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1 Introduction

Étale cohomology works especially well with Z/l coefficients such that l is invertible
in the base field. In the 1970s, however, Milne, Bloch, and Illusie defined variants
of étale cohomology based on differential forms. Using these constructions, Kato
defined groups H i

ét(k,Z/m(j)) for a field k and any positive integer m, even when
m is not invertible in k [17, p. 219]. Kato’s groups behave surprisingly well. For
example, we have H1

ét(k,Z/m(0)) ∼= H1
ét(k,Z/m), the group classifying cyclic Z/m-

extensions of k, and H2
ét(k,Z/m(1)) ∼= Br(k)[m], the m-torsion subgroup of the

Brauer group, whether m is invertible in k or not.
Nowadays, there is an “explanation” for Kato’s groups: Voevodsky’s étale mo-

tivic cohomology groups H i
ét(X,A(j)) of a scheme X over a field k are defined for

any abelian group A. They agree with the familiar étale cohomology with coeffi-
cients in µ⊗j

m when A is Z/m with m invertible in k and j ≥ 0, and they agree with
Kato’s groups when X = Spec(k) and A = Z/m for any m [23, Theorem 10.2], [10].

In this paper, we make some new calculations of mod p étale motivic cohomology
in characteristic p. In particular, we compute the group of cohomological invariants
(in Serre’s sense) for some important affine group schemes, such as the symmetric
groups (Theorem 10.2), the finite group schemes (µp)

a× (Z/p)b (Theorem 8.4), and
the orthogonal groups O(n) and SO(n) (Theorems 12.1, 13.1, 13.3, 14.1). These
calculations were done in [9, Chapters VI and VII] for Z/l coefficients with l ̸= p,
and we carry out the case l = p. For the orthogonal groups, the interesting new
case is where these groups are considered over a field of characteristic 2. In that
case, our calculation amounts to determining the group of cohomological invariants
for quadratic forms in characteristic 2.

One outcome of the calculations is that there are often fewer mod p cohomolog-
ical invariants when the base field has characteristic p. For example, a basis for the
mod 2 cohomological invariants for the orthogonal group O(n) in characteristic not
2 is given by the Stiefel-Whitney classes 1 = w0, w1, . . . , wn, whereas in character-
istic 2 there are only analogs of w1 and w2, the discriminant (or Arf invariant) and
the Clifford invariant. In particular, cohomological invariants are not enough to give
the lower bounds for the essential dimension of O(n) and SO(n) in characteristic
2 proved by Babic and Chernousov [2]. The cohomological invariants of the spin
groups Spin(n) in characteristic 2 (as in other characteristics) are not known, but
for n ≤ 10 there are enough invariants to give optimal lower bounds on the essential
dimension [35].

We also determine all operations on the mod p étale motivic cohomology of fields
(section 11), extending Vial’s computation of the operations on the mod p Milnor
K-theory of fields [36].
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As far as I know, this paper gives the first calculations of all mod p cohomolog-
ical invariants for a given affine group scheme in characteristic p. Merkurjev gave
a geometric description of such invariants (see Theorem 2.1), but the only full cal-
culations seem to be in low degrees. In particular, Lourdeaux described the degree
2 cohomological invariants for all smooth connected affine groups [22, Théorème
2.3.2]. Blinstein and Merkurjev found the degree 3 cohomological invariants for
tori [3]. Esnault-Kahn-Levine-Viehweg and Merkurjev determined all degree 3 in-
variants for simply connected semisimple groups; they are generated by the Rost
invariant in the mod p case, as in the mod l case [7, Appendix B], [9, Part 2, The-
orem 9.11]. Laackman and Merkurjev also found the degree 3 invariants for some
other classes of reductive groups [24, 21].

A key difference between étale motivic cohomology in the mod p case and the
mod l case is that mod p étale motivic cohomology of schemes is not A1-invariant.
(For example, for k algebraically closed of characteristic p, H1

ét(k,Z/p) is zero,
while H1

ét(A
1
k,Z/p) is not zero: there are many nontrivial étale Z/p-coverings of the

affine line.) This failure is related to the phenomenon of wild ramification (section
4), which does not occur in the mod l case. One goal of this paper is to show that,
although the lack of A1-invariance means that some familiar arguments no longer
apply, mod p étale motivic cohomology is still a useful and computable theory. A
crucial ingredient of the proofs is an analysis of tame and wild ramification for
classes in étale motivic cohomology, extending work of Izhboldin (Theorem 4.3).

Thanks to Vladimir Chernousov, Skip Garibaldi, Philippe Gille, Alexander
Merkurjev, Niranjan Ramachandran, and the referees for their suggestions. This
work was supported by NSF grant DMS-1701237.
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2 Background on étale motivic cohomology

Building on earlier work of Bloch and Kato, Geisser and Levine proved the relation
between Voevodsky’s étale motivic cohomology and Kato’s invariants of fields based
on differential forms. Namely, let k be a field of characteristic p > 0 which is perfect,
meaning that every element of k is a pth power, and let X be a smooth scheme over
k. For j ≥ 0, let Ωj

log be the subsheaf of Ωj
X generated locally by logarithmic

differentials df1/f1 ∧ · · · ∧ dfj/fj for units f1, . . . , fj . (This is a sheaf of Fp-vector

spaces, not of OX -modules.) More generally, for r > 0, let WrΩ
j
log be the analogous

subsheaf of logarithmic de Rham-Witt differentials [13]. Then Voevodsky’s object
Z/pr(j) in the derived category of Zariski (or étale) sheaves on X is isomorphic to
the shift WrΩ

j
log[−j] [10, Proposition 3.1, Theorem 8.3]. As a result, étale motivic

cohomology, meaning the étale cohomology of X with coefficients in Z/pr(j), can
be rewritten in terms of differential forms:

H i
ét(X,Z/pr(j)) ∼= H i−j

ét (X,WrΩ
j
log).

This has consequences for any field k of characteristic p, not necessarily perfect.
Indeed, such a field has étale p-cohomological dimension at most 1 [31, section
II.2.2]. As a result, H i

ét(k,Z/p
r(j)) is zero except when i is j or j +1. When i = j,

Bloch and Kato identified this group with the Milnor K-group KM
j (k)/pr, or also

with the group WrΩ
j
log,k [4, Corollary 2.8]. There are several ways to describe the

remaining mod pr étale motivic cohomology groups of a field, when i = j + 1; we
concentrate on the case r = 1.

Write H i,j(k) = H i
ét(k,Z/p(j)). One description of these groups is in terms of

Galois cohomology. For a field k of characteristic p > 0, not necessarily perfect, let
ks be a separable closure of k. Let Ωj

k be the group of (absolute) differential forms

on k, which can be viewed as Ωj
k/Z or Ωj

k/Fp
. Write Ωj

log,k for the subgroup of Ωj
k

generated by elements (da1/a1) ∧ · · · ∧ (daj/aj) with a1, . . . , aj in k∗. Then

H i,j(k) ∼=

⎧⎪⎨⎪⎩
Ωj
log,k

∼= H0
Gal(k,Ω

j
log,ks

) if i = j

H1
Gal(k,Ω

j
log,ks

) if i = j + 1

0 otherwise.

The Galois group Gal(ks/k) of a field k of characteristic p > 0 has p-cohomological
dimension at most 1 [31, section II.2.2], which explains why only H0 and H1 occur
here.

For another description of these groups (Kato’s original definition [18]), define
a group homomorphism P : Ωj

k → Ωj
k/dΩ

j−1
k by

P(a(db1/b1) ∧ · · · ∧ (dbj/bj)) = (ap − a)(db1/b1) ∧ · · · ∧ (dbj/bj).
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Then Hj+1,j(k) is isomorphic to the cokernel of P [14, Corollary 6.5]. In fact, there
is an exact sequence:

0 → Hj,j(k) → Ωj
k −→

P
Ωj
k/dΩ

j−1
k → Hj+1,j(k) → 0.

Let k be a field of characteristic p > 0. For an element a of k, write [a] for
the class of a in H1,0(k) = k/P(k), where P(a) = ap − a, as above. For b1, . . . , bj
in k∗, the symbol {b1, . . . , bj} in Hj,j(k) means the class of the differential form
(db1/b1)∧ · · · ∧ (dbj/bj); this agrees with the standard notation in Milnor K-theory,
via the isomorphism Hj,j(k) ∼= KM

j (k)/p. Finally, for a ∈ k and b1, . . . , bj ∈ k∗, the
symbol

[a, b1, . . . , bj} ∈ Hj+1,j(k)

means the class of the differential form a(db1/b1) ∧ · · · ∧ (dbj/bj). Both groups
Hj,j(k) and Hj+1,j(k) are generated by symbols, by the descriptions above.

For a scheme X of characteristic p, étale motivic cohomology with Z/l(j) coeffi-
cients for l ̸= p and j ≥ 0 can be identified with étale cohomology with the familiar
coefficients µ⊗j

l . (For X smooth over k, which is the only case we will need, this
is [23, Theorem 10.2].) In particular, it follows that étale motivic cohomology with
Z/l(j) coefficients for l ̸= p is A1-invariant, by one of Grothendieck’s fundamental
results [26, Corollary VI.4.20]. By contrast, mod p étale motivic cohomology is not
A1-invariant. For a simple example, look at H1,0(X) ∼= H1

ét(X,Z/p). We have the
Artin-Schreier exact sequence of étale sheaves:

0 → Z/p → OX −→
P

OX → 0,

where P(a) = ap − a. For X affine, it follows that we have an exact sequence

O(X) −→
P

O(X) → H1
ét(X,Z/p) → 0.

For example, if k is an algebraically closed field, then H1
ét(k,Z/p) = 0, whereas

one checks from this exact sequence that H1
ét(A

1
k,Z/p) is isomorphic to a countably

infinite direct sum of copies of k.
Let G be an affine group scheme of finite type over a field k. This determines a

functor from fields over k to sets by F ↦→ H1(F,G), the set of isomorphism classes
of G-torsors over F . (Here G-torsors are defined in the most general sense, using
the fppf topology; for G smooth over k, this is the same as G-torsors in the étale
topology [26, Remark III.4.8].) The abelian group of cohomological invariants of
G with values in H i

ét(Z/m(j)), written Invik(G,Z/m(j)), means the set of natural
transformations fromH1(F,G) toH i

ét(F,Z/m(j)), on the category of fields F over k.
When the positive integer m is invertible in k, the group of cohomological invariants
was computed for several important groups G in [9, Chapters VI and VII]: the
symmetric groups, elementary abelian groups, and the orthogonal groups. In this
paper, we will make the analogous mod p calculations when p is the characteristic
of k.

A cohomological invariant for a group scheme G over k is normalized if it is equal
to zero on the trivial G-torsor. It is immediate that the group of invariants for G
splits as the direct sum of the “constant” invariants and the normalized invariants:

Invik(G,Z/m(j)) ∼= H i(k,Z/m(j))⊕NormInvik(G,Z/m(j)).
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Some insight into the group of cohomological invariants is provided by the ex-
istence of a versal torsor. Let G be an affine group scheme over an infinite field
k, and let V be a k-vector space on which G acts by affine transformations. Sup-
pose that G acts freely on a nonempty Zariski open subset U of V , with a quotient
scheme U/G. Then every G-torsor over an extension field of k is pulled back from
the G-torsor U → U/G [9, section I.5]. As a result, we have an injection

Invik(G,Z/m(j)) ↪→ H i(k(U/G),Z/m(j))

(by Merkurjev, in this generality; see Theorem 2.1 below). Also, cohomological
invariants always give cohomology classes on k(U/G) that are unramified along all
divisors in U/G.

For m invertible in k, this injection is in fact an isomorphism to the group
H0

Zar(U/G,H i
ét) of unramified classes, under the mild extra assumption that V −U

has codimension at least 2 in V [9, Part 1, Appendix C]. However, that argument
relies on A1-invariance. For p = char(k), where A1-invariance fails, one cannot
expect to identify the mod p cohomological invariants of G with the unramified
cohomology of a quotient variety U/G; consider the case of the trivial group G
and vector spaces U = V of various dimensions. However, Merkurjev provided a
substitute: for any positive integer m, the group of cohomological invariants for G
need not be the whole group H0(U/G,H i(Z/m(j))), but it is always the subgroup
of balanced elements in H i(k(U/G),Z/m(j)), meaning the elements whose pullbacks
via the two projections (U ×U)/G → U/G are equal. Balanced elements are always
unramified over U/G, and so the group of cohomological invariants can also be
described as the subgroup of balanced elements in unramified cohomology. Blinstein
and Merkurjev had proved this earlier when G is smooth over k [3, Theorem A].
Here is the general statement [25, Theorem 6.3]:

Theorem 2.1. Let G be an affine group scheme of finite type over a field k. Let
U be a smooth k-variety with a free G-action such that there is a quotient scheme
U/G. Suppose that U is G-equivariantly birational to an affine space over k on
which G acts by affine transformations. Let m be a positive integer and i, j ≥ 0.
Then

Invik(G,Z/m(j)) ∼= H i(k(U/G),Z/m(j))bal
∼= H0

Zar(U/G,H i(Z/m(j)))bal.

Theorem 2.1 should be attributed to Merkurjev, but we give detailed references
in section 3, since Merkurjev’s argument emphasizes the case of coefficients Q/Z(j)
rather than Z/m(j). (The same proof works.) Our calculation of the cohomological
invariants of the group scheme µp (Proposition 6.1), on which the rest of the paper
depends, relies on Theorem 2.1.

Finally, we recall the relation between mod p cohomological invariants and the
essential dimension at p [35, Lemma 3.1]:

Proposition 2.2. Let G be an affine group scheme of finite type over an alge-
braically closed field k of characteristic p > 0. Then Invj+1,j

k (G) = 0 for all
j ≥ ed(G; p).
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3 Proof of Theorem 2.1

Proof. (Theorem 2.1) When G is smooth over k, this was shown by Blinstein and
Merkurjev [3, Theorem A]. The step where they use smoothness is in showing that
the natural homomorphism

Invik(G,Z/m(j)) → H i(k(U/G),Z/m(j))

is injective [3, Appendix A-I]. However, Merkurjev gave a different argument which
shows that this homomorphism is injective for G not necessarily smooth [25, The-
orem 6.1].

The other steps of Blinstein-Merkurjev’s argument work without smoothness of
G (and in fact are stated that way; they explain that their “linear algebraic groups”
are not assumed to be smooth). Namely, an invariant for G gives an element
of H i(k(U/G),Z/m(j)) which is balanced, because the pullbacks of the G-torsor
U → U/G by the two projections U2/G → U/G are both isomorphic to U2 → U2/G.
Conversely, [3, Lemmas 3.2 and 3.3] show that a balanced element gives an invariant
of G. Finally, a balanced element is unramified along all irreducible divisors in U/G
by [3, Proposition A.9], which works with Z/m(j) coefficients as well as with Q/Z(j)
coefficients.

4 Ramification and residues

In this section, building on the work of Izhboldin, we describe étale motivic co-
homology for a field with a discrete valuation. In particular, there are notions of
tame and wild ramification for cohomology classes, and a residue homomorphism.
The quotient of étale motivic cohomology by the unramified subgroup can be de-
scribed very explicitly (Theorem 4.3). Finally, we state Izhboldin’s calculation of
the étale motivic cohomology of a rational function field (Theorem 4.4). All this is
used for the basic calculations of the paper, the determination of the cohomological
invariants for the group schemes µp and Z/p (Propositions 6.1 and 8.1).

Let F be a field with a discrete valuation v. Let OF be the valuation ring
{x ∈ F : v(x) ≥ 0}, and let k = OF /m be the residue field. Define the subgroup of
unramified classes inH i

ét(F,Z/m(j)) to be the image ofH i
ét(OF ,Z/m(j)). (Blinstein

and Merkurjev use the same notion of “unramified” [3, start of section 5].) More
concretely, for p = char(k), in the description of Hn+1

ét (F,Z/p(n)) as a quotient
of Ωn

F (section 2), the unramified subgroup is the subgroup generated by elements
a(db1/b1)∧ · · · ∧ (dbn/bn) with ai ∈ OF and b1, . . . , bn ∈ O∗

F . If m is invertible in k,
then the subgroup of unramified classes is the kernel of the residue homomorphism
[9, Part 1, section 7.9]:

∂v : H
i
ét(F,Z/m(j)) → H i−1

ét (k,Z/m(j − 1)).

If m is not invertible in k, what happens is more complicated, but still manage-
able. Let F be a field with a discrete valuation v. An extension field of F is called
tame if it is a union of finite extensions of F for which the extension of residue fields
is separable and the ramification degree is invertible in the residue field k. Let Ftame

be the maximal tamely ramified extension of F (with respect to v) in a separable
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closure of F . Define the tame (or tamely ramified) subgroup by

H i
tame(F,Z/m(j)) = ker

(
H i

ét(F,Z/m(j)) → H i
ét(Ftame,Z/m(j))

)
.

The whole group H i is tamely ramified if m is invertible in k. For general m,
the residue homomorphism is not defined on all of H i

ét(F,Z/m(j)), but only on the
tamely ramified subgroup [15, Corollary 2.7]:

∂v : H
i
tame(F,Z/m(j)) → H i−1

ét (k,Z/m(j − 1))

(In the case m = p = char(F ), the tame subgroup will be described in terms
of differential forms in the proof of Theorem 4.3. The residue homomorphism is
characterized by the property that

∂v

(
a
dt

t
∧ db1

b1
∧ · · · ∧ dbn−1

bn−1

)
= a

db1

b1
∧ · · · ∧ dbn−1

bn−1

where a ∈ OF , b1, . . . , bn−1 ∈ O∗
F , and t is any uniformizer in OF . We write a ↦→ a

for the surjection OF → k.)
As a result, mod p étale motivic cohomology does not fit into the framework

of Rost’s cycle modules [30]. On the good side, Theorem 4.3 will say: (1) The
unramified subgroup of étale motivic cohomology is the kernel of the residue on the
tamely ramified subgroup. (2) There is a satisfactory description of the quotient of
étale motivic cohomology by the tamely ramified subgroup.

Remark 4.1. When m = char(k), Izhboldin calls our “tamely ramified” subgroup
of étale motivic cohomology the “unramified” subgroup [15]. That has the confus-
ing consequence that the residue homomorphism is nontrivial on his “unramified”
subgroup. Our use of “tamely ramified” follows Kato [17, Theorem 3] and Auel-
Bigazzi-Böhning-von Bothmer [1, Remark 3.8]. It also agrees with the terminology
used for the Brauer group [33, Proposition 6.63].

When the discretely valued field F is complete of characteristic p > 0, Izhboldin
analyzed the “wild quotient” of Hn+1,n(F ) = Hn+1

ét (F,Z/p(n)); we generalize his
result (not assuming completeness) as Theorem 4.3. To set this up, use the descrip-
tion of Hn+1,n(F ) as a quotient of Ωn

F from section 2. Define an increasing filtration
of Hn+1,n(F ) by: for i ≥ 0, let Ui be the subgroup of Hn+1,n(F ) generated by ele-
ments of the form

a
db1
b1

∧ · · · ∧ dbn
bn

with a ∈ F , b1, . . . , bn ∈ F ∗, and v(a) ≥ −i. It is clear that

0 ⊂ U0 ⊂ U1 ⊂ · · · ,

with
⋃

i≥0 Ui = Hn+1,n(F ). Theorem 4.3 will show that U0 is the tamely ramified

subgroup of Hn+1,n(F ).
Let t ∈ OF be a uniformizer for v. If j > 0 and j is prime to p, define a

homomorphism
Ωn
k → Uj/Uj−1
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by

a
db1

b1
∧ · · · ∧ dbn

bn
↦→ a

tj
db1
b1

∧ · · · ∧ dbn
bn

(mod Uj−1),

for a ∈ OF and b1, . . . , bn ∈ O∗
F . Let Zn

k be the subgroup of closed forms in Ωn
k . If

j > 0 and p|j, define a homomorphism

Ωn
k/Z

n
k ⊕ Ωn−1

k /Zn−1
k → Uj/Uj−1

by (for the first summand)

a
db1

b1
∧ · · · ∧ dbn

bn
↦→ a

tj
db1
b1

∧ · · · ∧ dbn
bn

(mod Uj−1)

and (for the second summand)

a
db1

b1
∧ · · · ∧ dbn−1

bn−1

↦→ a

tj
dt

t
∧ db1

b1
∧ · · · ∧ dbn−1

bn−1
(mod Uj−1),

where a ∈ OF and b1, . . . , bn ∈ O∗
F .

It is straightforward to check that the homomorphisms above are well-defined
(although they depend on the choice of uniformizer t). First check that the element
in Uj/Uj−1 associated to given elements a ∈ k and bi ∈ k∗ is independent of the
choice of lifts to OF . (For example, in the case j > 0, p ∤ j, it is clear that changing
the lift of a changes the result by an element of Uj−1. Changing the lift of bi amounts
to multiplying bi by 1+ e for some e ∈ m; since d(1+ e)/(1+ e) = (e/(1+ e))(de/e),
where e/(1 + e) is in m, this change of lift changes the result by adding an element
of Uj−1, as we want.) To finish showing that the homomorphisms above are well-
defined, use Kato’s presentation of Ωn

k [16, section 1.3, Lemma 5]:

Proposition 4.2. For any field k and natural number n, the group of differentials
Ωn
k = Ωn

k/Z is the quotient of k ⊗Z (k∗)⊗n by the relations:

[a, b1, . . . , bn} = 0

if a ∈ k, b1, . . . , bn ∈ k∗, and bi = bj for some i ̸= j; and

[u+ v, u+ v, b2, . . . , bn} = [u, u, b2, . . . , bn}+ [v, v, b2, . . . , bn}

if u, v, u + v ∈ k∗. (The map from this quotient group to Ωn
k takes the symbol

[a, b1, . . . , bn} to a1(db1/b1) ∧ · · · ∧ (dbn/bn).)

When j > 0 and p ∤ j, it is straightforward from Proposition 4.2 to check that we
have a well-defined homomorphism Ωn

k → Uj/Uj−1, above. When j > 0 and p|j, we
can likewise see that we have a well-defined homomorphism Ωn

k/Z
n
k ⊕Ωn−1

k /Zn−1
k →

Uj/Uj−1, using Cartier’s theorem that, for k of characteristic p > 0, the subgroup
Zn
k of closed forms in Ωn

k is generated by the exact forms together with the forms
ap(db1/b1) ∧ · · · ∧ (dbn/bn) [15, Lemma 1.5.1].

Our generalization of Izhboldin’s result is:
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Theorem 4.3. Let F be a field of characteristic p > 0 with a discrete valuation
v and residue field k. Then Hn+1,n(F ) is the union of the increasing sequence of
subgroups U0 ⊂ U1 ⊂ · · · defined above, with isomorphisms (depending on a choice
of uniformizer in F ):

Uj/Uj−1
∼=

{
Ωn
k if j > 0 and p ∤ j,

Ωn
k/Z

n
k ⊕ Ωn−1

k /Zn−1
k if j > 0 and p|j.

Moreover, U0 is the tame subgroup Hn+1,n
tame (F ) defined above, and there is a well-

defined residue homomorphism on U0, yielding an exact sequence

0 → Hn+1,n
nr (F ) → Hn+1,n

tame (F ) −→
∂v

Hn,n−1(k) → 0,

where Hn+1,n
nr (F ) is the unramified subgroup with respect to v. Finally, if the field F

is henselian (for example, complete) with respect to v, then Hn+1,n
nr (F ) ∼= Hn+1,n(k).

Without making a choice of uniformizer, the argument gives the following canon-
ical descriptions of Uj/Uj−1, which we will not need: writing m for the maximal
ideal in the valuation ring OF ,

Uj/Uj−1
∼= Ωn

k ⊗k (m/m2)⊗−j

if j > 0, p ∤ j, and

0 → (Ωn
k/Z

n
k )⊗k (m/m2)⊗−j → Uj/Uj−1 → (Ωn−1

k /Zn−1
k )⊗k (m/m2)⊗−j → 0

if j > 0, p|j.

Proof. When F is complete, this was proved by Izhboldin [15, Theorem 2.5]. We
address the henselian case at the end. For any discretely valued field F , write Fv

for the completion of F with respect to v. For brevity, write Uj = Uj(F ) and
Nj = Uj(Fv); thus we know that Nj/Nj−1 is isomorphic to Ωn

k for j > 0, p ∤ j, and
to Ωn

k/Z
n
k ⊕Ωn−1

k /Zn−1
k for j > 0, p|j. There are obvious homomorphisms Uj → Nj .

We want to show that the homomorphism Uj/Uj−1 → Nj/Nj−1 is an isomorphism
for all j > 0.

First, suppose that j > 0 and p ∤ j. Fix a uniformizer t for F . From before the
theorem, we have homomorphisms

Ωn
k → Uj/Uj−1 → Nj/Nj−1

whose composition is an isomorphism by Izhboldin. To show that these homomor-
phisms are isomorphisms, it suffices to show that our homomorphism Ωn

k → Uj/Uj−1

is surjective. Because F ∗ = tZ×O∗
F , Uj/Uj−1 is generated by two types of elements:

(a/tj)(db1/b1) ∧ · · · ∧ (dbn/bn) with a ∈ OF and b1, . . . , bn ∈ O∗
F , and elements

(a/tj)(dt/t) ∧ (db2/b2) ∧ · · · ∧ (dbn/bn) with a ∈ OF and b2, . . . , bn ∈ O∗
F . The first

elements are clearly in the image of Ωn
k , by our construction. For the second type

of element, use that p ∤ j, so that d(−1/(jtj)) = (1/tj)dt/t. Therefore, for a ∈ OF ,
which we can assume is not zero, and b2, . . . , bn ∈ O∗

F ,

d

(
− a

jtj
db2
b2

∧ · · · ∧ dbn
bn

)
= − a

jtj
da

a
∧ db2

b2
∧ · · · ∧ dbn

bn
+

a

tj
dt

t
∧ db2

b2
∧ · · · ∧ dbn

bn
.
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Since exact forms represent zero inHn+1,n(F ), it follows that the element (a/tj)(dt/t)∧
(db2/b2) ∧ · · · ∧ (dbn/bn) in Uj/Uj−1 that we are considering is equal to an element
(a/(jtj))(da/a)∧ (db2/b2)∧ · · · ∧ (dbn/bn). If a is in O∗

F , then this element is in the
image of Ωn

k , as we want. On the other hand, if a ∈ m, then our element is in Uj−1,
hence zero in Uj/Uj−1. This completes the proof that Uj/Uj−1

∼= Ωn
k for j > 0,

p ∤ j.
For j > 0, p|j, we defined homomorphisms (before the theorem)

Ωn
k/Z

n
k ⊕ Ωn−1

k /Zn−1
k → Uj/Uj−1 → Nj/Nj−1

whose composition is an isomorphism. To show that these homomorphisms are
isomorphisms, it suffices to show that Ωn

k/Z
n
k ⊕Ωn−1

k /Zn−1
k → Uj/Uj−1 is surjective.

That is immediate from the definition of this homomorphism. Indeed, since F ∗ =
tZ × O∗

F , Uj/Uj−1 is generated by two types of elements: (a/tj)(db1/b1) ∧ · · · ∧
(dbn/bn) with a ∈ OF and b1, . . . , bn ∈ O∗

F , and (a/tj)(dt/t)∧(db2/b2)∧· · ·∧(dbn/bn)
with a ∈ OF and b2, . . . , bn ∈ O∗

F .
Thus we have determined the structure of Uj/Uj−1 for all j > 0. It is clear that

Hn+1,n(F ) =
⋃

j≥0 Uj .

Next, let us show that U0 is the tame subgroup of Hn+1,n(F ), defined earlier
in this section as the kernel of Hn+1,n(F ) → Hn+1,n(Ftame). By definition, U0 is
spanned by elements

a
db1
b1

∧ · · · ∧ dbn
bn

with a ∈ OF and b1, . . . , bn ∈ F ∗. Such an element maps to zero in Hn+1,n of
the extension F [x]/(xp − x− a) of F , which is unramified and hence tame over F .
Conversely, let u be an element of Hn+1,n(F ) that maps to zero in Hn+1,n(Ftame).
A totally ramified tame finite extension has degree prime to p, and so u must map
to zero in Hn+1,n of the maximal unramified extension Fnr of F . If u is not in U0,
then it has nonzero image in Ui/Ui−1 for some i > 0. The residue field of Fnr is
the separable closure ks of k, and the maps Ωj

k → Ωj
ks

are injective for all j; so
our description of Ui/Ui−1 implies that the map Ui/Ui−1 → Ui(Fnr)/Ui−1(Fnr) is
injective. This contradicts that u maps to zero in Hn+1,n(Fnr). So in fact u is in
U0. We have shown that U0 = Hn+1,n

tame (F ).
Next, we show that the obvious homomorphism

Hn+1,n
tame (F )/Hn+1,n

nr (F ) → Hn,n−1
tame (Fv)/H

n+1,n
nr (Fv) ∼= Hn,n−1(k)

is an isomorphism. Here we define the unramified subgroup Hn+1,n
nr (F ) as the image

of Hn+1,n(OF ), or more concretely as the subgroup generated by differential forms
a(db1/b1) ∧ · · · ∧ (dbn/bn) with a ∈ OF and b1, . . . , bn ∈ O∗

F .

First, we define a homomorphism Hn,n−1(k) → Hn+1,n
tame (F )/Hn+1,n

nr (F ); it will
be clear that the composition

Hn,n−1(k) → Hn+1,n
tame (F )/Hn+1,n

nr (F ) → Hn,n−1(k)

is the identity. Namely, we map

a
db1

b1
∧ · · · ∧ dbn−1

bn−1

↦→ a
dt

t
∧ db1

b1
∧ · · · ∧ dbn−1

bn−1
(mod Hn+1,n

nr (F )),
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where a ∈ OF and b1, . . . , bn−1 ∈ O∗
F .

As in previous arguments, it is straightforward to check that the resulting el-
ement of Hn+1,n

tame (F )/Hn+1,n
nr (F ) does not depend on the choice of lifts of a ∈ k

and b1, . . . , bn−1 ∈ k∗ to OF . For brevity, we just write this out for a. Namely,
changing the lift of a changes the element of Hn+1,n(F ) by an expression of the
form ct(dt/t) ∧ (db1/b1) ∧ · · · ∧ (dbn−1/bn−1) with c ∈ OF and b1, . . . , bn−1 ∈ O∗

F .
We rewrite that in Hn+1,n(F ) as:

ct
dt

t
∧ db1

b1
∧ · · · ∧ dbn−1

bn−1
= d

[
ct
db1
b1

∧ · · · ∧ dbn−1

bn−1

]
− t dc ∧ db1

b1
∧ · · · ∧ dbn−1

bn−1

= −ct
dc

c
∧ db1

b1
∧ · · · ∧ dbn−1

bn−1
,

using that exact forms represent zero in Hn+1,n(F ). If c is in O∗
F , then this element

is unramified. Since OF is additively generated by O∗
F , we find that the element

above is always unramified, as we want.
Thus we have a well defined function from k × (k∗)n−1 to the quotient group

Hn+1,n
tame (F )/Hn+1,n

nr (F ). It is clearly multilinear, and so it gives a homomorphism
from the abelian group k ⊗Z (k∗)⊗n to the latter quotient group. By Proposition
4.2, the homomorphism factors through Ωn−1

k if the following elements map to zero:

[a, b1, . . . , bn−1}

with bi = bj ∈ k∗ for some i ̸= j, and

[u+ v, u+ v, b2, . . . , bn−1} − [u, u, b2, . . . , bn−1} − [v, v, b2, . . . , bn−1}

if u, v, u+ v ∈ k∗. It is easy to check that these elements map to zero, by choosing
suitable lifts (for example, take bi to be equal to bj when bi = bj for some i ̸= j).

Thus we have a well-defined homomorphism from Ωn−1
k to the quotient group

Hn+1,n
tame (F )/Hn+1,n

nr (F ). To show that the homomorphism vanishes on exact (n−1)-
forms, it suffices to show that each element of the form [a, a, b2, . . . , bn−1} maps
to zero. Those elements map to zero by definition of the homomorphism, using
that exact n-forms represent zero in Hn+1,n(F ). Finally, to show that the ho-
momorphism factors through the quotient Hn,n−1(k) of Ωn−1

k , it suffices to show
that [ap − a, b1, . . . , bn−1} maps to zero. That holds because forms (ap − a)(dt/t) ∧
(db1/b1) ∧ · · · ∧ (dbn−1/bn−1) represent zero in Hn+1,n(F ).

Thus we have a well-defined homomorphism φ from Hn,n−1(k) to the quo-
tient group Hn+1,n

tame (F )/Hn+1,n
nr (F ). Composing this with the residue homomor-

phism from the latter group to Hn,n−1(k) (discussed earlier) gives the identity.
Therefore, φ is an isomorphism if it is surjective. To prove surjectivity, use that
Hn+1,n

tame (F ) is generated by elements a(db1/b1) ∧ · · · ∧ (dbn/bn) with a ∈ OF and
b1, . . . , bn ∈ F ∗. Since F ∗ = tZ × O∗

F , H
n+1,n
tame (F ) is in fact generated by elements

a(db1/b1)∧· · ·∧(dbn/bn) and a(dt/t)∧(db2/b2)∧· · ·∧(dbn/bn) with a ∈ OF and bi ∈
O∗

F . Elements of the first type are unramified, hence zero in Hn+1,n
tame (F )/Hn+1,n

nr (F ),
and elements of the second type are in the image of φ. Thus φ is an isomorphism.

Finally, when F is henselian with respect to v, we want to show thatHn+1,n
nr (F ) ∼=

Hn+1,n(k). Here Hn+1,n
nr (F ) is the subgroup of Hn+1,n(F ) generated by elements of

the form

a
db1
b1

∧ · · · ∧ dbn
bn

11



with a ∈ OF and b1, . . . , bn ∈ O∗
F . We want to show that the map Hn+1,n(k) →

Hn+1,n
nr (F ) given by the formula

a
db1

b1
∧ · · · ∧ dbn

bn
↦→ a

db1
b1

∧ · · · ∧ dbn
bn

,

for a ∈ OF and b1, . . . , bn ∈ O∗
F , is defined and an isomorphism.

We first show that given a ∈ k and b1, . . . , bn ∈ k∗, the choice of lifts to OF does
not affect the right side in Hn+1,n

nr (F ). The choice of lift a does not matter, because
every element of m ⊂ OF can be written as up−u for some u ∈ F , using that OF is
henselian [26, Theorem I.4.2(d′)]. Next, the choice of lift b1 (say) does not matter,
because for c1 ̸= 0 ∈ m and b1 = 1+ c1, with elements a ∈ OF and b2, . . . , bn ∈ O∗

F ,

a
d(1 + c1)

1 + c1
∧ db2

b2
∧ · · · ∧ dbn

bn
=

ac1
1 + c1

dc1
c1

∧ db2
b2

∧ · · · ∧ dbn
bn

,

which is zero in Hn+1,n
nr (F ) because ac1/(1 + c1) is in m and hence can be written

as up − u for some u ∈ F .
Thus the formula above gives a well-defined homomorphism φ : k ⊗Z (k∗)⊗n →

Hn+1,n
nr (F ). Since (du/u) ∧ (du/u) = 0 and

(u+ v)
d(u+ v)

u+ v
= u

du

u
+ v

dv

v

for u, v, u + v ∈ F ∗, Proposition 4.2 gives that φ passes to a homomorphism
Ωn
k → Hn+1,n

nr (F ). Clearly φ takes exact forms to exact forms, hence to zero in
Hn+1,n(F ) = coker(P : Ωn

F → Ωn
F /dΩ

n−1
F ). Thus φ passes to a homomorphism

Ωn
k/dΩ

n−1
k → Hn+1,n

nr (F ). Finally, φ takes differential forms in the image of P over
k to differential forms in the image of P over F , and so φ passes to a well-defined ho-
momorphism Hn+1,n(k) → Hn+1,n

nr (F ). This is surjective by definition. Injectivity
follows from Izhboldin’s result that the composed map to Hn+1,n

nr of the completion
Fv is an isomorphism [15, Corollary 2.7].

Finally, we state Izhboldin’s calculation of the mod p étale motivic cohomology
of the rational function field in one variable over any field of characteristic p [15,
Theorem 4.5]. For example, this result gives the p-torsion in the Brauer group
of k(t), generalizing the Faddeev exact sequence (which addresses the special case
where k is perfect) [11, Corollary 6.4.6]. Our terminology is slightly different from
Izhboldin’s, but the translation is straightforward.

Theorem 4.4. Let k be a field of characteristic p > 0, and let n be a natural
number. Let S be the set of closed points in P1

k. For v ∈ S, write k(t)v for the
completion of the field k(P1) = k(t) at v. Then:

(1) The natural homomorphism

Hn+1,n(k(t)) →
⨁
v∈S

Hn+1,n(k(t)v)/H
n+1,n
tame (k(t)v)

is surjective. The wild quotients on the right are described by Theorem 4.3.
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(2) The kernel of that surjection, which we call Hn+1,n

tame over P1(k(t)), fits into an
exact sequence:

0 → Hn+1,n(k) → Hn+1,n

tame over P1(k(t)) →
⨁
v∈S

Hn,n−1(k(v)) → Hn,n−1(k) → 0.

Here k(v) denotes the residue field of P1
k at a closed point v, and the homomorphism

to Hn,n−1(k(v)) is the residue defined above.

5 Finite étale group schemes

Reichstein and Vistoli showed that every finite étale group scheme G over a field k
of characteristic p > 0 has essential dimension at p at most 1 [28, Theorem 1]. By
Proposition 2.2, it follows that the mod p cohomological invariants of G are nearly
trivial when k is algebraically closed. In this section, we generalize that statement
to perfect base fields (Theorem 5.2).

In particular, this result applies to an abstract finite group, viewed as a group
scheme over k. By contrast, more general finite group schemes can have richer mod
p cohomological invariants. It would be interesting to find out how far the results of
this section extend to imperfect fields; see section 10 for the case of the symmetric
groups.

Theorem 5.1. Let G be a smooth affine group over a field k of characteristic p > 0.
For any m ≥ 0, all invariants of G over k with values in Hm,m are constant. That
is, Invm,m

k (G) = Hm,m(k).

Proof. Let α be a normalized invariant for G of degree (m,m). Let E be any G-
torsor over a field F/k; we want to show that α(E) = 0. Since GF is smooth over
F , E becomes trivial over the separable closure Fs. Therefore, the image of α(E)
in Hm,m(Fs) is zero. But Hm,m(F ) → Hm,m(Fs) is injective, by Bloch and Kato’s
isomorphism Hm,m(F ) ∼= Ωm

log,F ⊂ Ωm
F (discussed in section 2). So α(E) = 0, as we

want.

In particular, finite étale group schemes have no normalized mod p cohomological
invariants of bidegree (m,m). We now check that this is also true (over a perfect
base field) in the other possible bidegrees, (m + 1,m), except for bidegree (1, 0)
(which is described in Theorem 15.1).

Theorem 5.2. Let G be a finite étale group scheme over a perfect field k of char-
acteristic p > 0. Then Invm+1,m

k (G) = 0 for all m ≥ 1.

Proof. For a scheme X over k, write F1 for the relative Frobenius X → X1, which
is a morphism of k-schemes. Since G is finite étale over k, F1 : G → G1 is an iso-
morphism of k-group schemes. So every invariant u in Invm+1,m

k (G) is the pullback

via F1 of some invariant v in Invm+1,m
k (G1).

Let V be a faithful representation of G over k. Then the open subset U of V
on which G acts freely is nonempty, and there is a quotient variety U/G over k.
Consider the relative Frobenius morphism F1 : U/G → (U/G)1 = U1/G1. A point
of U/G over a field E/k determines a G-torsor over E, and the image of that point
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in U1/G1 determines the associated G1-torsor over E. By the previous paragraph,
the given element u ∈ Hm+1,m(k(U/G)) is the pullback of v ∈ Hm+1,m(k(U1/G1)).

Since k is perfect, we can identify F1 : U/G → U1/G1 (as a morphism of schemes,
not of schemes over k) with the absolute Frobenius morphism on U/G. As a result,
the pullback F ∗

1 : k(U1/G1) → k(U/G) sends k(U1/G1)
∗ into (k(U/G)∗)p. There-

fore, F ∗
1 acts by zero on Hm+1,m(F ) for all m ≥ 1, by the interpretation in terms of

differential forms (section 2): the pullback of a form db/b is of the form d(cp)/cp = 0.
Since m ≥ 1, it follows that the element u (being a pullback from U1/G1) is zero

in Hm+1,m(k(U/G)). Since the G-torsor over U/G is versal (section 2), we have
shown that every element of Invm+1,m

k (G) is zero.

6 Invariants of µp in Hn+1,n

In this section, we use Theorem 4.3 to compute the cohomological invariants in
Hn+1,n of the group scheme µp of pth roots of unity over any field of characteristic
p. This is crucial for the rest of the paper. More generally, we find the invariants
for the product of µp with any group scheme.

Proposition 6.1. Let k be a field of characteristic p > 0, and let n be a natural
number. Then

Invn+1,n
k (µp) ∼= Hn+1,n(k)⊕Hn,n−1(k).

In more detail, every invariant for µp over k with values in Hn+1,n has the form

u(α) = v + wα

for some v ∈ Hn+1,n(k) and w ∈ Hn,n−1(k). Here α denotes any µp-torsor over a
field F/k, and we use the identification H1(F, µp) ∼= H1,1(F ).

Proof. Let u be an invariant for µp over k with values in Hn+1,n. Let {t} denote
the µp-torsor over the field k(t) associated to t ∈ k(t)∗/(k(t)∗)p ∼= H1(k(t), µp).
Then u gives an element u({t}) ∈ Hn+1,n(k(t)). Here {t} is a versal torsor for µp,
corresponding to the µp-torsor W → W/µp where W = A1

k − 0, by section 2. So u
is determined by the element u({t}) in Hn+1,n(k(t)).

We know that u({t}) is unramified on W/µp
∼= A1

k − 0 by Theorem 2.1. Let us
show that it is also tamely ramified at t = 0 in P1

k; the same argument gives that
u({t}) is tamely ramified at t = ∞. If u({t}) is not tamely ramified at t = 0, then
u({t}) is in Uj − Uj−1 for some j > 0, with respect to the valuation t = 0 on k(t),
in the notation of section 4. Suppose first that p ∤ j; then, by Theorem 4.3, we can
write

u({t}) =
∑ a

tj
db1
b1

∧ · · · ∧ dbn
bn

(mod Uj−1)

with a in the local ring OA1,0 and b1, . . . , bn ∈ O∗
A1,0

. (The expression is meant to

indicate a finite sum with the value of b1 in one summand not necessarily equal to
that of b1 in another summand, and likewise for all the variables a, b1, . . . , bn.)

We know that u({t}) is balanced, meaning that its pullback by the two mor-
phisms (W×W )/µp → W/µp are equal (Theorem 2.1). We can identify the function
field of (W×W )/µp with the rational function field k(x, y), and balancedness means
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that u({xpy}) = u({y}). (This is clear directly, since xpy and y define isomorphic
µp-torsors over k(x, y).) So we must have∑ a(xpy)

xpjyj
db1(x

py)

b1(xpy)
∧ · · · ∧ dbn(x

py)

bn(xpy)
=

∑ a(y)

yj
db1(y)

b1(y)
∧ · · · ∧ dbn(y)

bn(y)

in Hn+1,n(k(x, y)). The element on the right is clearly unramified along the divisor
x = 0 in A2

k = Spec k[x, y], and so the element on the left is also unramified along
x = 0. That element is visibly in Upj with respect to the valuation x = 0, and so
its class in Upj/Upj−1 must be zero. Since the residue field for that valuation on
k(x, y) is k(y), Theorem 4.3 gives that the form∑ a(0)

yj
db1(0)

b1(0)
∧ · · · ∧ dbn(0)

bn(0)

in Ωn
k(y) is closed. That is,

0 =
∑ 1

yj
da(0) ∧ db1(0)

b1(0)
∧ · · · ∧ dbn(0)

bn(0)
− j

∑ a(0)

yj+1
dy ∧ db1(0)

b1(0)
∧ · · · ∧ dbn(0)

bn(0)

in Ωn+1
k(y). The differential forms on k(y) are easy to describe:

Ωn+1
k(y)

∼=
[
k(y)⊗k Ω

n+1
k

]
⊕
[
dy · k(y)⊗k Ω

n
k

]
.

So both sums in the expression above must be zero. Since we are assuming that p ∤ j,
it follows that both

∑
da(0)∧(db1(0)/b1(0))∧· · · in Ωn+1

k and
∑

a(0)(db1(0)/b1(0))∧
· · · in Ωn

k are zero. The second statement means that the element u({t}) ∈ Uj =
Uj(k(t)) is actually in Uj−1, contradicting our assumption.

Now suppose that u({t}) is in Uj −Uj−1 (with respect to the valuation t = 0 on
k(t)) with j > 0 and p|j. Because k(t)∗ = tZ ×O∗

A1,0
, we can write u({t}) as a sum

of two types of terms:

u({t}) =
∑ a

tj
db1
b1

∧ · · · ∧ dbn
bn

+
∑ e

tj
dt

t
∧ dc1

c1
∧ · · · ∧ dcn

cn−1

with a(t) and e(t) in OA1,0 and bi(t) and ci(t) in O∗
A1,0

.

As in the previous argument, the elements xpy and y in k(x, y)∗ determine
isomorphic µp-torsors over k(x, y), and so the pullbacks of u({t}) to Hn+1,n(k(x, y))
by t = y and t = xpy must be equal. The first pullback is clearly unramified along
the divisor x = 0 in A2

k = Spec k[x, y], and so the second pullback must also be.
That is,∑ a(xpy)

xpjyj
db1(x

py)

b1(xpy)
∧ · · · ∧ dbn(x

py)

bn(xpy)
+
∑ e(xpy)

xpjyj
dy

y
∧ dc1(x

py)

c1(xpy)
∧ · · · ∧ dcn−1(x

py)

cn−1(xpy)

in Hn+1,n(k(x, y)) is unramified along x = 0. It is visibly in Upj with respect to the
valuation x = 0, and so its class in Upj/Upj−1 must be zero. By Theorem 4.3, this
means that the form∑ a(0)

yj
db1(0)

b1(0)
∧ · · · ∧ dbn(0)

bn(0)
+

∑ e(0)

yj
dy

y
∧ dc1(0)

c1(0)
∧ · · · ∧ dcn−1(0)

cn−1(0)
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in Ωn
k(y) is closed. That is, using that p|j,

0 =
∑ 1

yj
da(0)∧ db1(0)

b1(0)
∧ · · · ∧ dbn(0)

bn(0)
+
∑ 1

yj
de(0)∧ dy

y
∧ dc1(0)

c1(0)
∧ · · · ∧ dcn−1(0)

cn−1(0)

in Ωn+1
k(y). Since

Ωn+1
k(y)

∼=
[
k(y)⊗k Ω

n+1
k

]
⊕
[
dy · k(y)⊗k Ω

n
k

]
,

it follows that the form
∑

da(0)∧ (db1(0)/b1(0))∧· · · is zero in Ωn+1
k and

∑
de(0)∧

(dc1(0)/c1(0)) ∧ · · · is zero in Ωn
k . That is,

∑
a(0) ∧ (db1(0)/b1(0)) ∧ · · · in Ωn

k is
closed, and

∑
e(0) ∧ (dc1(0)/c1(0)) ∧ · · · in Ωn−1

k is closed. Since p|j, this says
exactly (by Theorem 4.3) that the element

u({t}) =
∑ a

tj
db1
b1

∧ · · · ∧ dbn
bn

+
∑ e

tj
dt

t
∧ dc1

c1
∧ · · · ∧ dcn−1

cn−1

in Hn+1,n(k(t)) is zero in Uj/Uj−1, contradicting our assumption.
Thus we have shown that u({t}) in Hn+1(k(t)) is tamely ramified at t = 0 in

P1
k. By the same argument, it is tamely ramified at t = ∞. By Theorem 4.4, the

subgroup of elements of Hn+1,n(k(t)) that are unramified on A1
k − 0 and tamely

ramified at 0 and ∞ is isomorphic to Hn+1,n(k) ⊕ Hn,n−1(k). Thus Invn+1,n
k (µp)

injects into that direct sum. Since we already know invariants for µp that give all
elements of that direct sum, we have

Invn+1,n
k (µp) = Hn+1,n(k)⊕Hn,n−1(k).

Proposition 6.2. Let H be an affine group scheme of finite type over a field k, and
let n be a natural number. Then

Invn+1,n
k (µp ×H) ∼= Invn+1,n

k (H)⊕ Invn,n−1
k (H).

Explicitly, every invariant for µp × H over k with values in Hn+1,n has the form
u(α, β) = v(β) + w(β)α for some invariants v of H in Hn+1,n and w of H in
Hn,n−1. Here α denotes any µp-torsor over a field F/k, and we use the identification
H1(F, µp) ∼= H1,1(F ).

Proof. Let V be a k-vector space on which H acts by affine transformations, and
suppose that H acts freely on a nonempty open subset U of V and the quotient
scheme U/H exists. (Such pairs (V,U) do exist [34, Remark 2.7].)

Let u be an invariant of µp ×H over k with values in Hn+1,n. For any field L
over k and any H-torsor β over L, we get an invariant uβ of µp over L with values
in Hn+1,n by defining

uβ(α) = u(α, β)

for any µp-torsor α over an extension field of L. By Proposition 6.1, there are
unique elements v ∈ Hn+1,n(L) and w ∈ Hn,n−1(L) such that uβ(α) = v + wα for
all µp-torsors α over fields over L. Here we are identifying H1(E,µp) with H1,1(E),
for fields E over L.
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By that uniqueness, v and w are invariants of H-torsors β on fields over k.
These invariants satisfy (and are characterized uniquely by): for every (µp × H)-
torsor (α, β) on a field E over k,

u(α, β) = v(β) + w(β)α.

Thus every invariant for µp×H has this form, with the invariants v and w uniquely
determined. Conversely, for any invariants v and w for H over k, the formula above
defines an invariant for µp ×H. Thus we have shown that

Invn+1,n
k (µp ×H) ∼= Invn+1,n

k (H)⊕ Invn,n−1
k (H).

7 Invariants of µp in Hn,n

As part of Vial’s determination of the operations on Milnor K-theory of fields, he
computed the invariants for µp with values in Hn,n. In this section, we use Vial’s
result to compute the invariants of µp ×H in Hn,n for any group scheme H.

Vial’s result is as follows [36, Theorem 3.4].

Theorem 7.1. Let k be a field of characteristic p > 0, and let n be a natural
number. Then

Invn,nk (µp) ∼= Hn,n(k)⊕Hn−1,n−1(k).

In more detail, for v ∈ Hn,n(k) and w ∈ Hn−1,n−1(k), the corresponding invariant
of a µp-torsor α over a field F/k is v + wα, where α ∈ H1(F, µp) = H1,1(F ).

From there, we can compute the invariants of µp × H in Hn,n for any group
scheme H.

Proposition 7.2. Let H be an affine group scheme of finite type over a field k.
Then

Invn,nk (µp ×H) ∼= Invn,nk (H)⊕ Invn−1,n−1
k (H).

Explicitly, every invariant for µp × H over k with values in Hn,n has the form
u(α, β) = v(β) + w(β)α for some invariants v of H in Hn,n and w of H in
Hn−1,n−1. Here α denotes any µp-torsor over a field F/k, and we use the iden-
tification H1(F, µp) ∼= H1,1(F ).

We omit the proof, as it is identical to that of Proposition 6.2, using Theorem
7.1 on invariants of µp in Hn,n in place of Proposition 6.1 on invariants on µp in
Hn+1,n.

8 Invariants of Z/p in Hn+1,n

In this and the next section, we find the cohomological invariants of Z/p. When
k is perfect, this was mostly done in Theorem 5.2. Here we consider any field of
characteristic p, as is needed for inductive arguments. More generally, we find the
invariants for the product of Z/p with any group scheme. Combining this with
Proposition 6.2, we determine all invariants of the group scheme (Z/p)r × (µp)

s

(Theorem 8.4).
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Proposition 8.1. Let k be a field of characteristic p > 0, and let n be a natural
number. Then

Invn+1,n
k (Z/p) ∼= Hn+1,n(k)⊕Hn,n(k).

In more detail, every invariant for Z/p over k with values in Hn+1,n has the form
u(α) = v +wα for some v ∈ Hn+1,n(k) and w ∈ Hn,n(k). Here α denotes the class
of any Z/p-torsor over a field F/k, and we use the identification H1(F,Z/p) ∼=
H1,0(F ).

Proof. Let G = Z/p act freely on the affine line U over k by translations. Then
U → U/G ∼= A1 is a versal torsor ξ for G. Let u be a normalized cohomological
invariant for G over k with values in Hn+1,n; then u is determined by u(ξ) in
Hn+1,n(k(U/G)) = Hn+1,n(k(t)).

Since the G-torsor ξ over U/G pulls back to a trivial torsor over U , u(ξ) in
Hn+1,n(k(U/G)) pulls back to zero in Hn+1,n(k(U)). We now use the following
result of Izhboldin’s [14, Theorem B].

Theorem 8.2. Let F be a field of characteristic p > 0, and let E/F be a cyclic
extension of degree p. Then the sequence

Hn,n(F ) → Hn+1,n(F ) → Hn+1,n(E)

is exact. Here the second homomorphism is the obvious pullback, and the first
homomorphism is the product with the class of E/F in H1,0(F ).

It follows that u(ξ) = [t]v for some v in Hn,n(k(t)) ∼= Ωn
log,k(t). (Here we use that

the Z/p-covering U → U/G ∼= A1
k corresponds to the element t ∈ k(t)/P(k(t)) ∼=

H1,0(k(t)).) In the description of Hn+1,n(k(t)) by differential forms (section 2), it
follows that u(ξ) is a sum

∑
t(da1/a1) ∧ · · · ∧ (dan/an) with a1, . . . , an ∈ k(t)∗. In

coordinates y = 1/t, this says that u(ξ) =
∑

(1/y)(da1/a1) ∧ · · · ∧ (dan/an) with
ai ∈ k(y)∗. Because 1/y has only a simple pole at y = 0, we can bound how ramified
u(ξ) is at the point y = 0 (corresponding to t = ∞) in P1

k. Namely, in the notation
of section 4, u(ξ) is in U1 with respect to the valuation y = 0 on k(y) = k(t).

Using that k(y)∗ = yZ ×O∗
A1

y ,0
, we can rewrite u(ξ) as

u(ξ) =
∑ 1

y

db1
b1

∧ · · · ∧ dbn
bn

+
∑ 1

y

dy

y
∧ dc1

c1
∧ · · · ∧ dcn−1

cn
,

with bi, ci units at y = 0. The forms in the second sum here are exact, being equal
to d(−(1/y)(dc1/c1) ∧ · · · ∧ (dcn−1/cn−1)). So u(ξ) in Hn+1,n(k(y)) is represented
by the form

∑
(1/y)(db1/b1) ∧ · · · ∧ (dbn/bn) with bi ∈ O∗

A1
y ,0

. By the formula for

the isomorphism U1/U0
∼= Ω1

k (Theorem 4.3) associated to the choice of uniformizer
y, it follows that the class of u(ξ) in U1/U0

∼= Ωn
k is in Ωn

log,k
∼= Hn,n(k).

We know that each element u ofHn,n(k) gives a normalized cohomological invari-
ant for G = Z/p over k with values in Hn+1,n, by the product H1

ét(k,G)×Hn,n(k) →
Hn+1,n(k). It is immediate that u(ξ) in Hn+1,n(k(t)) has class (with respect to the
valuation t = ∞) in U1/U0 equal to u. So, by subtracting off an invariant of this
form, we can assume that our normalized invariant u has the property that u(ξ)
in Hn+1,n(k(t)) has class in U1/U0 (at t = ∞) equal to zero. Equivalently, u(ξ) is
tamely ramified at t = ∞. We want to show that a normalized invariant with this
property is zero.
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We know that u(ξ) in Hn+1,n(k(t)) is unramified over U/G = A1
k = Spec k[t],

by Theorem 2.1. By Theorem 4.4, since u(ξ) is unramified on A1
k and tamely

ramified at t = ∞, it is in fact unramified on all of P1
k and comes from an element

of Hn+1,n(k). But we took u to be a normalized invariant, and so u(ξ) pulls back to
zero in Hn+1,n(k(U)), whereas pullback to Hn+1,n(k(U)) has trivial kernel on the
subgroup Hn+1,n(k) ⊂ Hn+1,n(k(U/G)). So u(ξ) = 0 and hence u = 0. Thus the
only invariants for G = Z/p are those listed.

Proposition 8.3. Let H be an affine group scheme of finite type over a field k of
characteristic p > 0. Then

Invn+1,n(Z/p×H) ∼= Invn+1,n
k (H)⊕ Invn,nk (H).

Explicitly, every invariant for Z/p×H over k with values in Hn+1,n has the form
u(α, β) = v(β) + w(β)α for some invariants v of H in Hn+1,n and w of H in
Hn,n. Here α denotes the class of any Z/p-torsor over a field F/k, and we use the
identification H1(F,Z/p) ∼= H1,0(F ).

We omit the proof, as it is identical to that of Proposition 6.2, using Proposition
8.1 on invariants of Z/p in place of Proposition 6.1 on invariants on µp.

Combining several earlier results, we now compute all cohomological invariants
of the group scheme (Z/p)r × (µp)

s.

Theorem 8.4. Let k be a field of characteristic p > 0, and let r, s, n be natural
numbers. Then every cohomological invariant for (Z/p)r × (µp)

s over k with values
in Hn+1,n is of the form

u([a1], . . . , [ar], {b1}, . . . , {bs}) =
∑

I⊂{1,...,s}

cI
∏
i∈I

{bi}+
r∑

j=1

[aj ]
∑

I⊂{1,...,s}

ej,I
∏
i∈I

{bi}

for some (unique) elements cI in Hn−|I|+1,n−|I|(k) and ej,I in Hn−|I|,n−|I|(k). That
is,

Invk((Z/p)
r × (µp)

s) ∼=
⨁

I⊂{1,...,s}

Hn−|I|+1,n−|I|(k)⊕
r⨁

j=1

⨁
I⊂{1,...,s}

Hn−|I|,n−|I|(k).

Proof. The group scheme (Z/p)r is smooth over k, and so all its invariants in Hn,n

are constant (Theorem 5.1). Applying Proposition 8.3 (on products with Z/p), we
find that

Invn+1,n
k ((Z/p)r) ∼= Hn+1,n(k)⊕

r⨁
j=1

Hn,n(k).

Applying Proposition 6.2 (on products with µp) gives the invariants for (Z/p)r ×
(µp)

s.

9 Invariants of Z/p times any group in Hn,n

By Theorem 5.1, the normalized invariants of any smooth k-group with values in
Hn,n are zero. In particular, this applies to Z/p as a group over k. In this section,
we compute the invariants in Hn,n for the product of Z/p with any group scheme
H. More generally, we can handle G×H for any smooth k-group G.
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Proposition 9.1. Let k be a field of characteristic p > 0. Let G and H be affine
k-group schemes of finite type over k with G smooth over k. Then

Invn,nk (G×H) ∼= Invn,nk (H).

The proof is identical to that of Proposition 6.2, starting from the fact that
Invn,nF (G) ∼= Hn,n(F ) for every field F over k (Theorem 5.1).

10 Symmetric groups

For all finite groups (as opposed to more general finite group schemes), it may be
possible to determine the mod p cohomological invariants over all fields of charac-
teristic p, not just perfect fields as in Theorem 5.2. Perhaps all invariants come from
the abelianization of the group. We now prove this in the case of the symmetric
groups.

Equivalently, we determine the cohomological invariants of étale algebras in
characteristic 2. There are analogies with Serre’s calculation in characteristic not
2. Regardless of the characteristic, all invariants of étale algebras with odd-primary
coefficients are constant (by Theorem 10.1 and [9, section 24]). Over a field k
of characteristic not 2, Inv∗k(Sn,F2) is a free module over H∗(k,F2) with basis
1 = w0, w1, . . . , wm, where m = ⌊n/2⌋ [9, Theorem 25.13]. Here the elements wi are
the Stiefel-Whitney classes of the trace form tr(xy) associated to an étale algebra.
For k of characteristic 2, Theorem 10.2 says that there is only an analog of w1.

Theorem 10.1. Let k be a field of characteristic p > 2, and let n be a positive
integer. For each integer r, every invariant of the symmetric group Sn over k with
values in mod p étale motivic cohomology (Hr,r or Hr+1,r) is constant.

Proof. For Hr,r, this follows from Theorem 5.1. So let u be an invariant for Sn over
k with values in Hr+1,r. Let V be the standard representation of Sn, of dimension
n over k. Then u gives an element of Hr+1,r(k(V/Sn)), and u is determined by this
element, by Theorem 2.1.

The action of Sn of V extends to the permutation action of Sn on X = (P1)n

over k, with X/Sn
∼= Pn. The group Sn acts freely on X outside the union of the(

n
2

)
irreducible divisors xi = xj in X, where 1 ≤ i < j ≤ n. These divisors are

permuted transitively by Sn, and so the morphism X → X/Sn = Pn is ramified
only over one irreducible divisor, the discriminant ∆ ⊂ Pn.

By Theorem 2.1, using that X is a compactification of a representation of Sn,
the element u ∈ Hr+1,r(k(X/Sn)) is unramified outside the divisor ∆. Likewise,
the alternating group An acts freely on X = (P1)n outside a closed subset of
codimension at least 2, and so the pullback of u to Hr+1,r(k(X/An)) is unramified
along every irreducible divisor in X/An.

Since p is odd and the class u pulls back to an unramified class by the dou-
ble cover X/An → X/Sn, u is in fact unramified along every irreducible divisor in
X/Sn

∼= Pn. (This follows from the description ofHr+1,r(k(X/Sn))/H
r+1,r
nr (k(X/Sn))

in Theorem 4.3, where “nr” denotes the subgroup of classes unramified along ∆.
Use that a uniformizer t (the discriminant polynomial) in k(X/Sn) along ∆ pulls
back in k(X/An) to u2, for some uniformizer u along the inverse image of ∆.)
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By Theorem 4.4, every unramified cohomology class in Hr+1,r of the function
field of P1 over a field k0 is pulled back from a unique class on k0. Applying this
repeatedly gives the same statement on the function field of Pn. It follows that the
class u is pulled back from Hr+1,r(k). Thus u is constant as an invariant of Sn.

Theorem 10.2. Let k be a field of characteristic 2, and let n ≥ 2. For each integer
r, every invariant of the symmetric group Sn over k with values in Hr,r is constant.
Also, the group of invariants with values in Hr+1,r is Hr+1,r(k) ⊕ Hr,r(k). Every
invariant for Sn over k in Hr+1,r has the form

u(x) = c+ disc(x)e

for some (unique) c ∈ Hr+1,r(k) and e ∈ Hr,r(k). Here disc(x) is the invariant of
Sn in H1,0 corresponding to the sign homomorphism Sn → Z/2.

Proof. Every invariant of Sn with values in Hr,r is constant by Theorem 5.1. We
now consider invariants in Hr+1,r. I claim that the restriction

NormInvr+1,r
k (Sn) → NormInvr+1,r

k (S2 × Sn−2)

is injective. Indeed, let u be a normalized invariant for Sn that restricts to 0 as an
invariant of S2×Sn−2. As in the proof of Theorem 10.1, consider the action of G =
Sn on X = (P1)n. We know that u is determined by its class in Hr+1,r(k(X/Sn)),
and that this class is unramified outside the discriminant divisor ∆ in X/Sn

∼= Pn.
We are given that u pulls back to 0 in Hr+1,r(k(X/(S2 × Sn−2))). The point

is that Sn acts transitively on the set of divisors xi = xj in X = (P1)n, and the
stabilizer subgroup of the divisor x1 = x2 is S2 × Sn−2. As a result, the map
X/(S2 × Sn−2) → X/Sn splits completely over ∆; that is, the completions of the
two function fields along the corresponding divisors are isomorphic. It follows that
u ∈ Hr+1,r(k(X/Sn)) is unramified along ∆. Since u is also unramified along all
other irreducible divisors in Pn

k , u is pulled back from Hr+1,r(k). Since u pulls back
to 0 as an invariant of S2 × Sn−2, u is equal to 0 in Hr+1,r(k), as we want.

By Proposition 8.3, we have NormInvr+1,r
k (S2 × Sn−2) ∼= NormInvr+1,r

k (Sn−2)⊕
Invr,rk (Sn−2). Since Sn−2 is smooth over k, Invr,rk (Sn−2) is isomorphic to Hr,r(k) by

Theorem 5.1. So NormInvr+1,r
k (S2 × Sn−2) ∼= NormInvr+1,r

k (Sn−2) ⊕ Hr,r(k). Let
m = ⌊n/2⌋. Repeatedly applying the isomorphism just mentioned together with
the previous paragraph’s result, we find that restricting from Sn to its subgroup
(Z/2)m gives an injection

φ : NormInvr+1,r
k (Sn) ↪→

m⨁
i=1

Hr,r(k).

Since the normalizer of (Z/2)m in Sn contains Sm, the image of φ must be fixed by
Sm. So we have an injection

NormInvr+1,r
k (Sn) ↪→ Hr,r(k).

That is, every normalized invariant u of Sn is determined by its restriction to the
subgroup H = ⟨(12)⟩ ∼= Z/2 ⊂ Sn, where it has the form u([a]) = [a]e for some
e ∈ Hr,r(k), writing [a] for an element of H1,0.
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Conversely, for any e ∈ Hr,r(k), there is a normalized invariant of Sn that
restricts to the invariant u([a]) = [a]e on the subgroup H; namely, the pullback of
e ∈ NormInvr+1,r

k (Z/2) ∼= Hr,r(k) via the sign homomorphism Sn → Z/2. (Here we
use that the composition ⟨(12)⟩ ⊂ Sn → Z/2 is the identity.) Thus we have shown
that NormInvr+1,r

k (Sn) ∼= Hr,r(k).

11 Operations on étale motivic cohomology of fields

Vial found all operations on Milnor K-theory mod l of fields over a given field k
[36, Theorem 1]. Roughly speaking, all operations are spanned by Kahn and Rost’s
divided power operations. (By contrast, Steenrod operations are essentially trivial
on the motivic cohomology of fields.) Here l may be equal to the characteristic of k,
and so Vial’s result describes all operations on the mod p étale motivic cohomology
groups Hn,n of fields of characteristic p.

We now find all operations on the mod p étale motivic cohomology groups, both
Hm,m andHm+1,m, in characteristic p. (Think ofHm,m orHm+1,m as a functor from
fields over k to sets; then an “operation” means a natural transformation from one
such functor to another. In particular, operations are not assumed to be additive.)
In short, only the known operations exist. The proofs use the computation of the
cohomological invariants of the group scheme (Z/p)r × (µp)

s (Theorem 8.4).
We state four theorems, describing operations from Hm,m or Hm+1,m to Hr,r or

Hr+1,r. First, here is Vial’s theorem on operations from Hm,m to Hr,r, in the case
of mod p cohomology for fields of characteristic p. If p = 2 and m ≥ 2, or if p is odd
and m ≥ 2 is even, then (by Kahn and Rost) there are divided power operations
γi : H

m,m(F ) → H im,im(F ) for all i ≥ 0 and all fields F of characteristic p, defined
on a sum of symbols sj = {bj1, . . . , bjm} by

γi

( n∑
j=1

sj

)
=

∑
|T |=i

∏
j∈T

sj ,

where the sum runs over all subsets T of {1, . . . , n} of order i. These are typically
not additive operations; instead, they satisfy γi(x + y) =

∑i
j=0 γj(x)γi−j(y) [36,

Properties 2.3].

Theorem 11.1. (Vial) For a field k of characteristic p > 0, the group of operations
Hm,m → Hr,r on fields over k is of the form:

(1) if m = 0: Hr,r(k)⊕p;
(2) if p = 2 and m = 1, or p is odd and m ≥ 1 is odd: Hr,r(k)⊕Hr−m,r−m(k),

with every operation of the form u(x) = c+ ex for some (unique) c and e;
(3) if p = 2 and m ≥ 2, or p is odd and m ≥ 2 is even: every operation has the

form u(x) =
∑

i≥0 ciγi(x) for some (unique) elements ci in Hr−im,r−im(k).

We now state the other three theorems on operations.

Theorem 11.2. For a field k of characteristic p > 0, the group of operations
Hm,m → Hr+1,r on fields over k is as listed in Theorem 11.1, but with the coefficients
c, e, and so on in Hj+1,j rather than Hj,j.

Theorem 11.3. For a field k of characteristic p > 0, every operation Hm+1,m →
Hr,r on fields over k is constant. In particular, every normalized operation is zero.
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Theorem 11.4. For a field k of characteristic p > 0 and a natural number m,
every operation Hm+1,m → Hr+1,r on fields over k is of the form u(x) = c+ ex for
some (unique) elements c ∈ Hr+1,r(k) and e ∈ Hr−m,r−m(k). In particular, every
normalized operation is additive.

Proof. (Theorem 11.2) In the notation of section 2, every element of Hm+1,m(F )
(for a field F over k) can be written as a finite sum of symbols

x =

n∑
i=1

[ai, bi1, . . . , bim}

with ai ∈ F and bij ∈ F ∗. Moreover, this expression in Hm+1,m(F ) only depends
on the classes of ai in F/P(F ) = H1,0(F ) and bij in (F ∗)/(F ∗)p = H1,1(F ). Here
P(a) = ap − a.

Let u be an operation from Hm,m to Hr+1,r on fields over k. The case m = 0
is easy, since H0,0(F ) ∼= Fp for every field F over k. So assume that m is positive.
If m = 1, then an operation from H1,1 to Hr+1,r is the same as an invariant of the
group scheme µp over k with values in Hr+1.r, and these are described in Proposition
6.1. So we can assume that m is at least 2.

Let n be a positive integer, and write n⃗ for the set {1, . . . , n}. Applying
the operation u to sums of n symbols gives an invariant of the group scheme
(µp)

mn over k with values in Hr+1,r. By Theorem 8.4, this has the form, for
x =

∑n
i=1{bi1, . . . , bim} with bij ∈ F ∗ for a field F/k:

u(x) =
∑

T⊂n⃗×m⃗

cT
∏

(i,j)∈T

{bij}

for some (unique) elements cT ∈ Hr−|T |+1,r−|T |(k).
If bij = 1 ∈ F ∗ for some pair (i, j), then {bi1, . . . , bim} = 0, and so the operation

above must be independent of bil for all l ̸= j. By the uniqueness in Theorem 8.4,
it follows that u must have the form:

u

( n∑
i=1

{bi1, . . . , bim}
)

=
∑
T⊂n⃗

cT
∏
i∈T

{bi1, . . . , bim}.

Also, the operation must be independent of the order of the n summands in x.
If p = 2, or if p > 2 and m is even, then multiplication of elements of Hm,m is
commutative. In that case, u must have the form:

u

( n∑
i=1

{bi1, . . . , bim}
)

=

n∑
j=0

cj
∑
T⊂n⃗
|T |=j

∏
i∈T

{bi1, . . . , bim}.

Thus every operation is a linear combination (with coefficients in H∗+1,∗(k)) of
divided power operations. Conversely, divided power operations are well-defined
under our assumptions (that m ≥ 2 and, if p is odd, then m is even), by Theorem
11.1. Here we have considered operations on elements of Hm,m written as a sum
of a fixed number of symbols, but (since we can take one symbol to be zero) these
descriptions must be compatible as the number of symbols varies. This completes
the proof under the assumptions mentioned.
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There remains the case where p > 2 and m is odd. Here multiplication of
elements of Hm,m is anti-commutative. In this case, since the operation u(x) must
be unchanged after switching two summands of T , we must have (in the notation
above) cT = −cT for every set T ⊂ {1, . . . , n} of order at least 2. Since cT is an
element of an Fp-vector space with p odd, that means that cT = 0 if T has order at
least 2. So u has the form

u

( n∑
i=1

{bi1, . . . , bim}
)

= c+

n∑
i=1

ei{bi1, . . . , bim}.

Using again that u is unchanged by permuting the summands, we have e1 = · · · = en.
So u has the form

u(x) = c+ ex

for some c, e ∈ H∗+1,∗(k).

Proof. (Theorem 11.3) Let u be an operation from Hm+1,m to Hr,r on fields over
k. Applying u to sums of n symbols,

u

( n∑
i=1

[ai, bi1, . . . , bim}
)

gives an invariant of the group scheme (Z/p)n × (µp)
mn over k with values in Hr,r.

By Proposition 9.1, such an invariant must be independent of a1, . . . , an ∈ H1,0(k).
But if we take those elements to be zero, then the element

∑n
i=1[ai, bi1, . . . , bim} in

Hm+1,m is zero. So every operation from Hm+1,m to Hr,r is constant.

Proof. (Theorem 11.4) Let u be any operation from Hm+1,m to Hr+1,r on fields over
k. For a positive integer n, restricting u to sums of n symbols gives an invariant of
the group scheme (Z/p)n × (µp)

mn over k with values in Hr+1,r. By Theorem 8.4,
we can write u on an element x =

∑n
i=1[ai, bi1, . . . , bim} as

u(x) =
∑

T⊂n⃗×m⃗

cT
∏

(i,j)∈T

{bij}+
n∑

l=1

[al]
∑

T⊂n⃗×m⃗

el,T
∏

(i,j)∈T

{bij}

for some (unique) elements cT in Hr−|T |+1,r−|T |(k) and el,T in Hr−|T |,r−|T |(k).
In fact, all coefficients cT with T nonempty are zero, because the input x in

Hr+1,r is zero if all ai are zero, no matter what the bi,j are. Thus u can be written
as:

u

( n∑
i=1

[ai, bi1, . . . , bim}
)

= c+
n∑

l=1

[al]
∑

T⊂n⃗×m⃗

el,T
∏

(i,j)∈T

{bij}.

Next, let 1 ≤ i ≤ m. Note that the term [ai, bi1, . . . , bim} in x is zero if ai is
zero or if any of bi1, . . . , bim is 1. So, if ai is 0, then u(x) must be independent
of bi1, . . . , bim; and if some bij is equal to 1, then u(x) must be independent of ai.
Using the uniqueness of the coefficients (from Theorem 8.4) again, it follows that
es,T is zero for all T ̸= {s} × m⃗. That is, u can be written as:

u

( n∑
i=1

[ai, bi1, . . . , bim}
)

= c+
n∑

i=1

[ai, bi1, . . . , bim}ei
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for some elements c in Hr+1,r(k) and ei in Hr−m,r−m(k).
Finally, the operation u must be unchanged if we permute the n summands in

the input. It follows that e1 = · · · = en. That is, the operation u is given on sums
of n symbols by

u(x) = c+ xe

for some (uniquely determined) c in Hr+1,r(k) and e in Hr−m,r−m(k). Since we can
take one symbol to be zero, these elements c and e must be unchanged if we change
the number n of symbols in x. That is, the operation u is given by u(x) = c + xe
on all of Hm+1,m(F ), for fields F over k.

12 Invariants of O(2n) in characteristic 2

Define a quadratic form q0 on a vector space V over a field k to be nonsingular if
the orthogonal complement V ⊥ ⊂ V has dimension at most 1 and q0 is nonzero at
each nonzero element of V ⊥. Quadratic forms will be understood to be nonsingular
in this paper. One reason for the importance of this class of quadratic forms is that
the simple algebraic groups of type Bn and Dn over any field are essentially auto-
morphism groups of nonsingular quadratic forms. Note that if k has characteristic
2, then the bilinear form b0(x, y) = q0(x + y) − q0(x) − q0(y) associated to q0 is
alternating. So V ⊥ has dimension 0 if q0 has even dimension and dimension 1 if q0
has odd dimension.

Let q0 be a quadratic form of even dimension over a field k of characteristic 2. In
Theorems 12.1 and 14.1, we compute the cohomological invariants for the orthogonal
group O(q0) and its identity component, which we call SO(q0) (even though O(2n)
is contained in SL(2n) in characteristic 2). We consider the invariants with values
in Hm+1,m; since these group schemes are smooth, their invariants in Hm,m are
constant by Theorem 5.1. In short, the fundamental invariants are the discriminant
(or Arf invariant) in H1,0 and the Clifford invariant in H2,1, the class of the Clifford
algebra in the Brauer group [6, section 14].

Theorem 12.1. Let k be a field of characteristic 2, m a natural number. Let q0 be
a quadratic form of dimension 2n over k with n ≥ 1. Then

Invm+1,m
k (O(q0)) ∼= Hm+1,m(k)⊕Hm,m(k)⊕Hm−1,m−1(k).

Explicitly, we can view the invariants for O(q0) as the invariants of quadratic forms
of dimension 2n over fields F/k. Every invariant has the form

u(q) = c+ disc(q)e+ clif(q)f

for some (uniquely determined) c ∈ Hm+1,m(k), e ∈ Hm,m(k), and f ∈ Hm−1,m−1(k).

Note the contrast with Serre’s calculation in characteristic not 2: for a quadratic
form q0 of dimension m over a field k of characteristic not 2, Inv∗k(O(q0),F2) is a free
module overH∗(k,F2) with basis the Stiefel-Whitney classes 1 = w0, w1, w2, . . . , wm

[9, Theorem 17.3]. (In characteristic not 2, the weight makes no difference; that is,
the étale motivic cohomology group H i

ét(F,Z/2(j)) is the same for all j ≥ 0.)
In characteristic 2, Theorem 12.1 says that there are analogs of w1 (the discrim-

inant or Arf invariant in H1,0) and w2 (the Clifford invariant in H2,1) for quadratic
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forms, but no analogs of the higher Stiefel-Whitney classes. (By contrast, symmet-
ric bilinear forms of any characteristic have Stiefel-Whitney classes wi in H i,i [6,
section 5].)

As a result, cohomological invariants are not enough to prove the lower bound
in Babic and Chernousov’s computations of the essential dimension in characteristic
2, such as ed(O(2n)) = n+1 [2]. Chernousov explained to me that their arguments
in fact apply to the essential dimension at 2, so that we have ed(O(2n); 2) = n+ 1.
(Use that every odd-degree extension of a field K of characteristic 2 is separable,
and that every discrete valuation v of K has an extension w to L for which the
ramification index e(w/v) and the residue degree f(w/v) are odd.)

This is a bit disappointing, but note that even in characteristic not 2, the first two
Stiefel-Whitney classes of a quadratic form are far more important than the higher
ones. For example, if F is a field of characteristic not 2 in which −1 is a square, let
W (F ) be the Witt ring and I ⊂ W (F ) the ideal of even-dimensional forms. Then w1

and w2 give isomorphisms w1 : I/I
2 → H1(F,Z/2) and w2 : I

2/I3 → H2(F,Z/2),
whereas all Stiefel-Whitney classes of positive degree vanish on I3 [6, Exercise 5.14].
Thus, for j ≥ 3, the isomorphism Ij/Ij+1 ∼= Hj(F,Z/2) proved by Orlov-Vishik-
Voevodsky [27] does not come from an invariant defined on all quadratic forms of a
given dimension, but only from an invariant of some subclass of forms.

This line of thought suggests looking at the invariants of the connected group
SO(q) and its double cover Spin(q) in characteristic 2. In this paper, we find the
invariants only for SO(q). We know that Spin(q) will have a nontrivial invariant in
H3,2 by Kato’s isomorphism

Im+1
q (k)/Im+2

q (k) ∼= Hm+1,m(k),

applied in the case m = 2 [18]. (We use the notation of [6, section 9.B]: Iq(k)
is the quadratic Witt group, which is a module over the bilinear Witt ring W (k),
and Imq (k) := Im−1Iq(k) for m ≥ 1. For the hyperbolic form q0 = nH, torsors
for Spin(q0) over k give quadratic forms in I3q (k).) This invariant for Spin(q) was
generalized by Esnault-Kahn-Levine-Viehweg and Merkurjev to the Rost invariant
of any simply connected group [7, Appendix B], [9, Part 2, Theorem 9.11]. For
n ≤ 14, some higher-degree invariants of Spin(n) have been constructed by Rost
and Garibaldi in characteristic not 2 and by the author in characteristic 2 [8, section
23], [35]. It would be interesting to construct invariants for spin groups of higher
dimensions.

Proof. (Theorem 12.1) For any field F over k, H1(F,O(q0)) can be identified with
the set of isomorphism classes of quadratic forms over F of dimension 2n [20, equa-
tion 29.28]. Therefore, computing the invariants for O(q0) amounts to computing
the invariants for quadratic forms of dimension 2n. In particular, this description
shows that the invariants of O(q0) are the same for all quadratic forms q0 of dimen-
sion 2n over k. So we can assume that q0 is the simplest quadratic form, q0 = nH,
the orthogonal direct sum of n copies of the hyperbolic plane qH(x, y) = xy.

The group scheme Z/2 is contained in O(H) by switching x and y, and this
commutes with the action of the group scheme µ2 by scalar multiplication. So we
have a subgroup Z/2×µ2 in O(H), and hence a subgroup (Z/2)n×(µ2)

n in O(nH).
Let F be a field over k. For elements a ∈ F and b ∈ F ∗, which give a Z/2-torsor [a]
and a µ2-torsor {b} over F , the associated 2-dimensional quadratic form (given by
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H1(F,Z/2×µ2) → H1(F,O(H)) can be written as b⟨⟨a]] = b[1, a] = bx2+bxy+aby2.
Every quadratic form of dimension 2 over F arises this way; that is, every form of
dimension 2 is a scalar multiple of a 1-fold Pfister form [6, section 9.B]. Moreover,
every quadratic form over F of dimension 2n is an orthogonal direct sum of 2-
dimensional forms [6, Corollary 7.32], and so

H1(F, (Z/2)n × (µ2)
n) → H1(F,O(nH))

is surjective.
As a result, for the quadratic form q0 = nH, the restriction

Invm+1,m
k (O(q0)) → Invm+1,m

k ((Z/2)n × (µ2)
n)

is injective. By Theorem 8.4, every invariant for O(q0) over k with values in Hm+1,m

can be written as:

u

( n∑
i=1

bi⟨⟨ai]]
)

=
∑

I⊂{1,...,n}

cI
∏
i∈I

{bi}+
n∑

j=1

[aj ]
∑

I⊂{1,...,n}

ej,I
∏
i∈I

{bi}

for some (uniquely determined) cI ∈ Hm−|I|+1,m−|I|(k) and ej,I ∈ Hm−|I|,m−|I|(k).
If a1 = · · · = an = 0, then the quadratic form

∑
i bi⟨⟨ai]] is hyperbolic. So the

invariant above is constant (independent of b1, . . . , bn ∈ k∗) in that case. By the
uniqueness in Theorem 8.4, it follows that cI = 0 for all I ̸= ∅.

Next, if aj = 0, then the quadratic form bj⟨⟨aj ]] is hyperbolic, and so the
invariant above is independent of bj ∈ k∗. So el,I = 0 unless I is empty or I = {l}.
Thus the invariant has the form

u

( n∑
i=1

bi⟨⟨ai]]
)

= c+
n∑

j=1

[aj ]ej +
n∑

j=1

[aj , bj}fj ,

for some (uniquely determined) c ∈ Hm+1,m(k), ej ∈ Hm,m(k), and fj ∈ Hm−1,m−1(k).
The invariant umust be invariant under permuting the n pairs (a1, b1), . . . , (an, bn).

It follows that e1 = · · · = en and f1 = · · · = fn. That is,

u

( n∑
i=1

bi⟨⟨ai]]
)

= c+

[ n∑
j=1

[aj ]

]
e+

[ n∑
j=1

[aj , bj}
]
f

for some (uniquely determined) c ∈ Hm+1,m(k), e ∈ Hm,m(k), and f ∈ Hm−1,m−1(k).
The discriminant (or Arf invariant) disc(q) of the quadratic form q =

∑n
i=1 bi⟨⟨ai]]

is
∑n

j=1 aj ∈ k/P(k) = H1,0(k) [6, Example 13.5]. Also, the Clifford invariant

clif(q) is
∑n

j=1[aj , bj} ∈ H2,1(k) = Br(k)[2] [6, section 14]. Since these are known to
be invariants of quadratic forms, we have determined all the invariants for O(q0).

13 Invariants of O(2n+ 1) and SO(2n+ 1)

Let q0 be a quadratic form on a vector space V of dimension 2n + 1 over a field
k of characteristic 2. (Quadratic forms are understood to be nonsingular in the
sense of section 12.) Then the orthogonal group O(q0) is not smooth over k; it
is a product µ2 × SO(q0), with SO(q0) smooth and connected over k. In this
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section, we determine the invariants for O(q0) and SO(q0). Note a difference be-
tween even- and odd-dimensional quadratic forms in characteristic 2: the discrim-
inant of an odd-dimensional quadratic form lies in H1,1(k) = H1(k, µ2), not in
H1,0(k) = H1(k,Z/2).

Theorem 13.1. Let k be a field of characteristic 2, n a positive integer. Let q0 be
a quadratic form of dimension 2n+ 1 over k. For any natural number m,

Invm+1,m
k (O(q0)) ∼= Hm+1,m(k)⊕Hm,m−1(k)⊕Hm−1,m−1(k)⊕Hm−2,m−2(k).

Explicitly, we can view the invariants of O(q0) as the invariants for quadratic forms
q of dimension 2n+ 1 over fields F/k. Every invariant has the form

u(q) = c+ disc(q)e+ clif(q)f + clif(q) disc(q)g

for some (uniquely determined) c ∈ Hm+1,m(k), e ∈ Hm,m−1(k), f ∈ Hm−1,m−1(k),
and g ∈ Hm−2,m−2(k).

Proof. Regardless of the choice of form q0, the O(q0)-torsors over a field F/k can be
identified (up to isomorphism) with the quadratic forms of dimension 2n + 1 over
F . Every nonsingular quadratic form on a vector space V of dimension 2n+1 over
a field F/k can be written as the orthogonal direct sum of the 1-dimensional form
V ⊥, described by an element of H1(F, µ2), and a nonsingular form of dimension
2n. For an element b0 in F ∗, we write ⟨b0⟩ for the 1-dimensional quadratic form
q(x) = b0x

2. So we can write q0 = ⟨b0⟩+ q1 for some b0 in k∗ and some nonsingular
quadratic form q1 over k of dimension 2n. (Here q1 is not uniquely determined by
q0.) Since every quadratic form of dimension 2n+1 over a field F/k can be similarly
decomposed as ⟨b⟩+ r, the map H1(F, µ2 ×O(q1)) → H1(F,O(q0)) is surjective.

It follows that the restriction

Invm+1,m
k (O(q0)) → Invm+1,m

k (µ2 ×O(q1))

is injective. By Theorems 6.2 and 12.1, it follows that every invariant for O(q0) has
the form

u(⟨b⟩+ r) = c+ disc(r)e+ clif(r)f + {b}g + disc(r){b}h+ clif(r){b}l

for some (unique) c ∈ Hm−1,m(k), e ∈ Hm,m(k), f ∈ Hm−1,m−1(k), g ∈ Hm,m−1(k),
h ∈ Hm−1,m−1(k), and l ∈ Hm−2,m−2(k).

For a field F over k and any b in F ∗ and a1 in F , the quadratic form ⟨b⟩+b⟨⟨a1]]
is isotropic, by inspection, and so it is isomorphic to ⟨b⟩ + H, where H is the
hyperbolic plane. (This is a known failure of cancellation for quadratic forms in
characteristic 2 [6, equation 8.7].) So the given invariant u must take the same
value on ⟨b⟩+ b⟨⟨a1]] + (n− 1)H as on ⟨b⟩+ nH. That is,

c+ {b}g = c+ [a1]e+ [a1, b}f + {b}g + [a1, b}h

as invariants of µ2×Z/2 (where we used that {b, b} = 0 in H2,2). By the description
of the invariants for µ2×Z/2 in Theorem 8.4, it follows that e = 0 and f = h. Thus
the invariant u has the form

u(⟨b⟩+ r) = c+ (clif(r) + disc(r){b})f + {b}g + clif(r){b}l
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for some (unique) c ∈ Hm−1,m(k), f ∈ Hm−1,m−1(k), g ∈ Hm,m−1(k), and l ∈
Hm−2,m−2(k).

Here {b} in H1,1 is an invariant of q = ⟨b⟩+ r, the discriminant disc(q) (called
the “half-discriminant” in [19, IV.3.1.3]). (It is clear that this is an invariant of q,
because it describes the restriction of q to the 1-dimensional subspace V ⊥ ⊂ V .)
The other known invariant of odd-dimensional quadratic forms in characteristic 2
is the Clifford invariant in the Brauer group H2,1, given by [19, Corollary IV.7.3.2]:

clif(⟨b⟩+ r) = clif(br)

= clif(r) + disc(r){b}.

Since clif(r){b} is equal to clif(q) disc(q), that is also an invariant of q. Thus we
have found all the invariants of q.

Since O(2n + 1) is not a smooth group scheme, its invariants in Hm,m are not
immediate from Theorem 5.1, but they are easy to compute:

Proposition 13.2. Let k be a field of characteristic 2, n a positive integer, q0 a
quadratic form of dimension 2n+ 1 over k. Then

Invm,m
k (O(q0)) ∼= Hm,m(k)⊕Hm−1,m−1(k)

for every natural number m. Explicitly, we can view the invariants for O(q0) as the
invariants of quadratic forms q of dimension 2n+1 over fields F/k. Every invariant
in Hm,m has the form

u(q) = c+ disc(q)e

for some (uniquely determined) c ∈ Hm,m(k) and e ∈ Hm−1,m−1(k).

Proof. Since O(q0) is isomorphic to µ2 × SO(q0) and SO(q0) is smooth over k, the
conclusion is immediate from Proposition 7.2 and Theorem 5.1.

Now we turn to the smooth connected group SO(2n + 1). Since it is smooth,
its invariants in Hm,m are all constant (Theorem 5.1). Here are its invariants in
Hm+1,m.

Theorem 13.3. Let k be a field of characteristic 2, m a natural number, n a
positive integer, q0 a quadratic form of dimension 2n+1 over k. Then the group of
cohomological invariants for SO(q0) is given by

Invm+1,m
k (SO(q0)) ∼= Hm+1,m(k)⊕Hm−1,m−1(k).

Concretely, writing [d] = disc(q0) ∈ H1,1(k), we can view the invariants for SO(q0)
as the invariants of quadratic forms q of dimension 2n + 1 and discriminant [d].
Every invariant has the form

u(q) = c+ clif(q)f

for some (uniquely determined) c ∈ Hm+1,m(k) and f ∈ Hm−1,m−1(k).
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Proof. Over any field F/k, the torsors for SO(q0) can be identified (up to isomor-
phism) with the quadratic forms q of dimension 2n + 1 and discriminant [d]. We
have disc(aq) = {a}+disc(q) in H1,1, and so the invariants of quadratic forms with
discriminant [d] are in fact independent of [d].

So we can assume that q0 has discriminant 1 ∈ (k∗)/(k∗)2 ∼= H1,1(k). Then
q0 can be written as ⟨1⟩ + q1 for some nonsingular quadratic form q1 over k of
dimension 2n. The inclusion O(q1) ⊂ SO(q0) gives a surjection H1(F,O(q1)) →
H1(F, SO(q0)), since every form q of dimension 2n + 1 with trivial discriminant
over a field F/k can be written as an orthogonal sum ⟨1⟩+ r for some nonsingular
quadratic form r of dimension 2n (not unique). So Invm+1,m

k (SO(q0)) injects into

Invm+1,m
k (O(q1)). By Theorem 12.1, every invariant u for SO(q0) can be written as

u(⟨1⟩+ r) = c+ disc(r)e+ clif(r)f

for some (unique) c ∈ Hm+1,m(k), e ∈ Hm,m(k), and f ∈ Hm−1,m−1(k).
We use a special case of the isomorphism from the proof of Theorem 13.1: for

any field F/k and a1 ∈ F , the quadratic form ⟨1⟩+ ⟨⟨a1]] + (n− 1)H is isomorphic
to ⟨1⟩ + nH. So the invariant u(q) must take the same value on these two forms.
That is,

c+ [a1]e = c,

and so [a1]e is equal to zero as an invariant of Z/p (thinking of a1 ∈ F as an
element of H1(F,Z/p) for fields F/k). By the description of the invariants for Z/p
(Proposition 8.1), it follows that e = 0. Thus the invariant u has the form

u(⟨1⟩+ r) = c+ clif(r)f

for some (unique) c ∈ Hm+1,m(k) and f ∈ Hm−1,m−1(k).
Here clif(⟨1⟩+ r) = clif(r), by the description of the Clifford invariant for odd-

dimensional forms in the proof of Theorem 13.1. So clif(r) is an invariant of q =
⟨1⟩+ r. Thus we have found all the invariants for q.

14 Invariants of SO(2n)

Let k be a field of characteristic 2, n a positive integer, q0 a quadratic form of
dimension 2n over k. The orthogonal group O(q0) is smooth over k, with two
connected components. We write SO(q0) for the identity component, even though
the whole group O(2n) is contained in SL(2n) in characteristic 2. Since SO(q0) is
smooth, its invariants in Hm,m are constant (Theorem 5.1). Here are its invariants
in Hm+1,m.

Theorem 14.1. Let k be a field of characteristic 2, n a positive integer, q0 a
quadratic form of dimension 2n over k. Let [d] be the discriminant of q0 in H1,0(k).
Let m be a natural number. Then the group of cohomological invariants for SO(q0)
with values in Hm+1,m is given by⎧⎪⎨⎪⎩

Hm+1,m(k)⊕ [d]Hm−1,m−1(k) if n = 1

Hm+1,m(k)⊕Hm−1,m−1(k)⊕ {λ ∈ Hm−2,m−2(k) : [d]λ = 0} if n = 2

Hm+1,m(k)⊕Hm−1,m−1(k) if n ≥ 3.
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We can equivalently view the invariants for SO(q0) as the invariants of quadratic
forms q of dimension 2n and discriminant [d] over fields F/k. For n ≥ 3, every
invariant has the form

u(q) = c+ clif(q)f

for some (uniquely determined) c ∈ Hm+1,m(k) and f ∈ Hm−1,m−1(k). For n = 2,
a 4-dimensional quadratic form q with discriminant [d] has an invariant bλ(q) in
Hm+1,m for each λ ∈ Hm−2,m−2(k) with [d]λ = 0, as well as the Clifford invariant
in H2,1.

The invariants for 4-dimensional quadratic forms with given discriminant are
analogous to those found by Serre in all even dimensions at least 4 when the char-
acteristic is not 2 [9, Proposition 20.1]. Likewise, the invariants for 2-dimensional
quadratic forms with given discriminant are analogous to those found by Serre in
dimension 2 when the characteristic is not 2 [9, Exercise 20.9].

Every 1-dimensional torus over k is of the form SO(q0) for some 2-dimensional
quadratic form q0, and so Theorem 14.1 describes all mod p cohomological invariants
for every 1-dimensional torus. Blinstein and Merkurjev described the cohomological
invariants in degrees at most 3 for tori of any dimension [3, Theorem 4.3].

Proof. The map H1(F, SO(q0)) → H1(F,O(q0)) is injective, with image the set of
isomorphism classes of 2n-dimensional quadratic forms over F with discriminant [d]
[20, equation 29.29]. So we can think of the invariants for SO(q0) as the invariants
for quadratic forms (on fields over k) of dimension 2n with discriminant [d].

Every such form q over a field F/k can be written as q = r+ b1⟨⟨disc(r)+d]] for
some quadratic form r of dimension 2n−2 and some b1 ∈ F ∗. (Equivalently, for any
nonsingular subform r0 of dimension 2n−2 in q0, the subgroup O(r0)×µ2 ⊂ SO(q0)
induces a surjection on H1.) Assume that n ≥ 2. We know the invariants for
O(r0)× µ2 by Theorems 6.2 and 12.1. So every invariant u in Hm+1,m for SO(q0)
can be written, on a quadratic form q = r + b1⟨⟨disc(r) + d]], as

u(q) = c+ disc(r)e+ clif(r)f + {b1}g + disc(r){b1}h+ clif(r){b1}λ

for some (unique) c ∈ Hm+1,m(k), e ∈ Hm,m(k), f ∈ Hm−1,m−1(k), g ∈ Hm,m−1(k),
h ∈ Hm−1,m−1(k), and λ ∈ Hm−2,m−2(k).

We can apply this formula to r = s + b2⟨⟨a2]], for any quadratic form s of
dimension 2n − 4 over a field F/k and any b2 ∈ F ∗. This amounts to restricting
the invariant u to a subgroup O(2n− 4)× (Z/2× µ2)× µ2. We compute that for a
quadratic form q = s+ b2⟨⟨a2]] + b1⟨⟨a2 + disc(s) + d]],

u(q) = c+ disc(s)e+ [a2]e+ clif(s)f + [a2, b2}f + g{b1}
+ disc(s){b1}h+ [a2, b1}h+ clif(s){b1}λ+ [a2, b1, b2}λ.

This must be unchanged when we switch b1 and b2 and simultaneously change a2
to a2 + disc(s) + d. It follows that

0 = [d]e+ disc(s)e+ {b1}([d]f + g) + disc(s){b1}(f + h)

+ [a2, b1}(f + h) + clif(s){b1}λ+ {b2}(g + [d]h) + clif(s){b2}λ
+ [a2, b2}(f + h) + {b1, b2}[d]λ+ disc(s){b1, b2}λ.
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Assume that n ≥ 3, so that the invariants of O(2n− 4) are given by Theorem 12.1.
Then our knowledge of the invariants of O(2n−4)× (Z/2×µ2)×µ2 from Theorems
6.2 and 8.3, in particular the uniqueness of the coefficients, implies from the formula
above that e = 0, g = [d]f , h = f , and λ = 0.

So, on a quadratic form q = r + b1⟨⟨disc(r) + d]], the invariant u is given by:

u(q) = c+ (clif(r) + disc(r){b1}+ [d, b1})f
= c+ clif(q)f,

for some (unique) c ∈ Hm+1,m(k) and f ∈ Hm−1,m−1(k). Since the Clifford in-
variant is known to be an invariant of q, we have determined all the invariants of
SO(q0) for n ≥ 3.

We next consider the case n = 2. In that case, the symmetry above (switching
the two summands of a quadratic form q = b1⟨⟨a1]] + b2⟨⟨a2]] with a1 + a2 = d over
a field F/k) gives only that [d]e = 0, g = [d]f , h = f , and [d]λ = 0. So the invariant
has the form

u(q) = c+ [a1]e+ clif(q)f + [a1, b1, b2}λ
for some (unique) c ∈ Hm+1,m(k), e ∈ Hm,m(k), f ∈ Hm−1,m−1(k), and λ ∈
Hm−2,m−2(k) with [d]e = 0 and [d]λ = 0.

If b2 = b1, then q = b1(⟨⟨a1]] + ⟨⟨a1 + d]]). A direct calculation shows that

⟨⟨a1]] + ⟨⟨a1 + d]] ∼= ⟨⟨d]] +H

[6, Example 7.23]. So, when b2 = b1, q is independent of a1, up to isomorphism.
Also, when b2 = b1, we have {b1, b2} = 0 and clif(q) = [d, b1}, so u(q) = c+ [a1]e+
[d, b1}f . This must be independent of a1. By the uniqueness in Theorem 8.4, it
follows that e = 0. Thus the invariant u has the form, for any a1, a2 in a field F
over k with a1 + a2 = d and b1, b2 ∈ F ∗:

u(q) = c+ clif(q)f + [a1, b1, b2}λ

for some (unique) c ∈ Hm+1,m(k), f ∈ Hm−1,m−1(k), and λ ∈ Hm−2,m−2(k) with
[d]λ = 0.

The calculation will be finished by showing that for any λ ∈ Hm−2,m−2(k)
with [d]λ = 0, bλ(q) := [a1, b1, b2}λ is an invariant for SO(q0) in Hm+1,m. To
show that bλ(q) is an invariant, we use Revoy’s chain lemma for quadratic forms
in characteristic 2 [29, Proposition 3]. Write [a, b] for the 2-dimensional quadratic
form ax2 + xy + by2.

Theorem 14.2. (Revoy) Let k be a field of characteristic 2. Then the quadratic
form

∑n
i=1[ai, bi] over k is isomorphic to the form

∑n
i=1[a

′
i, b

′
i] if and only if these

two elements of k2n can be connected by a sequence of the following moves:

A : [ai, bi] + [ai+1, bi+1] → [ai + bi+1, bi] + [ai+1 + bi, bi+1]

for some 1 ≤ i ≤ n− 1, or

B : [ai, bi] → [β2ai, β
−2bi]

C : [ai, bi] → [ai + β2bi + β, bi]

D : [ai, bi] → [ai, bi + β2ai + β]

for some 1 ≤ i ≤ n and β ∈ k∗.
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To relate this to the notation we have been using for quadratic forms: an easy
calculation gives that the 2-dimensional form [u, v] is isomorphic to u⟨⟨uv]] if u ̸=
0, and to the hyperbolic plane H = 1⟨⟨0]] if u = 0. So a 4-dimensional form
[u1, v1] + [u2, v2] is isomorphic to u1⟨⟨u1v1]] + u2⟨⟨u2v2]] if u1 and u2 are nonzero,
with the coefficient u1 changed to 1 if u1 = 0, and likewise for the coefficient u2. So
we want to show that for any λ ∈ Hm−2,m−2(k) with [d]λ = 0,

bλ(q) := [u1v1, u1, u2}λ

is an invariant of 4-dimensional quadratic forms q = [u1, v1] + [u2, v2] with discrim-
inant [d]. (That is, we are assuming that u1v1 + u2v2 = d ∈ H1,0(k) = k/P(k).)
The formula for bλ(q) is understood to mean zero if u1 = 0 or u2 = 0.

To show this, by Theorem 14.2, it suffices to show that bλ(q) is unchanged by
moves A, B, C, or D. One helpful observation (*) is that [u, u} = 0 in the Brauer
group H2,1(k) for all u ∈ k, where the expression is defined to mean zero if u = 0.
This follows from the description of H2,1(k) in terms of differential forms (section
2), using that u(du/u) = du is exact. So we can rewrite bλ(q) = [u1v1, u1, u2}λ as
[u1v1, v1, u2}λ. Also, we have [u1v1]λ = [u2v2]λ because [d]λ = 0, and so we can
also rewrite bλ(q) as [u2v2, v1, u2}λ, and hence as [u2v2, v1, v2}λ, for example.

We now check that bλ(q) is unchanged by move A. After move A, using the last
formula for bλ(q) in the previous paragraph, bλ(q) becomes

[(u2 + v1)v2, v1, v2}λ = [u2v2, v1, v2}λ+ [v1v2, v1, v2}λ.

By relation (*), the second term is equal to [v1v2, v2, v2}λ, which is zero since
{v2, v2} = 0. So the new bλ(q) is equal to the first term, which is the old bλ(q), as
we want.

Applying move B with i = 1, the new bλ(q) is [u1v1, β
2u1, u2}λ = [u1v1, u1, u2}λ,

which is the old bλ(q), as we want. The same argument works if i = 2.
Applying move C with i = 1, and using the last formula for bλ(q) above, the

new bλ(q) is [u2v2, v1, v2}λ, which is the old bλ(q). Applying move C with i = 2,
the new bλ(q) is [u1v1, v1, v2}λ, which is equal to the old bλ(q).

Applying move D with i = 1, the new bλ(q) is [u2v2, u1, u2}λ, which is the old
bλ(q). Applying move D with i = 2, the new bλ(q) is [u1v1, u1, u2}λ, which is the old
bλ(q). This completes the proof that bλ(q) is an invariant of 4-dimensional quadratic
forms with discriminant [d] ∈ H1,0(k). Thus we have found all the invariants for
SO(q0) for q0 of dimension 4.

Finally, we turn to the case n = 1. That is, given an element [d] ∈ H1,0(k),
we want to find the invariants u in Hm+1,m for 2-dimensional quadratic forms with
discriminant [d] over fields F/k. Every such form can be written as q = b1⟨⟨d]] for
some b1 ∈ F ∗. The form is determined up to isomorphism by {b1} ∈ H1,1(F ). So
any invariant u determines an invariant for µ2 over k with values in Hm+1,m. By
Proposition 6.1, the invariant has the form

u(b1⟨⟨d]]) = c+ {b1}e

for some (unique) c ∈ Hm+1,m(k) and e ∈ Hm,m−1(k). It remains to determine for
which e ∈ Hm,m−1(k) is {b1}e an invariant of q.

One invariant we know is the Clifford invariant of q, clif(q) = [d, b1}. It follows
that any e ∈ [d]Hm−1,m−1(k) gives an invariant of q. We show the converse. Let l
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be the separable quadratic extension of k with discriminant d. Then, for any field
F over l and any b1 ∈ F ∗, the form q = b1⟨⟨d]] is hyperbolic, and so u(q) must be
independent of b1 on fields over l. By the uniqueness in Proposition 6.1, it follows
that e maps to zero in Hm,m−1(l). By Theorem 8.2,

ker(Hm,m−1(k) → Hm,m−1(l)) = [d]Hm−1,m−1(k).

So e is in [d]Hm−1,m−1(k). This completes the determination of the invariants of
SO(q0) for q0 of dimension 2. Theorem 14.1 is proved.

Remark 14.3. The invariant bλ(q) is easier to construct for 4-dimensional forms q
with trivial discriminant, as in the case of characteristic not 2 [9, Example 20.3].
Namely, Theorem 14.1 says that b1(q) := [a1, b1, b2} ∈ H3,2(F ) is an invariant for
quadratic forms q = b1⟨⟨a1]] + b2⟨⟨a2]] over F with trivial discriminant (that is,
a1 = a2 in H1,0(F )).

To prove this directly, note that q is a scalar multiple of a quadratic Pfis-
ter form, namely q = b1⟨⟨b1b2, a1]]. (Following the notation of [6, section 9.B],
a bilinear Pfister form ⟨⟨a1, . . . , an⟩⟩ means ⟨⟨a1⟩⟩ ⊗ · · · ⊗ ⟨⟨an⟩⟩, where ⟨⟨a⟩⟩ is
the 2-dimensional bilinear form ⟨1,−a⟩b. A quadratic Pfister form ⟨⟨a1, . . . , an]]
means ⟨⟨a1, . . . , an−1⟩⟩ ⊗ ⟨⟨an]], where ⟨⟨a]] is the 2-dimensional quadratic form
[1, a] = x2 + xy + ay2.)

It follows that q is a difference of two quadratic Pfister forms, q = ⟨⟨b1, b1b2, a1]]−
⟨⟨b1b2, a1]] = φ3 − φ2, in the quadratic Witt group Iq(F ). So the class of q in
I2q /I

3
q
∼= H2,1(F ) (also known as the Clifford invariant clif(q)) is equal to the class of

φ2, and that class determines the Pfister form φ2 up to isomorphism, by the Arason-
Pfister Hauptsatz [6, Theorem 23.7]. So q also determines φ3 up to isomorphism,
as φ3 = q + φ2 in Iq(F ). The class of φ3 in H3,2(F ) is [a1, b1, b1b2} = [a1, b1, b2},
and so we have shown that the latter expression is an invariant of q.

15 Cohomological invariants in degree 1

In this section, we compute the mod p cohomological invariants in degree 1 (that
is, in H1,0 or H1,1) for any affine group scheme in characteristic p. The analogous
mod l result is easier, using A1-invariance of mod l étale cohomology: for an affine
group scheme G over a field k and a prime number l invertible in k, the group of
degree-1 invariants for G over k with coefficients in Z/l is

H1(k,Z/l)⊕Homk(G,Z/l).

A reference for this mod l isomorphism is Guillot [12, Corollary 5.1.5]. (Guillot
assumes k algebraically closed, but his proof gives this statement for any field k
with l invertible in k.)

Theorem 15.1. Let G be an affine group scheme of finite type over a field k of
characteristic p > 0. Then

Inv1,0k (G) ∼= H1,0(k)⊕Homk(G,Z/p).

Here H1,0(k) can also be written as H1
ét(k,Z/p).

34



Proof. We have Inv1,0k (G) ∼= H1,0(k) ⊕ NormInv1,0k (G), as for invariants in any de-
gree. So it suffices to identify the group of normalized invariants with Homk(G,Z/p).
A homomorphism G → Z/p over k clearly gives a normalized invariant for G-torsors
with values in H1,0(F ) = H1

ét(F,Z/p), for fields F over k.
Conversely, let α be a normalized invariant for G with values in H1,0. Let V be

a representation of G over k with a nonempty open subset U such that G acts freely
on U with a quotient scheme U/G over k. Applying α to the obvious G-torsor ξ over
the function field k(U/G) yields a Z/p-torsor Y1 over k(U/G). By Theorem 2.1, the
invariant α is determined by the Z/p-torsor Y1. Let G

0 be the identity component
of G, and let Y2 be the pullback of Y1 over k(U/G0). Let Y3 be the pullback of Y1
over k(U):

Y3 →→

↓↓

Spec k(U) →→

↓↓

U

↓↓

Y2 →→

↓↓

Spec k(U/G0) →→

↓↓

U/G0

↓↓

Y1 →→ Spec k(U/G) →→ U/G.

Since ξ pulls back to a trivial G-torsor over U and α is normalized, the pullback
torsor Y3 over k(U) must be trivial; that is, Y3 ∼= Z/p×Spec k(U). Write π13 : U →
U/G and π12 : U/G

0 → U/G for the obvious quotient morphisms.
Here Y1 extends to a Z/p-torsor Z over some nonempty open subset W of

U/G. So Z pulls back to a Z/p-torsor over π−1
13 (W ) ⊂ U which is trivial over the

generic point Spec k(U) of π−1
13 (W ), and which therefore has p irreducible compo-

nents. Since π−1
13 (W ) is smooth over k and connected, it follows that this pullback

Z/p-torsor over π−1
13 (W ) is trivial. Since G0 is connected, the pullback of Z to

π−1
12 (W ) ⊂ U/G0 also has p irreducible components, and so it is a trivial Z/p-torsor

over π−1
12 (W ). Restricting to the generic point, we deduce that the Z/p-torsor

Y2 → Spec k(U/G0) is trivial.
The group scheme G/G0 is finite and étale over k. Therefore, k(U/G0) is a

finite separable extension field of k(U/G). First consider the case where G/G0 is
the k-group scheme associated to a finite group, which we also call G/G0. Then
k(U/G0) is a finite Galois extension of k(U/G) with Galois group G/G0. Let H
be the absolute Galois group of k(U/G). By Galois theory, the Z/p-torsor Y1 over
k(U/G) corresponds to a homomorphism α : H → Z/p, and the Galois extension
k(U/G0) of k(U/G) corresponds to a surjective homomorphism β : H → G/G0.
Because Y1 pulls back to a trivial torsor over k(U/G0), α factors uniquely through
a homomorphism G/G0 → Z/p of finite groups. Equivalently, α ∈ NormInv1,0k (G)
is the invariant associated to a homomorphism G → Z/p of k-group schemes, as we
want.

Now consider the general case, where the finite étale k-group scheme G/G0 need
not be “split” (meaning the k-group scheme associated to a finite group). Let K
be the subgroup of the Galois group H corresponding to the extension ks(U/G)
of k(U/G), so that H/K ∼= Gal(ks/k). Then H1,0(k(U/G)) = Hom(H,Z/p) (the
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group of continuous homomorphisms), which fits into an exact sequence

Hom(H/K,Z/p) →→ Hom(H,Z/p) →→ Hom(K,Z/p)H/K

H1,0(k) →→ H1,0(k(U/G)) →→ H1,0(ks(U/G))Gal(ks/k).

The group scheme G/G0 becomes split over the separable closure ks, and so the
previous paragraph implies that the image of α ∈ H1,0(k(U/G)) in H1,0(ks(U/G))
is the one associated to a homomorphism (G/G0)ks → Z/p. Since this image is also
fixed by Gal(ks/k), it corresponds to a homomorphism G → Z/p of k-group schemes.
Thus, letting α′ be α minus the invariant of G associated to this homomorphism
G → Z/p, the exact sequence above shows that α′ is the image of an element of
H1,0(k). Since α′ is a normalized invariant, it follows that α′ = 0. Thus we have
shown that α is the invariant associated to a homomorphism G → Z/p of k-group
schemes.

The following result overlaps with independent work of Alexander Wertheim.
He determines all invariants of a group scheme of multiplicative type with values in
H1

ét,Z/m(1), for any positive integer m [37, Theorem A].

Theorem 15.2. Let G be an affine group scheme of finite type over a field k of
characteristic p > 0. Then

Inv1,1k (G) ∼= H1,1(k)⊕Homk(G,µp).

Proof. Let V be a representation of G over k such that G acts freely on an open
subset U with a quotient scheme U/G over k. We can assume that V − U has
codimension at least 2 in V . Let α be an invariant for G over k with values in
H1,1. By Theorem 2.1, α is determined by its class in H1,1(k(U/G)), and this
class is unramified over U/G; that is, it lies in H0

Zar(U/G,H1,1). The restriction
map H1,1(U/G) → H0

Zar(U/G,H1,1) is an isomorphism, since both groups can be
identified with the group H0(U/G,Ω1

log) of differential forms. So we can view α as
a µp-torsor over U/G.

Equivalently, α is a G-equivariant µp-torsor over U . We can also view this as a
G-equivariant line bundle L on U with a G-equivariant trivialization of L⊗p. Since
V −U has codimension at least 2 in V and V is smooth over k, the direct image of
L from U to V is a line bundle. The G-action on L and the trivialization of L⊗p

clearly extend to V . So α extends uniquely to a G-equivariant µp-torsor over V .
The G-equivariant Picard group of V can be viewed as the Picard group of the

stack [V/G] over k. By the homotopy invariance of equivariant K-theory proved by
Thomason, PicG(V ) is isomorphic to PicG(Spec k) = Homk(G,Gm) [32, Theorem
4.1]. By the exact sequence 1 → µp → Gm → Gm → 1 of sheaves in the flat
topology, we have an exact sequence of flat cohomology groups over [V/G]:

(O(V )∗)G −→
p

(O(V )∗)G → H1
G(V, µp) → PicG(V ) −→

p
PicG(V ).

Here the group of units O(V )∗ is equal to k∗, on which G acts trivially. Note that
(k∗)/(k∗)p is isomorphic to H1(k, µp) = H1,1(k). So this exact sequence can be
rewritten as

0 → H1,1(k) → H1
G(V, µp) → Homk(G,µp) → 0.
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Every homomorphism G → µp determines an element of H1
G(V, µp), and so we can

write
H1

G(V, µp) = H1,1(k)⊕Homk(G,µp).

We have an obvious homomorphism from H1,1(k) ⊕ Homk(G,µp) to the group of

invariants Inv1,1k (G), and this homomorphism is an isomorphism by the description
of H1

G(V, µp) above.
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