given by
(4.4) converges in Hp[0, 2π]2 for each p ≥ 0.
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4.2. Full-discretization. Denote the Lagrange basis by

Lj(t) =
1

2n

{
1 + 2

n−1∑
k=1

cos k(t− ς(n)
j ) + cosn(t− ς(n)

j )

}
, j = 0, 1, · · · , 2n− 1.

Instead of (4.4), we find an approximate solution ϕ̃n ∈ X2
n given by

ϕ̃n(t) =
(
ϕ̃n1 (t), ϕ̃n2 (t)

)>
=
( 2n−1∑
j=0

ϕ̃n1 (ς
(n)
j )Lj(t),

2n−1∑
j=0

ϕ̃n2 (ς
(n)
j )Lj(t)

)>
,

which is required to satisfy

S0,nS0,nϕ̃
n + Pn[E−1

n (Jn +Kn)]ϕ̃n = Pn(E−1
n An)w.(4.5)

Here An = Hn + Bn =

2∑
j=1

Hj,n +

3∑
j=1

Bj,n, Jn =

4∑
j=1

Jj,n, Kn = HnBn + BnHn +

BnBn, and the quadrature operators are described by S0,n = S0Pn, H1,n = H1Pn,
H2,n = H2Pn,

(B1,nχ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
Pn

{[
kp1(t, ·) h̃s2(t, ·)
h̃p2(t, ·) −ks1(t, ·; )

]
χ

}
(ς) dς,

(B2,nχ+ B3,nχ)(t) =

∫ 2π

0

Pn

{[
kp2(t, ·) h̃s3(t, ·) + h̃1(t, ·)

h̃p3(t, ·) + h̃1(t, ·) −ks2(t, ·)

]
χ

}
(ς) dς.

Define Eσnψ = κ2
σ|z′|2ψ = Eσψ, H2,n = H2Pn, S̃0,n = S̃0Pn,

En =
1

8π2

[
Ep
n + Es

n 0
0 Ep

n + Es
n

]
,

J1,n =

[
Es
nJ

p
1,nH2,n 0
0 Ep

nJ
s
1,nH2,n

]
+

[
Es
nE

p
nH2,nH2,n 0

0 Ep
nE

s
nH2,nH2,n

]
,

J2,n =

[
J̃p

2,nH2,n 0

0 J̃s
2,nH2,n

]
, J3,n =

κ2
p + κ2

s

8π2
|z′|2

[
S̃0,nJ̃3,n 0

0 S̃0,nJ̃3,n

]
,

J4,n =
κ2
p + κ2

s

8π2
|z′|2

[
S̃0,nJ̃4,n 0

0 S̃0,nJ̃4,n

]
,

where

(Jσ1,nψ)(t) =
κ2
σ

4π

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
Pn

{
sin(t− ·)

(
|z′(·)|2 − |z′(t)|2

)
ψ
}

(ς) dς

+
iκ2
σ

2π

∫ 2π

0

Pn

{(
|z′(·)|2 − |z′(t)|2

)
ψ
}

(ς) dς,

(J̃σ2,nψ)(t) =
κ2
σ

2π

∫ 2π

0

Pn

{
(cot

t− ·
2

+ i)
(
|z′(·)|2 − |z′(t)|2

)
ψ

}
(ς) dς,

(J̃3,nψ)(t) =

∫ 2π

0

Pn

{
cot

t− ·
2

sin(t− ·)ψ
}

(ς) dς,

(J̃4,nψ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
Pn

{
(cos(t− ·)− 1)ψ

}
(ς) dς.

Clearly, S0,nS0,nϕ̃
n = S0S0ϕ̃

n, Hnϕ̃n = Hϕ̃n for ϕ̃n ∈ X2
n.
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In the following, we show the convergence of the full-discrete collocation method
(4.5). To this end, we rewrite the function Bϕ in form of

(Bϕ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
M(t, ς)ϕ(ς) dς +

∫ 2π

0

N(t, ς)ϕ(ς) dς,

where

M(t, ς) =

[
m1(t, ς) m2(t, ς)
m3(t, ς) m4(t, ς)

]
, N(t, ς) =

[
n1(t, ς) n2(t, ς)
n3(t, ς) n4(t, ς)

]
.

Noting (3.12) and the analyticity of kσj (t, ς), j = 1, 2, h̃σ2 (t, ς), h̃σ3 (t, ς) and the

kernel of H̃1, we conclude that mj(t, t) = ∂tmj(t, t) = 0, j = 1, 2, 3, 4 and mj , nj
are analytic. Recall that the full discretization of B is Bn = B1,n + B2,n + B3,n.

Theorem 4.2. Assume that 0 ≤ q ≤ p and p > 1/2. Then for the quadrature
operator Bn, the following estimates hold:

‖Bnϕ− Bϕ‖q+2 ≤ C
1

np+1−q ‖ϕ‖p, ‖Bnχ− Bχ‖q+2 ≤ C̃
1

np−q
‖χ‖p(4.6)

for all trigonometric polynomials ϕ ∈ X2
n and all χ ∈ Hp[0, 2π]2, where C and C̃

are positive constants depending on p and q.

Proof. For the derivative d
dt (Bϕ), it can be written in form of

(B′ϕ)(t)
def
=

d

dt
(Bϕ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
M̃(t, ς)ϕ(ς) dς +

∫ 2π

0

Ñ(t, ς)ϕ(ς) dς,

where

M̃(t, ς) =

[
∂tm1(t, ς) ∂tm2(t, ς)
∂tm3(t, ς) ∂tm4(t, ς)

]
,

Ñ(t, ς) = M(t, ς) cot
t− ς

2
+

[
∂tn1(t, ς) ∂tn2(t, ς)
∂tn3(t, ς) ∂tn4(t, ς)

]
.

We denote the full discretization of B′ via interpolatory quadrature by

(B′nϕ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
Pn
{
M̃(t, ·)ϕ

}
(ς) dς +

∫ 2π

0

Pn
{
Ñ(t, ·)ϕ

}
(ς) dς.

For p > 1/2 and the integer q satisfying 0 ≤ q ≤ p, from M̃(t, t) = 0 together

with the analyticity of the elements in M̃(t, ς) and Ñ(t, ς), using [17, Lemma 13.21
and Theorem 12.18], we have

‖B′nϕ− B′ϕ‖q+1 ≤ C1
1

np+1−q ‖ϕ‖p, ‖B′nχ− B′χ‖q+1 ≤ C̃1
1

np−q
‖χ‖p

for all trigonometric polynomials ϕ ∈ X2
n, where C1 and C̃1 are positive constants

depending on p and q. By B′nϕ = d
dt (Bnϕ), the above equation implies

‖Bnϕ− Bϕ‖q+2 ≤ C2
1

np+1−q ‖ϕ‖p, ‖Bnχ− Bχ‖q+2 ≤ C̃2
1

np−q
‖χ‖p

for some constants C2, C̃2 depending on p and q. It follows from [17, Theorem 8.13]
that the above inequality holds for arbitrary q satisfying 0 ≤ q ≤ p and p > 1/2,
which completes the proof. �

Hereafter, the notation a . bmeans a ≤ Cb, where C > 0 is a constant depending
on p.
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Theorem 4.3. Assume that p > 1/2. Then for the quadrature operator Kn, the
following estimate holds:

‖Pn[E−1
n Kn − E−1K]ϕ‖p+2 .

1

n
‖ϕ‖p

for all trigonometric polynomials ϕ ∈ X2
n.

Proof. From Theorem 3.2 and the estimate (4.3), ∀χ ∈ Hp[0, 2π]2, we have

‖(Hn −H)χ‖q,∗ = ‖H(Pnχ− χ)‖q,∗ ≤ C1‖(Pnχ− χ)‖q ≤
C2

np−q
‖χ‖p

for 0 ≤ q ≤ p, p ≥ 1/2, where C1 is a positive constant depending on q and C2 is
a positive constant depending on p and q. Then, Hn and Hn − H are uniformly
bounded from Hp[0, 2π]2 to Hp

∗ [0, 2π]2 for p ≥ 1/2. Clearly, E−1
n χ = E−1χ.

For all trigonometric polynomials ϕ ∈ X2
n of the form (4.2), using Theorem 4.2

and the fact that Hnϕ = Hϕ, we get

‖HnBnϕ−HBϕ‖p+2 ≤ ‖HnBnϕ−HBϕ‖p+2,∗

≤‖Hn(Bn − B)ϕ‖p+2,∗ + ‖(Hn −H)(Bϕ− PnBϕ)‖p+2,∗ + ‖(Hn −H)PnBϕ‖p+2,∗

.‖(Bn − B)ϕ‖p+2 + ‖Bϕ− PnBϕ‖p+2

.
1

n
‖ϕ‖p +

1

n
‖Bϕ‖p+3 .

1

n
‖ϕ‖p.

Furthermore, it follows from Theorem 4.2 that Bn and Bn−B are uniformly bounded
from Hp[0, 2π]2 to Hp+2[0, 2π]2 for p ≥ 1/2. Thus, using (4.3), (4.6) and the uni-
form boundedness of Pn : Hp+2[0, 2π]2 → Hp+2[0, 2π]2, together with the bound-
edness of B : Hp[0, 2π]2 → Hp+3[0, 2π]2, we deduce

‖B2
nϕ− B2ϕ‖p+2 ≤ ‖B2

nϕ− B2ϕ‖p+4

≤‖Bn(Bn − B)ϕ‖p+4 + ‖(Bn − B)(Bϕ− PnBϕ)‖p+4 + ‖(Bn − B)PnBϕ‖p+4

.‖(Bn − B)ϕ‖p+2 + ‖(Bϕ− PnBϕ)‖p+2 +
1

n
‖PnBϕ‖p+2

.
1

n
‖ϕ‖p +

1

n
‖Bϕ‖p+3 +

1

n
‖Bϕ‖p+2 .

1

n
‖ϕ‖p.

Noting H1ϕ ∈ X2
n, we obtain

‖BnHnϕ− BHϕ‖p+2 = ‖(Bn − B)Hϕ‖p+2

≤‖(Bn − B)(Hϕ− PnHϕ)‖p+2 + ‖(Bn − B)PnHϕ‖p+2

.‖Hϕ− PnHϕ‖p +
1

n
‖PnHϕ‖p

≤‖H1ϕ− PnH1ϕ‖p + ‖H2ϕ− PnH2ϕ‖p +
1

n
‖PnHϕ‖p

.
1

n2
‖H2ϕ‖p+2 +

1

n
‖Hϕ‖p .

1

n
‖ϕ‖p.

Therefore

‖Knϕ−Kϕ‖p+2 ≤‖HnBnϕ−HBϕ‖p+2 + ‖BnHnϕ− BHϕ‖p+2 + ‖B2
nϕ− B2ϕ‖p+2

.
1

n
‖ϕ‖p.

The proof is completed by using the uniform boundedness of the operators E−1,Pn :
Hp+2[0, 2π]2 → Hp+2[0, 2π]2. �
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Theorem 4.4. Assume that p > 1/2. Then for the quadrature operator Jn, the
following estimate holds:

‖Pn[E−1
n Jn − E−1J ]ϕ‖p+2 .

1

n
‖ϕ‖p

for all trigonometric polynomials ϕ ∈ X2
n.

Proof. For all trigonometric polynomials ϕ ∈ X2
n, we claim that

‖Jnϕ− Jϕ‖p+2 .
1

n
‖ϕ‖p.

In fact, analogous to the discussion in Theorem 4.2, we get

‖Jσ1,nψ − Jσ1 ψ‖q+2 ≤ C
1

np+1−q ‖ψ‖p, 0 ≤ q ≤ p, 1

2
< p,

‖J̃4,nψ − J̃4ψ‖q+2 ≤ C
1

np+1−q ‖ψ‖p, 0 ≤ q ≤ p, 1

2
< p,

for all trigonometric polynomials ψ ∈ Xn and some constant C depending on p and
q. Since Eσnϕj = Eσϕj , H2,nϕj = H2ϕj ∈ Xn, j = 1, 2, we have

‖J1,nϕ− J1ϕ‖p+2

=‖(Es
nJ

p
1,nH2,n − EsJp

1H2)ϕ1‖p+2 + ‖(Ep
nJ

s
1,nH2,n − EpJs

1H2)ϕ2‖p+2

.‖(Jp
1,n − J

p
1 )H2ϕ1‖p+2 + ‖(Js

1,n − Js
1 )H2ϕ2‖p+2

≤‖(Jp
1,n − J

p
1 )H2ϕ1‖p+4 + ‖(Js

1,n − Js
1 )H2ϕ2‖p+4

.
1

n
‖H2ϕ1‖p+2 +

1

n
‖H2ϕ2‖p+2 .

1

n
‖ϕ‖p.

Since the operator J̃σ2 has an analytic kernel, it is easy to see

‖J2,nϕ− J2ϕ‖p+2 .
1

n
‖ϕ‖p.

In addition, in terms of S̃0,nψ = S̃0ψ for ψ ∈ Xn and the uniform boundedness

of S̃0,n and S̃0,n − S̃0 from Hp[0, 2π]2 to Hp+1[0, 2π]2 for p ≥ 1/2, we obtain

‖J4,nϕ− J4ϕ‖p+2

=
1

8π2

2∑
j=1

∥∥∥((Ep
n + Es

n)S̃0,nJ̃4,n − (Ep + Es)S̃0J̃4

)
ϕj

∥∥∥
p+2

≤
2∑
j=1

(
‖S̃0,n(J̃4,n − J̃4)ϕj‖p+2 + ‖(S̃0,n − S̃0)(J̃4ϕj − PnJ̃4ϕj)‖p+2

)

≤
2∑
j=1

(
‖S̃0,n(J̃4,n − J̃4)ϕj‖p+3 + ‖(S̃0,n − S̃0)(J̃4ϕj − PnJ̃4ϕj)‖p+3

)

.
2∑
j=1

(
‖(J̃4,n − J̃4)ϕj‖p+2 + ‖(J̃4ϕj − PnJ̃4ϕj)‖p+2

)

.
2∑
j=1

(
1

n
‖ϕj‖p+2 +

1

n
‖(J̃4ϕj‖p+3

)
.

1

n
‖ϕ‖p.
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Since the operator J̃3 has an analytic kernel, similarly we get

‖J3,nϕ− J3ϕ‖p+2 .
1

n
‖ϕ‖p.

Hence, the assertion of the theorem follows by using the uniform boundedness of
the operators E−1,Pn : Hp+2[0, 2π]2 → Hp+2[0, 2π]2. �

Theorem 4.5. For sufficiently large n, the approximate equation (4.5) is uniquely
solvable and the solution satisfies the error estimate

‖ϕ̃n − ϕ‖p

≤L
{
‖PnS0S0ϕ− S0S0ϕ‖p+2 + ‖Pn[E−1

n (Jn +Kn)− E−1(J +K)]ϕ‖p+2

+ ‖Pn[E−1
n An − E−1A]w‖p+2

}
,

(4.7)

where L is a positive constant.

Proof. For all trigonometric polynomials ϕ ∈ X2
n, it follows from Theorems 4.3 and

4.4 that

‖Pn[E−1
n (Jn +Kn)− E−1(J +K)]ϕ‖p+2 .

1

n
‖ϕ‖p → 0, n→∞

for all p > 1/2. Moreover, it is easy to see the estimates for ‖(Jσ1,n− Jσ1 )ψ‖p+2 and

‖(J̃4,n − J̃4)ψ‖p+2 are valid analogously as (4.6). Then, we can obtain the uniform
boundedness of the operator Pn[E−1

n (Jn + Kn) − E−1(J + K)] : Hp[0, 2π]2 →
Hp+2[0, 2π]2 from the proofs of Theorems 4.3 and 4.4. By the Banach–Steinhaus
theorem (cf. [17, Problem 10.1]), we get the pointwise convergence

Pn[E−1
n (Jn +Kn)]ϕ→ Pn[E−1(J +K)]ϕ as n→∞

for all ϕ ∈ Hp[0, 2π]2.
Hence (4.7) follows by employing [17, Corollary 13.13], E−1

n = E−1 and the
uniform boundedness of the operators E−1

n ,Pn : Hp+2[0, 2π]2 → Hp+2[0, 2π]2. �

The above theorem implies that the full-discrete collocation method (4.5) con-
verges in Hp[0, 2π]2 for each p > 1/2.

5. Numerical experiments

In practice, instead of (4.5), we only need to solve the equivalent full-discrete
equation of (3.4), i.e.,

PnHnϕ̃n + PnBnϕ̃n = Pnw ⇔ Anϕ̃
n = wn,(5.1)

where An is the coefficient matrix of the full-discrete equation. In fact, suppose

that β(t) =
κ2
p+κ2

s

8π2 |z′(t)|2, the equation (4.5) is equivalent to

Pn(S0,nS0,n)ϕ̃n + Pn[β−1(Jn +Kn)ϕ̃n] = Pn[β−1Anw]

⇔ Pn[β(S0,nS0,nϕ̃
n)] + Pn[(Jn +Kn)ϕ̃n] = Pn(Anw)

⇔ A2
nϕ̃

n = Anw
n.(5.2)

Since (4.5) is uniquely solvable by Theorem 4.5, it implies that the matrix A2
n is

invertible, i.e., detA2
n = (detAn)2 6= 0, and consequently An is invertible. Hence,

(4.5) is equivalent to (5.1) by multiplying matrix A−1
n on both ends of the equation

(5.2). It is worth mentioning that the equivalent full-discrete equation (5.1) is
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extremely efficient since it is formulated via simple quadrature operators Hn and
Bn.

For the smooth integrals, we simply use the trapezoidal rule

∫ 2π

0

f(ς)dς ≈ π

n

2n−1∑
j=0

f(ς
(n)
j ).

For the singular integrals, we employ the following quadrature rules via the trigono-
metric interpolation:

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
f(ς) dς ≈

2n−1∑
j=0

R
(n)
j (t)f(ς

(n)
j ),

1

2π

∫ 2π

0

cot
ς − t

2
f(ς) dς ≈

2n−1∑
j=0

U
(n)
j (t)f(ς

(n)
j ),

∫ 2π

0

ln
(

4 sin2 t− ς
2

)
sin(t− ς)f(ς) dς ≈

2n−1∑
j=0

V
(n)
j (t)f(ς

(n)
j ),

(5.3)

where the quadrature weights are given by

R
(n)
j (t) = −2π

n

n−1∑
m=1

1

m
cos
[
m(t− ς(n)

j )
]
− π

n2
cos
[
n(t− ς(n)

j )
]
,

U
(n)
j (t) =

1

2n

[
1− cosn(ς

(n)
j − t)

]
cot

ς
(n)
j − t

2
,

V
(n)
j (t) = − π

2n
sin(ς

(n)
j − t) +

2π

n

n−1∑
m=2

sin
[
m(ς

(n)
j − t)

]
m2 − 1

+
2π sin

[
n(ς

(n)
j − t)

]
n(n2 − 1)

.

Here, the weight V
(n)
j is calculated by using [17, Lemma 8.23] and we also refer

to [17] for the weights R
(n)
j and U

(n)
j . On the other hand, the last items of H1,n

and H2,n can be offset by the following item

∫ 2π

0

Pn

{[
0 h̃s3(t, ·)− hs3(t, ·)

h̃p3(t, ·)− hp3(t, ·) 0

]
χ

}
(ς) dς

in B2,n. Thus, the equation (5.1) becomes

w
(n)
1,i = −ϕ(n)

1,i +

2n−1∑
j=0

X
(n)
ij,pϕ

(n)
1,j +

2n−1∑
j=0

Y
(n)
ij,sϕ

(n)
2,j ,

w
(n)
2,i = ϕ

(n)
2,i +

2n−1∑
j=0

Y
(n)
ij,pϕ

(n)
1,j −

2n−1∑
j=0

X
(n)
ij,sϕ

(n)
2,j ,

(5.4)
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Table 1. Parametrization of the exact boundary curves.

Type Parametrization

Apple-shaped z(t) =
0.55(1 + 0.9 cos t+ 0.1 sin 2t)

1 + 0.75 cos t
(cos t, sin t), t ∈ [0, 2π]

Peach-shaped z(t) = 0.22(cos2 t
√

1− sin t+ 2)(cos t, sin t), t ∈ [0, 2π]

Drop-shaped z(t) = (2 sin
t

2
− 1,− sin t), t ∈ [0, 2π]

Heart-shaped z(t) = (
3

2
sin

3t

2
, sin t), t ∈ [0, 2π]

where w
(n)
l,i = wl(ς

(n)
i ), ϕ

(n)
l,i = ϕl(ς

(n)
i ) for i, j = 0, · · · , 2n− 1, l = 1, 2, and

X
(n)
ij,σ = R

(n)
j (ς

(n)
i )kσ1 (ς

(n)
i , ς

(n)
j ) +

π

n
kσ2 (ς

(n)
i , ς

(n)
j ),

Y
(n)
ij,σ = U

(n)
j (ς

(n)
i ) +

κ2
σ

4π
|z′(ς(n)

i )|2V (n)
j (ς

(n)
i ) +R

(n)
j (ς

(n)
i )h̃σ2 (ς

(n)
i , ς

(n)
j )

+
π

n
hσ3 (ς

(n)
i , ς

(n)
j ) +

π

n
h̃1(ς

(n)
i , ς

(n)
j ).

Remark 5.1. Moreover, a straightforward calculation yields

V
(n)
j (t)−R(n)

j (t) sin(t− ς(n)
j ) =

π sinn(t− ς(n)
j )

n(n+ 1)
+

π

n2
sinn(t− ς(n)

j ) cos(t− ς(n)
j ),

which implies V
(n)
j (ς

(n)
i ) − R(n)

j (ς
(n)
i ) sin(ς

(n)
i − ς(n)

j ) = 0. Therefore, Y
(n)
ij,σ can be

reduced to

Y
(n)
ij,σ = U

(n)
j (ς

(n)
i ) +R

(n)
j (ς

(n)
i )hσ2 (ς

(n)
i , ς

(n)
j ) +

π

n
hσ3 (ς

(n)
i , ς

(n)
j ) +

π

n
h̃1(ς

(n)
i , ς

(n)
j ).

From this, we find that EσH2ϕ in (3.8) is only used for the theoretical analysis.

Remark 5.2. From [13, Section 4], we know that the trapezoidal rule and the quad-
rature formulas (5.3) yield convergence of an exponential order for a periodic ana-
lytic function f . In addition, from [17, Theorem 11.7], we conclude that our method
has exponential convergence if the boundary of obstacle and the exact solution are
analytic.

In the following, we show some numerical examples to demonstrate the superior
performance of the proposed method. All of the numerical tests are implemented
by using Matlab on a personal computer with a 64 GB RAM, 3.70 GHz Intel core
i9 processor.

5.1. Numerical examples: smooth obstacles. We consider the elastic scatter-
ing by an apple-shaped and a peach-shaped obstacle with analytic and C2 boundary,
respectively. The parametrizations of these two boundary curves are given in The-
orem 1. To test the accuracy of the collocation method, we construct an exact
solution by letting the exterior field of the elastic obstacle be generated by two
point sources located at x̄ = (0.1, 0.2)> ∈ D, i.e.,

φ∗(x) = H
(1)
0 (κp|x− x̄|), ψ∗(x) = H

(1)
0 (κs|x− x̄|), x ∈ R2 \D.(5.5)
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Table 2. Numerical errors for the apple-shaped and peach-shaped
obstacles with ω = π.

Apple-shaped Peach-shaped
n ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time
8 0.0677 0.0613 0.006s 0.0044 0.0050 0.007s
16 2.1192e-04 1.6939e-04 0.01s 3.9734e-04 4.5298e-04 0.01s
32 3.7880e-07 3.0432e-07 0.02s 5.4337e-05 6.1341e-05 0.02s
64 6.6341e-12 5.2998e-12 0.05s 6.9918e-06 7.8543e-06 0.05s
128 1.6200e-15 1.6162e-15 0.08s 8.8584e-07 9.9062e-07 0.08s
256 1.9389e-15 2.2955e-15 0.26s 1.1140e-07 1.2420e-07 0.28s
512 3.1540e-15 2.9617e-15 1.00s 1.3962e-08 1.5539e-08 1.08s
1024 4.2380e-15 3.7504e-15 4.25s 1.7475e-09 1.9429e-09 4.29s

Table 3. Numerical errors for the apple-shaped and peach-shaped
obstacles with ω = 100π.

Apple-shaped Peach-shaped
n ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time
64 2.2192 1.1012 0.05s 5.9298 2.5847 0.05s
128 7.2908e-02 9.2983e-02 0.08s 1.0250e-01 1.0459e-01 0.08s
256 5.5220e-07 1.0522e-06 0.27s 4.1347e-07 9.4716e-07 0.27s
512 6.0630e-13 4.4848e-13 1.06s 5.0089e-08 3.6659e-08 1.02s
1024 5.3276e-13 3.7980e-13 4.48s 6.2029e-09 4.3889e-09 4.42s
2048 4.8503e-13 4.0631e-13 16.39s 7.7281e-10 5.3866e-10 18.44s
4096 5.3277e-13 3.9049e-13 76.29s 9.6473e-11 6.6741e-11 76.27s

Due to the uniqueness of the boundary value problem (2.3), the solution can be
constructed explicitly by enforcing the following boundary conditions on ΓD:

f1 = ∂νφ∗ + ∂τψ∗, f2 = ∂τφ∗ − ∂νψ∗.
In numerical experiments, we take the Lamé parameters λ = 3.88, µ = 2.56 and let

the observation points be generated by {ς(n)
i }

2ñ−1
i=0 , ñ = 16 and distributed on the

circle ∂B = {x ∈ R2 : |x| = 3}. We list the numerical errors between the numerical
solution and the corresponding exact solution with L2(∂B) norm in Tables 2 and
3 for the angular frequency ω = π and ω = 100π, respectively. It can be easily
seen from the results that the accuracy is improved dramatically as the number of
collocation points are increased. In fact, our method has an exponential convergence
as the theoretical analysis suggests. We also find that the convergence rate of the
apple-shaped obstacle with analytic boundary is faster than that of the peach-
shaped obstacle with C2 boundary. The numerical solution and the corresponding
exact solution are shown in Figure 1 for the apple-shaped obstacle. Clearly they
coincide perfectly with ω = π, n = ñ = 16.

For the high-frequency case, we can get the same highly accurate results as those
of the low-frequency case by increasing the number of interpolation points. The
numerical solution and the corresponding exact solution are shown in Figure 2 for
the apple-shaped obstacle with ω = 100π. As can be seen, the numerical solutions
and the exact solutions also coincide perfectly when n = ñ = 256.
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Figure 1. Numerical solutions and corresponding exact solutions
for the apple-shaped obstacle with ω = π, n = ñ = 16.

Table 4. Numerical errors for the drop-shaped domain with ω = π.

Point source Plane wave
n ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time ‖φ(n∗) − φ(n)‖ ‖ψ(n∗) − ψ(n)‖ time
16 2.0999e-03 2.1650e-03 0.01s 4.5396e-01 5.8469e-01 0.01s
32 2.4347e-08 3.1562e-08 0.03s 3.9571e-03 4.9919e-03 0.03s
64 1.2669e-08 1.6911e-08 0.07s 2.7795e-04 3.7244e-04 0.07s
128 3.8572e-10 5.1477e-10 0.09s 2.4339e-05 2.8050e-05 0.09s
256 1.1736e-11 1.5791e-11 0.31s 1.1917e-04 1.6019e-04 0.31s
512 1.3430e-14 1.7613e-14 1.14s 9.2866e-06 1.2593e-05 1.13s
1024 6.2155e-15 4.9608e-15 4.82s 5.5606e-06 7.5428e-06 4.77s
2048 6.1235e-15 5.9362e-15 17.52s 1.1380e-07 1.5203e-07 17.40s

It is worth mentioning that for a given incident wave and elastic obstacle, in
view of (2.5) and (3.5), together with (5.4), we can get the compressional and shear
far-field patterns immediately by using the trapezoidal rule. With the aid of (2.2),
(3.1) and (5.4), noting vp = ∇φ and vs = curlψ, we can also easily obtain the
compressional and shear elastic scattered fields by using the trapezoidal rule, too,
if the test points are not too close to the boundary.

5.2. Numerical examples: nonsmooth obstacles. In this subsection, we as-
sume that D has a single corner at x0 and ΓD \ {x0} is analytic. The angle γ at
the corner is assumed to satisfy 0 < γ < 2π. Suppose that the corner point x0
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Figure 2. Numerical solutions and corresponding exact solutions
for the apple-shaped obstacle with ω = 100π, n = ñ = 256.
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Figure 3. Collocation points on the drop-shaped and heart-
shaped obstacles.

corresponds to the parameter t = 0 in the parametric representation of ΓD. To
test the accuracy of our method, we adopt the exact solutions in form of (5.5)
with the point source located at x̄ = (0.1, 0.2)> and x̄ = (−0.5, 0.2)> for the drop-
shaped and heart-shaped obstacles, respectively. The interior angles are γ = π/2



24 HEPING DONG, JUN LAI, AND PEIJUN LI

Table 5. Numerical errors for the heart-shaped domain with ω = π.

Point source Plane wave
n ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time ‖φ(n∗) − φ(n)‖ ‖ψ(n∗) − ψ(n)‖ time
16 4.3673e-02 1.0523e-01 0.02s 6.0929e-03 1.1896e-02 0.01s
32 6.0075e-04 1.5144e-03 0.03s 2.5014e-05 3.7337e-05 0.03s
64 4.3721e-07 8.4011e-07 0.07s 1.2432e-07 1.2820e-07 0.07s
128 1.8692e-09 1.2039e-09 0.09s 2.2355e-09 1.4398e-09 0.09s
256 1.1752e-11 7.5236e-12 0.31s 1.3571e-11 8.6880e-12 0.31s
512 1.6306e-13 1.0433e-13 1.17s 1.8443e-13 1.1843e-13 1.16s
1024 4.5946e-15 4.0851e-15 4.76s 8.0003e-15 5.9002e-15 4.82s
2048 1.1742e-14 1.3828e-14 17.84s 9.6079e-15 1.0804e-14 17.95s

and γ = 3π/2 for the drop-shaped and heart-shaped obstacles, respectively. The
parameterizations of these two boundary curves are also shown in Table 1. In addi-
tion, we consider the case that the obstacle is illuminated by a compressional plane
wave uinc which is given by

uinc(x) = deiκpd·x,

where d = (cos θ, sin θ)> is the unit propagation direction vector.
To resolve the field near the corner, we adopt the graded mesh by taking the

substitution t = w(s) [7, 14], which is given by

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π,(5.6)

where

v(s) =
(1

p
− 1

2

)(π − s
π

)3

+
1

p

s− π
π

+
1

2
, p ≥ 2,

and is applied to the parametric curve of the drop-shaped and heart-shaped ob-
stacles. In experiments, we choose sj := πj/n + π/(2n) as the collocation points.
The generated points w(sj), j = 0, · · · , 2n − 1 of the graded mesh on the both
boundaries are presented in Figure 3 for p = 2.

The numerical errors between the numerical solution and the exact solution
(5.5) with L2(∂B) norm for the drop-shaped and heart-shaped obstacles are listed
in Tables 4 and 5 with the angular frequency ω = π and ñ = 16. Additionally, we
calculate the values of compressional and shear scattered fields φ(n∗), ψ(n∗) on ∂B
with ñ = 16, n∗ = 4096 by the incident plane wave with θ = π/6, and compare
them with the cases of other numbers of collocation points. For the point source
case, the solver quickly converges to machine precision for both domains. This is
due to the analyticity of the artificial solution. On the other hand, for the true
scattering problem, i.e., the scattering problem of the plane wave incidence, we
note that the numerical error of the heart-shaped domain is better than that of
the drop-shaped domain. The reason is apparently related to the concavity of the
domain. The detailed analysis will be investigated in a future work.

6. Extended cases

In this section, we consider the extension of the method to handle the Neumann
problem and the three-dimensional problem.
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6.1. The Neumann problem. We assume that the total field u satisfies the
homogeneous Neumann boundary condition, i.e.,

T (u) = 0 on ΓD,(6.1)

where the traction operator T is defined by

T (u) := 2µ∂νu+ λν∇ · u− µτcurlu.

Analogously, substituting the Helmholtz decomposition into (6.1) and taking the
dot product with ν and τ respectively, we have the following coupled boundary
value problem:

∆φ+ κ2
pφ = 0, ∆ψ + κ2

sψ = 0, in R2 \D,
µν · ∂ν∇φ+ µν · ∂νcurl ψ − λκ2

pφ = f1, on ΓD,

µτ · ∂ν∇φ+ µτ · ∂νcurl ψ − µκ2
sψ = f2, on ΓD,

lim
ρ→∞

ρ
1
2 (∂ρφ− iκpφ) = 0, lim

ρ→∞
ρ

1
2 (∂ρψ − iκsψ) = 0, ρ = |x|,

(6.2)

where

f1 = −ν · T (uinc), f2 = −τ · T (uinc).

Furthermore, we assume that the solutions of (6.2) are in form of single-layer po-
tentials as shown in (3.1). Letting x ∈ R2 \D tend to boundary ΓD, using the new
jump relations of the single-layer potentials recently derived in [9, Corollary 3.5]
and the boundary conditions of (6.2), we obtain on ΓD that

2f1(x) =− µκ2
pν
>Sp

[
νν>g1

]
ν + µν>Kp

[
τ∂τg1 + g1∂ττ

]
− µν>Hp

[
ν∂τg1 + g1∂τν

]
+ µκ2

sν
>Ss

[
τν>g2

]
ν + µν>Ks

[
ν∂τg2 + g2∂τν

]
+ µν>Hs

[
τ∂τg2 + g2∂ττ

]
− λκ2

pS
p[g1]− µ(ν · ∂ττ)g1 − µ(ν · ∂τν)g2 − µ∂τg2,

2f2(x) =− µκ2
pτ
>Sp

[
νν>g1

]
ν + µτ>Kp

[
τ∂τg1 + g1∂ττ

]
− µτ>Hp

[
ν∂τg1 + g1∂τν

]
+ µκ2

sτ
>Ss

[
τν>g2

]
ν + µτ>Ks

[
ν∂τg2 + g2∂τν

]
+ µτ>Hs

[
τ∂τg2 + g2∂ττ

]
− µκ2

sS
s[g2]− µ(τ · ∂ττ)g1 − µ∂τg1 − µ(τ · ∂τν)g2.

(6.3)

We point out that ν and τ inside of [·] are given with respect to the variable y, and
are taken with respect to the variable x otherwise. As shown in [9, Section 5.2],
we employ the quadrature formulas (5.3)–(5.8) of [9], then a Nyström-type discrete
scheme can be achieved analogously.

Table 6. Numerical errors for the apple-shaped and peach-shaped
obstacles with the Neumann boundary condition.

Kite-shaped for ω = 3 Kite-shaped for ω = 5
n ‖v∗ − vh‖(L2(ΓD))2 time ‖v∗ − vh‖(L2(ΓD))2 time
16 0.0717 0.01s 0.0883 0.01s
32 4.1975e-05 0.04s 1.2759e-04 0.04s
64 2.0601e-10 0.13s 7.6337e-10 0.13s
128 8.3623e-12 0.17s 1.2185e-11 0.17s
256 1.7041e-11 0.52s 8.7805e-11 0.54s
512 6.2898e-11 2.10s 2.2158e-10 2.12s
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For comparison, we take the exact solutions in form of

φ∗(x) = −H(1)
0 (κp|x|), ψ∗(x) = 0, x ∈ R2 \D,(6.4)

as those in Example 2 of [5], i.e., v∗ = ∇φ∗. We take the Lamé parameters

λ = 2, µ = 1 and let the observation points be generated by {ς(n)
i }

2ñ−1
i=0 , ñ = 16 and

distributed on the boundary ΓD. Then, the numerical solution vh on ΓD can be
described by

vh =
1

2
(−g1 +Kpg1 +Hsg2)ν +

1

2
(g2 +Hpg1 −Ksg2)τ.(6.5)

We list the numerical errors ‖v∗−vh‖(L2(ΓD))2 in Table 6 for the angular frequency
ω = 3 and 5. It can be seen that for the Neumann problem, this method also has
an exponential convergence as compared to only an algebraic convergence in [5]
for the kite-shaped obstacle. Note that our accuracy stops at 11 digits due to the
round-off errors in the singular kernel evaluation.

6.2. The three-dimensional problem. In three dimensions, the scattered field
v satisfies the boundary value problem

(6.6)

{
µ∆v + (λ+ µ)∇∇ · v + ω2v = 0 in R3 \D,
v = −ui on ΓD.

In addition, the scattered field v is required to satisfy the Kupradze–Sommerfeld
radiation condition

lim
ρ→∞

ρ(∂ρvp − iκpvp) = 0, lim
ρ→∞

ρ(∂ρvs − iκsvs) = 0, ρ = |x|,

where

vp = − 1

κ2
p

∇∇ · v, vs =
1

κ2
s

curlcurlv.

For any solution v of the elastic wave equation, the Helmholtz decomposition reads

(6.7) v = ∇φ+ curlψ, ∇ ·ψ = 0.

Substituting (6.7) into (6.6) and taking the dot and cross products with the unit
normal vector ν on ΓD, respectively, we get the following coupled boundary value
problem:

∆φ+ κ2
pφ = 0, curlcurlψ − κ2

sψ = 0 in R3 \D,
∂νφ+ ν · curlψ = f̃1, on ΓD,

ν ×∇φ+ ν × curlψ = f̃2, on ΓD,

lim
ρ→∞

ρ(∂ρφ− iκpφ) = 0, lim
ρ→∞

ρ(curlψ × x̂− iκsψ) = 0, ρ = |x|,

(6.8)

where

f̃1 := −ν · ui, f̃2 := −ν × ui.

We assume that the solutions of (2.3) are given as

φ(x) =

∫
ΓD

Φ(x, y;κp)g1(y) ds(y), x ∈ R3 \ ΓD

ψ(x) =
1

κ2
s

curlcurl

∫
ΓD

Φ(x, y;κs)g2(y) ds(y), x ∈ R3 \ ΓD,

(6.9)
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where g1, g2 are unknown densities and g2 satisfies g2 · ν = 0, and

Φ(x, y;κσ) =
exp(iκp|x− x̄|)

4π|x− x̄|
, σ = p or s

is the fundamental solution for the three-dimensional Helmholtz equation. Letting
x ∈ R3 \ D approach the boundary ΓD in (6.9) and using the jump relations, we
obtain the boundary integral equations

f̃1(x) = −1

2
g1(x) +

∫
ΓD

∂Φ(x, y;κp)

∂ν(x)
g1(y) ds(y)

+

∫
ΓD

ν(x)×∇xΦ(x, y;κs) · g2(y) ds(y),

f̃2(x) =

∫
ΓD

ν(x)×∇xΦ(x, y;κp)g1(y) ds(y)

+
1

2
g2(x) + ν(x)× curl

∫
ΓD

Φ(x, y;κs)g2(y) ds(y).

(6.10)

For numerical purpose, we test the formulation on two three-dimensional objects,
which are both axis-symmetric. More specifically, they are generated by rotating
curves in the xz plane with respect to the z axis. One object is a sphere with the
generating curve given by

x = 2 cos(s), z = 2 sin(s), −π/2 ≤ s ≤ π/2.
Another one is an ellipsoid by rotating the curve

x = cos(s), z = 2 sin(s), −π/2 ≤ s ≤ π/2.
Since the high order evaluation of singular kernels is sophisticated in three dimen-
sions, we only show the numerical results and will report the detailed implementa-
tion in a forthcoming paper. We refer to [20] for some general ideas.

Table 7. Numerical errors for the elastic scattering of three di-
mensional objects with the Dirichlet boundary condition.

Sphere Ellipsoid
n ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time ‖φ∗ − φ(n)‖ ‖ψ∗ − ψ(n)‖ time
16 9.398e-08 4.7368e-08 0.46s 1.9535e-03 1.3936e-03 0.65s
32 1.0760e-08 4.4180e-09 0.96s 9.2980e-03 4.7679e-03 1.01s
64 6.9880e-08 2.9426e-09 1.75s 2.3378e-05 1.4425e-05 1.81s
96 1.2475e-08 4.8461e-09 3.09s 5.5093e-06 3.4974e-06 3.02s
128 1.4175e-08 2.8216e-09 4.50s 1.4484e-06 1.8909e-06 4.34s
256 1.2361e-08 1.9374e-09 16.55s 1.9392e-09 3.5646e-10 16.28s
320 6.4661e-10 3.1789e-10 23.79s 5.2607e-12 7.5933e-13 24.54s

To verify the accuracy, we replace φ∗(x) and ψ∗(x) in (5.5) by their three dimen-
sional counterparts and still use them to generate the exact solution. The source is
located at (0.2, 0.2, 0.2). The angular frequency is ω = π and the Lamé parameters
are λ = 3.88, µ = 2.56. Numerical results are presented in Table 7 and Figure
4. Note that in Table 7, n is the number of discretization points along the gener-
ating curve. One can see that the spectral accuracy is achieved by adding more
discretization points.
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(a) (b)

Figure 4. Elastic scattering of a sphere: (a) the real part of the
first component of v; (b) the error compared to the exact solution.

7. Conclusion

We have proposed a novel boundary integral formulation and developed a highly
accurate numerical method for solving the time-harmonic elastic scattering by a
rigid bounded obstacle immersed in a homogeneous and isotropic elastic medium.
Using the Helmholtz decomposition, we reduce the scattering problem to a coupled
boundary integral equation with singular integral operators. By introducing an
appropriate reqularizer to the coupled system, we split the operator equation into
an isomorphic operator plus a compact one. The convergence is shown for both
the semi-discrete and full-discrete schemes via the collocation method. Numerical
experiments for smooth and nonsmooth obstacles, especially for the obstacles with
corners, are presented to demonstrate the superior performance of the proposed
method. Furthermore, we extend this numerical method to the Neumann problem
and the three-dimensional elastic obstacle scattering problem. Future work includes
the application of the method for solving the inverse elastic scattering problems and
the multiple elastic scattering problems.
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