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Abstract

Consider the scattering of an incident wave by a rigid obstacle, which is immersed in a
homogeneous and isotropic elastic medium in two dimensions. Based on a Dirichlet-
to-Neumann (DtN) operator, an exact transparent boundary condition is introduced and
the scattering problem is formulated as a boundary value problem of the elastic wave
equation in a bounded domain. By developing a new duality argument, an a posteriori
error estimate is derived for the discrete problem by using the finite element method
with the truncated DtN operator. The a posteriori error estimate consists of the finite
element approximation error and the truncation error of the DtN operator, where the
latter decays exponentially with respect to the truncation parameter. An adaptive finite
element algorithm is proposed to solve the elastic obstacle scattering problem, where
the truncation parameter is determined through the truncation error and the mesh
elements for local refinements are chosen through the finite element discretization
error. Numerical experiments are presented to demonstrate the effectiveness of the
proposed method.
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1 Introduction

A basic problem in classical scattering theory is the scattering of time-harmonic waves
by a bounded and impenetrable medium, which is known as the obstacle scattering
problem. It has played a crucial role in diverse scientific areas such as radar and sonar,
geophysical exploration, medical imaging, and nondestructive testing. Motivated by
these significant applications, the obstacle scattering problem has been widely studied
for acoustic and electromagnetic waves. Consequently, a great deal of results are
available concerning its solution [18, 41, 42]. Recently, the scattering problems for
elastic waves have received ever-increasing attention due to the important applications
in seismology and geophysics [3, 38, 39]. For instance, they are fundamental to detect
the fractures in sedimentary rocks for the production of underground gas and liquids.
Compared with acoustic and electromagnetic waves, elastic waves are less studied
due to the coexistence of compressional waves and shear waves that have different
wavenumbers [16, 36].

The obstacle scattering problem is usually formulated as an exterior boundary value
problem imposed in an open domain. The unbounded physical domain needs to be
truncated into a bounded computational domain for the convenience of mathematical
analysis or numerical computation. Therefore, an appropriate boundary condition is
required on the boundary of the truncated domain to avoid artificial wave reflection.
Such a boundary condition is called the transparent boundary condition (TBC) or
non-reflecting boundary condition. It is one of the important and active subjects in the
research area of wave propagation [6, 19-24]. Since Berenger proposed a perfectly
matched layer (PML) technique to solve the time-dependent Maxwell equations [7],
the research on the PML has undergone a tremendous development due to its effec-
tiveness and simplicity. Various constructions of PML have been proposed and studied
for a wide range of scattering problems on acoustic and electromagnetic wave prop-
agation [5, 10, 15, 27, 30, 44]. The basic idea of the PML technique is to surround
the domain of interest by a layer of finite thickness fictitious medium that attenuates
the waves coming from inside of the computational domain. When the waves reach
the outer boundary of the PML region, their values are so small that the homogeneous
Dirichlet boundary conditions can be imposed.

A posteriori error estimates are computable quantities which measure the solu-
tion errors of discrete problems. They are essential in designing algorithms for mesh
modification which aim to equidistribute the computational effort and optimize the
computation. The a posteriori error estimates based adaptive finite element methods
have the ability of error control and asymptotically optimal approximation property
[2]. They have become a class of important numerical tools for solving differen-
tial equations, especially for those where the solutions have singularity or multiscale
phenomena. Combined with the PML technique, an efficient adaptive finite element
method was developed in [11] for solving the two-dimensional diffraction grating
problem, where the medium has a one-dimensional periodic structure and the model
equation is the two-dimensional Helmholtz equation. It was shown that the a pos-
teriori error estimate consists of the finite element discretization error and the PML
truncation error which decays exponentially with respect to the PML parameters such
as the thickness of the layer and the medium properties. Due to the superior numerical
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performance, the adaptive PML method was quickly extended to solve the two- and
three-dimensional obstacle scattering problems [10, 12] and the three-dimensional
diffraction grating problem [4], where either the two-dimensional Helmholtz equa-
tion or the three-dimensional Maxwell equations were considered. Although the PML
method has been developed to solve various elastic wave propagation problems in
engineering and geophysics soon after it was introduced [14, 17, 25, 35], the rigorous
mathematical studies were only recently done for elastic waves because of the complex
of the model equation [8, 13, 33, 34].

As a viable alternative, the finite element DtN method has been proposed to solve
the obstacle scattering problems [29, 32, 40], the diffraction grating problems [31,
45], and the open cavity scattering problem [47], respectively, where the transparent
boundary conditions are used to truncate the domains. In this new approach, the layer
of artificial medium is not needed to enclose the domain of interest, which makes
is different from the PML method. The transparent boundary conditions are based
on nonlocal Dirichlet-to-Neumann (DtN) operators and are given as infinite Fourier
series. Since the transparent boundary conditions are exact, the artificial boundary can
be put as close as possible to the scattering structures, which can reduce the size of the
computational domain. Numerically, the infinite series need to be truncated into a sum
of finitely many terms by choosing an appropriate truncation parameter N. It is known
that the convergence of the truncated DtN map could be arbitrarily slow to the original
DtN map in the operator norm. The a posteriori error analysis of the PML method
cannot be applied directly to the DtN method since the DtN map of the truncated
PML problem converges exponentially fast to the DtN map of the untruncated PML
problem. To overcome this issue, a duality argument had to be developed to obtain
the a posteriori error estimate between the solution of the scattering problem and
the finite element solution. Comparably, the a posteriori error estimates consist of
the finite element discretization error and the DtN truncation error, which decays
exponentially with respect to the truncation parameter N. The numerical experiments
demonstrate that the adaptive DtIN method has a competitive behavior to the adaptive
PML method. Recently, an interesting adaptive finite element method was developed
for the diffraction grating problem [48]. The method combines the PML and few-mode
DtN truncations so that those Fourier modes which cannot be well absorbed by the
PML can pass through the boundary without reflections.

In this paper, we present an adaptive finite element DtN method and carry out
its mathematical analysis for the elastic wave scattering problem. The goal is three-
fold: (1) prove the exponential convergence of the truncated DtN operator; (2) give a
complete a posteriori error estimate; (3) develop an effective adaptive finite element
algorithm. This paper significantly extends the work on the acoustic scattering prob-
lem [29], where the Helmholtz equation was considered. Apparently, the techniques
differ greatly from the existing work because of the complicated transparent boundary
condition associated with the elastic wave equation.

Specifically, we consider a rigid obstacle which is immersed in a homogeneous
and isotropic elastic medium in two dimensions. The Helmholtz decomposition is
utilized to formulate the exterior boundary value problem of the elastic wave equation
into a coupled exterior boundary value problem of the Helmholtz equation. By using a
Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition, which

@ Springer



996 P.Li, X. Yuan

is given as a Fourier series, is introduced to reduce the original scattering problem into
a boundary value problem of the elastic wave equation in a bounded domain. The
discrete problem is studied by using the finite element method with the truncated
DtN operator. Based on the Helmholtz decomposition, a new duality argument is
developed to obtain an a posteriori error estimate between the solution of the original
scattering problem and the discrete problem. The a posteriori error estimate consists
of the finite element approximation error and the truncation error of the DtN operator
which is shown to decay exponentially with respect to the truncation parameter. The
estimate is used to design the adaptive finite element algorithm to choose elements for
refinements and to determine the truncation parameter N. Since the truncation error
decays exponentially with respect to N, the choice of the truncation parameter N is not
sensitive to the given tolerance. Numerical experiments are presented to demonstrate
the effectiveness of the proposed method.

The paper is organized as follows. In Sect. 2, the elastic wave equation is introduced
for the scattering by a rigid obstacle; a boundary value problem is formulated by using
the transparent boundary condition; the corresponding weak formulation is discussed.
In Sect. 3, the discrete problem is considered by using the finite element approximation
with the truncated DtN operator. Section 4 is devoted to the a posteriori error analysis
and serves as the basis of the adaptive algorithm. In Sect. 5, we discuss the numerical
implementation of the adaptive algorithm and present two numerical examples to
illustrate the performance of the proposed method. The paper is concluded with some
general remarks and directions for future work in Sect. 6.

2 Problem formulation

Consider a two-dimensional elastically rigid obstacle D with Lipschitz continuous
boundary d D, as seen in Fig. 1. Denote by v = (vy, v) " and T = (11, 1) | the unit
normal and tangent vectors on d D, where 71 = v and 5 = —v;. The exterior domain
R2\ D is assumed to be filled with a homogeneous and isotropic elastic medium with
a unit mass density. Let Bg = {x = (x,y)" € R?: |x] < R} and Bp={x ¢ R?:
|x| < R} be the balls with radii R and R, respectively, where R > R > 0. Denote by
dBg and 9 B 5 the boundaries of Bg and R 3, respectively. Let R be large enough such

that D C B # C Bg. Denote by 2 = B \D the bounded domain where the boundary
value problem will be formulated.

Let the obstacle be illuminated by an incident wave #'", which can be either a
point source or a plane wave. The displacement of the total field u satisfies the two-
dimensional elastic wave equation

pAu+ (h+ )V -u + 0*u =0 inR*\D, 2.1
where @ > 0 is the angular frequency and A, u are the Lamé constants satisfying

u > 0,x+ p > 0. Since the obstacle is assumed to be rigid, the displacement of the
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Fig.1 Schematic of the elastic
wave scattering problem

R
T [’ om
[
oD
total field vanishes on the boundary of the obstacle, i.e.,
u=0 ondD. (2.2)

The scattered field is defined as #* = u — u'™ and it is required to satisfy the
Kupradze—Sommerfeld radiation condition

Tim 2@y — i) =0, lim V200 —ikoud) =0, r=|x|, 2.3)

where
S 1 s s 1 s
u. =——=VV-u', u, = —curlcurlu’,
P 2 s 2
Ky 4%)

are the compressional and shear wave components of u*, respectively. Here

w

w
K1 = —()L n 2#)1/2’ Ky = _Ml/z

are knowns as the compressional wavenumber and the shear wavenumber, respectively.
Clearly we have x| < «p since u > 0,2 + n > 0. Given a vector function u =
(uy, uz)T and a scalar function u, the scalar and vector curl operators are defined by
curlu = dyuy — dyuy, curlu = (dyu, —dyu) ' .
For any solution u of (2.1), we introduce the Helmholtz decomposition
u= V¢ + curly, 2.4)
where ¢, ¢ are called the scalar potential functions. Substituting (2.4) into (2.1),

the corresponding potential functions ¢*, ¥* for the scattered field u® satisfy the
Helmholtz equations

AP +iip* =0, AV +ik3y* =0 inR*\D. (2.5)
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Taking the dot product of (2.2) with v and t, respectively, we get

3v¢s - 3rws = f1, 3ulﬁs + aﬁbs = f2 ondD, (2.6)

where f| = —u™™ - v and o = —u'™ - 1.
In addition, the potential functions ¢*, ¥* satisfy the Sommerfeld radiation condi-

tions

lim r'2(0,¢° —k1¢°) =0, lim r'2@,¢° — k2y®) = 0. (2.7
r—> 00

r—00

By the Helmholtz decomposition, it can be shown that the boundary value problems
(2.1)—=(2.3) and (2.5)—(2.7) are equivalent. The result is stated in the following lemma
and the proof can be found in [38].

Lemma 2.1 Let u® be the scattered field corresponding to the solution of the boundary
value problem (2.1)—(2.3). Then ¢* = —Kfzv -ut, Yt = Kz_zcurlus are the solutions
of the coupled boundary value problem (2.5)—(2.7). Conversely, if ¢°, ¥* are the
solutions of the boundary value problem (2.5)-(2.7), let u® = V¢* + curlys®, then
u = u® + u' is the solution of the boundary value problem (2.1)~(2.3).

Denote by L?(£2) the usual Hilbert space of square integrable functions. Let H'! ()
be the standard Sobolev space equipped with the norm

5 5 1/2
el = (Nal2ag) + 19013200 )

Define H),(Q) = {u € H'(Q) : u = 0 on dD}. For any function u € L*(3Bg), it
admits the Fourier series expansion

. 1 27 .
u(R,0) =Y an(R)e", i,(R) = —/ u(R, 0)e "0do.
2 0
nez
The trace space H*(dBg), s € R is defined by
H*(3Bg) = {u € L*(OBR) : ||ull s a85) < 00},
where H*®(d Bg) norm is given by
2N (A 2\ 1/?
s = (27 Yo+ 02l RP)
nez

Let H'(Q) = H'(Q)? and HéD(Q) = HalD(Q)2 be the Cartesian product spaces
equipped with the corresponding 2-norms of H!(€2) and HalD(Q), respectively.
Throughout the paper, we take the notation of @ < b to stand for a < Cb, where
C is a positive constant whose value is not required but should be clear from the
context.
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The elastic wave scattering problem (2.2)—(2.3) is formulated in the open domain
R%\ D, which needs to be truncated into the bounded domain €2. An appropriate bound-
ary condition is required on d Bg.

Define a boundary operator on d B as follows

Bv = poyv+ A+ w)V - ve,,

where e, is the unit outward normal vector on 0 Bg. Itis shown in [38] that the scattered
field u® satisfies the transparent boundary condition on d Bg:

Bu’ = (Tu')(R.0) =Y Mu,(R)e", u'(R.0)=) ul(R)e", (2.8)

nez nez
where .7 is called the Dirichlet-to-Neumann (DtN) operator and M,, is a 2 x 2 matrix

whose entries are given in (A.4) and (A.6). By a simple calculation, the total field u
satisfies the transparent boundary condition

PBu=Tu+g ondBg, 2.9
where g := Zu™ — Tu'"

Based on the transparent boundary condition (2.9), the variational problem for
(2.1)~(2.3)is to find w € H} ,(£2) such that

b(u, v) = / g-vds Yve H),(Q), (2.10)
dBR
where the sesquilinear form b : H(%D(Q) X H})D(Q) — (C is defined as

b(u, v) :,u/ Vu : Vidx—l—()»—l—u)f (V-u)(V-v)dx
Q Q
—a)2/ u-vdx — Tu -vds. (2.11)
Q 3Bg
Here A : B = tr(AB) is the Frobenius inner product of square matrices A and B.

Following [38], we may show that the variational problem (2.10) has a unique weak
solutionu € H (1, p(§2) for any frequency w and the solution satisfies the estimate

Nl S Il 12680 < 1™ 510 (2.12)

It follows from the general theory in [1] that there exists a constant y > 0 such that
the following inf-sup condition holds

|b(u, v)| Vi e HL (©
sup —— = vlullgiq Yue Hyp(Q).

0#veH) () vl g (o)

@ Springer



1000 P.Li, X. Yuan

3 The discrete problem
In the variational problem (2.10), the DtN operator .7 is given as an infinite series.

In computation, the infinite series needs to be truncated into a finite sum. Given a
sufficiently large N, we define the truncated DtN operator

Inu = Z Myu, (R)e™ . (3.1
Inl<N

Hence g also needs to be approximated as gy = Zu'™ — Jyu™. Using (3.1), we
have the truncated problem: find uy € H .(19 p(§2) such that

by(uy,v) = / gy -vds VYve H (), (3.2)
dBR
where the sesquilinear form by : HéD(SZ) X HéD(Q) — (C is defined as

bN(u,v):u/ Vu:Vidx—i—(k—i—/L)/ (V-u)(V-v)dx
Q Q

— w2/ u-vdx — Iyu - vds. (3.3)
Q dBp

Let us consider the discrete problem of (2.10) by using the finite element approx-
imation. Let M}, be a regular triangulation of 2, where /4 denotes the maximum
diameter of all the elements in M,. For simplicity, we assume that the boundary d D
is polygonal and ignore the approximation error of the boundary d B, which allows
us to focus on deducing the a posteriori error estimate. Thus any edge e € M, is a
subset of d<2 if it has two boundary vertices.

Let Qp := Ugem, K and Vh c H! (£2) be a conforming finite element space,
ie.,

V= {v € C(Q_h)2 tv|g € Pm(K)2 forany K € ./\/lh},

where m is a positive integer and P, (K) denotes the set of all polynomials of degree
no more than m. Introduce an isoparametric-equivalent finite element space

V)= [v(F*‘(x)) x e F(Q), v e f/h},

where F € V), is a one-to-one continuous mapping constructed in [37]. We refer to
[9, 37] for more details about the construction and properties of F. The finite element
approximation to the variational problem (2.10) is to find u" € V, 3p such that

b(uh,vh)=/ g vids Vo' € Vi ap, (3.4)
3BR
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where Vi, 3p ={ve V,:v=00ndDj}.
The truncated finite element approximation to the variational problem (3.2) is to
find u};v € V. 5p such that

b[\,(u?v,vh)=fd gy -vids Yo" € Vjap. (3.5)
-

Following the argument in [28, 38], we may show that for sufficiently large N the
variational problem (3.2) is well-posed. Moreover, for sufficiently small 4, the discrete
inf-sup condition of the sesquilinear form by may be established by following the
approach in [43]. Based on the general theory in [1], the truncated variational problem
(3.5) can be shown to have a unique solution ”7\/ € V. The details are omitted since
our focus is the a posteriori error estimate.

4 The a posteriori error analysis
For any triangular element K € M, we denote by hg its diameter. Let 5, denote
the set of all the edges of K. For any edge e € By, let &, be its length. For any interior

edge e which is the common side of triangular elements K, K, € M, we define the
jump residual across e as

Jo=— (uw’mkl Vi A+ 0V -l kv + u Vg, - va+ O+ w)V - uhNthz),

where v is the unit outward normal vector on the boundary of K ;, j = 1, 2. For any
boundary edge e C d Bg, we define the jump residual

=2 (yNu’;\, + gy — u(Valy - e) — G+ ) (V - u’,’v)e,) .

For any triangular element K € My, denote by nx the local error estimator which
is given by

1/2
1
nk = hil|Zuly |l 2 + (5 > heuJeuiz(e)) :
ecoK

where Z is the residual operator defined by
Ru = pAu+ O+ WV (V-u)+ ou.
For convenience, we introduce a weighted norm || - || H'(Q) which is given by
2 _ 2 2 2 2
|||u|||H1(Q) = u/ |Vu|“dx + (1 + u)/ V- ul“dx + w / lu|“dx. (4.1)
Q Q Q
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It can be verified for any u € H 1(Q) that

min (12, %) Nl g = Nl g < max (24 + 31, 02) ulZ g 42)

which implies that the two norms || - || H(Q) and || - || H(q) are equivalent.
Now we state the main result of this paper.

Theorem 4.1 Let u and u}](, be the solutions of the variational problems (2.10) and
(3.5), respectively. Then for sufficiently large N, the following a posteriori error esti-
mate holds:

12

R\N .
h 2
|||u_uN|||H1(Q)§ E Nk +N<E> ||llmc||H1(Q).
KeM,

We point out that the a posteriori error estimate consists of two parts: the first part
arises from the finite element discretization error; and the second part comes from the
truncation error of the DtN operator. Apparently, the DtN truncation error decreases
exponentially with respect to N since R <R.

In the rest of the paper, we shall prove the a posteriori error estimate in Theorem
4.1. First, we present the result on trace regularity for functions in H'(£2). The proof
can be found in [29].

Lemma 4.2 For any u € H'(Q), the following estimates hold:
el mirn@py S lullpig)s Nullmires, S lulaig):

Leté = u — u},'\,, where u and u},’\, are the solutions of the problems (2.10) and
(3.5), respectively. Combining (4.1), (2.11), and (3.3), we have from straightforward
calculations that

|||§|||i,1(9)=u[9vs:v§dx+<x+u)/9(v§> (V-E)dx+w2fgs-§dx

=Nb(E. &)+ 2w2/ €% dx + % TE - Eds
Q dBR

= Rb(&, &) +m/ (7 — Tn) & -Eds +2a)2/ 1€2dx
9Bg Q

+9 INE - Eds, 4.3)
dBRr

which is the error representation formula.

In the following, we discuss the four terms in (4.3) one by one. Lemma 4.5 presents
the a posteriori error estimate for the truncation of the DtN operator on the scattered
field #®. Lemma 4.6 gives the a posteriori error estimate for the total field # on both
of the finite element approximation and DtN operator truncation.
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Lemma4.3 Let0 < k| < k» and0 < R < R. For sufficiently large |n|, the following
estimate holds for j = 1, 2:

A

_ A In|
- Ko (k2 — K1) <R2 _ Rz) R ’
n| —1 R

where H,&l) and H,gz) are the Hankel functions of the first and second kind with order
n, respectively.

H 1R)  Hy (aR)
H Ry HY (kaR)

Proof Since the Hankel functions of the first and second kind are complex conjugate
to each other, we only need to show the proof for the Hankel function of the first kind.

Let J, and Y,, be the Bessel functions of the first and second kind with order n,
respectively. Since J_,(z) = (=1)"J,(2), Y—,(2) = (—=1)"Y},,(2), it suffices to show
the result for positive n. For a fixed z > 0, they admit the following asymptotic
properties [46]:

Tu(z) ~ zlm (%) Yn(z>~—\/%(§)_", n— oo, (44)

Define S(z) = J,,(z)/Y,(z). A simple calculation yields

1 . : Jn(ZR)
H"@R)  J,GR +iY,R) Y, (zR) | — iy

HYR)  JuR) +iYy(zR)  Yu(zR) | — 1%

_ V@R 1—-i8,@R) _ YaGR) iY,,(zR) S,(zR) — S,(zR)
Yo(zR) 1 —iS,(zR)  Y,(zR)  Y,(zR) 1—iS,(zR)

4.5)

By (4.4)—(4.5), we have

le
U

Su(z) =

1 n
Jn(2) - /27rn( ) 1 e_z 2n
Yu(2) _ /L(S_Z)_” N 2<2n> ’ = 00

and

Yu(kiR)  Ya(e2R)
Y(k1R)  Yy(2R)

Ya(kiR)  Sy(k1R)
Y, (ki R) 1 —iS, (ki R)

‘Hrfl)(lqR) ~ HR)

H (R H(c2R)
Y.(ciR)  Sy(ciR) ‘ .

Ya(k1R) 1 —iS, (k1 R)

Ya(caR)  Sy(k2R)
Yn(KZR) 1-— iSn(KZR)

Y,(kaR)  S,(k2R) ‘
Y, (2R 1 —iS, (2 R) |
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A\ 2n
ezZR
< [ =

RY,R) R Ya@R) (59)'"'

It is easy to verify that

S,(zR)

‘ S, (zR)
1 —iS,(zR)

1 —iS,(zR)

ezR 2n
< [ ==
—\ 2n

and

—n, =
Y, (zR) 2(n —1) Y, (zR) R
Combining the above estimates, we have for R > R and k2 > K that

Ya(caR)  S,(kaR)
Ya(k2R) 1 —iS, (12 R)

+ Yn(KZIf) D '
Y, (k2R)

Yo(k1R)  Sp(c1R)
Y (k1 R) 1 —iS, (k1 R)
Yo(c2R)  Sp(k2R)
Ya(kaR) 1 —iS, (k2 R)

+ Yn(/qlf) Sn.(KIR)A '+
Yp(kiR) 1 —iS, (k1 R)

2n
<3 <€K2R> <
- 2n

Define F(z) = Y,(zR)/ Y, (zR). By the mean value theorem, there exits & €
(k1, k2) such that

Yn(KlR)
Y (k1 R)

F(k1) — F(k2) = F'(§)(k1 — 2)
RY,(ER)Y,(ER) — RY,(§R)Y.(ER)

= (k1 —K2)
Ya(ER)?
[ REY,(ER)  REY,(ER)\ Ya(ER) k1 — k2
-\ YER Y.(ER) | Y,ER) &
&G — k) (R2 _éz) YaER)
20— 1) Ya(€R)

Therefore,

1 1
2R HY(caR)

B _ |5k —x2)
2R HY (caR)

‘(Rz_léz) Y. (§R)
2(n — 1) Y, (ER)
(€K2R> < n Yn(KZRi)>
Yn(kc2R)
n|
K2 (k2 — K1)
sty ()

which completes the proof. O

Y, (/qR)
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Remark 4.4 1In the proof of Lemma 4.3, we use the asymptotic properties of the Bessel
functions (4.4) for the case when z is fixed and n — oo. It is worth mentioning that the
truncation number should be increased with respect to k> R in order to keep the term
Y, (z) dominating in H,il) (z), which is a technique issue. The result may be improved
by making a more sophisticated analysis on the Bessel functions.

Lemma4.5 Let u® € H'(Q) be the scattered field corresponding to the solution of
the variational problem (2.10). For any v € H'(Q), the following estimate holds:

/ (T — ) u' - Tds
JdBR

Proof Recalling the Helmholtz decomposition u® = V¢* + curly®, we have from the
Fourier series expansions in (A.1) that

R\N .
< N(E) ||umc||H1(Q)||v||H1(Q)~

H" (2 R)

(1)
(k1R)
ﬁ"f (®.

&, (R) = ?d’ (R), Y (R) =
H, " (k1R)

Comparing the Fourier coefficients of u# and ¢, ¢ in the Helmholtz decomposition
gives

[a1,(R) % '¢S(R)]
uS R — 1 R n
W= o] ViR
_ 4 [ H ) o
_fen® BT Ewe Y| [a®
L & o) Hy R | | (R)
L HY (2 R) |
_ 4 [ 1R 1r s i .
_|am® R 1D (0 R) —a(R) =% | up(R)
L % —a2,(R) | M _% a1y (R) An(é)
i H (k) | =
1 At A .5
= — ~ u, (R),
An(R) [Azl e
where o j;,, Ay, is given in (A.5) and
) (1)
H, (k1 R) n? H, "(k2R)
Al = Taln(R)OlZn(R) s TP
H,” (x1R) RRH (k2 R)
) : : (D
H, (k1 R) in in ~ H, (k2R)
Ap = %aln(R)—A - Oéln( )T
H," (k1 R) R H, (k2 R)
() . (1)
H, "’ (k1R) in H, " (kyR)
Ay = T 2n(R)— - —az,,(R)%,
H, ' (k1R) Hy " (k2 R)
) (1)
H, ' (kyR) n? H, "’ (k1R)
Ap = T‘xln(R)an(R) S I
Hy ' (k2R) RR H" (1 R)
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By Lemma 4.3 and (A.7), we have

o 2 2 [y 0

H, (k1 R) R n 2 | H w6 Ry HY (6aR)

Aul < || [ (R (R) = — | + — | e — =2
H, (k1R) RR RRH Ry HP (6aR)

- R\ K12R n K%é n n?

= \R 2m—1) R)\20—-1 R RR
+£19£2:£2<Rz_@§(5>m
RR In|—1 R

N 20n) R\ R\
< —en (R =) =2 (2) sl %)
< k2 (K2 Kl)( RR(R> S In R

Similarly, it can be shown that

~

R\"
|Al]|§|n|<ﬁ> ) 17]21’2'

The details are omitted for brevity.
Combining the above estimates and Lemma A.1, we obtain

R\l
s < -
s (R)| < '”'<R)

It follows from (A.6)—(A.7) that

u;(ﬁ)). (4.6)

/ (T — Ty)u’ - ds
JdBR

=R 2 {[( -7 %2“211(1?))"2"(& +in( -5+ i—z%)u;ﬂ(m]m
|n|>N n n

H[-in(- £+ i—i%)u;”m +(-%+ A—ﬂam(R))u;"’(m]WH

< 2 [Vl @)1+ 1y RO [Vinl (0 R+ ] R

|n|>N

w?

172
5( > [l o + |uf,~9<R>|2)]>

|n|>N

1/2
x( > [|n|(|v:;<R)|2+|vZ<R)|2)]) . @)

|n|>N
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Substituting (2.12) and (4.6) into (4.7) and using Lemma 4.2, we obtain

/ (7 — In)u’ -vds
Gl

p\ 2] . R 1/2
S ( > [|n|3(§) (|u;’r<R>|2+|uf;9<R>|2)D 1ol 172008,

A

R n]
N
N ‘2‘137;\7 <|n|(ﬁ) )”u ”H]/z(aB,@)”v||H'/2(BBR)

A

R [n]
N
S \{;I\liv](\f <|n|<E) )”u ||H1(Q)||v||H1(Q)

A

R In| .
mc
S \3‘13)}(\/ <|n|<E> )”u ”Hl(Q)”v”Hl(Q)v

5\ Il
which completes the proof by noting that || (%) is decreasing for sufficiently large
|n].
O
In Lemma 4.5, it is shown that the truncation error of the DtN operator on the
scattered field decay exponentially with respect to the truncation parameter N. The

result implies that N can be small in practice.

Lemma 4.6 Let v be any function in H%]D(Q), we have

'b@, v) +/ (7 — Zi)& - vds
dBR

1/2

R\Y .
S Y & +N<E> 1™ 1 g0y | 1211 -
KeM,;

Proof For any function v in H},D(Q) and v" in Vi.9p, we have

b(E, v) +/ (7 — )& - Tds
dBR
= b(u, v) — by, v") + bl @l o) — by, v) + / (T — Tn)E - vds
9BR
- / gy - (T—oh)ds — bl uly, v — o)
JBR

+/ (g—gzv)~5ds+/ (7 — J¥)u - vds.
dBr dBRr
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For any v € V), 3p, it follows from the integration by parts that

—bN(u?v,v—vh)Jr/aB gN~(v—v_h)ds
=- Y {M/ Vuf(,:V(i—v_h)dx—i-(A—i-M)/ (V~u}1‘v)V-(ﬁ—v_h)dx}
KeMy K K
- > {—wQ/ uﬁ(f(i—v_h)dx—/ (ﬂNu}I‘V—i—gN)-(i—v_h)ds}
KeM, K dBRrNIK
= Z {—/ [uVu},’\,~v+(A+u)(V-u}1{,)v]~(i—v_h)ds
KeM, 9K

+/ (ﬁNuﬁ,+gN)'(5—v_h)ds}
dBRrNOK

+ ) / pAUY + (4 VY - uly + o’u ]~(ﬁ—v_h)dx
KeM,j

|:/%’uN v—vhdx—i—z / (¥ — vt)d :|
KeM,; €

ecdK

We take v = v € Vi.ap, where T1; is the Clément-type interpolation operator
and has the following interpolation estimates (cf. [12]):

1/2
o = Mol 2y S A V0I5 10— vl S A0l g -

Here K is the union of all the triangular elements in M), which have nonempty
intersection with the element K, and K, is the union of {K : ¢ C K € M;}. It
follows from the definitions of g and g that

/ZJBR (g —gy) vds = fBBR [(@uinc _ ﬂuim) _ ((%uinc _ gNuinc>] Tds
= / (Iy — T)u™
3Bg

By Lemma 4.5, we have

/ (g—gN)~5ds+/ (7 — In)u -vds

3BR 3BR

R\Y .
S N(E) ”umC”Hl(Q)”v”Hl(Q)~

/ (T — Iy)u’ -vds
dBR

The proof is completed by combining the above estimates. O

The following lemma is to estimate the last term in (4.3).
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Lemma4.7 For any § > 0, there exists a positive constant C(8) independent of N
such that

_ R
S X 2 o 2
R Ing - Bds < CONEN gy + <,§>5“€”H| BT

Proof Using (3.1), we get from a simple calculation that

m/BBR TnE - Eds =27R% Y (M,E,) &,

[n|<N

Denote M,, = (M, + M})/2. Then %t (My&,,) - &, = (M,&,) - &,. It is shown in [38]
thgt M,, is negative definite for sufficiently large |n|, i.e., there exists No > 0 such that
(M,&,) - &, < 0forany |n| > No. Hence

W| IyeE-Eds=2xR ) (M.§,)-E, +27R > (M,8,) - &,
9Bk [n|<min(No.N) N=>|n|>min(No.N)

(4.8)

Here we define

> (M,£,) &,=0, No>N.

N>|n|>min(Ng,N)

Since the second part in (4.8) is non-positive, we only need to estimate the first part
which consists of finite terms. Moreover we have

N[ Ive-Eds<2aR Y (Mak,)-E,

Br |n|<min(No.N)

<C Y &P =ClElgy,,, 4.9)
|n]<min(No,N)

Consider the annulus
BR\By ={(r.0) : R<r <R, 0<6 <2r}.

Forany u € H'(Bg\B}) and § > 0, it follows from the Cauchy—Schwarz inequality
that

. R R R g
(R—R)|u(R)|2=/ |u(r)|2dr+/ / — |u(r)|>dedr
I3 R Jr o dt
R R
< / Iu(r)lzdr+(R—R)ﬁ 2lu(r)||u’(r)|dr
R R
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_ /R lu(r)2dr + (R — é)/R2|”(r)|J§|u/(r)|dr
J3 RS
R R R

s[ |u<r>|2dr+a—1<R—R>[ |u<r>|2dr+3<R—R>f () Pdr,
R R R

which gives

R R
lu(R))> < [3—1 Jr(le—zr%)—l]/lé |u(r)|2dr+8/1§ W' (r)2dr.  (4.10)

On the other hand, we have

IVl 2n2/ rlu () + —|un(r)|) (4.11)
nez

e ”Z/ rlun (r)|*dr. (4.12)
nez

Using (4.10)~(4.12), we have for any u € H'(Bg\B}) that

17255, = 27T R D lun (R

nez
<2nR[8 "+ (R-R) Z/ lun (r)2dr
nez
+27rR<SZ/ |u!, (r)|*dr

nez

<o [67 + (R- R <5>ZfR Jun (r)1d
= I,é 1% riuy\r r
soms(% )Z/ P + "l 1))
—1 5y —1 R R
=267+ (R- R LR ( )nwan(B =
R
< CONul \B)+< )esnwan(B 7 (4.13)

Therefore, combining (4.9) and (4.13) yields

! R

dBg
< CONEN 25 5 + | = )S1ENS Vi
= L*(Br\Byp) 1§ H'(BR\Bp)’
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which completes the proof. O

To estimate the third term on the right hand side of (4.3), we consider the dual
problem

b(v, p) =/ v-&dx, Yve H),(Q). (4.14)
Q
It is easy to check that p is the solution of the following boundary value problem

wAp+ (G 4+mWVY - p+ao’p=—§ inQ,
p=0 on dD, (4.15)
Bp=T*p on 9 Bg,

where .7* is the adjoint operator to the DtN operator .7. Letting v = £ in (4.14), we
obtain

6120 = b0+ [ (7= TgFas - [ (T Tgpas
dBR dBg
(4.16)
To evaluate (4.16), we need to explicitly solve system (4.15), which is very com-
plicate due to the coupling of the compressional and shear wave components. We
consider the Helmholtz decomposition to the boundary value problem (4.15). Let

& = V& + curlg,, 4.17)

where &;, j = 1, 2 has the Fourier series expansion

Ej(r.0) =Y Eu(re™, R<r <R

nez
Meanwhile, we assume that
Er.0)=) (& (er +&](r)eq)e™. (4.18)
nez

Using the Fourier series expansions and the Helmholtz decomposition, we get

E(r.0) =) [&r (e, + &) (r)es] " = VE| + curlé,

nez
= [Sinmer + L E1n()es + o Ean(rer - sénmee} £t
nez
= / ﬂ ﬁ ! ino
_ % [(sln(r) + = szn(r))e, + ( () ggn(r))ee} o
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which shows that the Fourier coefficients &1, &, satisfy

, in , in , 0 A
E,(r) + 752n(r) =§,(r), 751n(r) —&5,(r) =§,(r), re(RR).
Lemma 4.8 The system for the Fourier coefficients

£, (1) + 2E,(r) = E1(r), e (R R),
e (r) — &, (1) = E0(r), r e (R, R), (4.19)
£1,(R) =0, &,(R)=0, r=R,

has a unique solution given by

=3 [ [C)+(2) Jawar+ 5 [T - (1) Jero

(4.20)

=3 [ () - () Jsrwar=3 [ ) + (1) |

4.21)

Proof Denote

=10 7]

r

By the standard theory of the first order differential system, the fundamental solution
D, (r)is

The inverse of ®,, is
BN (1)‘” 0 i
oo =2 | Ead!
V2 V2 V2
Using the method of variation of parameters, we let

E1n(r), E20(r) T = () Cu(r),
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where the unknown vector C, () satisfies

CL(r) = @, (&), 80T

G @ a3 - ()

E —n n —n ) n (422)
16" =@ s+ [+ s
Using the boundary condition yields
En(R). &(R) T = &, (R)Cy(R) = (0,0) ",
which implies that C,(R) = (0,0) ". Then
R
C,(r)= —/ C) (t)dr. (4.23)

Combining (4.22) and (4.23), we have
G G st () (3) e
2R (%)_"—%) g (nde + (X (é)"+(§)_" £9(n)dr.
Substituting C,, () into the general solution, we obtain
n R —n : n R —n
gl,,(r)z—l(i)/ (i> g;(t)dt+l<i>/ <i> £ (1)dr
2\ R r R 2\ R r R
() [ (s 3 () [ ()
—-—=| = / — | & (Hdr — — f (7) &, (t)dr
2\R r \R R r \R
: r n R t —n . 1 —n R n .
) [ () w3 (G) [ () o
R/ Jr \R 2 r
(5 [ () aoa-3(5) [ (7) e
sl = / =) &wd—- (= f (7) &, ()dr,
2\R/) Jr \R R r \R

which completes the proof. O

| =

l\)l»—k =]
x%)l“

Let p be the solution of the dual problem (4.15). Then p satisfies the following
boundary value problem in B\ B :

UAp + A+ u)VVV-p+w’p=—& in BR\B_]@7
p(R.6) = p(R.6) ondBy, (4.24)
Bp=T*p on d Bg.
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Introduce the Helmholtz decomposition for p:
p = Vq1 + curlgy, (4.25)

where g, j = 1, 2 admits the Fourier series expansion

q;(r,0) =) _qjn(r)e™.

nez

Let &;,, j = 1, 2 be the solution of the system (4.19). Consider the second order
system for g,, j =1, 2:

4/, ()+ 17,0+ (7 = (£)")an(r) = ¢jg(r). r € (RR),

qjn(R) = ¢jn(R), r=R, (4.26)
4, (R) = ®jnqjn(R), r =R,
where ¢y = —1/(A + 2u), c2 = —1/p, and aj, is given in (A.5). The boundary

condition q}n(R) = ®;,qn(R) comes from (A.2), i.e., g; satisfies the boundary
condition

Orqj = T7q; =Y Tuqjn(R)e™ ondBg.

nez
where 9]* is the adjoint operator to the DtN operator .7;.

Lemma 4.9 The boundary value problem (4.24) and the second order system (4.26)
are equivalent under the Helmholtz decomposition (4.25).

Proof It suffices to show if the Fourier coefficients g ;,, satisty the second order system
(4.26), then p = Vq1 + curlg, is the solution of (4.24).
In the polar coordinates, we let

p(r.0) =Y (py(re. + pl(r)eg)e™, r e (R, R). (4.27)

nez

It follows from the Helmholtz decomposition that

r / in 0 in 4
Pa(r) = qy,(r) + 7qzn(r), pp(r) = 7q1n(r) = o (r). (4.28)
Using (4.27)—(4.28), we have from a straightforward calculation that

Bp = (wdp+ O+ 1wV - pe)lr=r
1 2 .
= [0+ 20040, (R) + G+ 1)1, (R) = O+ )51 (R) [ e,

nez

@ Springer



An adaptive finite element DtN method for the elastic wave

1015

in in ;
+ 2 [ B0 (R) = nzqua(R) e

nez
in / in inf /" inf
+> [uiqz,,(R) - MﬁQZn(R)]e e+ ) —1gy, (R)e" e
nez

nez
On the other hand, it is easy to verify that

Tp=3 {[Mf’}) FR) + M (R Jer + [ M3 (R) +M§’;)p2<R>]ee}ei""
nez

= S M [aha )+ )] 4 M5 [ (B = a3, 0] e

nez

nez

+ { M 41, (B + g (R)] + M [ Rgua(R) - qén(R)]} epe™

n) . . . .
where Mij ,i,j = 1,2 are given in (A.4).

Using the boundary condition q}n (R) = @jugqjn(R), we get

in in
(“E - M<">> 4in(R) — (Mé? R R2) qun(R)

in .y,+ sin 1 "R
= — —in—4+ o0 —=—
W in 21n Aln
——=—= R
( RR+w R (R)JruRz)qln( )
21n 1 , _
R) — R)) =0
RA ® (Chn( ) — %1nqin( ))

and

( = M“”) Gh(R) — (Mf’? TR ) ¢2n(R)

(i”'“+'w21)’(k)
=\ U— —1n— m———
R R RA,,(R) 9on
in Win sin o,
— — - == tw — R
<MR2 RR T RA"(R))QZn( )
LS|

= i”f @ (45, (R) — @2,g24(R)) =0

Since gy, satisfies the second order equation

/ 1, 2 1 .
45,(r) + g5, () + (K% - (%) )qw) =~ re®R),
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we obtain from the boundary condition &, (R) = 0 that

12R

P m (. n 2il’l 1 ) ( 12 2 Ulp ) ,
=— R)— —|in= —w"— = R)+|—— to'—— R
a2 (R) R( R RN, (R) 42 (R) R A, (R) 920 (R)

. 2 _
=&n(R ; n(R 2(12) ! n 5 (R
Ean(R) + pr3qon(R) + 0™ | & = (R)CH( )t A,,(R)q2n( )

—uqé;<R>—(M<"> qon(R) — Z)qgnm))

? n - n\2 .,
= En(R) + = ((—) 420(R) = T2 (R) — (%) qzn(R)+aqu,,(R>)

ln
An(R)

= E,(R) + o*

(—=@22920(R) + g5, (R)) = 0

Similarly, combining the equation

1, 2
41,1 + 41, () + (K% -(%) )qw) =-

and the boundary condition &1,,(R) = 0, we have

1 N
A+2M€1n(i’), re (R, R)

1 2
O+ 200)q], (R) + (h + M)—qin(R) — Ot m%qmm)

—MD g (R) = Z M g1,(R)
nA2
= G+ 2w) [— 6 (R) - (R ( -(%) )qm(R)]
A420 ) o2 > ' (R
+( R s ) 4 (®)

+ (—(x o) (%)2 + 0 1(R) (” )2) qin(R)

_ ) Qm 2 1 n\?2
= —bn(R) 0= R)q1n<R>+(—w +ol—(% ))fhn(R)
2 ., na2 —
= bR~ = (aznqlnm) + (%) 0 (R) — Ttzqun(R)
n\2
-(%) qln(m)

R - -2
= 1n A, (R

n

)m [47,(R) — @ingqia(R)] = 0

Hence we prove that Zp = .7 *p on 9 Bg.
Moreover, we get from the Helmholtz decomposition that

HAp+ A+ mVV - p+o’p
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=V ((A +21)Aqy + a)2q1) + curl (,quz + w2q2>
= —Vé§ —curlé; = —§,
which completes the proof. O

Based on Lemma 4.8 and Lemma 4.9, we have the asymptotic properties of the
solution to the dual problem (4.24) for large |n|.

Theorem 4.10 Let p be the solution of (4.24) and admit the Fourier series expansion

pr.0) =Y (ph(re, + pl(rieg) e

neZ

For sufficient large |n|, the Fourier coefficients p),, pz satisfy the estimate

5\ 2In|+2 . A
PRI + P (R < n2<5> (1PaRP + 15 R)P)

1

2 62
" In|? (”E" Ve iy l5n ”L°°([1%,RJ>> ’

where &), é‘,? are the Fourier coefficients of & in the polar coordinates and are given

in (4.18).

Proof 1t follows from straightforward calculations that the second order systems (4.26)
have a unique solution, which is given by

qin(r) = ,Bln(r)qm(k) + %/A tWin(r, &1, ()dt
R

i (R .
+Z/;§ tB1n (O Win (R, r)€1,(2)dt, (4.29)
Gon(r) = Bon(r)qon(R) + IZ” / tWon(r, )&, (2)dt
R
i (R N
+Z/1é 1Bon (1) Wan (R, r)2, (1)d2, (4.30)
where
Hrgz) (Kjr) 1 2 ) @
ﬂjl’l(r) = H(Z)(Kﬁ)’ an(r, t) = H,E (KJV)HIE )(Kj[) — Hn (/(jl)Hn (Kjr).
n \Kj

Taking the derivative of (4.29)—(4.30) with respect to r gives
r

a1, () = B1, (g1 (R) + %/R 10-Win(r, )1, (1)dt
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ir (R R
T /I; B (13, Win (R, 1)L (D, @31)
Goa (1) = B O)2n (R) + /R 19, Wan (. D (1)d1

ir (R N
+Z/I; tBon (t)0; Wau (R, r)é2, (1)d2. (4.32)

Evaluating (4.29)—(4.30) and (4.31)—(4.32)atr = Randr = R, respectively, we may
verify that

: R
41n(R) = Bia(R)gua (R) + /R B (RYWin (R, D1 (0t

. R

420(R) = Bon(Rgon (R) + /R Ban (R Wan (R, 1)z (1)d1,
. R R 1 [R

Gin R = By (Rrgun (R + = / B (D1 (D1,

R
R

N A A 1
G (R) = By Roan (R + = [ 1B 82,001,
It follows from the Helmholtz decomposition that
in in
Pa() = a1, () + (), pi() = —qun(r) = 3, (1). (4.33)

Evaluating (4.33) at r = R, noting ﬁ}n(R) = o, (R) and q}n(R) = a;n(R)qn(R),
we obtain

PLR)] _ gn(R)] | it JE tWin (R, &1, (1)dt
[p;?(R)} O [qzna%)} T3 U”(R)[ R’?%wzn(zé,t)&nu)dr] @39

where

. am(R) in Bin(R) 0
Un(R) = in —Olzi(R)i| |: 0 ,32n(R)i| '

Similarly, evaluating (4.33) at » = R and noting g/, (R) = aj,(R) yield that

PL(R) s [an (R | [m
n T — KL (R X , 4.35
[pZ(R)] ( )[qzn(R>]+[nz} (433
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where
N o] (]%) in
KuR)= | L —
% —a2,(R)
and

1 R 1 R
S / B OE (AL, 120 = —— / Bon (D2 (1)1
R JR R JR

Solving (4.35) for ql,,(Ié), q2n (1%) in terms of p}, (Ié), p,’l(lé) gives

|:q1n(jé):| — V”(Ié) |:Pf,(1%) - 771ni|

N b (4.36)
4R~ W Ry LPIR) =

where

—an(R) %
)

2
Anu%):(%) — a1y (R)aan(R),  Vu(R) =

Substituting (4.36) into (4.34) yields

[p;(m] _ U(RVa(R) [pn(R)] FRL. )[f,xrwlnue l)fln(l)dli|

Ph(R) AR LPIB) tWan (R, )62, (1)dt
——U”(R)Vf(R) [’“”] (4.37)
An(R) M2n

Following the proofs in Lemmas 4.5 and A.1, we may similarly show that for suffi-

ciently large |n|
A\l
swiz) -
R

For fixed ¢ and sufficiently large |n|, using (4.20) and (4.21), we may easily show

Un(R)Vy(R)
An(R)

r

R In|
601 S (160 + 16 i) [ (5) " ar @39)
t

. 0 Ryl
1621 ()] S (”En ||L°°([I€’,R]) + ”Sn ”Loo([lé,R])) [ (;) dr. (4.39)
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By (4.38)~(4.39) and

N 2i t [n| R n]| R |n|
wako =20\ (5) ()] o~ (3)

we get

R
‘/: th”(Rv 1)&jn(1)dt
R

0
,S, <||€;||LOC(IR,R]) + ”En ||L°°([1%,Rl))

LR e\ Ry
—/ t(7> / (£> drdt
Inl J& R t t
1
_ R 0 . -
= (187 ey + 167 imai. ) Taiar 51
R 1 n|
xf t<7> (R|"|+1—t|"|+1)dt
R R
1 /R\M
0
S <||55||LM([ﬁ,R]) + ”En ”LOO([l%,R])) W(E)

and

1 R
= in in d
R/zé 1Bjn(1)§jn(1)ds

0
5 (||§;||L°°([R,R]) + ||§n HLOC([IQ,R]))

(5 [ () e

1
— . 0 .
= (7 iy + 16 N m) T

~

R/ R\ Il Rlnl+1 _ 4In|+1
[y,
£\t il
1 R n
0
5 (”E’:”LOO([R,RJ) + ”sn ”Loc([R’R])> W(E) .

Substituting the above estimates into (4.37), we obtain

]% 2|n|+2 . .
Ph(RP +1PA(RIP S n{;) (1PaROP + 15 R)P)

1 r2 02
+W (”én ||LOO([R’R]) + ”En ”Lm([]é,R])) s

which completes the proof. O

Using Theorem 4.10, we may estimate the last term in (4.16).
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Lemma4.11 Let p be the solution of the dual problem (4.24). For sufficiently large
N, the following estimate holds

1
< 2
S 181 g

f (7 — Ty)E - Pds
dBR

Proof Using the definitions of the DtN operators .7, Jy and following the discussion
in (4.7), we have

/ (7 — Ty)E - Pds
dBg

<27R Y (M, (R)) - By(R)]

|n|>N

<S2nR Y Inl (1) (R + &7 (R (175 (R)] + | ph(R))

|n|>N

|| 2\1/4
=27R — /
’ |,1|Z>N PR

x (167 (R + 2 (R)I) 1n1>* (1ph (R)] + 1 P4 (R)))
1/2

1 - 2
Sy n%a + )2 (1E5(R)| + 1E2(R)))
1/2

< | 3 1P (195 ®)] + P4 (R)))

|n|>N
172
SN rany | Y 1P (IR + 1P (RIP)
|n|>N
172
SNl | 2 P (IPp®P+1PARF) | @40
In|>N

Following [29], we let S [ﬁ, R] and assume, without loss of generaliAty, that ¢ is
closer to the left endpoint R than the right endpoint R. Denote { = R — R. Then we
have R — t > % Thus

[ '
£ O = —_t/R (®= i7" ))&

R
t J
- / <—|s,$’*9><s)|2+2<R—s)fﬁ(s,i"”%s)sé””(s)))ds
R—1t Jp
R R
<o [ OO 12 [V elEr 6
R—1t ), R
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which implies that
2
(r,0)2 Zer0))2 (r.0) R (r,0) .
161w = 16 Wiy + 216 Doz 16 1120y

2
r.0) —1 (r,0)r,2
< | - A~
= (é_ + |7’l|> “g ||L2 [R R]) + |n| ”Sn ”Lz([R,R]).

Using Lemma 4.10 and the Cauchy—Schwarz inequality, we get

> P (1R + IpiRIF)

n|>N
2ln|+2 . .
<Y P { ( ) (1PaBP +1p)RP)

[n|>N

1 rn2 2
o (1712 g T VT )
5 Ié 2! p (2 0/ py\2
<Y il (§> (17 BP + 1p) R)P)
|n|>N

r2 012
+ Z n| (“é:n “Loo([]é’R]) + 118, ”L°°([1%,R]))

n|>N
=01 + I.

Noting that the function r*e =%

2\ 1271 , A
I £ max (”4(E> ) > il (I RF + 1 (R)P)

|n|>N

is bounded on (0, +00), we have

||P||HI/2(GB 5) ™~ ”EHHI(Q)v

where the last inequality uses the stability of the dual problem (4.24). For I, we can
show that

2
hs Y [|n| <E - |n|) (U012 3y + 160122 4 )

|n|>N

rr 072
<||§ ”Lz (LR, R]) + 118, ”Lz([lé,RJ))]

2 2
< Z [( [n] 4+ n > Y S ||E:1||L2([1€’,R])i| '
|n|>N

On the other hand, a simple calculation yields
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2
& 0)||H1(B \Bp) 2”2/ |:( n7> 160 () +1’|€,$r’0)/(r)|2:| dr

nez
A N
> o R+ (r,0) R (r,0)
E/ [( —R)Ié ">+ RIgD (1)
nez
It is easy to note that

2 2 . n?

- SR+ —.

§|n|+ﬂ S R+ 5

Combining the above estimates, we obtain

2 2
12 S ”E”HI(BR\B]%) =< ”g”Hl(Q)’

which gives

> PR+ PR S 161 ).

n|>N

Substituting the above inequality into (4.40), we get

/a , (T = TWE P |£||H1(Q) (4.41)

which completes the proof. O
Now, we are ready to present the proof of Theorem 4.1.

Proof By Lemma 4.6 and Lemma 4.7, we obtain

U1y gy = W06, 8491 [ (7 = )6 Fas

+2w2/5-§dx+m INE - Eds
Q

9BR

1/2 RN
< (Z ni) +N<E) 1™ g1 gy | 1€ 1)

KeM;

+ (C2+ C(3)) Ilélle(Q) < >5IIEIIH1(Q)
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8

1
mnah < 2> e get

Using (4.2) and choosing § such that %

1/2 PN
1131 g, < 2Ci ( > ni) +N(E> 1™ | g1 ) | 1611571 )
KeM,;,

2
+2(C2+ CO) €12, - (442)
It follows from (4.2), (4.16), Lemmas 4.6 and 4.11 that we have
16132y = bE P+ [ (T Tg B~ [ (T g pas

dBp d

Bg

2 12 k N inc 1 2
S 2 mk) +N(F) 1™ | 1Elme) + 5 1E17 o)
KeM,

Substituting the above estimate into (4.42) and taking sufficiently large N such that

2(Cy+ C(6)) 1
N min(u, w?)

<1,

we obtain
1/2 AN
|||u—u7v|||,,1(m§< > ni) +N(§) 1™ 1 -
KeMy

which completes the proof of theorem. O

5 Implementation and numerical experiments

In this section, we discuss the algorithmic implementation of the adaptive finite element
DtN method and present two numerical examples to demonstrate the effectiveness of
the proposed method.

5.1 Adaptive algorithm

Based on the a posteriori error estimate from Theorem 4.1, we use the FreeFem [26] to
implement the adaptive algorithm of the linear finite element formulation. It is shown
in Theorem 4.1 that the a posteriori error estimator consists of two parts: the finite
element discretization error €;, and the DtN truncation error € y which depends on the
truncation number N. Explicitly

A

R\N .
=\ > nt , eN=N<E) 1™ 1 (- (5.1
TeMy;
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Table 1 The adaptive finite element DtN method for the elastic wave scattering problem

(1) Given the tolerance € > 0,0 € (0, 1);

2) Fix the computational domain 2 = Bg\ D by choosing the radius R;

3) Choose R and N such that ey < 10_8;

4) Construct an initial triangulation M}, over € and compute error estimators;
5) While €, > € do

(6) Refine the mesh M}, according to the strategy:

if n, > 6 max , then refine the element TeM ;
nT TeM,, m h

h

(7 Denote refined mesh still by M, solve the discrete problem (3.4) on the new mesh Mj;;
(8) Compute the corresponding error estimators;
) End while.

In the implementation, we choose ﬁ, R, and N based on (5.1) to make sure that the
finite element discretization error is not polluted by the DtN truncation error, i.e., €y
is required to be very small compared to €5, for example, ey < 1078, For simplicity,
in the following numerical experiments, R is chosen such that the obstacle is exactly
contained in the disk By, and N is taken to be the smallest positive integer such that
ey < 1078, The algorithm is shown in Table 1 for the adaptive finite element DtN
method for solving the elastic wave scattering problem.

5.2 Numerical experiments

We report two examples to demonstrate the performance of the proposed method. The
first example is a disk and has an analytical solution; the second example is a U-shaped
obstacle which is commonly used to test numerical solutions for the wave scattering
problems. In each example, we plot the magnitude of the numerical solution to give
an intuition where the mesh should be refined, and also plot the actual mesh obtained
by our algorithm to show the agreement. The a posteriori error is plotted against
the number of nodal points to show the convergence rate. In the first example, we
compare the numerical results by using the uniform and adaptive meshes to illustrate
the effectiveness of the adaptive algorithm.

Example 1 This example is constructed such that it has an exact solution. Let the
obstacle D = Bys be a disk with radius 0.5 and take 2 = B;\Bgs, i.e., R =
0.5, R = 1. If we choose the incident wave as

1y 1y
; k1Hy  (k1r) (x kKo Hy' (ic2r)
ul™(x) = — 0 < ) _ 0 _yx . r= (x2 + y2)1/2’

r y r

then it is easy to check that the exact solution is

w2 Hgt (c1r) <x> ety Gon) ( y )

y r —x
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Table2 Comparison of

numerical results using adaptive
mesh and uniform mesh DoF, e, € DoF, e €n
refinements for Example 1

Adaptive mesh Uniform mesh

1745 0.4632 3.9693 1745 0.4632 3.9693
2984 0.3256 2.6723 2667 0.3717 3.2365
5559 0.2253 1.9293 5857 0.2494 2.0625
9030 0.1778 1.5054 10630 0.1851 1.5856

15,407 0.1384 1.1686 20224 0.1330 1.1257

10 ;
—&— Adaptive e,
—&— Adaptive ¢,
—+— Uniform e,
—7— Uniform e,
Slope -1/2
3
=
(0]
T
10°F ]

!

Number of nodal points 10*

Fig.2 Quasi-optimality of the a priori and a posteriori error estimates for Example 1

where k1 and k7 are the compressional wave number and shear wave number, respec-
tively.

In Table 2, numerical results are shown for the adaptive mesh refinement and the
uniform mesh refinement, where DoF}, stands for the degree of freedom or the number
of nodal points of the mesh My, €, is the a posteriori error estimate, and e;, =
||l — u},’\, I g1 @ is the a priori error. It can be seen that the adaptive mesh refinement
requires fewer DoF;, than the uniform mesh refinement to reach the same level of
accuracy, which shows the advantage of using the adaptive mesh refinement. Figure 2
displays the curves of log e, and log €, versus log DoF}, for the uniform and adaptive
mesh refinements with w = 7w, A = 2, u = 1, 1i.e, k&1 = 7/2, k> = m. It indicates
that the meshes and the associated numerical complexity are quasi-optimal, i.e., ||u —
”?v lgto =0 (DOF;I/ 2) holds asymptotically. Figure 3 plots the magnitude of the
numerical solution and an adaptively refined mesh with 15,407 elements. We can see
that the solution oscillates on the edge of the obstacle but it is smooth away from
the obstacle. This feature is caught by the algorithm. The mesh is adaptively refined
around the obstacle and is coarse away from the obstacle.
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Fig. 3 The numerical solution of Example 1. (Left) the magnitude of the numerical solution; (right) an
adaptively refined mesh with 15,407 elements

102 F i ]
v
—F—
—o—2r
Slope -1/2
S
5]
T
101t 1
100 1
3 ‘4 v
10 Number of nodal points 10

Fig.4 Quasi-optimality of the a posteriori error estimates with different frequencies for Example 2

Example 2 This example does not have an analytical solution. We consider a com-
pressional plane incident wave u™(x) = de'¥1*? with the incident direction
d = (1,0)". The obstacle is U-shaped and is contained in the rectangular domain
{x eR?: 2<x<22,-07<y< 0.7}. Due to the problem geometry, the solu-

tion contains singularity around the corners of the obstacle. We take R = 3, R =
2.31. Figure 4 shows the curve of loge, versus log DoF), at different frequencies
w = 1,7, 2x. It demonstrates that the decay of the a posteriori error estimates is
o (DOF;I/ 2). Figure 5 plots the contour of the magnitude of the numerical solution
and its corresponding mesh by using the parameters w = 7, A = 2, u = 1. Again, the
algorithm does capture the solution feature and adaptively refines the mesh around the
corners of the obstacle where the solution displays singularity.
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Fig. 5 The numerical solution of Example 2. (Left) The contour plot of the magnitude of the solution;
(right) an adaptively refined mesh with 12,329 elements

6 Conclusion

In this paper, we present an adaptive finite element DtN method for the elastic obstacle
scattering problem. Based on the Helmholtz decomposition, a new duality argument
is developed to obtain the a posteriori error estimate. It does not only take into account
of the finite element discretization error but also includes the truncation error of the
DtN operator. We show that the truncation error decays exponentially with respect to
the truncation parameter. The a posteriori error estimate for the solution of the discrete
problem serves as a basis for the adaptive finite element approximation. Numerical
results show that the proposed method is accurate and effective. This work provides
a viable alternative to the adaptive finite element PML method to solve the elastic
obstacle scattering problem. The method can be applied to solve many other wave
propagation problems where the transparent boundary conditions are used for open
domain truncation. Future work includes extending our analysis to the adaptive finite
element DtN method for solving the three-dimensional elastic obstacle scattering prob-
lem, where a more complicated transparent boundary condition needs to be considered.

Acknowledgements We would like to thank the two anonymous referees for their insightful comments and
suggestions that have helped us improve the results of the paper.

Appendix A. Transparent boundary conditions

In this section, we show the transparent boundary conditions for the scalar potential
functions ¢°, ¥* and the displacement of the scattered field u* on 0 Bg.

In the exterior domain R?\ B g, the solutions of the Helmholtz equations (2.5) have
the Fourier series expansions in the polar coordinates:

H(r) e Hy" (icor) :
S , 9 — L ;&l R 1n , N , 9 — l’l— 2 R 17 Al
@ (r,0) § H,ﬁl)(/qR)qb (R)e Yo (r,0) E H,El)(KzR)w (R)e™A.1)

nez nez
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where H, (D is the Hankel function of the first kind with order n. Taking the nor-

mal derivative of (A.1), we obtain the transparent boundary condition for the scalar
potentials ¢*, ¥* on 9 Bg:

('
09" = Tigt = Y LKD) e i,
= H @R
oyt = Byt =) Mﬁ(mei"@. (A2)
nez, Hn (k2R)

The polar coordinates (7, 6) are related to the Cartesian coordinates x = (x, y)
by x = rcosf,y = rsinf with the local orthonormal basis {e,, ey}, where e, =
(cosf,sinf) ", eg = (—sinb, cosh) .

Define a boundary operator for the displacement of the scattered wave

PBu’ = pou’ + A+ pn)(V-u')e, ondBg.

Based on the Helmholtz decomposition (2.5) and the transparent boundary condition
(A.2), it is shown in [38] that the scattered field u satisfies the transparent boundary
condition

Pu’* = (Tu')(R,0) = ZMnu;(R)ei"Q on 3 Bg, (A.3)

nez

where

w'(R.0) =) uy(R)e™ =" (u)," (R)e, + uy’ (R)eg)e™

nez nez

and M, is a2 x 2 matrix defined by

n) 5 ,(n) (n) Ar(n)
M M 1 N7 N
an[ 11 12:|=_|: 11 12] (A4)

(n) 4 ,(n) (n) Ar(n)
M;" My, An(R) Nyi” Ny
Here
ny2 ki HY (k;R)
jHn (K
A(R) = (%) = @ (Ran(R), @ju(R) = 5= (A5)
R H, " (k;jR)
and

(n) 2 1 IH( . ()
NP = (%) (azn(m——)—azn(m[(HZ )W

+ 0t ) (e () (2)2)}
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KHN (k1 R)

m _ i
Ny =n
2 HY (1 R))

n R R 1 in L4
(R )‘E>‘E[( +21)

+ 0t ) (e () (2)2)}

: (1"
m _ _1n ( _ l) ink3H,  (k2R)
Ny = HRa211(R) a1, (R) R +un R—H(l)(/( R) )

K2HY (2 R)

N = (%) (R — ) — e () s

R

The matrix entries N l.(J'.” , i, j = 1,2 can be further simplified. Recall that the Hankel

function H,Sl) (z) satisfies the Bessel differential equation

2HY () 4+ zH Y (2) + (22 = nHHV (z) = 0.

We have from straightforward calculations that

1y
(n) _ 1 o Hn (x;R) 2 2
Ny = —otzn(R)|:()» + 2;1,)|: ~ Rz <K]R—,S])(KjR) + ((KJR) —n ))i|

+ 4w ( ai(R) — <2)2> :| +u (%)2 <0l2n(R) - %)

A+2
- —azn<R>[—< +R ")am(R) — 2w

+ (A +2p) (%)2+ ('\Jr

ot (5) |+ (R) (mmr- )

2
_ _% [(%) - Olln(R)Olzn(R)] + a2 (R)o’

"
= =2 MR+ a2, (R)w?,

N1<Z>=_i£[(x+2ﬂ)[ Rlz( RM ((KjR)2—n2>>i|

a ) ain(R)

2D (e, R)
+(A+u)< ain(R) — <Z>2)}
+m7“a]n(R)a2n(R) Rzonn(R)

— e [ e () - o2
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i .
+ —Olln(R)Otzn(R) lwlln(R)
= PRy + lfwz
R
(n) inp
Ny =—u R“Zn(R)aln(R) + R2 —5 02, (R)

i —1
+ <R2> (Razn(R) + (2R)? = n?)

= 1 1, (R (R + 8 1, (R) — i (R) — 242 i (1)
R R2 R2 R’ R
iun in
= TAH(R) - sz,
n\2 wo/n\2 —1
N = (%) (R = & (T) = nain(R) =5 (Roaa (R) + (k2R)* = )
n\2 w/nN\2 n
= (%) an® =5 (%) + San(®an k)
2 ny?
+an(Ryus = (%) an(®)
nw

2
=-% <(%) - Olln(R)Olzn(R)> + a1 (R)o’

"
= — 2 M (B) + (R,

Substituting the above into (A.3), we obtain

Bu® = Tu® = % A%{[( - %An(R) + aZn(R)wZ)u;f(R)
+(- %’“‘An(m + %wz)uig(m]er
(B a0 R) )y ()
+ (= AR + i (R0 )y (B) e }ei"g. (A.6)

Lemma A.1 Letz > O. For sufficiently large |n|, A, (2) admits the following asymptotic
property

An(z) = (Kl +12) +0(| |)

Proof Using the asymptotic expansions of the Hankel functions [46]

1y

H, Z n 1
n(l)( ) _| | O( 2)’
Hy" (2) z 2|n| n|
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we have

(1 2
iH, i K7z 1
ajn(Z)IKJnl)—(K]Z):—m—i-L—i-O(—z). (A7)
Hy (j2) ¢ 2\l

A simple calculation yields that

2 | X
rr= (1) e @@ = 3ed +sh+ O,

which completes the proof. O
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