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Abstract. High Energy Physics (HEP) experiments generally employ sophis-
ticated statistical methods to present results in searches of new physics. In the
problem of searching for sterile neutrinos, likelihood ratio tests are applied to
short-baseline neutrino oscillation experiments to construct confidence intervals
for the parameters of interest. The test statistics of the form ∆χ2 is often used
to form the confidence intervals, however, this approach can lead to statistical
inaccuracies due to the small signal rate in the region-of-interest. In this paper,
we present a computational model for the computationally expensive Feldman-
Cousins corrections to construct a statistically accurate confidence interval for
neutrino oscillation analysis. The program performs a grid-based minimization
over oscillation parameters and is written in C++. Our algorithms make use of
vectorization through Eigen3, yielding a single-core speed-up of 350 compared
to the original implementation, and achieve MPI data parallelism by employing
DIY. We demonstrate the strong scaling of the application at High-Performance
Computing (HPC) sites. We utilize HDF5 along with HighFive to write the
results of the calculation to file.

1 Introduction

Neutrino oscillation is a well-established phenomenon in particle physics, but continues to be
a major frontier of study in particle physics. Not only do neutrino oscillation measurements
shed light on the fundamental nature of neutrinos – like their mass ordering and CP-violating
characteristics – but also can be used to probe the existence of additional neutrino species
beyond the three known flavors, called sterile neutrinos [1].

To infer the properties of neutrino oscillations from detector measurements, it is generally
necessary to consider statistical tests in a multi-dimensional space. For example, in the case
of searches for sterile neutrinos, the oscillation can be considered as a minimal extension
to the three neutrinos (3N) paradigm, referred to as the (3N+1) paradigm. It is generally
summarized by a two-dimensional confidence region in the sin2(2θ) vs. ∆m2 space [2]. The
confidence region is constructed by setting a certain confidence level to a set of parameter
values that are compatible with the data. The construction of the confidence region starts from
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selecting a specific statistical test and its resulting test statistic. We can then define a grid over
the parameter space and evaluate the test statistic at each point, and then perform parameter
fitting at each point to infer the confidence region. This statistical approach, also known as
Wilks Theorem [3], is usually sufficient when the "asymptotic distribution" is known and the
parameters we are fitting to do not have physical bound. However, when these conditions are
not met, it can lead to statistical inaccuracies and serious under-coverage for values of the
oscillation parameters that are below the sensitivity of the experiment. In order to evaluate
properly the allowed regions in the oscillation parameter space, we use the Feldman-Cousins
approach [4], where we generate many toy Monte Carlo to evaluate the distribution of the
difference∆χ2 between the χ2 in each point of the parameter space and the global minimum
of the χ2. This is an expensive computational task that typically involves tens of thousands
of points on a grid in the multi-dimensional oscillation parameter space. The computational
task becomes even harder to accomplish when considering even higher-dimensional spaces,
like in the case of long-baseline oscillation searches which may fit to multiple mixing angles,
mass differences, and a possible CP-violating phase δCP, or in the case of more complicated
sterile neutrino models [5].

In this paper, we explore the ability to perform these multi-dimensional grid searches
for neutrino oscillation parameter fitting on High Performance Computing (HPC) facilities
in order to significantly reduce the computation time. As a direct example, we adapt the
SBNFit fitting framework [6], which was developed to perform multi-detector, multi-channel
fits using grid search techniques for short-baseline sterile neutrino searches, to HPC facilities,
and use its performance as a benchmark for running such algorithms in an HPC environment.
The paper is organized as follows: in Section 2 we introduce the datasets and algorithm
used for the computation of the Feldman-Cousins correction. We follow in Section 3 with
detailed discussions of challenges and solutions to achieve computational performance and
scalability. We asses the achieved performance and eventual limitations in Section 4. We
make our concluding remarks in Section 5 and discuss prospects of future development.

2 Dataset and Algorithm

In order to perform the test statistics, the Monte Carlo expectation values from each detector
are required. Specifically, these comprised of:

1. central value distribution: the expected number of events in the absence of oscillation
in each analysis bin, as a function of the parameters to be fitted over.

2. oscillated distribution, a: the predicted number of events generated by scaling the cen-
tral value distribution with oscillation probability associated with given ∆m2, a. The
oscillation probability is dependent on the neutrino model.

3. pseudo-experiment, b: the fluctuated distribution generated by randomizing the oscil-
lated distribution around its mean according to its statistical and systematics uncertain-
ties. Each fluctuation of the distribution is also referred to as "universe".

4. A symmetric, positive definite covariance matrix, M, of size N × N, which encodes
the correlated bin-by-bin systematics uncertainties from each detector, as a function
of the parameter to be fitted over, along with the systematics uncertainties correlation
between the detectors.

These input distribution and matrix are stored as ROOT histogram objects [7], the most com-
mon data format in HEP. The χ2 computation allows for a statistical interpretation of the
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numerical similarity of a and b, and include the systematics uncertainties and correlations
encoded in M:

χ2 = (a − b)" ·M · (a − b) (1)

To explore the full parameter space of interest, we perform a rectangular grid-based nu-
merical scan: we determine physically motivated upper and lower bounds for each relevant
parameter in the model, and divide the resulting interval in a number of grid cells that are
equally distributed. This rectangular grid is then linearized to form a list (G) of the points in
the D-dimensional grid. The length of G is referred to as Ngridpoint.

The test statistic is computed by generating an ensemble of pseudo-experiments with
Monte Carlo simulation at a single point p ∈ G. Each pseudo-experiment is constructed by
randomizing the expected number of events in the binned distribution based on their system-
atic and statistical uncertainties. The number of pseudo-experiments in the ensemble at a
given p ∈ G is referred to as Nuniv. We compute the χ2 test statistics for each of the pseudo-
experiment in p and we compare them to the χ2 in all other points in the grid to find the
minimum χ2. The difference in the test statistics between the point which gives the minimum
χ2 and the χ2 in p , is calculated to build the ∆χ2 distribution for Nuniv

Algorithm 1 represents a pseudo-code of the most relevant steps. Following the notation
in 1, the procedure for a single pseudo-experiments or "universe" is as follows:

1: function buildDeltaChi2(p, c,M,S,Nuniv)
2: s = S(p) " prediction at p
3: for i ∈ [0,Nuniv) do
4: χ2

min ← inf;
5: pmin = p
6: a = fluctuation of s
7: for q ∈ G do " Iterate over all grid points
8: b = S(q)
9: chi2=calcChi2(a, b,M) " using Algorithm 1

10: if chi2 < χ2
min then

11: χ2
min ← chi2;

12: pmin = q
13: end if
14: end for
15: deltaChi2 = calcChi2(a, c,M) - χ2

min
16: end for
17: The deltaChi2 values are aggregated and written to disk.
18: end function

Algorithm 1 χ2 calculation
1: function calcChi2(a, b,M)
2: d← a − b
3: χ2 = d" ·M · d
4: return χ2

5: end function
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where c is the central prediction (experimentally measured data). This means that the
computational complexity, and therefore the program run time, can be expected to scale
∝ Nuniv · N2

gridpoint. Measurements of the scaling are given in more detail in Section 4.

3 Computational Challenge and Solution

Listing 1: Implementation of (1) using Eigen3
double c a l c C h i ( VectorXd c o n s t & a ,

VectorXd c o n s t & b ,
MatrixXd c o n s t & M )

{
auto c o n s t & d i f f = a−b ;
re turn d i f f . t r a n s p o s e ( ) * M * d i f f ;

}

Listing 2: Original implementation of (1)
double c a l c C h i ( v e c t o r <double> a ,

v e c t o r <double> b ,
v e c t o r <v e c t o r < double> > M,
i n t N)

{
double c h i 2 = 0 ;
f o r ( i n t i =0; i <N; i ++){

f o r ( i n t j =0; j <N; j ++){
c h i 2 += ( a [ i ]−b [ i ] ) * M[ i ] [ j ] * ( a [ j ]−b [ j ] ) ;

}
}
re turn c h i 2 ;

}

The original implementation of the framework relies on the frequent access of the file
system. ROOT objects are read from the file system every time they are created, and introduce
burden on the file system. As an example, to calculate S (p), we have to open two ROOT files
object at the same time, perform mathematical procedures on them causing this to be very
expensive. The solution to this is to read the input files only once and then use the collective
MPI operation to copy the data to all the ranks through memory (see Table 1 for the details of
the processors). Despite bringing significant improvement to the performance of the program,
this approach however is still limited on the problem size. As the problem size grows with
Ngridpoint, the required memory also increases and eventually exhausting the system’s memory.

Table 1: Processors used in this work

Machine Cori phase 1 (Haswell) Cori phase 2 (KNL)
CPU Intel Xeon E5-2698 v3 Intel Xeon Phi 7250
Clockspeed 2.3 GHz 1.4 GHz
Cores per node 32 68
Ranks per core 2 4

The opening and closing of these ROOT objects such as TH1D also creates a major perfor-
mance bottleneck due to the many mathematical operations associated with them. Eigen3’s
VectorXd and MatrixXd [8] inherently employ the vectorization making them better suited

4

EPJ Web of Conferences 251, 02065 (2021) https://doi.org/10.1051/epjconf/202125102065
CHEP 2021



where c is the central prediction (experimentally measured data). This means that the
computational complexity, and therefore the program run time, can be expected to scale
∝ Nuniv · N2

gridpoint. Measurements of the scaling are given in more detail in Section 4.

3 Computational Challenge and Solution

Listing 1: Implementation of (1) using Eigen3
double c a l c C h i ( VectorXd c o n s t & a ,

VectorXd c o n s t & b ,
MatrixXd c o n s t & M )

{
auto c o n s t & d i f f = a−b ;
re turn d i f f . t r a n s p o s e ( ) * M * d i f f ;

}

Listing 2: Original implementation of (1)
double c a l c C h i ( v e c t o r <double> a ,

v e c t o r <double> b ,
v e c t o r <v e c t o r < double> > M,
i n t N)

{
double c h i 2 = 0 ;
f o r ( i n t i =0; i <N; i ++){

f o r ( i n t j =0; j <N; j ++){
c h i 2 += ( a [ i ]−b [ i ] ) * M[ i ] [ j ] * ( a [ j ]−b [ j ] ) ;

}
}
re turn c h i 2 ;

}

The original implementation of the framework relies on the frequent access of the file
system. ROOT objects are read from the file system every time they are created, and introduce
burden on the file system. As an example, to calculate S (p), we have to open two ROOT files
object at the same time, perform mathematical procedures on them causing this to be very
expensive. The solution to this is to read the input files only once and then use the collective
MPI operation to copy the data to all the ranks through memory (see Table 1 for the details of
the processors). Despite bringing significant improvement to the performance of the program,
this approach however is still limited on the problem size. As the problem size grows with
Ngridpoint, the required memory also increases and eventually exhausting the system’s memory.

Table 1: Processors used in this work

Machine Cori phase 1 (Haswell) Cori phase 2 (KNL)
CPU Intel Xeon E5-2698 v3 Intel Xeon Phi 7250
Clockspeed 2.3 GHz 1.4 GHz
Cores per node 32 68
Ranks per core 2 4

The opening and closing of these ROOT objects such as TH1D also creates a major perfor-
mance bottleneck due to the many mathematical operations associated with them. Eigen3’s
VectorXd and MatrixXd [8] inherently employ the vectorization making them better suited

for these operations. Replacing ROOT objects with Eigen3’s objects presents a significant
performance benefit and eventually outweigh the original gain from caching the computa-
tions of the S (p) in memory. The comparison of the single-core prediction rates are shown in
Table 2. These changes effectively transform the memory limited program into CPU limited
program.

Table 2: Comparison of single-core signal prediction rates. The achieved speed-up allows to
avoid having to cache S(p) and thus eliminate the memory-limitation of the problem size.

Frequency of S(p)
Original, Haswell 30 Hz
New, Haswell 10 MHz
New, KNL 2 MHz

A further important change to boost the performance of the program is the use of HDF5
[9] as output file format, in conjunction with the header only HighFive library [10] that sup-
ports both serial and parallel HDF5 with C++. We utilize the MPI-capable file objects for
writing to disk and minimize the necessary MPI communications. The output dataset can be
organized into datasets (columns) and groups (tables) and the size is known upon start of the
program, making it efficient for parallel I/O and in-memory processing on HPC machines.

Finally, we utilize DIY [11] for data parallelism across processes and nodes, and Eigen3
for linear algebra and vectorized calculations. The application is parameterized as a function
of the number of universes Nuniv, the number of grid points Ngridpoint, and the standard MPI
option for number of ranks.

4 Performance and Scaling

In this section we asses the overall program execution time as a function of the number
grid points, Ngridpoint, to test our initial hypothesis that the run time should scale ∝ Nuniv ·
N2

gridpoint. We further demonstrate strong scaling of the application and predict the maximum
size problem that can be solved when running on all of NERSC’s Cori [12] for a full day.

4.1 Scaling with Nuniv and Ngridpoint

To collect the data, we used a fixed number of Haswell nodes (and therefore ranks) and
varied Nuniv and Ngridpoint independently. Fig. 1a show the scaling of the program time for a
fixed number Ngridpoint as a function of Nuniv. We fit the data linearly and show that there is
no visible deviation from linear scaling. Correspondingly, in Fig. 1b we fix the number of
universes and compute the program execution time as function of Ngridpoint. We fit the data to
a quadratic function and shows that there is no visible deviation from the quadratic scaling.

4.2 Single node scaling

We measure the program execution time as a function of the number of ranks to assess bene-
fits gained from using multiple MPI ranks (See table Table 1). To study this, we select a fixed
size problem as function of Ngridpoint and Nuniv, distribute the work among the ranks as evenly
as possible, and record the time spent in the main part of the program for each rank separately.
The data is shown in Fig. 2a for Haswell nodes and in Fig. 2b for KNL. We benchmark the
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(a) Scaling of the program run time with the num-
ber of universes, demonstrating a linear depen-
dence on Nuniv.

(b) Scaling of the program run time with the num-
ber of grid points, demonstrating a quadratic de-
pendence on Ngridpoint.

Figure 1: Scaling of the program time for a fixed problem

scaling using the amount of time spent by the slowest rank (tmax) and found that Haswell
attains the best single node scaling when using 32 ranks. We observe no significant improve-
ment in the execution time when multi-threading is enabled by utilizing 2 ranks per core on
32 cores. When oversubscribing 1 and 2 cores in the 33 ranks and 34 ranks respectively, we
observed an overall worse performance as shown in Fig. 2a. We repeat the measurements
on a KNL node and observed similar performance when using non-integer multiples of the
number of cores (68) due to ranks competing for resources in an unbalanced way. However,
contrary to Haswell, we observe around 16% and 24% improvement in terms of tmax when
using 2 and 4 ranks per core respectively (see Table 3).

Table 3: Total run time of a fixed problem on a single KNL node demonstrating that there is
a mild benefit in using hardware threading.

Ranks 68 136 272
tmax[s] 87 75 70

Gain w.r.t. 68 ranks 16% 24%

4.3 Multi node scaling

Understanding scalability of multi node systems is crucial to learn how much of a potential
performance gain we can expect as we add more computing resources. To study this, we
define a reasonable large problem of a fixed size and measure the time it takes to complete
the main part of the program as a function of the number of used Haswell nodes (Nnodes).
Following the finding in the previous section, we use 32 ranks per node in this study.

We define the program execution efficiency as

ε = Nnodes ·
t(Nnodes)

t(1)
, (2)

where t(1) is the run time on a single core.
Fig. 3 demonstrates that the program scales reasonably well up to the point where the

amount of work to be done per rank becomes relatively small. The 80% efficiency drop at 32
nodes (1024 ranks) suggests a non-uniform compute time of individual tasks.
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(a) Measurement of the single Haswell node per-
formance for a fixed problem size. The work is
distributed among ranks and we measure the uti-
lization of each rank in terms of units of work per
second.

(b) Measurement of the single KNL node perfor-
mance for a fixed problem size. The work is dis-
tributed among ranks and we measure the utiliza-
tion of each rank in terms of units of work per
second.

Figure 2: Single node scaling performance

Figure 3: Strong scaling measurements on Haswell nodes. We observe generally good scaling
up to the point where the amount of work per rank becomes relatively small.

4.4 Estimation of what is possible

We would like to to estimate the maximal problem size that can be solved on HPC machine
like Cori. From 4, we found the scaling to be linear in the number of nodes for our measure-
ments. This allows to estimate an upper limit of of core computations if the whole machine
were available. For Cori phase 1 (Haswell) we estimate an upper boundary of 610 s−1 from
a linear extrapolation to the entirety of 2388 nodes. Similarly, we find an upper boundary
of 1.811 s−1 when using all 9688 nodes of Cori phase 2 (KNL). The data and linear fits
are shown in 4. It should be noted that the linear scaling assumption must be considered
optimistic and interpreted as an upper limit of the performance of the program.

5 Conclusion

We have adapted a general grid-search-based fitting application that calculates Feldman-
Cousins corrections to confidence intervals to run efficiently on current state-of-the-art pro-
cessor architectures and systems available at HPC facilities. In doing so, we transformed a
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Figure 4: “Velocity” plot showing the “speed” of core computations on different architectures
as function of the number of nodes.

High Energy Physics problem common within neutrino physics from a serial-execution pro-
gram limited by machine memory into an MPI parallel application that scales up to available
compute power of a facility. We achieve node-level and thread-level parallelism through
DIY, and accomplish significant performance improvements by restructuring algorithms to
use Eigen3 for matrix multiplications and array manipulations.

While this work was performed in the context of a specific application (SBNFit) de-
signed for short-baseline neutrino oscillation experiments, the algorithms and procedures in
this analysis application are similar to that used in other experiments, and so the techniques
employed here are likely to provide similar benefits in terms of performance and design for
the broader neutrino oscillation physics program.

5.1 Future Work

In spite of the achieved improvement, we observe that the computational complexity of the
Feldman-Cousins approach, coupled with the current brute force grid scan over a discrete
grid, severely limits the dimensionality of the problem that can be handled. We are exploring
alternative techniques to this grid scan, such as utilizing optimizers to find the global mini-
mum ∆χ2, through our connection with the SciDAC FASTmath Institute [13] to move towards
seven or more dimensions that the experiment would like to probe, along with approximat-
ing the discrete binned data into to a continuous function using the Multivariate Functional
Approximation (MFA) model [14].
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