OPTIMAL SINE AND SAWTOOTH INEQUALITIES
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ABSTRACT. We determine the optimal inequality of the form Y ;" | axsinkz <1, in
the sense that Y ;. aj is maximal. We also solve exactly the analogous problem for
the sawtooth (or signed fractional part) function. Equivalently, we solve exactly an
optimization problem about equidistribution on the unit circle.

In this paper, we determine the optimal inequality of the form
m
Z apsinkz <1
k=1

for each positive integer m, in the sense that » ;" a; is maximal (Theorem 2.1).
Namely, > /" | ay is on the order of log m, and we compute it exactly. This is a natural
extremal problem in Fourier analysis. (We are considering inequalities that hold for all
real numbers x.)

We also solve the analogous optimization problem for the sawtooth (or signed fractional
part) function g(z) = = + |3 — x|, which takes values in (—1/2,1/2]. Namely, we find
an optimal inequality of the form

Z brg(kz) <1
k=1

for each positive integer m, in the sense that » ;- by is maximal (Theorem 1.2). See
the figures in sections 1 and 2 for examples of these inequalities, which show striking
cancellation among dilated sine or sawtooth functions.

By linear programming duality, these inequalities are equivalent to statements about
equidistribution on the unit circle. In particular: for each positive integer m and every
probability measure on the real line, at least one of the dilated sawtooth functions g(kz)
for k € {1,...,m} must have small expected value, and we determine the optimal bound
in terms of m (Theorem 1.2). It is on the order of 1/logm, and we compute it exactly.

These results were motivated by an application to algebraic geometry. For smooth com-
plex projective varieties of general type, the volume is a positive rational number that
measures the asymptotic growth of the plurigenera h°(X, mKy). Before the authors’
series of papers in 2021, the varieties of general type with smallest known volume in high
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dimensions n were those found by Ballico, Pignatelli, and Tasin, with volume roughly
1/n™ [1].

Using our equidistribution result for the sawtooth function, for any constant ¢ < 1,
version 1 of this paper on the arXiv constructed varieties of general type in all sufficiently
high dimensions n with volume less than 1/ een®/?(ogm)'? e equidistribution result
was used to optimize the constant c.

Three of the authors then went further by different methods, finding n-dimensional
varieties of general type with volume less than 1/ 22"/? [4]. In view of that improvement,
we have omitted the algebro-geometric application from this paper. There should be
other ways to apply our optimization results for the sine and sawtooth functions.

0.1. Acknowledgments. LE and BT were supported by NSF grant DMS-2054553.
TT was supported by a Simons Investigator grant, the James and Carol Collins Chair,
the Mathematical Analysis & Application Research Fund Endowment, and by NSF
grant DMS-1764034. Thanks to John Ottem, Sam Payne, and Miles Reid for their

suggestions.

1. DILATED FRACTIONAL PARTS OF A RANDOM REAL NUMBER

In this section, we prove an optimal inequality for the sawtooth function (Theorem 1.2).
By linear programming duality, this is equivalent to an optimal bound in a problem
about equidistribution on the unit circle.

For a real number z, let |2] denote the greatest integer less than or equal to x and [z ]
the smallest integer greater than or equal to x. Note that

lz+n] =|z]+n and [xz+n]=[z]+n (1.1)
for any integer n, and that
(2] = —[—x]. (1.2)
We also define the lower fractional part
{z} =2 — |x] (1.3)

which takes values in [0, 1), and the upper fractional part

{z} =2z —[x]+1 (1.4)
which takes values in (0, 1]. Finally, define the signed fractional part
gy =z — [z -1 =2+ |] -1 (1.5)

which takes values in (—1/2,1/2]. We call g(z) the sawtooth function.

For a (Borel) probability measure p on the reals and a positive integer k, define the
expectation

Byg(ke) = [ glko) du(a).
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Consider the quantity
min E,g(kz), (1.6)

1<k<m
where m is a natural number and g is a probability measure on the reals. Since each
function g(kx) is pointwise bounded by 1/2, we trivially have the bound

min E,g(kz) < 3, (1.7)

1<k<m

but one expects to do better as m gets large. For instance, from the Dirichlet approxi-

mation theorem one sees that
1
i ko) < ——
lg}gmm( z)| < T

but this does not directly allow one to improve the bound (1.7) since one cannot inter-
change the minimum and the expectation. As it turns out, there is an improvement in
m, and the optimal value of (1.6) can be computed exactly, but it only decays like @

rather than % as m — oo.

As a first attempt to control the quantity (1.6), one could try to estimate it by its
unweighted mean

1 m
k=1

However, this quantity can be quite large: in particular, if x is the Dirac mass at 1/2,

then this mean is equal to %, which is asymptotic to }l as m — o0o. Closely related

to this is the observation that the unweighted sum
9(x) +9(2z) + - - + g(mz)

of the g(jz) can be much larger than 1, and in particular equal to [m/2]/2 when
r=1/2.

However, one can obtain much better results by working with weighted means of the
E,g(kz), or equivalently by weighted linear combinations of the ¢(jz); indeed by linear
programming duality, we see that a bound of the form

oin Eug(kz) < A

for all ¢4 holds if and only if there exist non-negative coefficients a4, . . ., a,, with Z;’;l a; >
% such that we have the dual inequality

Zakg(kx) <1

k=1

for all . Thus to compute the minimal value of (1.6), we just need to find an optimal
dual inequality.

We begin with the model case where m is a power of two, in which the dual inequality
is particularly easy to establish.

Proposition 1.1. Let r be a natural number, and set m = 2.
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(i) For every real number x, we have

2g(x) + Y g(2'r) < 1. (1.8)
j=1
(ii) We have
1
. <1
nin B,g(kr) < = (1.9)

for every (Borel) probability measure ji on the real line. Moreover, this is the

optimal bound: equality is attained for the measure fi,, with mass $ at each of
11 1 1

-y 57, and mass 2 qt ST -

1
the numbers = s

2°4°8 "

Proof. We begin with (i). We observe the identity
g(2) = {22} — {2}’ (1.10)

for all real numbers x, since both sides of this equation are 1-periodic, equal to x on
(0,1/2], and equal to  — 1 on (1/2,1]. Similarly,

29(x) = {22}" = —lgay>1y,
where the indicator function 1(z)«~1/2 is defined to equal 1 when {«}* > 1/2 and vanish
otherwise. Thus we have the telescoping formula

2g(z) + Y g(2x) = {272} — Liapsnpo (1.11)

j=1
(see Figure 1.) This establishes (i).

Now we prove (ii). Integrating (i) against an arbitrary probability measure pu on R, we
conclude that

%, g(z) + 3 E,g(2') < 1.
j=1
Thus we have

i <
(2 + Zl 1) 12{1%1mEug(k:c) <1,
J:
which gives the upper bound in (1.9).

To establish the matching lower bound using the measure pu,,, it suffices to show that

NORVESH

=1
for all £ =1,...,m. But from (1.11) with z = k/2"!, the left-hand side is equal to

{k} = 1gart1yestye = 1 -0,
giving the claim. 0

Now we handle the general case.
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FIGURE 1. The left-hand side of (1.8) when m = 8. We are showing that
it is at most 1. Note the large number of locations where the bound of
1 is attained, including the support {1/2,1/4,1/8,1/16} of the optimal
measure [ig.

Theorem 1.2. Let r,m be natural numbers such that 2" < m < 2"+1,

(i) For every real number x, we have

29) + Y 0@+ Y o (a0 + ol 1= 00— g()) <1 (112

=27 41
(ii) We have
27"
in E,g(kz) < ——m———
él}fgnm ng (ko) < (r+1)2" +m
for every (Borel) probability measure jn on the real line. Moreover, this is the
optimal bound: equality is attained for the measure p,, with mass ( Z at

r+1)27+m
1 11 1 m 1
2 1§ g Ond mass oo at 5o

(1.13)

each of the numbers

In particular, the right side of (ii) is less than ll(fggi. So (ii) says in particular: for every

probability measure p on the real line and every positive integer m, there is a positive
integer k at most m such that the expected value E,g(kz) is at most 110(%2”. This is an
equidistribution statement, sharpening the rough idea that the image measure of y on
R/Z under multiplication by some not-too-large positive integer is not concentrated too

much in the first half of [0, 1].
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FIGURE 2. The left-hand side of (1.12) when m = 7. Note the large num-
ber of locations where the bound of 1 is attained, including the support
{1/2,1/4,1/8,1/14} of the optimal measure ps.

It follows from our argument (in particular the properties of the measure p,, in (ii))
that statement (i) is an optimal inequality of the form )", arg(kz) < 1, in the sense
that it has the maximal value of ) a; (namely, r +1+ 5) among all inequalities of this
form. See Remark 1.3 on the non-uniqueness of this inequality.

Proof. By (1.11), we can rearrange (1.12) as

m

Z g(ng 3 (g(ﬁx) 4 g((2r+1 +1—0x) - g(;g)) <1-— {2r+1x}* + Lizyesy2

(=27 +1
Both sides are 1-periodic, so we may assume that = € (0, 1], and thus we may write

_Jj—0
_2r+1

(1.14)

for some integer 1 < j < 2"+ and some real number 0 < § < 1. In particular, we have
{2"*t1z}* =1 — 6. From (1.5) we have

gilz) +g(2H +1-0z) —g(x) =2"a + [ —la| + [+ o =270 — 2| — | — .
But _L% — x| = Lzye51/2 since z € (0,1], so we have

Z E(ﬁm——l)(_ B — xJ) < laypsiy2,

=27 41
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since

iLm LR (1.15)
(=1 \2r m) =" ‘
(=27 +1

So it will suffice to establish the inequality

5 m r+1 1 1 Cortl
e;ﬂf(ﬁ_l)(2 ;1:"—\_2 fo—i—\_Q—l—éx AR xj)gg.

Writing 2"z = j — 0, we can rearrange this using (1.1) as

> s (o bt + e so-o)) <0

(=27 41
By (1.15), it is equivalent to show that

" m mo
3 E(g_l)(g_exj + gwﬁe—ﬂ) <™
(=2r+1

We may cancel the factor of m on both sides. The quantity |3 — (x| + [ + (z + 0 — z]
is clearly an integer that is bounded above by

(%—Ex)nL(%—i—Ex—l—@—x) =140—-1z<2,
and by (1.3) it is equal to 1 if and only if
{%—ﬁx}—l—{%—i—ﬁx—l—@—:ﬁ}:@—x?

so in particular
0< {%—&c} <@ —x.
Thus it will suffice to show that

1 0
> TGy <o (1.16)

27 <<m: 0<{ 3 —tx}<6—x

We can write the left-hand side as

> 1
> Y g

k=0 or<yg<m: —k< % —Ar<—k+0—z

or equivalently

= 1
> > =T (1.17)

k=0 max(2r 41,5722 4 1) <p<min(FEL2 )

Using the fundamental theorem of calculus to write ﬁ = ;_1 f—;, we may upper

f2r mjn(E=CEL2 Eeir2) £2

k=0
and so (using m < 27t1) it will suffice to establish the bound

= dt 0
Z/ =<5 (1.18)

k—0+1/2 k+1/2
g J [2r 21 N[ A=EEL/2 kH1/2)

bound this expression by
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The interval [27,2r+1] 0 [A=4H2 FEL21 59 only non-empty when
x x

k—0+1/2 k+1/2
kF=0+1/2 g1 g BV
T T
Hence we may restrict the & summation in (1.18) to the region

Pr—i<k<2a—140.
By (1.14) and the fact that 0 < 6 < 1, we conclude that

> 2"

%—1<k;<j. (1.19)

We now split into cases.

Case 1: j = 1. By (1.19), the only value of k that contributes to (1.18) is k = 0, and
we can upper bound the left-hand side of (1.18) by

/ a1,
— = — — 27
i 2

which is precisely % as desired thanks to (1.14).

Case 2: 7 = 2. Now (1.19) restricts us to k = 1, and we can upper bound the left-hand
side of (1.18) by

/ . w x
(B2m0 32 2 3/2—-0  3/2
which by (1.14) simplifies to

Smce 2 and 2 o 29 are at most 1, we obtain the desired upper bound of 2% (with a little

room to spare).

Case 3: j = 3. Now (1.19) restricts us to k = 1,2. The left-hand side of (1.18) is now
upper bounded by

/ dt+/ dt. 1 x n x x
or 2 12 Jzme s 220 3/2 0 5/2—0 5/2

which by (1.14) simplifies to
L v
0 27

Since 0 < § < 1, we have 1 + £ <3 + £ % < 1, and we obtain the desired upper
bound of £ (with a httle more room to spare).

O‘\II\D

Case 4: j = 4. Now (1.19) restricts us to k = 2,3. The left-hand side of (1.18) is now
upper bounded by

/ dt+/ . w x . x x
(5/2-0 52 2 Jizemo 2 82 5/2—60 5/2 0 T7/2—60  7/2
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which by (1.14) simplifies to
2 4-60 2 4-60\0
(5 529 7 m)z—
Since 0 < # < 1, we have

2 4-40 n 2 4-0 -

5 5—-20 7 7-—20
and we again obtain the desired upper bound of % (with a fair amount® of room to
spare).

<1

o]l W

23_{_2
5 3 7

Case 5: j > 4. There is a finite interval [k;, ko] of integers k for which [2",m]| N
[hot+1/2 k+xl/2

xT Y

| is non-empty. From the decreasing nature of t%, we have

@<9 di

/[QT gr1nh=041/2 kt1/2) t2 — [or 2rH1A[E=1EL/2 kt1/2) 12
’ T oz ’ T oz

when k; < k < ky. Thus we may bound the left-hand side of (1.18) by

dt dt
— +0 .
[2T72r+1]m[k1—1i+1/27k1—;1/2] t [2r 2r+1] t

For the first integral, we observe that the domain is an interval of length at most 6/z
and the integrand is at most 1/2%"; meanwhile, the second integral can be evaluated as
2% — ﬁ Putting all this together, we have upper bounded the left-hand side of (1.18)
by

0 0 0

92y | or  Qrel
But since j > 4, we have from (1.14) that

0 6 0

< =
227"1. — 92r ., 4/2r+1 9r+1
and the claim (1.18) follows. This concludes the proof of (i).

Now we prove (ii). Integrating (i) against an arbitrary probability measure p on R, we
conclude that

2E,9(x) + Z Eug(Qjm)
j=1

" m

+ Z —— (Eug(ﬁx) +E, (2 +1—0)z) — Eug(x)) <1

(=241 (=1

Since
m m
- — —1<?2 1.2
Z1(1—1) o TS (1.20)
(=2r 41

INote that the increasing ease of proof of (1.12) as j increases is consistent with the behavior
exhibited in Figure 2.
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the net coefficient of E, g here is positive. Thus we have

(2+21+ 3 %(1“—1)) min E,g(ke) <1

j=1 =271

which gives the upper bound in (1.13) after a brief computation using (1.20).
To establish the matching lower bound using the measure pu,,, it suffices to show that

S (B ey ( 2 2y
N ) "o\ am) ~

J=1

for all k =1,...,m. But from (1.10) and telescoping series we have

r—+1 *
k Lk k
Zg(g) = {k} _{F} =1-5m

j=1
kyY_ &k
g om ) 2m

and the claim follows. 0

while since < = we have

N[

Kk
2m

Remark 1.3. The particular linear combination of the g(kx) used in (1.12) was dis-
covered after some numerical experimentation, guided by the fact that this combination
should attain the bound of 1 at every point in the support of the optimal measure ,,.
However, this constraint does not fully determine the coefficients of the combination,
and it would be possible to establish the bound (1.13) using other linear combinations
of g(kz) instead. For instance, when m is a power of two, the inequalities (1.12) and
(1.8) differ, even though they both imply (1.13): see Figures 1, 3.

2. OPTIMAL EQUIDISTRIBUTION FOR THE SINE FUNCTION

The function sin(27z) is somewhat analogous to the sawtooth function g(z) studied in
Theorem 1.2. We now solve exactly the corresponding optimization problem for the sine
function in Theorem 2.1. The problem solved here is equivalent to finding the optimal
inequality of the form > )" | ajsinkz < 1 for each positive integer m.

Theorem 2.1. Let m be a positive integer.

(i) We have

Z ﬁco*ﬁ( ﬂj_g) [(m+1—k)sinks + ksin(m+1—k)z] <1 (2.1)

2m
1<k<m; k odd

for all real numbers x. Write this inequality as >, apsinkz < 1; then all the
coefficients ay are nonnegative.
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0.81

0.6

=

F1GURE 3. The left-hand side of (1.12) when m = 8; compare with Figure 1.

(ii) We have

1
min E,sinkx < — (2.2)
1<k<m Cm

for every (Borel) probability measure p on the real line, where

2 T
= t . 2.3
‘ m+1 Z «© <2m+2) (2.3)

1<j<m; j odd

This is the optimal bound: equality is attained for the measure pi, with mass

(m+21)c cot(2£i2) at nﬂ1 for every odd 1 < j < m.

It follows from our argument (in particular the properties of the measure p,, in (ii))
that statement (i) is the optimal inequality of the form ;" | a sin kz < 1, in the sense
that it has the maximal value of > a; (namely, ¢,,) among all inequalities of this form.
The closest relative of this inequality in the literature seems to be Vaaler’s inequality,
of the form Y} , by sin27kz > x — L for z € [0, 3] [6, Theorem 18].

By comparing the cotangent sum c¢,, to an integral, with the first few terms of the
sum separated off for greater accuracy, one checks that ¢, is close to (2/7)log(m + 1).
Precisely, by an argument due to Pinelis [5],

2 2 4
cm = —log(m+ 1)+ — (log <—) + 7) + o(1),
T T T
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r T r
4 2 4
X

FIGURE 4. The left-hand side f(x) of (2.1) when m = 8. We are showing
that it is at most 1. The bound of 1 is attained exactly at the support
{m/9,37/9,57/9,7m/9} of the optimal measure us.

where v is Euler’s constant. In particular, the bounds for the sine problem are of the
same order of magnitude as the bounds for the sawtooth problem. If one replaces sine
by cosine then the problem becomes trivial, as in this case the Dirac mass at the origin
is clearly the extremizing measure and there is no decay in m.

Another formula for the constant a in inequality (2.1) is

) 4(m+ 1 — k) sin? [220n
k — A ik
(m+1)2 sin -5

for 1 < k < m. We will not use this, however.

Proof. We first show that part (ii) follows from (i). All the coefficients in the inequality
Y agsinkzr < 1 from (2.1) are nonnegative, since cot z decreases from oo to 0 on the
interval (0,7 /2]. Therefore, on integrating this inequality against any Borel probability
measure 4 on the real line, we have

Zak E,sinkz < 1.
k=1

From the definition of a; in terms of cotangents, it is immediate that > )" | ax = ¢
This proves (2.2), namely that min<,<, E, sinkz < 1/c,,.
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r T r
4 2 4
X

FIGURE 5. The left-hand side f(x) of (2.1) when m = 9. We are showing
that it is at most 1. The bound of 1 is attained exactly at the support
{m/10,37/10,57/10,77/10,97/10} of the optimal measure pyg.

Next, we show that for every 1 < k < m, the measure p, defined in (ii) satisfies

_ 1
E,, sinkx = o
The proof seems easiest in terms of the Fourier transform on the cyclic group G =
Z]/(2m+2). Namely, for a complex-valued function f on G, define the Fourier transform

on the dual group G = Z/(2m + 2) by f( ) = (1/(2m + 2)) X, e f(x)em2mie/@mt2),

~

then the inverse Fourier transform gives that f(x) = Y ..g f(£)e? "/ (m+2),

Let oy, be the function on G = Z/(2m + 2) defined by o,(k) = 1if 1 < k < m,

om(k) = —11if —m < k < —1, and zero otherwise (a discrete version of a square wave).
Let ¢ = €2™/(2m+2) Then the Fourier transform of o, is, for j € Z/(2m + 2),
TR
/’I’I\’L ) = m (K ik
om(J) 2m+220 (k)¢
k=0
-1 mo ]
— jk _ =ik
2m + 2 ;(C ¢

Clearly 7,,(0) = 0. For j # 0in Z/(2m+2), we have Y ;" | ¢(/* = (¢7—(¢9)™) /(1—¢Y).
Since (™t = —1, that sum is (14 ¢?)/(1—¢?) if j is odd and —1 if j is even. Likewise,
PR QELET —(1 +¢7)/(1—=¢7) if j is odd and —1 if j is even. So the Fourier transform
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above is given by 7,,(j) = (—=1/(m +1))(1 4+ ¢/)/(1 — ¢7) if j is odd and 0 if j is even.
Equivalently, ¢,,(j) = (—i/(m + 1)) cot(mj/(2m + 2)) for j odd.

Therefore, applying the inverse Fourier transform tells us, in particular for 1 < k < m,
that

2m+1
_ Z E:n(j)e%rzgk/(2m+2)

2 ] ) mik
= Z —— cot sin .
m—+1 2m + 2 m+1

1<j<m; j odd

(This can also be deduced from an identity due to Eisenstein and Stern, discussed in
the introduction to [2].) After dividing by ¢,,, this says that the measure p,, defined in
(ii) has E,, sinkz = 1/c,, for all 1 <k < m, as we want.

It remains to prove part (i). We can relate the linear combination of sines f(x) on the
left side of (2.1) to the function o, above. First, let v, be the function on Z/(2m + 2)
defined by v,,(j) = 20,(j) if 7 is odd and 0 otherwise; so v,,(j) is 2 for 1 < j < m
and j odd, —2 for m +2 < j < 2m — 1 and j odd, and 0 otherwise. One checks that
multiplying a function f(j) on Z/(2m + 2) by (—1)7 corresponds to shifting its Fourier
transform by m + 1. Therefore, the Fourier transform of v, is

7() = Fali) — Falm + 14 ).
Since o, is an odd function, so is 7,,, and hence we can rewrite this formula as

Tad) = Gnls) + lm+ 1 5).
If m is odd, then this is

o . . 1_
Um(j) = ' (cot —— 4 cot mm+1-J)
m—+ 1 2m + 2 2m + 2
if 7 is odd and 0 if j is even. If m is even, then
__ {m:fl cot(m:;iz) if 7 is odd,

I/m ) = mw(m —7 . ..
U) — cot( (2;;12])) if j is even.

m-+

This is clearly related to the function f(x). To make the connection precise, consider
another interpretation of the Fourier transform on Z/(2m+2): namely, as Fourier series
on the circle R/27Z applied to linear combinations of Dirac delta functions with support
in (1/(2m + 2))27Z. Let S denote the square wave function

S(x) = 10<{:c/27r}<1/2 - 11/2<{:c/27r}<1-

We sample this function at odd multiples of 7/(m+1) to create a discrete approximation
Vm to S(z), basically a Dirac comb modulated by a square wave:

2 mj
= S Ori/(mat1)- 2.4

J€EZ;j odd
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This measure is 2m-periodic. Here we multiplied the function v, defined earlier on
Z](2m + 2) by 27 /(2m + 2) in order to make the Fourier coefficients

T or

1 21 )
(k) /O e ()

the same as those we computed on Z/(2m +2). (In particular, these Fourier coefficients
are periodic with period 2m + 2.)

By inspection, then, the function f(x) from part (i) of the theorem is

21 — .
f(z) = —1 1<%;m(m + 1 — k), (k) sin kz,

or equivalently (due to the odd nature of v, and hence 7,,)

flay= > (1—%)@(/@)6%1.

—m<k<m

: 2
This is clearly related to the Fejér kernel, Fyy1(z) = (Sm(z:;;(;m) =D hem(l—
kL

- H)e“”". (The original motivation for the Fejér kernel was to show that every contin-
uous function on the circle is the uniform limit of the averaged partial sums of its
Fourier series [3, Theorem 1.3.3].) Namely, since the Fourier series takes convolution to
multiplication, f is the convolution of v, with the Fejér kernel:

1

T or

/0 K Eoppi(z —y) dvpn(y).

Here F,,,11(z) equals m + 1 at multiples of 27, and it vanishes at other even multiples
of m/(m +1). So from (2.4) we have

) )
=9
f(m—l— 1) (m—l— 1)
whenever 7 is odd. This proves:
mj
=1 2.5
f(m—l— 1) (2:5)

whenever 1 < j < m is odd. More broadly, we now have an interpretation of f as an
interpolation of S given by the Fejér kernel.

f(z)

Next, let us show that

' )
=0 2.6
/ (m + 1> (2:6)
for any odd integer j. Namely, since f is the convolution of v with the Fejér kernel
Frni1, f'is the convolution of v with the derivative F, . ,. But F, . (z) vanishes at all
even multiples of w/(m + 1), since F,, 1 reaches its minimum 0 or maximum m + 1 at
those points. Since v is supported on odd multiples of 7/(m + 1), this proves (2.6).
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FIGURE 6. The Fejér kernel F,, 1 (x) with m = 8.

Clearly f is odd and 2m-periodic; in particular

£(0) = f(m) = 0. (2.7)

Next, since f’(x) is a linear combination of the functions coskz for 1 < k < m, de
Moivre’s formula gives that f/'(x) = P(cosz) for some polynomial P of degree m. In
particular, f’ has at most m zeros in the interval [0, 7] (counting multiplicity for the
zeros in (0,7)). On the other hand, from (2.6) we see that f’ has |m/2]| + 1 zeros in
this region, at the points - with 1 < j <m + 1 odd. On the other hand, from (2.5)
and Rolle’s theorem (and the fact that f is not locally constant) we also see that we
have [m/2] — 1 additional zeros distinct from the preceding ones, with one additional
zero strictly between % and %2) whenever 1 < j < 54+ 2 < m is odd. Thus all
the m zeros of [’ are accounted for, and there are no further zeros; in particular all the
zeros of f’ in (0, ) are simple, and f” changes sign as it crosses each zero in (0, 7). We
then conclude from (2.7), (2.5), and the mean value theorem that

e f(x) is strictly increasing from 0 to 1 as x goes from 0 to —"—

s

e Whenever 1 < j < j+2 < m is odd, [ starts at a local maximum of 1 at
T = ”H, strictly decreases to a local minimum somewhere between % and
m(j+2) m(j+2)

then strictly increases back to a local maximum of 1 at z = =~ -
o If j =2[ %] +1is the largest odd number less than m+1, f is strictly decreasing
from 1 to 0 as x goes from L to 7.



OPTIMAL SINE AND SAWTOOTH INEQUALITIES 17

(See Figures 4, 5.) This already establishes that f(z) <1 when 0 < z < 7. If we can
also show that f(z) > —1 for 0 < x < 7, then as f is odd and 27-periodic we will
have f(x) <1 for all z, proving the theorem. In reality, this bound will be true with
substantial room to spare, as f(x) is only moderately smaller than 1 on most of the
interval [0, 7] (cf. the Gibbs phenomenon).

From the observations above and the oddness of f, we know that f(z) > —1if x €
[—7/(m+1),7/(m+1)] and also if x € [mn/(m + 1), (m +2)7/(m + 1)]. So it suffices
to show that f(z + -25) — f(z — ;;77)] is nonnegative for = € [0, (m — 1)7/(2m + 2)],
and nonpositive for x € [(m + 3)7/(2m + 2), 7].

Assume that m is odd. Since f is the convolution of v, with the Fejér kernel F,, 1, we
have

us T T us
f<x+m+1) _f(m_m—i—l) = {I/m(x—i-m_'_l) _Vm(x_m—i—l)} L

4
- miﬂfso—‘sﬂ} * Pt
4
= T [Fa(®) - Funale — )]

(This description of the change of v, when the input changes by 27/(m + 1) uses
that m is odd.) So it suffices to show that F,, 1(x) — Fy,11(z — 7) is nonnegative for
z € [0,(m — 1)w/(2m + 2)], and that it is nonpositive for x € [(m + 3)7/(2m + 2), 7]
We prove this (in fact for slightly bigger intervals) in Lemma 2.2 below. That completes
the proof for m odd.

For m even, we have the somewhat messier situation that
i s
f(“mﬁ) _f(x_ m+1)
s 7T
- m - - Um - 7 * Fm
) R e IR

2m
e 280 = G j(mt1) — O(mt2)mj(mt1)] * g
27 mn (m+2)7
- 28y —Fn - — Fn -
m+1[ (@) +1<x m+1> +1<x m+1 )]
This is nonnegative for = € [0, (;nn;i);] and nonpositive for x € [(g:;i?, 7], by Lemma

2.2 below (which in fact works for slightly bigger intervals). This completes the proof
of Theorem 2.1. O

) (sin(m+1>(x/2> ) 2

Lemma 2.2. Let m be a positive integer, and let F(z) = Fp11(7) = =5 )2

be the Fejér kernel.

(i) If m is odd, then F(x) — F(x — m) is nonnegative if x € [—m/2,7/2] and non-
positive if v € [w/2,3m/2].
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(ii) If m is even, then 2F(z) — F(z — 25) — F(z — "7 s nonnegative if © €

m+1 m+13
(=5 + 2555 — magl and nonpositive if x € [§ + 55, 5 — Sl

Proof. (i) Let m be an odd positive integer. By definition of the Fejér kernel F'(z), we
have

F(z) = F(z —7) =

1 [sin®((m+1)x/2) sin2((m;1)m — (mzl)w)
m+1 sin? z/2 sin?(z — 7)/2
Here sin((z — 7)/2) = — cos(z/2). Since m is odd, (m + 1)7/2 is an integer multiple of
7, and so the numerators of the two terms are equal. We deduce that
in” 1)z /2 1 1
Fla) - Flo—m) = SlmEle/2) ) 1 |

m+1 sin®(z/2)  cos?(z/2)
For x € [—7/2,7/2], we have sin®(z/2) < 1/2, while cos?(z/2) > 1/2. Tt follows that
F(z) — F(x — ) is nonnegative if = € [—7/2,7/2]. By applying that result to z — 7 in
place of x, we also find that F'(z) — F(x — m) is nonpositive if = € [r/2,37/2], as we
want.

(ii) Let m be an even positive integer. By definition of the Fejér kernel F(x),
2F(x) — F(x —mn/(m+1)) — F(x — (m+2)r/(m+ 1))
1 {281n2((m +Da/2)  sin?(HEE —mn)gin?(Ope <m;2>”)]

m+ 1 sin?(x/2) sin®(2 — 52 sin?(2 — (2

2m—+2

Since m is even, mm/2 and (m+ 2)m/2 are both integer multiples of m, and so the three
sin? terms in the numerators are equal. So we can rewrite the expression above as

sin((m + 1)z/2) [ 2 ! ! }
m+1 sin®(z/2)  cos?(% + sms)  Cos* (5 — 575) ‘
For v € [-§ + ;25,5 — 75q), we have sin®(z/2) < 1/2, while cos?(£ — smos) and

0082(5 + QJH) are both > 1/2. It follows that the previous paragraph’s expression is

nonnegative for this range of x. Likewise, if z € [§+ 7, 3 — -], then sin?(x/2) > 1/2

while cos?(% + 575 ) and cos®(% — ;") are both < 1/2. Tt follows that the previous

2m—+-2 2m—+42
paragraph’s expression is nonpositive for this range of x. Lemma 2.2 is proved. 0
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