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Local Oort groups and the isolated differential
data criterion

par Huy DANG, Soumyadip DAS, Kostas KARAGIANNIS,
Andrew OBUS et Vaidehee THATTE

Résumé. Il est conjecturé que si k est un corps algébriquement clos de carac-
téristique p > 0, alors tout G-revêtement ramifié de courbes projectives lisses
sur k pour lequel l’obstruction « KGB » s’annule et tel qu’un p-sous-groupe de
Sylow de G est cyclique peut être relevé en caractéristique 0. Obus a démontré
que cette conjecture est vraie si l’on suppose l’existence de certaines formes
différentielles méromorphes sur P1

k dont les propriétés sont détérminées par
la filtration de ramification du revêtement. Nous présentons ici un algorithme
plus efficace pour calculer ces formes. En conséquence, nous pouvons prou-
ver que tous les D25-revêtements et tous les D27-revêtements se relèvent en
caractéristique zéro.

Abstract. It is conjectured that if k is an algebraically closed field of char-
acteristic p > 0, then any branched G-cover of smooth projective k-curves
where the “KGB” obstruction vanishes and where a p-Sylow subgroup of G is
cyclic lifts to characteristic 0. Obus has shown that this conjecture holds given
the existence of certain meromorphic differential forms on P1

k with behavior
determined by the ramification data of the cover. We give a more efficient pro-
cedure to compute these forms than was previously known. As a consequence,
we show that all D25-covers and D27-covers lift to characteristic zero.

1. Introduction
This paper concerns the local lifting problem, which is stated as follows:

Problem 1.1 (The local lifting problem). Let k be an algebraically closed
field of characteristic p and G a finite group. Let k[[z]]/k[[t]] be a G-Galois
extension (that is, G acts on k[[z]] by k-automorphisms with fixed ring k[[t]]).
Does this extension lift to characteristic zero? That is, does there exist a
DVR R of characteristic zero with residue field k and a G-Galois extension
R[[Z]]/R[[S]] that reduces to k[[z]]/k[[s]]?
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Let us give some brief context (for more details, see the expositions [14,
17]). The local lifting problem is motivated by the global lifting problem,
which asks whether a characteristic p curve with a finite group of auto-
morphisms (or, equivalently, a Galois branched cover of curves) lifts to
characteristic zero. In fact, solving the global lifting problem is equivalent
to solving the local lifting problem for each extension coming from the com-
plete local ring of a ramification point on the cover. For tame covers, this
reduces to the local lifting problem when G is cyclic and prime to p, which
is more or less trivial by the Kummer theory, and gives an alternate proof
of one of the main results of SGA1 ([11, XIII, Corollaire 2.1]). For more on
this local-global principle, see [17, Section 3], or see the papers [9, 10, 2] for
the original proofs.

We will refer to a G-Galois extension k[[z]]/k[[t]] for k an algebraically
closed field of characteristic p as a local G-extension. Basic ramification
theory shows that any group G that occurs as the Galois group of a local
extension is of the form P o Z/m, with P a p-group and p - m. In [7],
Chinburg, Guralnick, and Harbater ask, given a prime p, for which groups
G (of the form P o Z/m) is it true that all local G-actions (over all alge-
braically closed fields of characteristic p) lift to characteristic zero? Such a
group is called a local Oort group (for p). Due to various obstructions (The
Bertin obstruction of [1], the KGB obstruction of [7], and the Hurwitz tree
obstruction of [5]), the list of possible local Oort groups is quite limited. In
particular, the following proposition is a consequence of [7, Theorem 1.2]
and [5].

Proposition 1.2. If a group G is a local Oort group for p, then G is either
cyclic, dihedral of order 2pn, or the alternating group A4 (with p = 2).

Cyclic groups are known to be local Oort (this is the so-called Oort
conjecture, proven by Obus–Wewers and Pop in [19, 21]). Obus proved that
A4 is local Oort in [15] (this was also independently known to Pop and
Bouw). This leaves the case of dihedral groups.

Dihedral groups of order 2p are known to be local Oort for p odd due
to Bouw–Wewers ([3]) and for p = 2 due to Pagot ([20]). The group D9 is
local Oort by [16], and the group D4 is local Oort by [24]. No other dihedral
groups are known to be local Oort. Our main theorem is:

Theorem 1.3. The groups D25 and D27 are local Oort.

In fact, the paper [16] states a more general conjecture for groups with
cyclic p-Sylow subgroup. The conjecture below is a combination of Conjec-
ture 1.9, Proposition 1.6, and Remark 1.7 of [16].

Conjecture 1.4. Let G ∼= Z/pn o Z/m be non-abelian with p - m, and let
k[[z]]/k[[t]] be a local G-extension whose Z/pn-subextension has ramification
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jumps (u1, . . . , un) for the upper numbering ([23, IV]) that are congruent to
−1 (mod m). Then k[[z]]/k[[t]] lifts to characteristic zero.

Remark 1.5. By [16, Remark 1.7] (see also [18, Remark 1.10]), for a local
G-extension to satisfy the hypotheses of Conjecture 1.4, it is necessary that
G be center-free. That is, the conjugation action of Z/m on Z/pn is faithful.

Remark 1.6. If the congruence condition of Conjecture 1.4 is not satisfied,
then it is known that the local G-extension does not lift to characteristic
zero (see [16, Proposition 1.6]).

Remark 1.7. If m = 2 (so that G is dihedral), then the ui are always odd,
so Conjecture 1.4 asserts that Dpn is local Oort for odd p as a special case.

In [16], Conjecture 1.4 was reduced to showing that the so-called isolated
differential data criterion holds in sufficiently many cases. Saving the details
for Section 2, we say now that this criterion is about finding a meromorphic
differential form on P1

k with prescribed poles that transforms in a particular
way under the Cartier operator, and which is “isolated” in the sense that
small deformations of the differential form do not satisfy these criteria.
In fact, constructing the differential form can be reduced to constructing a
certain polynomial f ∈ k[x], and the isolatedness criterion is stated in terms
of the invertibility of a Vandermonde-like determinant arising from the roots
of f . One of the key intermediate results of this paper is Corollary 4.7, which
rewrites this criterion in terms of the coefficients of f . This allows us to
write an algorithm to verify the existence of a satisfactory f entirely in
terms of Gröbner bases (even if we cannot write the solution explicitly). In
particular, this existence criterion is necessary for us to prove that D27 is
local Oort.

1.1. Outline of the paper. In Section 2 we discuss the isolated differen-
tial data criterion and its relation to the local lifting problem for dihedral
groups, introduced in [16]. The criterion is defined in two steps: in Defini-
tion 2.1 we state the differential data criterion, which is about the existence
of a meromorphic differential form on P1

k with pre-specified behavior un-
der the Cartier operator, while the notion of isolatedness is made specific
in Definition 2.3. The main result of this section is Proposition 2.4 which
essentially reduces the local lifting problem to verifying that the isolated
differential data criterion holds for finitely many cases.

The meromorphic differential form of Definition 2.1 is uniquely deter-
mined by a polynomial f ∈ k[t]. In the two subsequent sections, we refor-
mulate each of the two conditions that make up the isolated differential data
criterion so as to be expressed in terms of the vanishing or non-vanishing
of certain polynomials in the coefficients of f . In particular, Section 3 deals
with the differential data criterion, ignoring the isolatedness conditions. Its
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main result is Proposition 3.1, which says that the differential data criterion
is equivalent to a system of equations in the coefficients of f , which involve
multinomials obtained by the expansion of the polynomial fp−1.

In Section 4 we discuss the isolatedness condition and translate it to a
condition in terms of the coefficients of f rather than its roots. Our result
makes use of Heineman’s work on generalized Vandermonde matrices and
their determinants. The main result of this section is Corollary 4.7 in which
we prove that the isolatedness condition is equivalent to the invertibility of
a matrix whose entries are uniquely determined by the coefficients of f .

The main results of the two previous sections are combined in Section 5
in two different manners: Remark 5.1 describes an approach which requires
first solving the system of Proposition 3.1 then checking whether the respec-
tive matrix defined in Corollary 4.7 is invertible. The difficulty of explicitly
solving the system of Proposition 3.1 motivates the existence criterion of
Proposition 5.2, the main result of this section, in which we prove that the
isolated differential data criterion holds if and only if an ideal uniquely de-
termined by the equations of Proposition 3.1 and Corollary 4.7 is not the
unit ideal.

Finally, in Section 6 we use our results to prove that D25 and D27 are
local Oort groups. In fact, the small size of the input data allows us to
explicitly realize the isolated differential data criterion as in Remark 5.1
for all D25 cases and all but two D27 cases. In these two cases, we must
rely on the existence criterion of Proposition 5.2.

Acknowledgements. This project was conceived at the AMS Mathemat-
ics Research Community “Explicit methods in Arithmetic Geometry in
Characteristic p” in June 2019, and we thank the AMS and the organiz-
ers of that workshop. In particular, we thank Drew Sutherland and Sachi
Hashimoto for fruitful conversations during the workshop. The second au-
thor would like to thank Indian Statistical Institute for partial travel sup-
port for the aforementioned workshop. Additionally, we thank the anony-
mous referee for their comments and insightful remarks, and Christelle
Vincent, for translating the abstract into French.

2. The isolated differential data criterion
In this section, we briefly review the notion of the isolated differential

data criterion following [16, Section 1.4]. Let p be a prime number and k
be an algebraically closed field of characteristic p. We start by recalling the
definition of the Cartier operator C, introduced by Cartier in [6]. This p-
linear operator, acting on meromorphic differentials forms Ω1

k(t)/k, is defined
as follows. Any ω∈Ω1

k(t)/k can be written as ω=(fp0 +fp1 t+· · ·+f
p
p−1t

p−1)dt
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for some fi ∈ k(t). Then
C : Ω1

k(t)/k −→ Ω1
k(t)/k,

ω 7−→ fp−1dt.

For any f ∈ k(t) and ω ∈ Ω1
k(t)/k, the operator C satisfies the following.

C(fpω) = f C(ω);(2.1)
C(ω1 + ω2) = C(ω1) + C(ω2);(2.2)

C(df) = 0;(2.3)
C(df/f) = df/f ;(2.4)
C(fp−1df) = df ; .(2.5)

We note that C extends to an operator on any completion of k(t) with the
same properties. For more details on the above definition and the properties,
the reader may refer to [13, Section A.4].
Definition 2.1. Let p be a prime number and k be an algebraically closed
field of characteristic p. Let m > 1 be an integer dividing p− 1, and ũ be a
positive integer such that ũ ≡ −1 (mod m). Let N ∈ {ũ(p−1), ũ(p−1)−m}.
Define u by ũ = upν , p - u. We say that the differential data criterion is
satisfied for the quadruple (p,m, ũ,N) (with respect to the field k) if there
exists a polynomial f(t) ∈ k[tm] of degree N such that the meromorphic
differential form ω := dt

f(t)tũ+1 ∈ Ω1
k(t)/k satisfies

(2.6) C(ω) = ω + ut−ũ−1dt,
where C is the Cartier operator on Ω1

k(t)/k.

If the differential data criterion is realized by a meromorphic differential
form ω (or equivalently, for an element f(t) ∈ k[tm]), we will say that ω (or
f(t)) is a solution to the differential data criterion for (p,m, ũ,N).
Lemma 2.2. If f(t) is a solution to the differential data criterion for
(p,m, ũ,N), then f(t) is separable and is not divisible by t.
Proof. If α is a root of f(t), then by Equation (2.6), the order of the pole
of C(ω) at t = α is the same as that of ω. From the basic properties of the
Cartier operator on the completion k((t−α)) of k(t) (see Equations (2.1)–
(2.5)), the order of this pole is 1. Since ũ ≥ 1, this is a contradiction for
α = 0. If α 6= 0, this shows that α has multiplicity one as a root of f(t). �

From Equations (2.1)–(2.5) it follows that if ω is a solution to the differ-
ential data criterion for the quadruple (p,m, ũ,N), then ω must be of the
form

(2.7) ω = dg/g − u
ν∑
i=0

t−up
i−1dt
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for some rational function g ∈ k(t). Since g appears only in the term dg/g,
it is well defined up to multiplication by pth powers. Also note that ω has
a zero of order N + ũ− 1 at t =∞.

Definition 2.3. Let p, m, ũ, N be as in Definition 2.1. Let ω be a so-
lution to the differential data criterion for (p,m, ũ,N) where ω = dg/g −
u
∑ν
i=0 t

−upi−1dt (cf. Equation (2.7)). We say that the isolated differential
data criterion holds for (p,m, ũ,N) if no infinitesimal deformation1 g̃ of g
gives rise to a differential form ω̃ = dg̃/g̃ − u

∑ν
i=0 t

−upi−1dt having a zero
of order at least N + ũ− 1 at t =∞.

Let f(t) be a solution to the differential data criterion for (p,m, ũ,N) and
write x1, . . ., xN/m for a set of representatives, one from each distinct µm-
orbit of roots of f(t). By [16, Definition 7.23, Remark 7.24], the solution f(t)
is isolated if the Vandermonde-like matrix (xq−1

j )q∈S,1≤j≤N/m is invertible,
where S is the set

S := {1 ≤ q ≤ N + ũ− 1 | q ≡ −1 (mod m), p - q}.

Now let p be an odd prime, and G ∼= Z/pn o Z/m be non-abelian with
p - m. When n = 1, it was shown in [3, 4] that Conjecture 1.4 holds. For the
rest of this paper we assume n ≥ 2. By [16, Remark 1.16], Conjecture 1.4
is reduced to showing that the isolated differential data criterion holds for
certain finitely many quadruples (p,m, ũ,N). Using the same argument, the
following result shows that it is sufficient to check even fewer quadruples.

Proposition 2.4. Let p be an odd prime, and m be a positive integer di-
viding p − 1. Let n ≥ 2. Suppose that for each m − 1 ≤ ũ ≤ (pn−2 +
· · · + 1)(mp − 1) with pn−1 - ũ and ũ ≡ −1 (mod m), the isolated differ-
ential data criterion holds for the quadruples (p,m, ũ, (p−1)ũ) and (p,m, ũ,
(p − 1)ũ − m). Then Conjecture 1.4 holds for all non-abelian groups
Z/pn o Z/m.

Proof. By Remark 1.5, Conjecture 1.4 is vacuous unless Z/pn o Z/m is
center-free. So we may assume this is true. In particular, m|(p − 1). By
[16, Proposition 1.11], it suffices to prove Conjecture 1.4 for Z/pn o
Z/m-extensions whose Z/pn-subextension has upper ramification breaks
(u1, . . . , un) with u1 < mp and pui−1 ≤ ui < pui−1 +mp for all 1 < i ≤ n.
By [22, Lemma 19], we note that pn−1 - ui for any 1 ≤ i < n. Let L/k[[s]]
be such an extension. Set u0 = 0. By [16, Proposition 1.14], if for each
1 < i ≤ n, both ui ≡ −1 (mod m) and pui−1 ≤ ui ≤ pui−1 + mp − 1, and

1An “infinitesimal deformation” of g here refers to replacing each zero/pole xj ∈ k of g with
xj +εcj ∈ k[ε]/ε2, see [16, Eq. 7.16]. The set of zeros and poles of g in [16, Eq. 7.16] is the same as
the set of zeros of f , so by Lemma 2.2, all calculations can be done inside the ring (k[ε]/ε2)[[t−1]].
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also the isolated differential data criterion holds for (p,m, ui−1, N) where

N =
{

(p− 1)ui−1, if ui = pui−1 and
(p− 1)ui−1 −m, otherwise,

then the extension L/k[[s]] lifts to characteristic 0. This inductive criterion
on ui means u1 ≤ mp− 1 and for i ≥ 2, we have ui−1 ≤ (pi−2 + · · ·+ 1)×
(mp−1). By our hypotheses, these conditions are satisfied and the extension
L/k[[s]] lifts. �

Remark 2.5. Note that the upper bound on ũ in Proposition 2.4 is stronger
than the bound ũ ≤ m(pn−1 + · · ·+ p) listed in [16, Remark 1.16].

In the next sections, we reduce the isolated differential data criterion
for each quadruple into an equivalent statement about the existence of
solutions to a system of multivariate polynomial equations, which is much
easier to implement computationally.

3. The multinomial coefficient approach
Throughout this section, let p be an odd prime and k be an algebraically

closed field of characteristic p. Let (p,m, ũ,N) be a quadruple satisfying
the condition of Definition 2.1. Our first result shows that the differential
data criterion can be formulated in terms of the existence of a solution to a
system of polynomial equations with coefficients in k, hence can be studied
using computational techniques. For any polynomial f(t) ∈ k[tm] of degree
N with m|N , we write

(3.1) f = f(t) =
N/m∑
i=0

amit
mi ∈ k[tm].

Proposition 3.1. A polynomial f(t) =
∑N/m
i=0 amit

mi is a solution to the
differential data criterion for (p,m, ũ,N) if and only if the coefficients ami
satisfy the following system of equations for 0 ≤ i ≤ N/m.

(3.2)


a0 = −u−1

u apmi = cpmi−ũ(p−1), for dũ− ũ/pe ≤ mi ≤ N
ami = 0, otherwise
aN 6= 0,

where for 0 ≤ j ≤ (p− 1)N/m, the cmj’s are given by

(3.3) cmj =
∑

(s0,...,sN/m)∈NN/m+1

s0+s1+···+sN/m=p−1
ms1+2ms2+···+NsN/m=mj

(
p− 1

s0, . . . , sN/m

)N/m∏
i=0

asi
mi ∈ k

[
{ami}0≤i≤N/m

]
.
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Proof. Note that the coefficient of tmj in the expansion of the (p − 1)-th
power of f(t) is cmj given by Equation (3.3) and so,

fp−1 =
(p−1)N/m∑

j=0
cmjt

mj ∈ k[tm].

By Definition 2.1, (p,m, ũ,N) satisfies the differential data criterion if and
only if there exists a polynomial f ∈ k[tm] such that

C
( 1
tũ+1f

dt
)

= 1 + uf

tũ+1f
dt.

This is equivalent to

C
(
t(p−1)(ũ+1)fp−1dt

)
= (1 + uf)dt.

Substituting the explicit forms of f and fp−1, we have

C

(p−1)N/m∑
j=0

cmjt
mj+ũ(p−1)tp−1dt

 =

1 + u

N/m∑
i=0

amit
mi

 dt.

From Equations (2.1) and (2.5), we have that C is an additive map that
sends any differential form gptp−1dt to gdt, and which kills any term ctbdt
where b 6≡ −1 (mod p). So the above equation is equivalent to

∑
0≤j≤(p−1)N/m
p|(mj+ũ(p−1))

cmjt
mj+ũ(p−1) =

1 + u

N/m∑
i=0

amit
mi

p = 1 + u

N/m∑
i=0

apmit
pmi.

Since the least exponent of the left hand side is ũ(p−1), we obtain 1+uap0 =
0 and ami = 0 when pmi < ũ(p − 1) or equivalently, when mi < ũ − ũ/p.
For mi ≥ dũ− ũ/pe we get uapmi = cmj exactly when mj + ũ(p− 1) = pmi,
i.e. uapmi = cpmi−ũ(p−1). The result follows. �

Remark 3.2. Note that each of the cpmi−ũ(p−1) is a homogeneous polynomial
of degree p− 1 in the variables a0, adũ−ũ/pe, . . . , aN .

Example 3.3. By Proposition 3.1, the quadruple (3, 2, 5, 10) satisfies the
differential data criterion if there exists a polynomial f(t) = a0 + a2t

2 +
a4t

4 + a6t
6 + a8t

8 + a10t
10 whose coefficients satisfy the following system of

polynomial equations 

a0 = −5−1 = 1,
5a3

6 = −a8,

5a3
8 = −a6a8,

5a3
10 = a2

10,

a2 = a4 = 0,
a10 6= 0.



Local Oort groups and the isolated differential data criterion 259

By a direct computation, one can show that the only solutions to this
system are f(t) = 2t10 + 1 and f(t) = 2t10 + t8 + t6 + 1.

4. Test for isolatedness
In this section, the notation (g(i, j))i,j means the matrix whose ijth entry

is g(i, j). Suppose f(t) is a solution to the differential data criterion for a
quadruple (p,m, u,N). As in Equation (3.1), write f(t) =

∑N/m
i=0 amit

mi. By
Lemma 2.2, f is separable and does not have 0 as a root. So let x1, . . . , xN/m
be a list consisting of one representative from each µm-orbit of the roots
of f(t). As was mentioned in Section 2, f realizes the isolated differential
data criterion if and only if the matrix

M := (xq−1
j )q,j

is invertible, where 1 ≤ j ≤ N/m and the q ranges over all numbers from
1 to N + ũ − 1 that are congruent to −1 (mod m) and are not divisible
by p. In fact, since ũ ≡ −1 (mod m) and m | N , the largest value of
q is N + ũ − m. This matrix is always square ([16, Remark 7.20]), and
xi1/xi2 /∈ µm whenever i1 6= i2.

In Corollary 4.7 below, we give a criterion for the isolatedness in terms
of the coefficients of f , rather than its roots. Indeed, one simply needs to
check that a matrix made from coefficients of f is invertible. Since this crite-
rion does not require computing roots of polynomials, it is computationally
easier to verify.

The starting point is a classical formula of Heineman ([12]) computing
generalized Vandermonde determinants, where a generalized Vandermonde
matrix is a square matrix of the form (zbi

j )i,j where the bj are integers, but
are not necessarily equal to i− 1. The principal Vandermondian associated
to a generalized Vandermonde matrix is the determinant of the matrix given
by (zi−1

j )i,j , i.e., the standard Vandermonde determinant associated to the
entries z1, . . . , zj .

Since none of the xj is zero, we can form a new matrix M ′ by dividing
the jth column of M by xm−1

j , and M ′ is invertible if and only if M is.
Now, if we let yj = xmj , M ′ can be expressed as follows:

(4.1) M ′ = (yrj )r,j ,

where 1 ≤ j ≤ N/m as before and the r range from 0 to (N+ũ−2m+1)/m,
skipping all values of r such that p | (mr + m − 1). Since the xj lie in
different µm-orbits, the yj are pairwise distinct. Thus M ′ is a generalized
Vandermonde matrix whose corresponding “principal Vandermondian” (in
the language of [12]) is nonzero. So it suffices to give a criterion for when
the quotient of det(M ′) by this principal Vandermondian is 0.
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Lemma 4.1. Let r1, . . . , rN/m be the values of r in the matrixM ′ from (4.1)
in ascending order. Let ε be such that N = (p− 1)ũ− εm (so ε ∈ {0, 1}).

(i) We have rN/m −N/m+ 1 = (ũ−m+ 1)/m.
(ii) There are exactly p − 1 − ε values of i such that ri − i + 1 = (ũ +

m− 1)/m.

Proof. For (i), it suffices to show that rN/m = (N + ũ − 2m + 1)/m. By
the construction of M ′, we need to only show that p - (N + ũ−m). Since
N + ũ = pũ− εm, one needs only to show that p does not divide (ε+ 1)m.
This holds because p - m and p > 2 ≥ ε+ 1.

To prove (ii), note that (i) implies mrN/m +m− 1 = N + ũ−m = pũ−
(1+ ε)m, so the largest value of r less than rN/m such that p | (mr+m−1)
is that for whichmr+m−1 = pũ−pm. So ri−i+1 = (ũ−m+1)/m exactly
when mri+m−1 ≥ pũ− (p−1)m. Since N = (p−1)ũ− εm, this is exactly
when ri ≥ (N+ũ−(p−ε)m+1)/m. By (i), rN/m−(N+ũ−(p−ε)m+1)/m =
p− 2− ε. We have proven the second assertion. �

Remark 4.2. Note that, for each element j of {1, 2, . . . , (ũ−m+ 1)/m−1},
there are exactly p − 1 values of i such that ri − (i − 1) = j. Intuitively,
we have ri − (i − 1) = 0 for i = 1, 2, . . . until we “jump” over an r such
that p | (mr +m− 1). Then ri − (i− 1) = 1 for the next p− 1 values of i,
until we jump over another such r. Then ri− (i− 1) = 2 for the next p− 1
values of i, etc. By Lemma 4.1, the largest value of ri − (i− 1) occurs only
p− 1− ε times, as opposed to p− 1 times.

Echoing the notation of [12], we write Vi for the determinant of the
matrix obtained by writing (N/m+ 1)×N/m matrix

(yrj )r,j

with j ranging from 1 to N/m and r ranging from 0 to N/m, and then re-
moving the (N/m− i)th row. Note that V0 is the principal Vandermondian,
and is thus non-zero. We have the following proposition.

Proposition 4.3 ([12, Theorem I]). For all i, the ratio Vi/V0 equals the
ith elementary symmetric function in the yj.

In particular, since the yj are the roots of the polynomial
∑N/m
i=0 amit

mi,
we can write

(4.2) Vi = (−1)iaN−mi/aN .
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Following [12], for all `, n ∈ N, define Dn
` to be the `× ` matrix given by

the upper-left hand corner of the infinite matrix below:
V1 V2 V3 · · · Vn 0 0 · · · · · · · · ·
V0 V1 V2 · · · · · · Vn 0 0 · · · · · ·
0 V0 V1 · · · · · · · · · Vn 0 0 · · ·
0 0 V0 V1 · · · · · · · · · Vn 0 · · ·
...

...
... . . . . . . . . . . . . · · · · · · · · ·


For a sequence of non-negative integers l ≥ t1 ≥ t2 ≥ · · · ≥ ts, we define

Dn
` {t1, t2, . . . , ts}

to be the `× ` matrix formed as follows:
(1) Start with Dn

` .
(2) Increase the subscripts of the Vi in rows 1 through ts by s, in rows

ts + 1 through ts−1 by s− 1, in rows ts−1 + 1 through ts−2 by s− 2,
etc.

Here Vi is defined to be 0 whenever i > n, and a zero that precedes a V0
should be replaced by V0 whenever the subscripts in its row are increased
by 1 (effectively, each increase by 1 “moves the row to the left”).

Example 4.4. The matrix D18
4 {4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1} is equal to
V16 V17 V18 0
V11 V12 V13 V14
V6 V7 V8 V9
V1 V2 V3 V4

 .
We write |n1, n2, . . . , n`| for the determinant of the generalized Vander-

monde matrix given by (yni
j ). The main result of [12] implies the following

proposition.

Proposition 4.5 (cf. [12, Theorem IV]). For any n ≥ s ∈ N, and any
natural numbers t1 ≥ t2 ≥ · · · ≥ ts, the generalized Vandermonde n × n
determinant |t1, t2, . . . , ts, n − s − 1, n − s − 2, . . . , 1, 0| is, up to sign and
multiples of the principal Vandermondian V0, equal to the determinant of

Dn
t1−n+1{t2 − n+ 2, t3 − n+ 3, . . . , ts − n+ s}.

Proposition 4.6. Let r1, r2, . . . , rN/m be the values of r in the matrix M ′
from (4.1) in ascending order. Assume ũ + 1 > m. Then the generalized
Vandermonde determinant |rn, rn−1, . . . , r1| is, up to sign and multiples of
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the principal Vandermondian V0, equal to the determinant of

(4.3) D
N/m
(ũ−m+1)/m


ũ−m+1

m
, . . . ,

ũ−m+1
m︸ ︷︷ ︸

p−2−ε times

,
ũ−2m+1

m
, . . . ,

ũ−2m+1
m︸ ︷︷ ︸

p−1 times

,

. . . , 2, . . . , 2︸ ︷︷ ︸
p−1 times

, 1, . . . , 1︸ ︷︷ ︸
p−1 times

.
Proof. By the construction of M ′, the ri are the whole numbers from 0
to (N + ũ − m + 1)/m in increasing order, skipping all r such that p |
(mr + m − 1). Let n = N/m. In the language of Proposition 4.5, we have
rn+1−i = ti, so t2−n+2 = rn−1−(n−1)+1, t3−n+3 = rn−2−(n−2)+1,
and so forth. By Lemma 4.1(ii) and Remark 4.2, there are exactly p−2− ε
values of i (other than i = n) such that ri−i+1 = (ũ+m−1)/m, and p−1
values of i such that ri−i+1 = j for each j between 1 and (ũ+m−1)/m−1.
The proposition now follows from Proposition 4.5, �

Corollary 4.7 (Isolatedness criterion). Suppose f =
∑N/m
i=0 amit

mi ∈ k[t]
is a solution to the differential data criterion for (p,m, ũ,N). If ũ+1 = m,
then f is automatically a solution to the isolated differential data criterion.

If ũ+1 > m, then f is a solution to the isolated differential data criterion
if and only if the matrix A is invertible, where A is the square matrix of
size (ũ+ 1−m)/m whose ijth entry is

a(p−1)(m−1)−m(j−1)+pm(i−1).

Here, we set ai = 0 for all i < 0 and i > N .

Proof. Let n = N/m, and let ε be defined as in Lemma 4.1. We have
that f is a solution to the isolated differential data criterion if and only if
the matrix M ′ from Equation (4.1) is invertible. In the language of gen-
eralized Vandermonde determinants, the determinant of M ′ up to sign is
|rn, rn−1, . . . , r1 = 0|, where the ri are as in Proposition 4.6. Note that, by
Lemma 4.1(i), rn−n+1 = (ũ−m+1)/m. So if ũ+1 = m, then rn = n−1
and the matrix M ′ is itself Vandermonde, and thus invertible.

Now consider ũ + 1 > m. By Proposition 4.6, detM ′ is, up to sign
and multiples of the principal Vandermondian, equal to the determinant
of B, where B is the matrix from Equation (4.3). This means that we
start with the matrix Dn

(ũ−m+1)/m, move the indices in the first row up by
(p − 1)(ũ −m + 1)/m − 1 − ε, move the indices in the second row up by
(p − 1)(ũ − 2m + 1)/m − 1 − ε, move the indices in the third row up by
(p − 1)(ũ − 3m + 1)/m − 1 − ε, etc. So the first row of B begins with Vα,
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where α = (p − 1)(ũ − m + 1)/m − ε, the second row begins with Vα−p,
the third begins with Vα−2p, etc., and the indices on the respective V( · )
increase by 1 as we move from left to right along any row. We need to show
that B is invertible if and only if the matrix A from the statement of the
corollary is invertible.

By Equation (4.2), Vα = (−1)αaN−mα/aN . Since N = (p − 1)ũ − mε,
we have that for α = (p − 1)(ũ − m + 1)/m − ε, the entry Vα equals
(−1)αa(p−1)(m−1)/aN . So this is the top left entry of B. Each step to the
right increases the index of V( · ) by 1, which, by Equation (4.2), decreases
the corresponding index of a( · ) by m and changes the sign. Similarly, each
step down decreases the index of V( · ) by p, which increases the correspond-
ing index of a( · ) by pm and changes the sign. So the ijth entry of B is
(−1)i+j+α(a(p−1)(m−1)−m(j−1)+pm(i−1))/aN . Multiplying the odd-numbered
rows and columns of B by −1, and then multiplying every entry by (−1)α,
we obtain the matrix B′ whose ijth entry is a(p−1)(m−1)−m(j−1)+pm(i−1)/aN .
Clearly, B is invertible if and only if B′ is. Since aNB′ = A and aN 6= 0,
we see that B′ is invertible if and only if A is, and we are done. �

Example 4.8. Suppose (p,m, ũ,N) = (5, 2, 9, 36). A solution f is isolated
if the matrix B := D18

4 {4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1} is invertible. We
saw in Example 4.4 that

B =


V16 V17 V18 0
V11 V12 V13 V14
V6 V7 V8 V9
V1 V2 V3 V4

 .

By Equation (4.2), up to factors of aN = a36 6= 0, this matrix is equal to


a4 a2 a0 0
a14 a12 a10 a8
a24 a22 a20 a18
a34 a32 a30 a28,


which is the matrix A from Corollary 4.7.

Remark 4.9. Suppose A is the matrix from Corollary 4.7. Here are some
observations about detA which could potentially be helpful for future com-
putations concerning the isolated differential data criterion.

(i) Each term of detA is a monomial of degree (ũ −m + 1)/m in the
ai. If the weight of a monomial c

∏L
`=1 ai` is defined to be

∑L
`=1 i`,
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then the weight of each term of detA equals
(ũ−m+1)/m∑

`=1
((m− 1)(p− 1) + (`− 1)(p− 1)m)

= (p− 1)(ũ−m+ 1)(ũ− 1)
2m .

In Example 4.8, the weight of each term is 64.
(ii) The indices of the ai jump by pm in every row and by ũ− 2m+ 1

from the first entry in a row to the last one. Thus if ũ−2m+1 < pm,
no ai appears more than once in A. In order to prove Conjecture 1.4
when the p-Sylow subgroup of G has order p2, one need only show
the isolated differential data criterion holds for (p,m, ũ,N) with
ũ < pm (Proposition 2.4). In particular, ũ − 2m + 1 < pm, so we
may assume in this case that no term of detA has a repeated factor
of ai.

Example 4.10. Recall from Example 3.3 that the only functions that satisfy
differential data criterion are 2t10 + 1 and 2t10 + t8 + t6 + 1. Moreover, by
Corollary 4.7, the matrix A associated to that quadruple is

A =
(
a2 a0
a8 a6

)
=
(

0 1
a8 a6

)
.

The determinant of the matrix is −a8. Hence, only 2t10 + t8 + t6 + 1 verifies
the isolated differential data criterion.

5. Gröbner basis computation setup
Recall that a quadruple (p,m, ũ,N) satisfies the isolated differential data

criterion if there exist elements ai ∈ k, 0 ≤ i ≤ N that satisfy the condi-
tions of Proposition 3.1 and Corollary 4.7. Using the notation of the former,
we define an ideal I = (g0, gm, g2m, . . . , gN ) ∈ k[a0, . . . , aN ] where

(5.1)


g0 := a0 + u−1

gmi := uapmi − cpmi−ũ(p−1), for dũ− ũ/pe ≤ mi ≤ N
gmi := ami, otherwise

while, in the notation of the latter, we write h for the determinant of the
matrix with entries a(p−1)(m−1)−m(j−1)+pm(i−1) from Corollary 4.7, which is
also a polynomial in k[a0, . . . , aN ].

Remark 5.1. Proposition 3.1 and Corollary 4.7 can be combined to provide
a method to verify whether a given quadruple (p,m, ũ,N) satisfies the iso-
lated differential data criterion: first we find a k-rational point (a0, . . . , aN )
in the affine variety V (I) ⊆ AN with aN 6= 0, then we compute the determi-
nant h(a0, . . . , aN ) and verify it is non-zero. This approach was illustrated
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in Example 3.3 and Example 4.10, where we verified that the quadruple
(3, 2, 5, 10) satisfies the isolated differential data criterion.

The obvious disadvantage of the above method is that it seems difficult to
find an explicit formula for such a k-rational point for a general quadruple
(p,m, ũ,N). Our alternative computational approach can be summarized
as follows:

Proposition 5.2. There exists a solution to the isolated differential data
criterion for a quadruple (p,m, ũ,N) if and only if the ideal

J = (g0, gm, g2m, . . . , gN , 1− yaNh) ⊆ k[a0, am, a2m, . . . , aN , y]
is not the unit ideal. This is equivalent to 1 not being in the reduced Gröbner
basis of J with respect to any term order.

Proof. By Proposition 3.1, the quadruple (p,m, ũ,N) satisfies the differen-
tial data criterion if and only if there exists a solution to the system (3.2),
i.e., if g0 = gm = · · · = gN = 0 and aN 6= 0. Furthermore, such a solution is
isolated if and only if the matrix A of Corollary 4.7 is invertible, i.e. if and
only if h 6= 0. As k is algebraically closed, it follows from Hilbert’s Nullstel-
lensatz that this happens if and only if neither aN nor h lies in the radical
of (g0, gm, . . . , gN ). By [8, Section 15, Corollary 35], this is equivalent to
(g0, gm, . . . , gN , 1− yaNh) not being the unit ideal in k[a0, . . . , aN , y]. �

Example 5.3. Consider the quadruple (3, 2, 5, 10) of Example 3.3 and Ex-
ample 4.10. To apply Proposition 5.2, we consider the ideal

J = (a0 − 1, 2a3
6 + a8, 2a3

8 + a6a8, 2a3
10 − a2

10, a2, a4, 1− ya10a8)
⊆ k[a0, a2, a4, a6, a8, a10],

then compute the Gröbner Basis

G =
{
y3 − a6, a

2
6 − y, a6a8 − y2, a2

8 − a6, a6y − a8, a8y − 1, a10 + 1
}

corresponding to the (degrevlex) monomial ordering y > a10 > . . . > a0,
and finally verify that 1 /∈ G.

Remark 5.4. Ignoring the line aN 6= 0, the system of equations (3.2) is a
system of N/m+ 1 equations in the N/m+ 1 variables a0, am, a2m, . . . , aN
over the algebraically closed field k. It is thus reasonable to expect a so-
lution. In fact, the solution space, if it exists, is always zero-dimensional.
This fact is not used in the sequel, so we only sketch the proof: If there were
a positive-dimensional solution space, then the solution space of the corre-
sponding homogenized system (say using a variable x) would non-trivially
intersect the hyperplane at infinity given by x = 0. Since the cj all have
degree p− 1 in the ai by Remark 3.2, one sees that x = 0 would imply that
ai = 0 for all i, a contradiction.
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6. Computational Results
In this section we prove that D25 and D27 are local Oort groups.

6.1. D25. Since D25 ∼= Z/52oZ/2, we have that p = 5, m = 2, n = 2 and
so, by Proposition 2.4, it suffices to verify that the isolated differential data
criterion is satisfied for the quadruples (5, 2, ũ, N) where ũ < 10, ũ ≡ −1
mod 2, 5 - ũ and N ∈ {4ũ, 4ũ− 2}. We thus have that D25 is local Oort
group if the isolated differential data criterion is satisfied for the quadruples
(5, 2, ũ, N) where

(6.1) (ũ, N) ∈ {(1, 2), (1, 4), (3, 10), (3, 12), (7, 26), (7, 28), (9, 34), (9, 36)} .

To verify the isolated differential data criterion for the above quadruples,
we use Remark 5.1. For each pair (ũ, N) listed in (6.1), we consider the
system of equations

a0 = −u−1

ua5
2i = c10i−4ũ, for dũ− ũ/5e ≤ 2i ≤ N

a2i = 0, otherwise,

where the polynomials c10i−4ũ are defined in Equation (3.3). We note that
ũ is not divisible by p in any of the cases and so, ũ = u. The small size
of these input allows us to explicitly solve the system.2 For each solution
obtained, we compute the determinant of the square matrix of size (ũ−1)/2
whose ijth entry is a4−2(j−1)+10(i−1), as in Corollary 4.7. In the table below,
we indicate one isolated solution per pair (ũ, N), noting that, in some cases,
we have found more than one. (In the following table, α satisfies α2 = 3
in F5.)

(ũ, N) Solution to the Isolated Differential Data Criterion
(1,2) t2 + 4
(1,4) t4 + 4
(3,10) 2t10 + 3t8 + t4 + 3
(3,12) 2t12 + t8 + 4t4 + 3
(7,26) 2t26 + 2t24 + 4t20 + 2t16 + t12 + t8 + 2
(7,28) 3t28 + t26 + 2t24 + 3t16 + 2t12 + 2t8 + 2
(9,34) 4t34 + t32 + 3t30 + 2t28 + 4t26 + 4t22 + t18 + 3t16 + 2t14 + 3t12 + 2t10 + 1
(9,36) 4t36 + (α− 1)t32 + (3α+ 1)t28 + 2t24 + 4t20 + 3αt16 + t12 + 1

2The solutions are calculated by hand from the Gröbner basis of the system, which is calcu-
lated using the program sage_GB_calculation_according_to_paper.txt. They can be checked
using the program sage_poly_checking_validity_and_isolatedness.txt. Both programs are
bundled with the arXiv version of this paper (https://arxiv.org/abs/1912.12797).

https://arxiv.org/abs/1912.12797
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6.2. D27. Since D27 ∼= Z/33 o Z/2, we have that p = 3, m = 2, n = 3.
By Proposition 2.4, it suffices to verify that the isolated differential data
criterion is satisfied for the quadruples (3, 2, ũ, N) where ũ ≤ 20, ũ ≡ −1
mod 2, 9 - ũ and N ∈ {2ũ, 2ũ− 2}. So, D27 is local Oort group if the
isolated differential data criterion is satisfied for the quadruples (3, 2, ũ, N)
where

(6.2) (ũ, N) ∈
{

(3, 4), (3, 6), (5, 8), (5, 10), (7, 12), (7, 14),
(15, 28), (15, 30), (17, 32), (17, 34), (19, 36), (19, 38)

}
.

We again use Remark 5.1 to verify the isolated differential data criterion
for the above quadruples. For each pair (ũ, N) in the list (6.2), we consider
the system of equations

a0 = −u−1

ua3
2i = c6i−2ũ, for dũ− ũ/3e ≤ 2i ≤ N

a2i = 0, otherwise,

where the polynomials c6i−2ũ are defined in Equation (3.3). We note that
when ũ is divisible by p, we have u = ũ/3. Here we can explicitly compute
solutions except when (ũ, N) = (17, 34) or (19, 36).3 In all but these two
cases, we compute the determinant of the square matrix of size (ũ − 1)/2
whose ijth entry is a2−2(j−1)+6(i−1), as in Corollary 4.7. As with D25, we
indicate one solution to the isolated differential criterion per pair in the
table below (in which β satisfies β2 = 2).

For (17, 34) and (19, 36), we instead use the criterion of Proposition 5.2
to verify that an isolated solution exists.4

(ũ, N) Solution to the Isolated Differential Data Criterion
(3,4) βt4 + t2 + 2
(3,6) t6 + 2t4 + t2 + 2
(5,8) t8 + t6 + 1
(5,10) 2t10 + t8 + t6 + 1
(7,12) βt12 + t10 + t8 + 2
(7,14) t14 + t12 + t10 + t8 + 2
(15,28) βt28 + 2t26 + 2t24 + 2t18 + 2t16 + 2t10 + 1
(15,30) 2t30 + 2t28 + t24 + t20 + t18 + t16 + 2t10 + 1
(17,32) t32 + t30 + t28 + t26 + t24 + t22 + t20 + t18 + 1
(17,34) Solution exists due to Proposition 5.2
(19,36) Solution exists due to Proposition 5.2
(19,38) t38 + t36 + t34 + t32 + t30 + t28 + t26 + t24 + t22 + t20 + 2

3Again, we use the program sage_GB_calculation_according_to_paper.txt to compute the
Gröbner bases and check using sage_poly_checking_validity_and_isolatedness.txt.

4This is verified by the program sage_existence_iso_sol_check.txt, also available at https:
//arxiv.org/abs/1912.12797.

https://arxiv.org/abs/1912.12797
https://arxiv.org/abs/1912.12797
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