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We consider transport of a passive scalar advected
by an irregular divergence-free vector field. Given
any non-constant initial data ⇢̄2H

1
loc(R

d), d> 2, we
construct a divergence-free advecting velocity field v

(depending on ⇢̄) for which the unique weak solution
to the transport equation does not belong to H

1
loc(R

d)

for any positive positive time. The velocity field v

is smooth, except at one point, controlled uniformly
in time, and belongs to almost every Sobolev space
W

s,p that does not embed into the Lipschitz class.
The velocity field v is constructed by pulling back
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1. Introduction
This article concerns the effect of transport by an irregular vector field on a passive scalar. In what
follows, we refer to irregular transport as transport by a vector field that does not possess Lipschitz
regularity in the space variable.

It is well known that, if the advecting vector field is Lipschitz uniformly in time, the Cauchy-
Lipschitz theory applies and the flow is well-defined pointwise in space and time. The flow and
its inverse are then also Lipschitz and Lipschitz regularity of the initial data is preserved under
the action of the flow. In this case, the unique solution to the linear transport equation is obtained
by composing the initial data with the inverse of the flow map.

The regularity of weak solutions to the transport equation with an irregular advecting velocity
field has been extensively studied by many authors (see for instance [1, 2, 3, 4, 5, 6, 7]). In this
work, we are interested in loss of regularity for the weak solution of the transport equation,
when the advecting vector field is “almost Lipschitz” in space. Our main result constructively
shows that for any non-constant, H1

loc(R
d) initial data there is a bounded, compactly supported,

divergence-free vector field, which is (uniformly in time) almost Lipschitz in space, such that
the solution to the associated irregular transport equation loses its H1 regularity instantaneously.
More precisely, fix any (non-constant) initial data in H

1
loc(R

d), with d> 2. We produce a bounded,
compactly supported, divergence-free vector field, depending on the initial data, which is
(uniformly in time) in the Sobolev space W r,p, for every r> 0 and p2 [1,1) such that r < 1 + d/p.
(We recall r= 1 + d/p is the critical threshold for the Sobolev embedding, threshold above which
W

r,p embeds into the Lipschitz space W
1,1.) Moreover, the vector field is constructed so that the

solution of the associated transport equation is not in H
1
loc for any t > 0. The loss of regularity is

due to an amplification effect on the derivative of the solution by the action of the advecting flow.
To fix notation, we denote the passive scalar by ⇢= ⇢(x, t), x= (x1, x2, . . . , xd)2Rd, t> 0, and

the advecting field by v= v(x, t). We assume ⇢ is a weak solution of the linear transport equation:

@t⇢+ v ·r⇢= 0, (1.1)

on Rd ⇥ [0,1), with initial data ⇢̄(x).
The function spaces mentioned above follow standard notation. Namely, for k 2 Z+ and 16

p61, the space W
k,p(Rd) is the Sobolev space defined by

W
k,p(Rd) = {f 2L

p(Rd) | @↵f 2L
p(Rd), |↵|6 k},

where we have used the multi-index formalism for derivatives. When r > 0 is not an integer
W

r,p denotes the fractional Sobolev space which is defined by interpolation (see [8] for a
comprehensive introduction). For p= 2, the space W

r,2 coincides with the space H
r , defined

via the Fourier Transform.

The loss of regularity result presented here extends the results by some of the authors in
[9]. There, it was proved that there exists a smooth, compactly supported initial data ⇢̄ and a
vector field v 2L

1([0,1);W 1,p(Rd)), for 1< p<1, such that the weak solution ⇢ of (1.1) does
not belong to H

s for any s > 0 instantaneously in time. In contrast, we are able to show loss of
regularity for all non-constant initial data in H

1
loc (with v depending on the initial data), but we

can only prove ⇢(·, t) /2H
s
loc, for any s> 1 and for all t > 0. (We also mention that in [10], the

authors prove, non-constructively, that loss of regularity is a generic phenomenon in the sense of
Baire’s Category Theorem.)

In both [9] and this work, we construct at the same time the vector field v and the advected
scalar ⇢ via an iterative procedure starting from a pair u

0, ✓0 (where ✓
0 solves the transport

equation with advecting field u
0) which acts as a building block, and applying a suitable sequence

of rescalings, where each rescaling produces a pair u
n, ✓n. In [9], u0 is a vector field that mixes

a certain initial tracer configuration optimally in time, and one can control the growth of the H
s

norm of ✓0 from below for all s > 0 via interpolation, since u
0 drives all negative Sobolev norms

of the tracer to zero exponentially fast. The action of each rescaling is to accelerate the growth of



3

rsta.royalsocietypublishing.org
P

hil.Trans.R
.S

oc.A
0000000

..................................................................

the H
s-norms of ✓n as n!1. The different un and ✓

n are combined to give rise to the vector
field v and associated weak solution ⇢ of (1.1), the Sobolev norms of which blow up for any
t > 0. This result is optimal from the point of view of the loss of regularity, in the sense that the
only regularity that is propagated generically by a velocity field with the same regularity as v is
essentially a “logarithm” of a derivative [11, 12]. We mention also the related work [13], where
the author gives an example of a divergence-free vector field in H

1 such that its flow is not in any
Sobolev space with positive regularity. His construction is random at its core, while the one in [9]
is deterministic and explicit.

In this note, we also use a suitable sequence of rescalings of basic flows. These flows are
constructed in such a way to lead to growth in time of the H

1 Sobolev norm of any initial data
for the passive scalar. Although the vector field depends on the initial data, it enjoys universal
bounds. The vector fields are constructed using shear flows and, after rescaling, the growth
happens on certain cubes that depend on the initial data ⇢̄ for (1.1).

Our main result is the following.

Theorem 1.1. Let ⇢̄2H
1
loc
(Rd), d> 2, be a non-constant function. There exists a compactly supported

divergence-free vector field v 2L
1([0,1)⇥ Rd), depending on ⇢̄, such that the following hold:

(a) The velocity field v is smooth except at one point in Rd
. Moreover,

v 2L
1([0,1);W r,p(Rd)) for every p2 [1,1) , and r <

d

p
+ 1 .

(b) The unique weak solution of (1.1) in L
1([0,1);L2

loc
(Rd)) with initial data ⇢̄ is such that

⇢(·, t) 62H
1
loc(R

d) for every t > 0 .

As mentioned earlier, if r > d/p+ 1 and v 2L
1([0,1);W r,p(Rd)), then the Sobolev

embedding theorem implies that v is Lipschitz in space, uniformly in time. This in turn implies
that H1 regularity of the initial data is preserved and so the threshold r < d/p+ 1 above can not
be improved.

The main idea behind the proof is as follows:

(1) The first step is an elementary observation about periodic functions. Take any non-
constant periodic function �̄. Then, we claim at least one sine or cosine shear flow parallel
to one of the coordinate axis must increase the H

1 norm of �̄ by a constant factor (see
Lemma 2.1, below).

(2) By localizing and rescaling the above flow, we can obtain a countable (shrinking) family
of separated cubes that cluster at one point, so that in each cube the flow increases the H

1

norm of the advected scalar by a larger and larger factor (see Section 3, below).

(3) Now we need to ensure that the rescaling factors and the location of the cubes can be
chosen so that the H

1 norm of the solution diverges at any positive time, but the velocity
field remains sufficiently regular. Our choice ensures v 2W

r,p for every r below the
critical Sobolev embedding threshold (i.e. r < d/p+ 1).

The rest of the paper is organized as follows. In Section 2, we introduce the basic building
block in the construction and show how the building block leads to growth of the Sobolev norms
for solutions of the transport equation (1.1). Then, in Section 3 we conclude the proof of loss of
regularity. Lastly, in Section 4 we draw some conclusions.

Throughout the paper, we denote the total mass of any measurable (with respect to the d-
dimensional Lebesgue measure) set ⌦ by |⌦|, while 1⌦ denotes the indicator function of the set
⌦. The symbols .,& denote bounds which holds up to a generic constant that may change from
line to line.
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2. Construction of the basic flow and growth of Sobolev norms
The aim of this section is to carry out the first step in the proof of the main theorem. We first prove
the elementary observation (Lemma 2.1, below) that for any non-constant periodic function, at
least one sine or cosine shear along a coordinate axis can be used to increase its H

1 norm by a
constant factor. Next we lift this construction to compactly supported cubes in Rd, and iterate to
obtain exponential growth in time (Proposition 2.2, below). This will be the basic building block
that will be rescaled and used in subsequent steps in Section 3.

To notationally separate the construction of our building block from the actual rescaled flow in
Theorem 1.1, in this section we use u to denote the advecting velocity field on the torus and � to
denote the passively advected (periodic) scalar with initial data �̄. For convenience we will work
with 8-periodic functions on the d-dimensional torus Td obtained by identifying parallel faces of
the cube [0, 8]d.

Lemma 2.1. Let A> 0 and define f1, f2 : R!R by

f1(z) =A sin(2⇡z) and f2(z) =A cos(2⇡z) ,

and let ⌦0 ✓ Td
, d> 2, be a piecewise C

1
domain. For any �̄2H

1(Td), T > 0, there exists a divergence-

free velocity field U (depending on 1⌦0
�̄ and T ) such that the following hold:

(i) The velocity field U is a shear flow of the form

U(x) =±fi(xj)ej0 , where j
0 =

(
j + 1 j < d

1 j = d .

(2.1)

Here ej 2Rd
is the j

th
standard basis vector, and xj denotes the j

th
coordinate of x2 Td

.

(ii) The solution to the transport equation

@t�+ U ·r�= 0 (2.2)

on Td
with initial data �̄ satisfies

kr�(·, T )k2L2(⌦T ) >
⇣
1 +

2⇡2
A
2
T
2

d

⌘
kr�̄k2L2(⌦0) . (2.3)

Here ⌦T is the image of ⌦0 under the flow map of the shear flow U after time T .

Proof. Given i, i
0 2 {1, 2} and j 2 {1, . . . , d}, we let

ui,i0,j(x) = (�1)ifi0(xj)ej0 ,

and we let �i,i0,j be the solution of the transport equation (2.2) with vector field ui,i0,j . We denote
by ⌦T,i,i0,j the image of ⌦0 under the flow map of the shear flow ui,i0,j after time T . Since

�i,i0,j(x, t) = �̄(x� (�1)ifi0(xj) t ej0) ,

we compute

@k�i,i0,j =

(
@k�̄� (�1)ifi0(xj)t@j0 �̄ k= j ,

@k�̄ k 6= j .

We square the expression above and sum over i, i
0. Using the fact that

P
i0 f

2
i0 =A

2, integrating
over ⌦T,i,i0,j , and changing variables back to the original domain ⌦0 gives

X

i,i0
k@k�i,i0,jk2L2(⌦T,i,i0,j)

=

(
4k@j �̄k2L2(⌦0)

+ 8⇡2
A
2
T
2k@j0 �̄k2L2(⌦0)

k= j .

4k@k�̄k2L2(⌦0)
k 6= j ,



5

rsta.royalsocietypublishing.org
P

hil.Trans.R
.S

oc.A
0000000

..................................................................

Summing over k 2 {1, . . . , d} and j 2 {1, . . . , d} then shows that
X

i,i0,j

kr�i,i0,jk2L2(⌦T,i,i0,j)
= 4d kr�̄k2L2(⌦0) + 8⇡2

A
2
T
2kr�̄k2L2(⌦0) .

Since there are 4d terms on the sum on the left, there must exist one term that is at least a 1/(4d)

fraction of the right hand side. This immediately yields (2.3) as claimed.

Our next task is to show that for any (non-constant) initial datum, we can find a smooth
compactly supported divergence-free vector field in Rd for which the solution to the transport
equation grows exponentially in H

1. This is the main result of this section, and is what will be
used in the proof of Theorem 1.1.

Proposition 2.2. Let ✓̄ 2H
1
loc(R

d), d> 2, and fix ↵> 0. There exist a constant C(↵, d) (independent

of ✓̄) and a divergence-free vector field u : Rd ⇥ [0,1)!Rd
(depending on ✓̄) such that u is piecewise

constant in time, supported on the cube ⌦̃0 = (�3, 4)d, satisfies the bound

sup
06⌧<1

ku(·, ⌧)kC1(Rd) 6C(↵, d) ,

and the following two assertions hold.

(i) The unique solution of the transport equation

@t✓ + u ·r✓= 0 (2.4)

in Rd
with initial data ✓̄, satisfies

kr✓(·, n)kL2(⌦0) > e
↵nkr✓̄kL2(⌦0) ,

for all non-negative integer times n2N. Here ⌦0 is the cube (0, 1)d in Rd
;

(ii) For all times t> 0, the above solution ✓ satisfies

kr✓(·, t)kL2(⌦̃0)
> e

↵t��kr✓̄kL2(⌦0) . (2.5)

Here � is a constant that depends on ↵ and d, but not on ✓̄.

Remark 2.3. With minor modifications to the proof one can ensure that the velocity field u in
Proposition 2.2 is in fact smooth, and satisfies ku(·, t)kCk 6C(↵, d, k) for all t> 0.

The proof of Proposition 2.2 consists of two steps. The first step involves pulling back the shear
flow on the torus from Lemma 2.1 to a compactly supported flow in Rd. We do this in Lemma 2.4,
below. Once this is established, we simply iterate this procedure to obtain exponential growth at
integer times. Since the norm of u is controlled uniformly in time, the H

1 norm at non-integer
times can be estimated by giving up a small factor.

Lemma 2.4. Let ✓̄ 2H
1
loc(R

d), d> 2, and fix T > 0, ↵
0
> 1. There exists a divergence-free vector field u

on Rd ⇥ [0,1) (depending on ✓̄, ↵
0

and T ) such that the following hold:

(i) The vector field u is piecewise constant in time, supported on the cube ⌦̃0 = (�3, 4)d, and satisfies

sup
06⌧6T

ku(·, ⌧)kC1(Rd) 6C(d)
⇣
1 +

↵
0

T

⌘
,

for some dimensional constant C(d)> 0, that is independent of ✓̄.

(ii) The weak solution of the transport equation (2.4) in Rd
with initial data ✓̄ satisfies

kr✓(·, T )kL2(⌦0) > ↵
0 kr✓̄kL2(⌦0) ,

where ⌦0 = (0, 1)d ✓Rd
.
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Figure 1. The rounded octagonal track A0
1 Figure 2. The strip S0

1 ✓T2.

The main idea behind the proof of Lemma 2.4 is as follows. Momentarily suppose d= 2 and
view ⌦0 as a subset of the two-dimensional torus T2 obtained by identifying parallel sides of
the square [0, 8]2. Now, by Lemma 2.1, there is a horizontal or vertical trigonometric shear, U ,
that increases the H

1 norm by a constant factor. Suppose this shear was vertical. In this case the
flow would spread out the initial data over the vertical strip S0

1, shown in Figure 2. The strip
S0
1 ✓ T2 is topologically an annulus, and so we can find an annulus A0

1 ✓R2 (see Figure 1) and
an area preserving diffeomorphism '1 : A0

1 ! S
0
1 such that '1 is the identity on ⌦0. We use '1

to pullback U to a vector field u on A0
1. This velocity field will spread the initial data out in the

track A0
1. However, since the area of ⌦0 is one eighth the area of A0

1, one can give up a factor
of 8, perform a radial rotation along the track and ensure that the H

1 norm in ⌦0 itself grows as
desired. We now carry out the details.

Proof of Lemma 2.4. Let A0
1 ✓R2 be the rounded octagonal track constructed as follows (see

Figure 1): the region ⌦
0
0 is the square (0, 1)2 ✓R2, the regions ⌦

0
0,2, ⌦0

0,4 and ⌦
0
0,6 are squares

of side length 1. The remaining four regions are quarter annuli with inner radius 2
⇡ � 1

2 and
outer radius 2

⇡ + 1
2 . These radii are chosen so that the area of each piece is 1. We observe that

A0
1 ⇢ (�3, 4)2.

Let S0
1 = (0, 1)⇥ (0, 8)✓ T2 be the strip of width 1 parallel to the x2 axis (see Figure 2). Let

'
0
1 : Ā0

1 ! S̄0
1 ✓ T2 be an area preserving diffeomorphism such that

'
0
1(x

0) = x
0 for all x0 2⌦

0
0 .

This map can be explicitly constructed by simply deforming each of the quarter annuli into unit
squares, and performing the appropriate rotation on each of the squares ⌦0

0,2, ⌦0
0,4 and ⌦

0
0,6.

In d-dimensions, we define A1 =A0
1 ⇥ (0, 1)d�2 ✓Rd, and S1 = S0

1 ⇥ (0, 1)d�2 ✓ Td. We
observe that A1 ⇢ (�3, 4)d. We define '1 : Ā1 ! S̄1 by

'1(x1, . . . , xd) = ('0
1(x1, x2), x3, . . . , xd) ,

and note that '1(x) = x for all x2 (0, 1)d. Finally, for each j 2 {2, . . . , d� 1} we repeat the above
procedure along the j

th and (j + 1)th axis, and for j = d we do the same along the j
th and 1st axis.

This yields the regions Aj , and corresponding maps 'j : Āj ! Td.
Now, we let �̄ be an H

1 extension of (1⌦0
✓̄) � '�1

1 to Td. We note that our choice of 'j

implies (1⌦0
✓̄) � '�1

1 = (1⌦0
✓̄) � '�1

j for all j 2 {1, . . . , d}. Let A> 0 be a large constant that will
be chosen shortly. By Lemma 2.1 there exist j 2 {1, . . . , d} and a shear flow U on Td, directed
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along the j
0-th coordinate axis, such that U is the form (2.1) and

kr�(·, T )k2L2(⌦T ) >
⇣
1 +

2⇡2
A
2
T
2

d

⌘
kr�̄k2L2(⌦0) .

Here � is the solution of the transport equation (2.2) on Td with initial data �̄. For simplicity, and
without loss of generality, we will now assume j = 1.

Next, we let ũ : A1 !Rd be the pullback of U under '1. That is, we define

ũ= ('�1
1 )⇤(U) = (D'

�1
1 U) � '1 .

Since '1 preserves the Lebesgue measure, and r · U = 0 we must also have r · ũ= 0. Now
extend ũ to be a C

1 divergence-free vector field supported in (�3, 4)d, and let ✓̃ be the solution to
the transport equation

@t✓̃ + ũ ·r✓= 0

in Rd with initial data ✓̄. By the construction of ũ and the fact that ✓̄= �̄ � '1 on ⌦0, we must have

✓̃(x, t) = �('1(x), t) for all x2⌦t ,

where ⌦t is the image of ⌦0 under the flow map of ũ after time t. Hence,

kr✓̃(·, T )k2L2(A1) > kr'
�1
1 k�2

L1kr�(·, T )k2L2(S1) > kr'
�1
1 k�2

L1kr�(·, T )k2L2(⌦T )

> kr'
�1
1 k�2

L1

⇣
1 +

2⇡2
A
2
T
2

d

⌘
kr�̄k2L2(⌦0) > ↵

0
0kr✓̄k2L2(⌦0), (2.6)

where

↵
0
0 = kr'

�1
1 k�2

L1kr'1k�2
L1

⇣
1 +

2⇡2
A
2
T
2

d

⌘
.

To finish the proof, we need to replace the left hand side of the above with kr✓̃(·, T )kL2(⌦0).
To do this we divide A1 into eight regions of equal measure, and note that on at least one of these
regions we must have kr✓̃(·, T )k2L2(⌦0,i)

> 1
8k✓̃(·, T )k

2
L2(A1)

. If we now use a flow, w̃, that shifts
this region back to ⌦0, then we will have the desired inequality. We elaborate on this below.

The flow w̃ above can be constructed as follows: Let U =�e2, and view U as a flow on the
strip S1 ✓ Td. Let w̃ be the pullback of U2 under the map '1. By construction of '1 we note that
for every i2 {0, 7}, the flow of w̃ will map the region ⌦0,i to the region ⌦0,0 =⌦0 in time i. (Here
⌦0,i =⌦

0
0,i ⇥ (0, 1)d�2 ✓A1, where ⌦

0
0,i is shown in Figure 1 and described at the beginning of

the proof.)
From (2.6), there must exist i2 {0, . . . , 7} such that

kr✓̃(·, T )k2L2(⌦0,i) >
1
8
kr✓̃(·, T )k2L2(A1) >

↵
0
0

8
kr✓̄k2L2(⌦0) .

With this i we define the desired velocity field u by

u(x, t) =

(
ũ(x) 06 t6 T ,

w̃(x) T < t6 T + i ,

and let ✓ solve (2.4) with initial data ✓̄. Notice ✓(·, t) = ✓̃(·, t) for all t2 [0, T ], and

✓(x, T + i) = ✓̃('̃�1
w̃ (x, i)) ,

where '̃w̃(·, t) is the flow map of w̃ after time t. Consequently,

kr✓(·, T + i)kL2(⌦0) > kr'
�1
1 k�2

L1kr'1k�2
L1kr✓(·, T )kL2(⌦0,i)

> kr'
�1
1 k�2

L1kr'1k�2
L1

↵
0
0

8
kr✓̄k2L2(⌦0) > ↵

0kr✓̄kL2(⌦0) ,

provided we choose A= ↵
0
C(d)/T , for some large dimensional constant C(d) that only depends

on d. Note that
sup

06t6T+i
kukC1 6max{C1(d)A,C2(d)}
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for some dimensional constants C1(d) and C2(d). Thus rescaling time by a factor of T/(T + i)

the velocity field u satisfies all the conditions in the statement of Lemma 2.4. This concludes the
proof.

We conclude this section by repeatedly applying Lemma 2.4 to prove Proposition 2.2.

Proof of Proposition 2.2. We first apply Lemma 2.4 with T = 1 and ↵
0 = e

↵ to obtain a velocity
field u such that

kr✓(·, 1)kL2(⌦0) > e
↵kr✓̄kL2(⌦0) , and sup

06t61
ku(·, t)kC1(Rd) 6C(↵) .

Now we apply Lemma 2.4 starting at time 1 with initial data ✓(·, 1) to obtain a velocity field u

(defined for 16 t6 2) such that

sup
16t62

ku(·, t)kC1(Rd) 6C(↵) ,

and
kr✓(·, 2)kL2(⌦0) > e

↵kr✓(·, 1)kL2(⌦0) > e
2↵kr✓̄kL2(⌦0) .

Note that the constant C(↵) remained unchanged, since we still applied Lemma 2.4 for a time
interval of length 1. Proceeding inductively we obtain the first assertion in Proposition 2.2.

For the second assertion, we let n2N and t2 [n, n+ 1). Since the flow of the velocity field u

preserves the domain ⌦̃0, and since sup06t<1kukC1 6C(↵), we must have

kr✓(·, t)k2L2(⌦̃0)
> 1

C1(↵)
kr✓(·, n)k2L2(⌦̃0)

> 1
C1(↵)

kr✓(·, n)k2L2(⌦0) >
e
↵n

C1(↵)
kr✓̄k2L2(⌦0) ,

for some constant C1(↵) that depends on ↵ but not ✓̄. This immediately implies the second
assertion, finishing the proof.

3. Loss of regularity for the transport equation
In this section we conclude the proof of Theorem 1.1. The basic idea of the proof resembles very
closely that in [9], but with some important differences.

Both proofs entail an iterative construction in which some “building block” is replicated on
a disjoint family of cubes at smaller spatial scales. The building block in [9] is an optimal mixer
from [14], which enjoys uniform-in-time bounds on the first-order derivatives and decreases the
negative norms of a specific advected scalar exponentially in time. By interpolation, the positive
norms of the scalar increase exponentially in time, and roughly speaking the iterative construction
entails a rescaling in time that makes the exponential increase an instantaneous blow up, still
keeping under control the W

1,p norm of the vector field for every p <1. By contrast, in the
present proof we rely on the velocity field constructed in Section 2, which increases the H

1 norm
of the advected scalar exponentially in time, but in general it is not mixing. The advantage of this
approach is that higher regularity norms of the velocity field are controlled uniformly in time,
and that the growth of the Sobolev norm holds for every (nontrivial) advected scalar with initial
data in H

1. We will therefore be able to keep under control higher W r,p norms of the vector field
uniformly in time, and to show loss of H1 regularity for every such initial data. In fact, since the
construction is local, we need only assume that the initial data is locally in H

1(Rd).
The iterative construction becomes however less explicit, since the location and the spatial

scale of the family of cubes depend on the initial data, as we need to select the cubes in such a
way that the derivative of the initial data is large enough in all of the cubes.

Proof of Theorem 1.1. We divide the proof in three steps.
Step 1. Set-up of the geometric construction. We need to determine a sequence of cubes in Rd on

which we replicate rescaled constructions based on Proposition 2.2. We denote by Qn a cube of
side-length �n (both the location of the cubes and the side-lengths are to be determined), and we
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denote by Q̃n the cube with the same center as Qn and side-length 7�n. We will make sure that
{Q̃n} is a disjoint family contained in a bounded set and it clusters to a point.

On every Qn and Q̃n we replicate the construction of the velocity field un in Proposition 2.2
(we make explicit the dependence of un on the index n, since the velocity field in Proposition 2.2
depends on the initial data), rescaling in space by a factor �n and in time by a factor ⌧n (which
is also to be determined). We neglect a rigid motion, needed to make the cube Qn concentric and
aligned with the cube ⌦0 in Proposition 2.2, which is irrelevant to compute all needed norms of
velocity field and advected scalar. Then we can define the velocity field as a rescaling of the vector
field un in Proposition 2.2, namely

vn(x, t) =
�n

⌧n
un

✓
x

�n
,
t

⌧n

◆
, (3.1)

and we observe that vn is supported in the cube Q̃n. Next, we let

v=
1X

n=1

vn .

Because the vn are supported in disjoint cubes, it is straightforward to show that v is divergence-
free and that v is C

1 in space outside of a point in Rd, which is given by the limit (in the sense
of sets) of the cubes Q̃n as n!1. By Remark 2.3, v can be taken smooth outside of this point.
We let ⇢ be the unique weak solution in L

1([0, T ];L2
loc(R

d)) of the transport equation (1.1) with
advecting field v and initial data ⇢̄ (notice that v has compact support).

By a scaling computation (as in Section 3.2 of [9]) and using Remark 2.3 we see that

kv(·, t)kẆ r,p(Rd) .
1X

n=1

�
�
n

⌧n
, 8 t > 0 ,

where

� = 1� r +
d

p
> 0 .

But, thanks to the bound (2.5) provided by Proposition 2.2, for every n2N we have

kr⇢(·, t)kL2(Q̃n)
> exp

✓
↵t

⌧n
� �

◆
Mn, 8 t > 0 ,

where we have set
Mn = kr⇢̄kL2(Qn) ,

Therefore, using the fact that we will select the cubes Q̃n to be disjoint, it follows that

kr⇢(·, t)kL2(Rd) &
1X

n=1

exp

✓
↵t

⌧n

◆
Mn, 8 t > 0 .

We conclude that our task is to determine the location of the disjoint cubes Qn and choose the
sequences {�n} and {⌧n} in such a way that

1X

n=1

e
t/⌧n

Mn =1, 8 t > 0, (3.2)

and
1X

n=1

�
�
n

⌧n
<1, 8 � > 0 . (3.3)

Step 2. Choice of the cubes. We set f = |r⇢̄|2 2L
1
loc(R

d), which clearly entails Mn = kfk1/2L1(Qn)
.

We set

Ar(x) =
1

|Qr(x)|

Z

Qr(x)
f(y) dy ,
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where we denote by Qr(x) the cube of side-length r > 0 centered at x2Rd, and we set

D̃=

⇢
x2Rd : 9 lim

r#0
Ar(x) = f(x)

�
.

By the Lebesgue differentiation theorem we have |Rd \ D̃|= 0. The assumption that ⇢̄ is not a
constant function translates into f 6⌘ 0, which in turn guarantees the existence of �̄> 0 and of a
bounded set D⇢ D̃, with |D|> 0, such that

8x2D, 9 lim
r#0

Ar(x) = f(x)> �̄> 0 .

This means that, for every x2D, there exists r̄x > 0 with the property:
Z

Qr(x)
f(y) dy > �̄

2
r
d
, 8 0< r6 r̄x .

We can therefore iteratively pick a monotonic sequence {�n} satisfying

0< �n 6 e
�n

, �n # 0, (3.4)

and choose the centers xn 2D of the cubes in such a way that the cubes Q7�n
(xn) are disjoint

and, setting Qn =Q�n
(xn), we have

Mn >C�
d/2
n , 8n . (3.5)

The existence of the sequences {xn} and {�n} as above is guaranteed by the fact that we can
inductively choose xn and �n > 0 (small enough) to have

�����D \
n[

k=1

Q7�k
(xk)

�����> 0, 8n .

The fact that D has been chosen to be bounded guarantees that {xn} can be chosen to be a
convergent sequence, and {Q7�n

(xn)} to be contained in a bounded set. We conclude that {Qn}
is our desired sequence of cubes.

Step 3. Choice of the sequence ⌧n and conclusion. The lower bound (3.5) shows that the
condition (3.2) for the loss of regularity of the solution holds if

1X

n=1

e
t/⌧n

�
d/2
n =1, 8 t > 0 . (3.6)

We recall condition (3.3) for the regularity of the velocity field:

1X

n=1

�
�
n

⌧n
<1, 8 � > 0 . (3.7)

The sequence {�n} has been implicitly chosen in the previous step to satisfy (3.4). We now show
how it is possible to choose the sequence {⌧n} in such a way that (3.6) and (3.7) hold. To this end,
we set

⌧n =

✓
log

1
�n

◆�2

.

The series in condition (3.6) becomes

1X

n=1

e
t/⌧n

�
d/2
n =

1X

n=1

⇣
e
log 1

�n

⌘t log 1
�n

�
d/2
n =

1X

n=1

✓
1
�n

◆t log 1
�n

�
d/2
n =

1X

n=1

�
t log �n+d/2
n ,

which diverges since �
t log �n+d/2
n !+1 as n!1 for every t > 0.
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On the other hand, choosing N =N(�) so that
✓
log

1
�n

◆2

6
✓

1
�n

◆�/2

, 8n>N(�)

(recall that �n # 0), the series in condition (3.7) can be estimated using (3.4) as follows:

1X

n=1

�
�
n

⌧n
=

1X

n=1

✓
log

1
�n

◆2

�
�
n 6

N(�)�1X

n=1

✓
log

1
�n

◆2

�
�
n +

1X

n=N(�)

�
�/2
n

6
N(�)�1X

n=1

✓
log

1
�n

◆2

�
�
n +

1X

n=N(�)

e
��n/2

,

which is finite for any � > 0. This concludes the proof of the theorem.

4. Conclusion
In this work, we study properties of weak solutions to a linear transport equation, when the
advecting velocity is rough, i.e., it has only Sobolev regularity in space.

We extend the results in [9] to show that, given any non-constant initial data with square
integrable derivative, it is possible to choose the advecting vector field in such a way that the
solution loses its regularity instantaneously. To be more precise, we measure the regularity of the
passive scalar in Sobolev spaces and show that all derivatives of the solution of order greater
or equal to 1 blow up in L

2 for any t > 0. This result shows severe ill-posedness in the sense of
Hadamard for the transport equation in Sobolev spaces. This result is sharp in the scale of Sobolev
spaces, that is, the vector field in our example belongs to all Sobolev spaces that do not embed in
the Lipschitz class.

Although the construction is not as explicit as in [9], this example is based on a judicious
choice of shear flows acting on the torus, then extended to the full space. Our construction is not
universal, in the sense that the advecting field depends on the choice of initial data. It is an open
question whether one can construct one single vector field that make the norm of derivatives of
the solution blow up for (almost) all initial data. Even though the vector field depends in a strong
way on the initial data, the blow-up mechanism described in this work is distinctively linear, since
it is based on rescaling and superposing basic flows and solutions.
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