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Nomenclature

C1, Cy,C Coefficients in eqns. 5 and 6

Body forces

Generation of turbulent kinetic energy

Heat transfer coefficient

Kinetic energy

Thermal conductivity

Mass flow rate

Pressure

Heat flow rate

Volume flow rate

R? Coefficient of determination

S Volumetric heat generation

Sk, S Source terms
Temperature
Velocity

Yum Fluctuating dilation in compressible turbulence
Rate of turbulent kinetic energy dissipation
Dynamic viscosity

¢ Turbulent viscosity
Fluid density
k> Turbulent Prandtl numbers

=T Q

o R

Stress tensor
Dissipation function

Abbreviations

CAC Cold aisle containment

CFD Computational fluid dynamics
CRAH  Computer room air handler

DT Decision tree

IPMI Intelligent platform management interface
IT Information technology

MAE Mean absolute error

OAT Outlet air temperature

PDU Power distribution unit

RANS Reynolds averaged Navier-Stokes
RF Random forest

SAT Supply air temperature

UPS Uninterrupted power supply

VRM Voltage regulator modules
Subscripts

B Buoyancy force

Eff Effective

1. Introduction

Over the last several decades, the world has witnessed a substantial
increase in the demand for electricity [1]. Consequently, there has been
a significant rise in carbon emissions from power generation systems
[2], which has raised concerns over their environmental impact and
contribution to the climate change crisis [3]. These facts encouraged the
research to investigate the potentials for improving systems energy ef-
ficiency [4]. Data centers, which support information-driven societies,
account for nearly 1.3% of the world s electricity consumption [5]. The
energy consumption of these bulk energy consumers was forecasted to
increase by approximately 140 billion kWh by 2020, in the US only [6].
It is reported that one to two thirds of a data center s energy con-
sumption is allocated to cooling infrastructure [7,8]. In the electronics
industry, increasing heat flux dissipation density in chips has become a
bottleneck challenge that restricts further technological development.
Thus, data center cooling systems have become the focal point of many
researchers who want to investigate energy-saving opportunities while
considering reliability concerns.

Increasingly, many emerging cooling technologies like liquid cooling
[9] and two-phase cooling [10] are being widely adopted. However, air
cooling remains the most reliable and widely used cooling approach to
date [11]. R. Gupta, S. Asgari, H. Moazamigoodarzi, S. Pal, and I. Puri
[12] compared four cooling architectures for air-cooled data centers
from exergy point of view. H. Moazamigoodarzi, P. Tsai, S. Pal, S. Ghosh,
and L. Puri [13] compared room, row, and rack cooling architectures in
terms of data center power consumption. Their results revealed that
adopting cooling architectures at the row and rack levels decreased the
overall cooling system power consumption by up to 29% when
compared with the room level cooling architecture. Z. Song [14]
examined using fans to assess the cooling system performance in data
centers with and without Cold Aisle Containment (CAC). H. Lu and Z.
Zhang [15] analyzed the data center thermal performance variation
while changing its geometrical configurations and the computer room s
air conditioning arrangement. X. Meng, J. Zhou, X. Zhang, Z. Luo, H.
Gong, and T. Gan [16] optimized the thermal performance of a relatively
small data center in China. Y. Zhang, K. Zhang, J. Liu, R. Kosonen, and X.
Yuan [17] constructed T-shaped underfloor air ducts in a modular data
center to improve the airflow uniformity. A. Almoli, A. Thompson, N.

Kapur, J. Summers, H. Thompson, and G. Hannah [18] developed a new
computational fluid dynamics (CFD) methodology for modeling data
centers that adopted rear door heat exchangers. M. T-Evans, N. Kapur, J.
Summers, H. Thompson, and D. Oldham [19] investigated the effect of
air bypass and recirculation in data centers on the cooling infrastructure
power consumption. J. Cho and J. Woo [20] introduced an in-row
coolers for improving the thermal environment of a data center by
providing a lesser air distribution path. L. S-Llanca, A. Ortega, K. Fou-
ladi, M. Valle, and V. Sundaralingam [21] tested direct and indirect
exergy destruction approaches against simplified and actual data center
flow. They found that using the direct method results in a better when
calculating the exergy destruction for the airside in data center. C. Zhou,
C. Yang, C. Wang, and X Zhang [22] conducted a numerical analyses on
a cooling system designed for small-scale data centers. J. Athavale, M.
Yoda, and Y. Joshi [23] compared different data-driven modeling ap-
proaches according to their ability to predict temperatures in data
centers. A. Khalaj, T. Scherer, J. Siriwardana, and S. Halgamuge [24]
tested the impact of distributing the workload on a data center s cooling
system s efficiency. It is important to note that all these studies
employed CFD models whilst conducting their analyses at the data
center facility level.

Over the years, CFD techniques have been recognized as the most
convenient tool for designing, characterizing, and diagnosing data
centers [17,25]. Using a CFD digital twin model of a data center can
accurately replicate the data center s performance at different operating
conditions. compared to other data center modeling techniques, such as
proper orthogonal decomposition [26 29], console-based simulation
tools [30], thermodynamic flow network modeling [31], and machine
learning models [32 35], CFD simulations are the most adoptable [36].
However, CFD models are also the most computationally intensive
among all modeling approaches. As a result, compact models have been
employed in CFD tools as a method for avoiding excess computational
cost. A compact model assumes that the complexities of physics inside
an object can be represented by an approximate model of the object s
impact on its surroundings at the locations where the object and the
surroundings interact. This assumption is less computationally intensive
than those made by traditional CFD simulations because it requires less
level of detail. In facility level analyses of white space, compact models
are considered necessary for modeling the complexities of IT equipment
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in a computationally efficient manner.

Additionally, server compact models are not limited to CFD analyses,
but can also be used to conduct thermal and energy management
functions in a data center, identify the potential for power management,
predict power consumption, and balance the needs of the data center,
and so on [37]. Other approaches to developing compact models for IT
equipment and power consumption have been investigated by re-
searchers for use in CFD modeling at the data center facility level. H.
Cheung, S. Wang, C. Zhuang, J. Gu [38] presented IT equipment
simplified model for calculating power consumption in a data centers.
This model was developed to be utilized in simulating the dynamic IT
equipment energy performance in data centers under various operation
conditions. J. VanGilder, Z. Pardey, X. Zhang, and C. Healey [39]
introduced a compact server model that captured the effects of the
server s thermal mass. H. Moazamigoodarzi, R. Gupta, S. Pal, P. Tsai, S.
Ghosh, and I. Puri [40] developed IT server enclosures compact model
which can capture the temperature distribution and power consumption
inside the enclosures. S. Erden, E. Khalifa, and R. Schmidt [41] proposed
a new method to derive some server s properties such as thermal
capacitance and conductance from external measurements. A review of
existing power consumption models for IT equipment was conducted by
C. Jin, X. Bai, C. Yang, W. Mao, and X. Xu [37]. All these studies focused
mainly on predicting the power consumed by the IT equipment or on
developing a simplified equipment model without considering the IT
equipment s different operating conditions. Furthermore, these studies
ignored the physics-based variations between different IT equipment,
which significantly affected their model s accuracy, especially at the off-
design conditions. Lastly, none of the previous studies were able to
provide an accurate model for calculating the IT equipment s airflow
requirements.

In a real-world data center, IT equipment operating conditions, such
as the data center s architecture, spatial location, inlet pressure, inlet air
temperature, and CPU utilization, can vary significantly. This requires a
physics-based compact model that can predict the IT equipment s
behavior under off-design conditions. Since error can be significantly
magnified when implementing these compact models in data center
facility level CFD models, the compact model s degree of accuracy at
different operating conditions is a mandatory factor that must be
considered. Moreover, capturing the amount of flow required by each IT
equipment is vital for power and capacity planning in data centers.
Generally, data center operators tend to overprovide IT equipment with
cool air to ensure their reliability. Adopting this practice results in a
huge amount of wasted energy by the Computer Room Air Handler
(CRAH) unit, which is responsible for a considerable share of the cooling
system s total power consumption. On the other hand, under-
provisioning leads to an increase in the amount of hot air recirculation
and the formation of hotspots, consequently decreasing the cooling
system s efficiency and exposing the equipment to reliability issues.
Therefore, accurately predicting the amount of air flow required by IT
equipment is as critical as predicting its heat dissipation, since it is used
to calculate the cooling units air delivery.

This study presents a novel extended method of building an IT
equipment compact model that employs a combination of machine
learning (regression analysis) and CFD simulation. By integrating ma-
chine learning with the detailed CFD IT equipment model, the CFD
model transforms from a rigid model that can predict the IT equipment
performance at the design point conditions to a dynamic model which is
capable of predicting the overall performance at various environmental
conditions. As this model simulates the overall performance of the IT
equipment, it can be used to derive a compact model that predicts the
required amount of flowrate and the air temperature leaving the IT
equipment, besides the power dissipated by the equipment. The key
novelty of this approach that distinguish it from existing methods for
building compact models of IT equipment, and they can be summarized
as follows:
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This approach captures the IT equipment s behavior under different
environmental conditions in the data center, which is essential for
predicting the data center s energy load demand, hence regulating
the data center s power consumption [42].

This model adapts a full physics-based model, hence it is expected to
provide very accurate predictions at both design and off-design
conditions.

All the data and tools used in this approach are readily available to
almost everyone involved in the thermal management of a DC (CFD
software, technical manuals, Intelligent Platform Management
Interface (IPMI) data, etc.).

This approach can also compute the amount of airflow required by
the IT equipment at various operating conditions with a high degree
of accuracy.

Combined, these distinguishing characteristics provide the founda-
tion for a novel method of building an IT equipment compact model.
Beside introducing the novel approach, the integration of machine
learning algorithms with the IT equipment CFD model, where the ma-
chine learning model was used to generate data that is used as input for
IT equipment CFD model, is completely new.

For many years, specifying the accurate flowrate demand in data
centers at different operating conditions is identified as a key restriction
for further improvement in the data center s cooling system s energy
efficiency. Without providing an accurate practical solution, the inca-
pability of calculating the airflow demand leaves a remarkable knowl-
edge gap in the available literature. Hence, this study is to provide a
significant contribution to the new body of knowledge as it introduces a
reliable and fast tool for calculating the flowrate demand in data centers.
The following are the major advantages of utilizing this tool:

By integrating this tool into the thermal and energy management of a
DC, its cooling system capacity planning can potentially be expanded
to cover calculating the amount of airflow required by the equip-
ment, along with the IT equipment power consumption and heat
dissipation. Since this extended method considers the amount of
airflow required by the IT equipment, with the appropriate adjust-
ments to the airflow supply from the cooling unit it introduces the
potential for substantial energy savings in currently operating data
centers. It was proven that adopting effective airflow management in
data centers could result in a substantial amount of energy savings
[43]. According to a previous study, adopting proper flow manage-
ment showed a possibility for significant energy saving opportunities
on both the CRAH unit and the chiller, where the CRAH power
consumption was reduced by 75% and the chiller power consump-
tion was reduced by 16% [44].

Using this tool can fill in the lack of information on IT equipment s
flow requirements, which can potentially prevent cooling system
oversizing or overprovisioning in future data centers.

When it comes to CFD models, implementing this approach could
remarkably improve their accuracy and reduce their computational
costs, especially during transient simulations in which a data center
experiences various operating conditions.

This tool eliminates the need to calibrate CFD models because the IT
equipment compact model can replicate accurate performances at
different environmental conditions.

The remainder of this paper is organized as follows: the method used
to develop the IT equipment compact model is described, including the
details of data collection, deriving the power consumption model, the
fan control algorithm, the numerical model, and the regression function.
Then, the experimental setup that was used to validate the results is
introduced. Thereafter, the results from each stage of development for
the IT equipment compact model are discussed and compared with the
experimental results. Finally, further conclusions are drawn in the last
section.
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2. Methodology

In many CFD tools, traditional compact models for IT equipment are
overly simplistic. Oftentimes, they treat the airflow and heat dissipation
ae fixed values or are lumped together as a single rack compact model
Some tools go further, and the flow can be controlled as well as
improves upon the accuracy of the IT equipment compact model. It
proposes utilizing data that can be collected in almost all data centers
and developing a series of regression models to build the IT equipment
comparct model. The methodological approach starts with collecting the
IFMI data for the IT equipment. Then, thiz data is used to derve the IT
equipment’s power consumphion model and the fan speed prediction
models. Thereafter, these models are integrated with a detailed phyzice-
based IT equipment CFD model to predict the IT equipment’s perfor-
mance at off-design conditions. This model iz utilized to produce a new
get of data that correlates the operating conditions with the response
parameters. Finally, a proper regression model i1z applied to yield simple,
yet aceurate, regression functions that represent the IT equipment
compact model. Fiz. | ehows the flow diagram for the proposed meth-
odological approach adopted in this study.

It ehould be noted that there may be considerable differences be-
tween varous types of IT equipment. The differences between different
servers’ types and models include size, layout, seometrical parameters,
rated power, number of fans, ete. Even for some modern servers, the
BIOS sethinge allow the user to set the server in a high-performaneces
mode where the fan power is reduced. Hence, these differences result
in different airflow patterns, flowrate, temperature variations acroes the
server, and dissipated power. The objective of this paper iz to introduce a
general methodology of ereating various compact models for various IT
equipment based on a combined CFD and operational data approach.
After thoroughly explaining the compact model development approach,
the results and discussion section examined constructing an example
compact model for specifie IT equipment to assess the suggested
approach. Thus, all the regults presented in that section are for a single
specific server.

2.1. Data collection

The methodeological approach presented in Fiz. 1 starts with col-
lecting IT equipment monitoring data through the IPMIL. [PMI 1z defined

ae set of regulations for hardware-based platform management svstems,
in another words it iz a kind of secunity guard for IT equipment One

Caollect IPMI data

h
Derive power consumption model
and fan control algonthm (usmg
machine leaming techniques)

¥
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function of the IPMI 1= to monitor the IT equipment status by reporting
the temperature readings, power consumption, fan speeds, ete. Note,
different types of data can be collected from different servers. The most
commeon otz of collected data are inlet air temperature; individual CPU
utilization; motherboard temperature; individual CPU max temperature,
average temperature, and CPU power consumption; and total power
entering the IT equipment. To ensure that a rich dataset is generated for
machine leaming techniques, the data should be collected at various
environmental operating conditions. The data dataset considered in this
study was generated in the ES2 data center laboratory at the State
University of New York at Binghamton, wherein the chosen IT equip-
ment was tested at varous operating conditions. ES2 data center labo-
ratory was built for research purposes, and a special in-houss C program
was developed for gatherning the data from the different components
within the data center through Linux operating system. Basically, this
program reads the values reported by a sensor or a component and
gathers them in a comma-separated values (C5V) file. The program was
developed to collect a wide range of data including data that iz not often
gatherad in data centers, such az CPU utilization.

2.2 Derving power consumption model and fan control algorithm (using
machine learming technigques)

» Power consumption model

Data center components can be classified into four main categories:
power components, cooling equipment, IT equipment, and misecella-
neous components (zensors, monitoring systems, ete.) [45]. Together, IT
and cooling equipment are responsible for around 90% of overall data
center power consumphion [46]. Additonally, the IT and cooling
equipment are highly coupled components because of their interactons
in the data center’s thermal environment. For the cooling syetem, itz
load is defined upon the total energy (heat) dissipated by the IT equip-
ment. For the IT equipment, flowrate inereases when the cooling unit
SAT i= increased, subsequently inereasing both their power consump-
tions [37]. A schematie for the power and heat flow inside a data center
iz provided in Fig. 2.

Based on the complexity of these interactions, to understand energy
and heat flow in each data center, a more comprehensive compact model
that can accurately deseribe the overall power consumption and thermal
performanee of the IT equipment iz needed.

When it comes to IT equipment power consumption, several studies
concluded that the CPU utilization rate and the IT equipment status (on/

No

Mo

Develop
regression model

Yes

Y

L4
Integrate with CFD model } —-I Grenerate a set of data

Flg. 1. Methodology for building IT equipment compact model.
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Flg. 2. Schematic of power and heat flow in legacy raised floor data centers [37].

off) significantly affected the power consumed by the IT equipment and
conscquently, the thermal load in the data center [47-49]. For that
reason, a power usage model was obtained from the IPMI data to
correlate the CPU power consumption with its utlization factor. The
power consumphion model for each IT equipment can be easily extracted
from the [PMI data ac a function of CPU vhlization.

# Fan speed prediction

Az previouzly mentioned, overprovisioning and under provisioning
airflow can have detrimental effects on power consumption and reli-
ability, respectively. Therefore, it is important to establish the exact
amount of airflow required by each aisle by estimating the airflow
required by the IT equipment A practical way to caleulate the IT
equipment airflow demand would be to caleulate the flowrate driven by
its fan at eertain operating condibons, which can be done using the fan
speed and the fan performance curve. However, unlike the fan perfor-
mance curve, the fan control algonithm iz never reported by vendors.
Thus, in this study, we attempted to utilize the IPMI data to extract the
fan control algornithm Howewver, the interaction between the different
features (collected from the IT equpment sensors through IPMI) 1=

preventing capturing the exact fan control algonthm. For instance,
ncreasing the SAT affectz all other temperatures reported by the
different sensors inside the IT equipment.

Therefore, instead of extracting the actual fan control algenthm, fan
model: for the IT equipment fans iz an extremely complex task to be
done. Whereas a single fan could be controlled by different sensors in-
gide the IT equipment, alzo each fan within the same IT equipment could
have itz own control algorithm. According to the level of task complexty
and the huge amount of collected data, machine learmning techniques,
specifically regression and feature selection, were utilized in building
fan speed predichion models. The models were bult for each fan in the IT
equipment at different operating conditions.

# Machine learning application

Machine learnming helps extract waluable information and associa-
tions from massively large and complex data (big data), which can
big data manually would be impractical. Therefore, the use of machine
learning techniques to automate analytical processes 1= extremely
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important and beneficial [50] as it saves ime and reduces costs. Ma-
chine learning helps analyze big data by designing algorithme that can
learmn patterns and relationships in the data to make predictions on
newly obtained data based on what the algorithm has learnt. Fiz. 3

In supervieed machine learming, the output vanable (dependent
wvariable) of recorded data iz provided and machine learning algorithms
learn how to map inpute (independent variables) to outputs. This learnt
relationship between the inputs and outputs iz called a prediction model
Therein, an observation with no known cutput may be fed into the
model and produce an cutput based on the relationshipe leamnt by the
algorithm. Supervized machine learning can be broken down into clas-
sification tasks and regression tasks. The former has a categorical output
and the latter has a continuous output. An example of a classification
task in machine learning 1z building a model to prediet if the amount of
air delivered to a server i sufficient, where the predicted variable would
be 0 or 1, representing no or yes, respectively. This is based on previ-
ously recorded data where the algorithm can learn to differentiate be-
tween sufficient arrflow or insufficient airflow based on features such az
air temperature, CPU temperature, CPU utilization, ete. An example of a
regression task iz building a model to predict the speed of IT equipment
fans, as the case of thiz study, using given features such as those
dezeribed in the classification task. The cutput for the classification task
iz presented as a eategorical output (i.e., 0 or 1), whereas the regression
task iz presented as continuous values (e.g., 3000 BPM).

# Adopted machine learning ensemble

Random forest (RF) iz a machine learning ensemble ereated by Ho TK
[51] for classification and regression taske. It 15 the machine learning
algorithm used in this study to develop prediction models for the fans’
speeds. Ensemble models are multiple algorithmic systems whose de-
cizions are combined to improve the perfformance of the overall system
[52]. To obtain a single prediction from an ensemble making up of
several algorithms, two methods are commonly used: voting and aver-
aging. Voting iz used in classification where the predicted clazs of an
observation is chosen from the majority of the classifiers’ votes that the
ensemble 1z composed of. Howewer, In regression, the average over all
the regressor algorithms’ predictions 15 taken as the final predichion of
the ensemble. In the caze of RF, it consists of many decizion trees (DTs)
and uses the bagging technique to overcome the DT’z owverfitting
drawback by decreasing the model’s vanance without increasing the
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biaz. DT iz a machine learming algorithm made up of nodes and leaves
and can predict an output by learning decision rules inferred from the
data. The DTs in RF are created by selecting subsets of the training data
with replacement, amnd each tree consiste of a random subsample of
features.

RFs are very flexible and powerful ensembles; they have been
adeopted in many research fields including biclogical and biomedical
research. Researchers tend to use ensembles in their studies because
they combine the strengths of several algorithms together to produce
superior results. RF was chosen based on the unique way DTs work. DT
generates a prediction based on if-elee rules that are built in a hierarchal
order of feature Importance, unhke many regressors, such az linear
regression, where a line 1= fitted to the model and the prediction is
generated from the line's equation. RF provides a way to rank features
based on their importanee. It consiste of a number of DTs, where cach DT
1z built on a condition made on a single feature and designed to split the
dataset into two separate sets with similar responses within. The features
that are selected for the intemal nodes are selected based on a measure
called impunty. In the case of regression, the mpunty measure is
varance reduction. During the training phase, each feature iz measured
by how much it can decrease the impurity in a tree, wherein the feature
with the highest deerease is selected for the internal node. The decreaze
1n impurity for each feature i1z averaged for all the trees, and the averages
are then ranked according to this measure.

The RF algorithm helps solve complex problems due to itz capability
of discovering nonlinear relationshipe in the data without statistical
assumphons [53]. Numerous studies have attested to its power such as
[54-56], as well as a comparative study by J. Zhou, X. 11, and H.5. Mitn
[57] of ten machine learning algorithms to classify rock burst events in
which RF achieved the highest performance. Smmee RF tackles the
problem of overfitting, az well az being an ensemble and predicting
based on learnt decizion rules, it was adopted as the machine learning
algorithm in thiz study. Fiz. 4 shows an example of a RF alzorithm with
K DTs in which the ensemble generates an overall prediction for an
unknown obeervation. The RF regressor’s final prediction iz given in the
K

¥ (1

-1
F==
K=

where ¥ iz the overall prediction of the RF, K 1= the number of DTe that
make up the RF, and ¥, iz the prediction for tree k. Since the RF regressor

=
-
I
i
3 Ihats Correlated Feature
2 Standardization Removal
B
z
-8
ko
Ew
< 3
' . Final Prediciion
'l Feature Selecti
E In-.:. ealure Selection Model
- 4
=
2 o
=]
=
T =
= =
- 'y
= a Tuittl‘:lzlz::::d Test Ground Truth
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= = Maodel om New Data
= g
T -
c
-

Flg. 3. An illusmation of the overall application of machine learning.
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Flg. 4. A BF algorithm with K DTz producing one overall prediction ¥.

iz an ensemble, the final prediction is given as the average of all pre-
dictions generated from the DTs.

# Training and testing machine learning algorithm

In machine learning, to evaluate a model, the algorithm must be
trained on a subset of the data, called the training set, and then tested on
iz when it learns how to map the inpute to the outputs and learns the
relationships and patterns in the data. After the trained model ie ereated,
it needs to be tested and wvalidated on a part of the data that was not
involved In training to prevent overfitting and improve model general-
ization. The model needs to be generalized to predict observations not
geen during training to allow real-world applications. Therefore, after
the machine learning model is ereated, it iz validated on a teshing set and
the model’s prediction capabilities are measured using performance
metrice. Commonly used performance metrics for classification tasks
include accuracy, area under the receiver operating characteristic (ROC)
curve (AUC), sensitivity, and specificity; and for regression tasks, met-
ricz such az the R* coefficient, root mean squared error (RMSE], and
mean absolute error (MAE) are commeonly used.

Splitting the dataset into training and testing subsetz 1z one of the
most widely uszed methods to avoid overfitting and improve model
generalization. This method is called the holdout method. Therein, the
traiming ect consists of 70-80% of the dataset while the testing set holds
the rest. A training set with 50% of the data and a testing set with the
remaining 20% iz called an 50-20 split. The training set should be
significantly larger than the testing set because the model needs more
data to learn the relationshipe between the inputes and outputs. Howewver,
in cases where the amount of data provided iz insufficient, leave-one-out
cross-validation can be applied. It iz where cach observation in the
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datazet with N obeervations i tested separately. The training set consists
of N—1 observations, and the model 1z then tested on the one left-out
obeervation by generating a prediction. This procedure 1z repeated N
times, in which each observation is tested onee and trained N —1 times,
thus, a total of N models iz trained and tested. The final accuracy iz
computed azs the average accuracy for all N models. In machine learning,
a more robust approach is favored over the holdout method, which 1=
called the k-fold crose-vahdation method. To ensure robustnesz and
reduee bias, the dataset iz partitioned into k folds where k models are
created, and then each model 15 trained on k— 1 partifions and tested on
one. Fig. 5 demonstrates how k-fold erose-validation works when k =
10. The overall performanee is taken as the average across all folds and
i chown in equation. 2, where R? iz the overall coefficient of determi-
nation, Kisth:mnnb:rucfﬁ:kis,mdﬂiisﬂucuﬁﬂ’iﬁmtufd:bumi-
nation for fold k.

1<
'=f'g],ff: (2)

2.3, Numerical model
# IT equipment description

In this study, the compact model iz developed for only a pices of IT
equipment as a case study. Thus, a detailed model of the considered IT
equipment 1z built and simulated. Fiz. & depicts the IT equipment
studied in this worle The dimensions showed In Fig. 6 (), are provided
in Table | along with other prometrical parameters. The selected IT
equipment consiste mainly of two CPUg, six fans, twelve RAM:, a power
supply, and four hard disk drves. The hard disk droves are located at the
IT equipment mlet, while the fans are metalled in the middle of the IT
equipment chassie. As shown In Fig. 6, five of the fans are allocated to
cool the CPUz and the RAMs, while the last fan iz assigned to cool the
power supply board and the power supply itself.

» Governing equations and turbulence model

Simulations are carried out using the commercially available CFD
package of 651smaETE. The solution governing equations are given as

% a;&l =0 ©
@+ﬂ%ﬁl= —£+%‘:+Fi (4)

[ mrax | mray | omraw | R || trax || maw | omraw || mraw | TRam || TEST |
[mrams | mears | mraw | tRas || meam || mamw | omramw | mraw | tesT || tRAIN |
Frrax | omeaw | omeaw | raw || tran || maw | omraw | tEsT | Ram || mRam |
gy | oagan | omaw | omeaw || eaw || traw | est [ omma | oaran || oman |
[rras | meas | mramw || mraw || tRam || st | otRam || tRa || TRA || TRAIV |
Frany | rrax | ooran | aran | rest || mwaw | aray || ey | omras || mras |
Darax | omeas | omraw | s || e || maw | omeaw | maw | e || A |
Caras | owras | oresr | ommas | aras | omraw | otran | maw | TRaN || tRAIN |

muny | test | trun | omraw || mean || mas | || omeas | iran ][ i |

TesT | tkay | oreaw | omwas || oawas | s | meaw || A | RAN || TRAIN |
[ k=1 ] [ k=2 ] | k=3 ]| | k=4 | [ k=5 | [ k=6 | [ k=7 | [ k=8 | [ k=9 | [k=10]

Flg. 5. An illusmation of 10-fold cross-validation.
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Table 1
Parameter Valise Parameter Valise
Choamsin height, width, length 59, 440, Distance to HDDz d2 = 38
{mmum) 615 (Em)
Fano height width length (mm) 60, 60,50  Distance to RAMz d3 322
(o)
Pana hub diameter (mm) 35 Distamce to CPUT 44 381
(o)
HDDk height, width, length 24, 101, Distance to RAMa A5~ 300
{mmum) 147 (Em)
CPUa height, width, length (mm) 4, 37, 37 Distance to CPUZ 6 338
(o)
Heat gink base height, widtdh, 3.5, 79.3, Distance to fans 47 160
length (mm) 05 (mm)
Finz height, width, length (mm) 19, 0.5, Distance to RAMa dB 134
Pinz number per heat zink 40 Distamce to GPUT 49 224
(o)
PEU height, width, length (mm) 40, 88, 195  Distance to RAMz d10 282
(o)
RAMz height, width, length 10,6,133  Distnceto CPUZJ11 358
{mmum) (mm)
Distance to power supply d1 £ 5]
(mm]
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Fan |

Fan 2

Fan& Fan 35 Fan 4 Fan 3
(b)

(c)
Fig. 6. CAD drawing of the IT equipment investigated in this study.

LB 2 (D) e

k-£ turbulence model is adopted for stmulating the flow field through
coupling the conzervation of mass, momentum, and energy governing
equations with RANS equations. The selection of k£ RANS model was
according to the capabilities and reliabality these models have shown in
modeling different components in data eenters [12,58-62]. Even for
fans, which exhibitz complex internal flow dynamies including multiple
vortices, k-£ RANS chowed significantly high accuracy when applied
[62-67]. The standard k-£ turbulence model governing equations which
were used for caleulating the turbulent kinetic energy k, the rate of
dissipation of the turbulent kinetic energy £, and turbulent viscosity are
[68-70]:

d ik
2 23] e s o

19, Aol 2 [(F+%) %] +C.E(G + €0y - Ot
@)

i
e = pCa— (g)

=

For the constants C,,, Cy., and C,, the standard values were adopted
while conducting the simulation. The corresponding values for these
constante are .44, 1.92, and 0.09, respectively. With regards to wall
treatment, the standard k-£ iz used with the standard wall treatment,
which implies that the near-wall grid lies within the logarithmie region.
Thie iz feamble sinee ¥y* lies within the range 30 <y* less than 300,
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where ¥* 1z a dimensionless parameter indicating the wall coordinate,
yt = :',u.,=m.}'iaﬂudiatanc:b:twcmﬂun:ar-waﬂg:iﬂmd
the wall [71], ur represents the friction velocity, and o denates the wall
chear stress.

The following assumptions are made while conducting the simula-
tions: air 1z incompressible and has constant properties, steady state
condittons are maintained, and the impacts of wall roughness and
gravity are negligible. The detailed CFD model and the boundary con-
ditions that are mmplemented to replicate the test environment are
ghown in Fiz. 7.

# Grid generation

In any CFD model, grid generation plays an mtegral role in governing
the resulte accuracy. In thiz work, a hex structured mesh has been
adopted while running CFD simulations, sinee using flow aligned cubic
hex cells guarantess a high grid quality and eliminates the aspect ratio
and skewness issues of tetrahedral mesh [72]. The grid is built in a way
that more celle are considered inside the IT equipment while keeping a
lower number of gride outside the IT equipment. After that, a grid in-
dependence study iz executed to identify the appropriate number of
grids at which further inereasing in cells numbers will cause minimal
change in the results. Fiz. 8 shows the gnd mdependence study along
with the generated gnids. Accordingly, the number of grids adopted to
conduet all analyeis in this work iz 15.4 million

2.4. Develop regression functions.

Az a final step in developing the compact model, several functions
are derived to describe the overall IT equipment performance. These
functions, which represent the IT equipment compact model, are used to
deseribe the relationship between the dependent variables (response
parameters: IT equipment power, flowrate, and OAT) and the indepen-
dent wvariables (operating conditions: CPU uwhlization and SAT).
Choosing the correct regression model can be difficult, secing as there
are many regression models that can be used. Therefore, multipls
regression functions can be developed with different statistical models
depending on the relevant data trends. Thereafter, the data can be
validated using statistical measurements and the best model can be
selected accordingly.

3. Experimental setup.

The experimental setup was designed to control the iInput parame-
ters, namely inlet air temperature and CPU uhlization, and to measure
the responee parameters, which were average outlet air temperature and
velocity The room temperature was adjusted by controlling the supply

@ Constant inlet pressure, constant ambient temperatre.
@ Adisbatic walls.
(O Constant outlet pressure, constant ambient temperature.

Fig. 7. Detailed CFD model and the boundary conditions used in simulations.
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Flg. 8. Grid sensitivity analysis.

installed at the IT equipment inlet to measure the IT equipment inlet
temperature, while 30 velocity and temperature sensors were installed
at the IT equipment exhaust. Further details of the instrumentation are
provided in Table 2.

Firet, the experimental setup was used to walidate the CFD model
(Fiz. 9). Then, it was used to test the compact model rezults. To obtain an
objective comparizon of the numerical and experimental resulte, the
precice X-Y coordinates of the sensors were measured in the phyzical
getup and then replicated in the CFD model. Yet it iz still hard to capture
the precice spatial location of the sensor due to the grometry of the
sensor as Ulustrated in Fig. 9 (e). Even though the differences in spatial
locations were relatively small, they formed a considerable source of
error in the results. Therefore, to reduce the impact of spatial location
error, a duct was attached to the IT exhaust that took measurements at
various distances from the IT equpment (Fiz. © (d)). An identical size
duct was built and attached to IT equipment exhaust in the CFD model
Primary results showed that 0.2 m was enough distance to minimize the
error that aroee from the location diserepancy. After that, experiments
were performed at a wide range of CPU utilizations (1dling-100) % and
inlet air temperatures (18-33) “C.

The main cbjective for conducting the experiment 1= to generate a set
of experimental resulte to be utilized in evaluating the CFD model and
the regression model The experimental measurements were recorded
for the IT equipment in the DC at different operating conditions. After
that, the CFD model and the compact model were tested at the exact
same operating condibions az in the experiment to assess the models.
However, it i= not mandatory for the process of developing the CFD
model or the compact model in this presented approach. Owing to the
fact that numerniecal techniques have manifested itz wiability in a
numerous number of applications for example [73-77]. Other than this,
coet, equipment availability, ime and effortz can be considered as wital
constraints for performing experimental verifications.

4. Resultz and diseussion
4.1. Power consumption and fan speed prediction models

+ Power consumption

Table 2
Details of instrumentation uzed in the experimental setup.
Airflow test chamber Degigned in accordance with the air movement and
contral amociation (AMCA) 210-99 stamdands
Velocity amnd Degree C UAS]1200LP (velocity sensor accuracy: 3% of
temperature senoorn reading, thermiztor accuracy + 1 Gl
DA Degree © ATMZ400
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(d)

Flg. 9. Experimental zetup used for verifying results. (a) flow chamber (b} temperamre and welocity sensor (c) sensors installment (d) fSow duct.

In the literature, there are two main power consumption models
introduced, which are the additive model and the baseline/active
model The addibive model considers the power contnibutions of all
components, wherein cach component has its own power consumption
model [72,79]. On the other hand, the baseline/active model assumes
that all components are independent of the IT equipment utilization
except the CPUs [20,21].

The power consumption model developed in this work represents a
combination of these two models, sinee the overall IT equipment power
consumphon was estimated upon the CPU utlization. The correlation
between the CPU utilization and the CPU power consumption, as well as
the total IT equipment power consumption i1 shown In Fiz. 10. To
operate the IT equipment at different power levels, Prime95 software
that calculates new Mersenne prime numbers was adopted. The software
uses the equation My = 2F —1 to calculate the Mersenne prime number,
where p here denotes prime number. To run the IT equipment at a steady
load, a feature called "Torture Test” in this software was used, while
changing the IT equipment utlization 1= dones by changing the workers"
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Flg. 10. Relationship between the CPU utilization and the power consumption.
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number, asz every worker ensure full utilization of a single core. Fig. 10
cshowe that the difference between the single CPU power consumption
and the total IT equipment power 1z Increazsing with mereazsing the CPU
utilization, which means that the CPU utilization is also affecting other
IT equipment components” power consumption.

It can be aleo noted from Fiz. 10 that the correlation between CPU
utilization and power consumption iz nonlinear. However, such corre-
lations can be directly extracted and fitted with a third order polynomaial

CPUPower = 9.5 » 107° Utilization® — 0.0204L ilization® 4 1 4662 Utilization 4 10.554

ITegquipmentPower = 00002 Lkilization® — 00462 Usilization® + 3.7091 Lkilization+ 31.013
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from the IPMI data as follows:

Finally, besides using thizs correlation for estimating the IT equip-
ment power consumpton, it was also used for developing the other
features in the compact model. This correlation was used to predict the
total heat diesipated by the IT equipment and the consequential IT
equipment flowrate requirement.
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Fan speed prediction models

Notably, fan speed is critical for calculating the IT equipment airflow
demand. Yet, fans themselves can have different control algorithms.
Therefore, machine learning techniques were used to develop models
that can predict the speed of fans individually. The machine learning
algorithm is integrated with the CFD model, where the machine learning
prediction is used as an input to the CFD model to develop a dynamic
CFD model that can predict the performance of the IT equipment at
different operating conditions. After that, a compact model (regression
model) was extracted from this dynamic CFD model.

As mentioned earlier, RF provides a way to rank features based on
their importance, because of this, RF s are also used as a feature selec-
tion method. The features ranked by the RF algorithm that impact the
fan speed are illustrated in Fig. 11. The RF hyperparameters used
throughout this study are as following: each RF consisted of 50 DTs, the
maximum number of features considered when looking for the best split
was six, the minimum number of samples required to split an internal
node was set to two, and the maximum depth of each tree was set to
none so that nodes are expanded until all leaves contain less than the
minimum number of samples set, which is two.

Based on Fig. 11, the feature selection results showed that the most
relevant contributor to all fans was the SAT. According to the similarity
in the feature weight order, it was observed that there were two main fan
control algorithms within the IT equipment. One was for fans 1, 4, 5, and
6; the second was for fans 2 and 3. The similarity was not only in the
feature weight order, but also in the weight contribution. Fans 1, 4, 5,
and 6 were mainly controlled by the SAT, while the rest of the features
had minimal contribution. Meanwhile, fans 2 and 3 have a second major
contributor beside the SAT, which was the total IT equipment power.
This conclusion that multiple fans within the same IT equipment could
have multiple fan control algorithm was confirmed by a server vendor
company.

Some of the features used for developing the prediction models are
not reported by all IT equipment. Additionally, some of the highly
correlated or redundant features must be excluded from the model. For
highly correlated features, having two or more independent variables
(features) that are highly correlated with each other and share almost
the same information, this is a phenomenon in statistics called multi-
collinearity. When present, multicollinearity can cause the estimate of
one variable s impact on the dependent variable while controlling for
the others tends to be less precise than if the independent variables were
uncorrelated with one another. A commonly used way to address this
issue is that only one of the highly correlated features needs to remain,
while the rest are removed. Regarding redundant features, some data-
sets may include features that have little to no significance impact on the
output and removing them may decrease the model s complexity and
increase its performance and accuracy.

For these reasons, the number of features used in the fan speed
prediction models were reduced. Feature reduction was carried out
while considering the CFD boundary conditions as these data should be
available to run the model. Initially, the prediction model was modified
to predict the fan speed using the SAT, CPU utilization, and CPU power.
After that, the model was customized to predict the fan speed based on
just the SAT and CPU utilization. A total of three different models were
developed, Model 1 considered all the features that remained after
removing highly correlated and redundant features; Model 2 used the
features SAT, CPU utilization, and CPU power; and Model 3 used the
features SAT and CPU utilization. To evaluate their reliabilities, the R?
performance measure was used, and 10-fold cross validation was done
across all runs, where, as previously mentioned, training is carried out
on nine folds and tested on the remaining fold, and this is repeated ten
times, so that each fold is trained nine times and tested once. The
average performance across all folds is taken. In addition, a validation
set that was not used in the training phase of the models was used to
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validate the performances of feature selection and predictions. In
regression problems, the most common performance metric for evalu-
ating a machine learning model is the R? coefficient. The R? coefficient,
also called the coefficient of determination, indicates the proportion of
variance in the dependent variable that is predictable from the inde-
pendent variables. It is a statistical measure of the goodness of fit of a
model and is calculated using the following equation:

an

Where y; is the true output value of observation i, y; is the predicted
value of observation i, and y is the average value of the dependent
variable y. Generally, the closer R? value to unity, the better the model
accuracy, and when R? 1, it indicates that the regression model fits
perfectly and explains all variance. For model 1, the calculated R? co-
efficients revealed that the fan speed predictions fit almost perfectly to
the experimental data. The lowest R? was found to be 0.957, belonging
to fan 4, while the highest was 0.985, belonging to fans 2 and 3. The
lowest calculated R? value drops down to 0.77 when only two features
were considered. R? values for the six fans that were obtained using the
three prediction models are summarized in Table 3.

Table 3 shows that reducing the number of inputs for the fan speed
prediction model decreased its prediction ability. Nonetheless, Model 2
showed an impressive performance since its lowest calculated R? value
of all the fans was 0.84. In Model 3, when the CPU power was dis-
regarded, the model s predictive ability deteriorated considerably and
the lowest calculated R? value dropped to 0.77. Table 3 also shows that
fans reacted differently when the number of inputs was reduced. This
agrees with what was concluded from Fig. 11 that the fans have various
control algorithms.

To further demonstrate RF s capability, its performance was
compared with linear regression, lasso regression, support vector ma-
chine (SVM) with a linear kernel, and a SVM with a radial basis function
(RBF) kernel. The R? for the different algorithms on Model 1 is shown in
Table 4, where the RF achieved the highest performance for all fans.

As mentioned earlier, not all IT equipment reports the same features.
Hence, in order to generalize the proposed approach and to facilitate
adopting in building compact models for various IT equipment, a ma-
chine learning prediction model that predicts the fan speed using com-
mon features which are reported by different IT equipment should be
considered. Accordingly, and since that Model 2 provided high R? values
while considering only three features (SAT, CPU utilization, and CPU
power), it was chosen to conduct investigations in the remainder of this
study.

4.2. CFD results

After the power dissipation and fan speed prediction models were
developed, their results were incorporated into the CFD model. By doing
so, it was expected that the CFD model would replicate the IT equip-
ment s performance at off-design conditions. For validation the CFD
model was tested against the experimental results considering different
cases. These cases were selected to cover a wide range of the IT equip-
ment s operating conditions, as shown in Table 5. The corresponding
predicted and experimental values of the fans speeds for these cases are

Table 3

Calculated R? for different fans speed prediction models.
Model  R*Fanl R?Fan2 R*Fan3 R>*Fan4 R>Fan5 R?Fan6
Model 1 0.959 0.985 0.985 0.957 0.960 0.958
Model 2 0.842 0.947 0.947 0.843 0.851 0.840
Model3  0.772 0.924 0.923 0.775 0.785 0.770
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Table 4
A comparison of the R? measure for different algorithms on Model 1.
Algorithm R? Fan R? Fan R? Fan R? Fan R? Fan R2 Fan
1 2 3 4 5 6
RF 0.959 0.985 0.985 0.957 0.960 0.958
Linear 0.620 0.864 0.862 0.630 0.640 0.622
Regression
Lasso 0.620 0.864 0.862 0.630 0.640 0.622
Regression
Linear SVM 0.554 0.820 0.817 0.582 0.593 0.593
RBF SVM 0.778 0.926 0.926 0.783 0.797 0.778
Table 5
CPU utilization and SAT values for different cases used in testing the results.
Parameter Case 1 Case 2 Case 3 Case 4
CPU Utilization (%) Idling 25 50 100
SAT ( C) 23 29 18 30
Table 6

Comparison between the experimental and the predicted fans speeds at the
different cases.

Case Fan Experimental fan Predicted fan Relative
speed (RPM) speed (RPM) error (%)
Case Fan 2520 2520 0
1 1
Fan 2280 2229.6 2.21
2
Fan 2280 2289.6 0.42
3
Fan 2160 2275.2 5.33
4
Fan 2280 2364 3.68
5
Fan 2400 2400 0
6
Case Fan 3360 3453.6 2.8
2 1
Fan 3360 3288 2.1
2
Fan 3360 3110.4 7.4
3
Fan 3000 3007.2 0.2
4
Fan 2880 2990.4 3.8
5
Fan 3240 3261.6 0.7
6
Case Fan 2040 2049.6 0.5
3 1
Fan 2640 2685.6 1.7
2
Fan 2640 2954.4 11.9
3
Fan 1920 1876.8 2.3
4
Fan 1920 1932 0.6
5
Fan 1920 1972.8 2.8
6
Case Fan 4680 4588.8 1.9
4 1
Fan 5880 5584.8 5
2
Fan 5880 5532 5.9
3
Fan 4080 4027.2 1.3
4
Fan 4080 4051.2 0.7
5
Fan 4560 4560 0
6
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shown in Table 6.

The fan speed model showed an impressive prediction ability, seeing
as the maximum absolute error was found to be less than 12%, as pro-
vided in Table 6. The impact of the 11.9% discrepancy between the
experimental and predicted fan speeds on the overall mode accuracy is
expected to be minimal. This is attributed to the fact that each fan

contributed with almost when calculating the total IT

Totalmmberoffans
equipment flowrate. Thus, even if one or two of the fans has a relatively
large error, the overall system will continue to show great prediction
ability.

A comparison of the numerical results and the field measurements, in
terms of outlet air velocity and temperature, is provided in Table 7. It
can be inferred from this Table 7 that there was great consistency be-
tween the results in all cases. For the outlet air velocity, the maximum
error was found to be 5.4% and the minimum was 1.8%. For the outlet
air temperature, the maximum error was found to be 4.6% and the
minimum was 1.1%. This confirms what were discussed earlier in this
section, where case 3 exhibited 11.9% absolute relative error in pre-
dicting one of the fans speeds, however, CFD results showed only 2.4%
and 1.6% error in the overall IT equipment outlet air velocity and
temperature, respectively. Based on this, it was found that the reliability
and accuracy of the CFD model applied in this work is comprehensively
validated.

Thereafter, the model was utilized to calculate the IT equipment s
flowrate and outlet air temperature at various operating conditions as
shown in Fig. 12. As expected, Fig. 12 (a) reveals that the air flowrate
increased when the SAT and the CPU utilization increased, which was
due to the increase in fan speed. At some points when the flowrate
increased the OAT exhibited a slight variation or even stayed constant,
even when the SAT increased as more flowrate was delivered. Further-
more, it can be inferred from Fig. 12 (b) that the OAT was almost
identical for different CPU utilizations, which meant that the fans
speeds were being adjusted to maintain a certain thermal field inside the
IT equipment at different SAT regardless of CPU utilization.

It can be also noted from Fig. 12 (b) that the air temperature dif-
ference between the server inlet and outlet is rather low. This highlights
that this specific IT equipment is adopting excessively conservative fan
control algorithms by running the fans at unnecessary high speed.
Adopting such algorithms result in wasting a significant amount of en-
ergy by the IT equipment fans, especially when hundreds of such IT
equipment are operating in different data centers. This leaves a huge
spot for improving and optimizing IT equipment fan control algorithms.
For example, the work conducted by J. Sarkinen, R. Brannvall, J. Gus-
tafsson, and J. Summers [82] in which they specified an optimal oper-
ating condition considering the components power losses and the fan
power consumption. In addition, this relatively low T across the IT
equipment could cause energy losses by the data centers cooling
equipment in most cases. This attributed to fact that more air is required
by the IT equipment to maintain this T across the IT equipment, and
hence more air consumed by the CRAH units blowers. More in-depth
discussion can be found in [82].

Table 7
Experimental and CFD results for the outlet air velocity and OAT.
Case Speed OAT
Experimental CFD Error Experimental CFD Error
(m/'s) (m/ (%) (@) (@) (%)
s)
Case 0.37 0.01 0.39 5.4 271 1 26.8 1.1
1
Case 0.55 0.02 0.54 1.8 3356 1 32 4.6
2
Case 0.41 0.01 0.4 2.4 248 1 24.4 1.6
3
Case 0.9 0.03 0.86 4.4 345 1 33.5 2.9
4
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Flg. 12. Effect of varying CPU utilization and SAT on the IT equipment’z (a) HSowrate (b) OAT.

Finally, it iz essential to elaborate on adopting the CFD simulation
instead of using the fan and the conservation of energy laws for caleu-
lating the IT equipment flow rate and the outlet temperature. Even if the
to caleulate the IT equipment flow rate and the outlet temperature using
these laws, they fail to capture the full phyeice inside the server, which
will affect the overall model accuracy. For example, a significant amount
of flow was found to recireulate within the tested IT equipment’s chassis,
as chown in Fiz. 13. As a result, the air flow passing through the IT
equipment was less than the total flow doven by the fane, which meant
that the air flow leaving the IT equipment was at a higher temperature.

4.2. Developing IT equipment compact model

models and then conducting the CFD study, this work was extended to
input parameters. To that end, a prediction model that desenibed the
overall IT equipment performance at different operating conditions was
obtained. Thiz model, which represents the IT equipment compact
model, was used to predict the IT equipment flowrate and OAT based on
the SAT and CPU vhlization. Imtially, multiple inear regression, which
iz a more general form of simple linear regression, was adopted. The

{a)

14

regression function was developed from 64 CFD data pointz, as chown in
Fiz. 12. The general mathematical model for multiple linear regression is
given by:

Y=f+3 (Bx)+e (12)
T
developed to predict the values of the IT equipment’s OAT and flowrate.
To evaluate these regression functions, the B values were caleulated
with respect to the CFD resulte. High R® values for the OAT and flowrate
were obtained from the multiple inear regression function. To further
improve the regression function’s accuracy, nonlinear multivariate
regression models were developed to consider the non-linearity in the IT
equipment fowrate data generated from the CFD. The basie form of thiz
model iz given by:
¥ =-ﬂ:ﬁ:=xi} +e (13}
Thiz model’s performance was superior to the multiple linear
regression model, hence it was adopted later on in the analysis. How-
ever, the difference was not significant. '[‘h.chLul;uuvod' by 2% for the
IT equipment’s flowrate, while the R® for the OAT only increased by
0.9%. Table & chows the regression funchions derived from both models
and a summary of the statistical analyzis.

(b)
Flg. 13. Sireamlines of airflow recirculating inside the IT equipment.
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Table 8
Regression function developed for the IT equipment flowrate and OAT prediction.
Parameter Equation R? Adjusted R* MAE
Multiple linear regression Q Q 0.01023*utilization  0.06469*SAT 0.02003 0.912 0.909 5.4
OAT OAT 0.01038*utilization 0.86152*SAT 7.3844 0.974 0.973 2
Multivariate nonlinear regression Q Q  0.0006694* Utilization'>*°'*  0.000341695*SAT>%3%2  0.932246 0.93 0.929 5.1
OAT OAT  124.109*Utilization™ 22 0.749164*SAT'*%3%  116.357 0.983 0.983 17

For the latter model, both the R? and adjusted R? values were very
close to unity, which verified the quality of fit and the model s ability to
predict new operating points. Moreover, the R? and adjusted R? values
were high and similar, which indicated that the model was not over-
fitted. Finally, the function accurately predicted the IT equipment s
flowrate and OAT, with an MAE of 5.1 and 1.7, respectively.

After conducting a diagnostic of the regression model and validating
it statistically, its accuracy was assessed comparatively using the
experimental data. The experimental results used for comparison were
those obtained in the four cases discussed in the previous section.
Table 9 and Table 10 present a comparison of the results obtained
through the experiment and those predicted by the regression model for
the IT equipment s flowrate and the OAT, respectively. Unfortunately, to
the best of the authors knowledge, no article has created a compact
model which predicts the flowrate required for the IT equipment and the
air temperature leaving the equipment. Therefore, to further assessing
the developed compact model, these two Tables compared the devel-
oped regression function with state-of-the-art compact for the same IT
equipment. This state-of-the-art model is currently used in some CFD
software, which adopts generalized and linear correlation for the
various IT equipment.

For the regression model, the maximum error was found to be 11.4%
and 5.7% for the IT equipment s flowrate and OAT, respectively. This
confirms its accuracy and ability to predict the IT equipment s thermal
performance at off-design operating conditions. For the state-of-the-art
compact model, the discrepancy between its results and the experi-
mental results was substantial. In some cases, the flowrate calculated by
this model was more than double that of the experimental results. For
the OAT, slightly higher than an 8 C difference was observed. The
regression model developed in this work reduced the error for the IT
equipment s flowrate to 5.2% that of the state-of-the-art IT equipment
compact model. For the OAT, it reduced error to 9.3 % that of the state-
of-the-art compact model.

With hundreds of IT equipment components installed at the data
center facility level, the impact of any error introduced by the state- of
the art compact model is certain to grow considerably. As a result,
calibration experiments are seen as necessary for improving a given
model s reliability. However, the method used for developing an IT
equipment compact model in this study can potentially eliminate the
need for calibration. It has been shown that this methodology can

Table 9
Experimental and predicted flowrate for the developed model and state of the art
model.

Case Developed model State-of-the-art
compact model
Experimental Q Q(m% s Error Q(m% s Error
(m3/ s x 10%) x 102 (%) x 10 (%)
Case 1.4 0.04 1.5 7.1 1.96 40
1
Case 2.2 0.07 2 9.1 2.13 3.2
2
Case 1.6 0.05 1.7 6.2 3.52 120
3
Case 3.5 0.11 3.1 11.4 8.94 155.4
4

15

Table 10
Experimental and predicted OAT for the developed model and state of the art
model.

Case Developed model State-of-the-art
compact model
Experimental OAT OAT Error OAT Error
(@9) (o (%) Q) (%)
Case 271 1 26.9 0.7 24 11.4
1
Case 336 1 31.7 5.7 40.8 21.4
2
Case 248 1 24.1 2.8 32.3 30.2
3
Case 345 1 33.7 2.3 41.3 19.7
4

tremendously improve the CFD model s accuracy at the data center level
and its ability to predict the IT equipment s thermal performance even at
off-design conditions.

5. Conclusions

Proper thermal and energy management of data centers requires a
thorough understanding of the basic unit for power and heat flow in data
centers, which is the IT equipment. This study establishes a compre-
hensive methodology that builds an accurate compact model for the IT
equipment. Initially, a power consumption model and fan speed pre-
diction models were derived from the IT equipment data. Merging these
models with the CFD code results in an IT equipment CFD model that can
predict the IT equipment at off-design conditions. To verify the reli-
ability of this model it was tested against the experimental measure-
ments under four different operating conditions. The maximum
mismatch between the CFD model and the experiments was found to be
5.4% and 4.6% in terms of air velocity and air temperature, respectively.
Finally, a compact model for the IT equipment was created using the
data generated by the CFD model. Compared to the experiment, the
developed model showed a maximum inconsistency in the IT equipment
flowrate and outlet air temperature of 11.4% and 5.7%, respectively.
This model is superior to existing IT equipment compact models for the
following reasons:

It can be easily embedded with any CFD code or any other simulation
program used in designing energy systems for data centers.

This approach can be adapted to build a compact model for any IT
equipment.

The model can simulate the IT equipment performance at different
supply air temperature and CPU utilization.

This model does not only predict the power consumption of the IT
equipment, but also the amount of flow required by this equipment
and its OAT.

This model can be derived using tools and data that are easily
accessible.

As this compact model is developed from a full physics based CFD
model, it is expected to be the most accurate IT equipment compact
model. Compared with a state-of-the-art IT equipment compact
model, the maximum error in the flow rate was reduced from 155.4%
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to 11.4%. For the outlet air temperature, the maximum error was
reduced from 30.2% to 5.7%.
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