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Abstract

Networks are useful for representing phenomena in a broad range of domains. Although
their ability to represent complexity can be a virtue, it is sometimes useful to focus on a
simplified network that contains only the most important edges: the backbone. This
paper introduces and demonstrates a substantially expanded version of the backbone
package for R, which now provides methods for extracting backbones from weighted
networks, weighted bipartite projections, and unweighted networks. For each type of
network, fully replicable code is presented first for small toy examples, then for
complete empirical examples using transportation, political, and social networks. The
paper also demonstrates the implications of several issues of statistical inference that
arise in backbone extraction. It concludes by briefly reviewing existing applications of
backbone extraction using the backbone package, and future directions for research on
network backbone extraction.

Introduction

Networks are useful for representing phenomena in a broad range of domains [1}2].
Although their ability to represent complexity can be a virtue, in some cases (e.g.,
computationally intensive analysis, presence of noise, visualization) it is useful to
simplify a network and focus instead on its backbone. Given a complex network N,
which may be weighted or unweighted, its backbone N’ is a sparse and unweighted
subgraph that aims to preserve or reveal important structural features. Many backbone
methods have been proposed for extracting a backbone N’ from a network N, with
different methods designed for different types of networks, or to preserve different types
of structural features. However, applying these methods in practice has been
challenging because they were either not implemented or implemented in different
software languages.

The backbone package for R aims to overcome this practical limitation of network
backbone extraction by providing an integrated implementation of existing methods.
The formal mathematical details of these methods, and evidence of their performance as
structure-preserving or structure-revealing backbone models, is extensively documented
elsewhere and referenced below. Instead, the purpose of this paper is to provide a
practical guide to using the backbone package for backbone extraction. It is organized
in six sections. The first section provides an overview of the backbone package. The
second, third, and fourth sections illustrate how the package can be used to extract the
backbone from a weighted network, from a bipartite projection, and from an unweighted
network, respectively. Each of these sections begin with an overview of the relevant
backbone models, then provide a small toy example to illustrate the model, followed by
an empirical example to demonstrate its use in practice. The fifth section reviews issues

June 2, 2022

13


https://doi.org/10.1371/journal.pone.0269137

This is a post-print. Please cite as:
Neal, Z.P. (2022). backbone: An R package to extract network backbones.
PLoS ONE, 17, €0269137. https://doi.org/10.1371/journal.pone.0269137

of statistical inference that arise in backbone models. Finally, the sixth section
concludes with a discussion of past applications of the backbone package, its limitations,
and future directions for the implementation of backbone models.

The backbone package

The most recent release of the backbone package can be installed in R [3] from the
Comprehensive R Archive Network (CRAN) using:

> install.packages("backbone")
trying URL ’https://cran.rstudio.com...’
Content type ’application/x-gzip’ length 1758582 bytes (1.7 MB)

downloaded 1.7 MB

Once installed, the backbone package can be loaded using:

> library(backbone)

R backbone v2.1.0

| _ \ Cite: Neal, Z. P., (2022). backbone: An R package to extract network
[#1_) | backbones. PLOS ONE.

[# _ <

|#1_) | Help: type vignette("backbone"); email zpneal@msu.edu; github zpneal/backbone
/ Beta: type devtools::install_github("zpneal/backbone", ref = "devel")

The startup message displays the version of the backbone package that is installed
and has been loaded for use. It also displays the recommended citation for the package,
sources for help using the package, and the command to install the beta release of the
backbone package. Additional information about the CRAN distribution is available at
https://CRAN.R-project.org/package=backbone, while additional materials relating
to backbone, including papers, presentations, workshop materials, and data sets are
available at http://www.zacharyneal.com/backbone. The code and data necessary to
replicate the examples shown in this paper are available at https://osf.io/8tuc7/.

Fig [1] illustrates the typical workflow of the backbone package. A user begins with
source data, which can take the form of an R matrix object, sparse Matrix object, an
edgelist stored as a dataframe object, or an igraph object. The source data may
represent an unweighted bipartite network, a weighted unipartite network, or an
unweighted unipartite network. The relevant backbone models depend on the type of
network. For example, when starting with an unweighted bipartite network, a user may
extract the backbone from its weighted projection using any of the following models:
sdsm(), fdsm(), fixedrow(), fixedcol(), fixedfill (), disparity(), or global().
Extracting the backbone using one of these functions yields an unweighted unipartite
network, thus as the figure illustrates, the user may subsequently extract a second-order
backbone using the sparsify() function.

The backbone.suggest () function can be used to examine the source data, identify
the relevant backbone models, and suggest the most appropriate model. For example:

> N <- matrix(runif(100), 10, 10)
> backbone.suggest (N)
The disparity filter is suggested. Type "7disparity" for more information.

Here, the source data is a randomly generated 10 x 10 matrix of values between 0 and 1.
Based on these characteristics, it is recognized as a weighted and directed adjacency
matrix representing a weighted unipartite network. Therefore, the disparity filter model
is recommended, for which additional information is available by typing ?disparity in
the R console.
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Fig 1. Workflow of the backbone package.

In the sections below, we use randomly generated data like this for toy examples, but
also use real data for empirical examples. The empirical examples use data on air
transportation in the US [4], bill sponsorship in the US Senate [5], and friendships
among faculty at a UK university [6]. A random number seed can be set to ensure that
the randomly generated data are replicable, and the empirical data can be loaded, using;:

> set.seed(1)
> load("backbone2_tutorial.Rdata")

Backbones of weighted networks

Background

In a weighted network, each edge has a weight that captures the strength of the
relationship between the two nodes it connects. These weights can represent capacities
when larger values capture stronger relations, or can represent costs when larger values
capture weaker relations. The precise meaning of these weights depends on the context
of the network, but the models implemented in the backbone package assume they
represent capacities (i.e., stronger relations have larger weights). In a social network, the
weights might represent the strength of a friendship, or the frequency of communication
between two people. Alternatively, in a transportation network the weights might
represent the number of people flying from one city to another, or the capacity of a road
to carry vehicles. These weights provide some information about the importance of
edges in the network, and backbone models designed for weighted networks use this
information to determine which edges should be preserved in the backbone.

The simplest backbone model applicable to weighted networks is the global threshold.
The global threshold model preserves all edges whose weight exceeds a specified
threshold. It can be classified as a ‘global’ model because it applies the same criteria to
all edges in the network, and can be classified as a ‘structural’ model because it uses
only structural information (here, the edges’ weights). While it can be appealing for its
simplicity, the global threshold model can be problematic when applied to networks in
which the edge weights follow a long-tailed distribution (e.g., mostly weak edges, a few
strong edges) and networks in which different parts of the network have different
characteristic edge weights (e.g., multi-scale networks).
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Fig 2. Extracting the backbone of a weighted network (toy example).

Many alternative backbone models have been developed for weighted networks
exhibiting these characteristics |[7H21|, however among the most widely used is the
disparity filter [4]. The disparity filter compares an edge’s observed weight to its
expected weight in a null model where a node’s total weight is uniformly distributed
across its edges. For example, it might compare the observed number of people traveling
between New York and Los Angeles (a large number) to the number that would be
expected if each of New York’s passengers randomly selected a destination (likely a
much smaller number). An edge is preserved in the backbone if its observed weight is
statistically significantly (at a specified « significance level) stronger than expected
under such a null model. This model can be classified as a ‘local’ model because an
edge’s importance is evaluated using information in its neighborhood, and can be
classified as a ‘statistical’ model because it makes inferences about edge importance by
reference to a statistical null model.

Toy Example

To illustrate extracting the global threshold and disparity filter backbones from
weighted networks using the backbone package, we begin with a simple toy example:

> mat <- matrix(c(0,10,10,10,10,75,0,0,0,0,
10,0,1,1,1,0,0,0,0,0,
10,1,0,1,1,0,0,0,0,0,
10,1,1,0,1,0,0,0,0,0,
10,1,1,1,0,0,0,0,0,0,
75,0,0,0,0,0,100,100,100,100,
0,0,0,0,0,100,0,10,10,10,
0,0,0,0,0,100,10,0,10,10,
0,0,0,0,0,100,10,10,0,10,
0,0,0,0,0,100,10,10,10,0),10)

This network is shown in the left panel of Fig[2] where stronger edges are drawn using
thicker lines. The edge weights in this network clearly follow a long-tailed distribution:
a few edges are very strong (weights > 75), while the majority of edges are fairly weak
(weights < 10). Additionally, the network has a clear multi-scale structure: the cluster
in the lower left is characterized by relatively strong edges, while the cluster in the
upper right is characterized by relatively weak edges.

We can extract a global threshold backbone from this network using the global ()
function:

> unweighted <- global(mat, upper = function(x)mean(x), class = "igraph")

In this example, the global() function takes three arguments: the source network, the
upper threshold for edges to discard, and the desired class of the result. Here, the
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source network takes the form of an adjacency matrix mat. The upper threshold for
edges to discard is defined as the mean of all edge weights, thereby yielding a backbone
of stronger-than-average edges. Finally, the result is returned as an igraph object, to
facilitate subsequent visualization and analysis. The global threshold backbone is shown
in the middle panel of Fig [2], which highlights its shortcomings when applied to a
multiscale network. By applying the same threshold to all edges, it preserves edges in
the high-weight cluster, but ignores the edges in the low-weight cluster.

We can extract a disparity filter backbone from this network using the disparity()
function:

> backbone <- disparity(mat, alpha = 0.05, class = "igraph")

The disparity() function also takes the adjacency matrix mat as input and returns
the backbone as an igraph object, however it does not use a global threshold value.
Instead, the user specifies alpha, the statistical significance level. In this example, an
edge is preserved if its weight is larger than the weight of the corresponding edge it at
least 95% of null model networks. The disparity backbone is shown in the right panel of
Fig [2| which illustrates its ability to preserve the original network’s hub-and-spoke
structure despite its multi-scale edge weights.

Empirical Example

The toy example illustrates the basic operation of the global() and disparity()
backbone extraction functions. To illustrate how these backbone extraction functions
might be used in practice, we apply them to extract the backbone of the US air
transportation network, which is known to have a hub-and-spoke structure containing
many low-degree nodes (e.g., most airports serve few passengers) and a few very
high-degree nodes (e.g., hub airports that serve many passengers). These data closely
resemble the airline data used in the initial demonstration of the disparity filter [4], and
were obtained from the US Bureau of Transportation Statistics’ Airline Origin and
Destination Survey, which contains a 10% random sample of all domestic airline tickets
in 2019. The weighted, symmetric network records the number of passengers traveling
between 382 airports in the continental US. We can inspect the entries in this network:

> airport["JFK","LAX"] #Passengers between New York and Los Angeles

[1] 326756

> airport["LAN","GRR"] #Passengers between Lansing and Grand Rapids
[1] 94

> airport["LAN","LAX"] #Passengers between Lansing and Los Angeles
[11 o

For example, we observe that many passengers fly between JFK (New York) and LAX
(Los Angeles), while very few fly between LAN (Lansing, Michigan) and GRR (Grand
Rapids, Michigan) and none fly between LAN and LAX because there is no scheduled
service.

The weighted original network is shown in the left panel of Fig[3] which highlights
that the network’s high density obscures any particular structure. The network has a
very large mean weighted degree (k) = 374215 because some airports such as Atlanta’s
Hartsfield-Jackson serve very large volumes of passengers. When a network has a
hub-and-spoke structure, the probability of observing a node with degree k is
approximately distributed as k7, where typically 2 < v < 3 [22]. However, in this
network v = 1.15 |23], which falls outside this range and suggests the network lacks the
expected hub-and-spoke structure.

We can extract a global threshold backbone from this network using;:

> unweighted <- global(airport, upper = function(x)mean(x), class = "igraph")
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Fig 3. Extracting the backbone of a weighted network of continental US airline traffic
in 2019.

The resulting backbone, which preserves only stronger-than-average edges, is shown in
the middle panel of Fig|3| It is clearly much sparser, with a smaller mean degree
(k) = 14.81. However, it remains fairly dense, and is dominated by the high-volume
routes on the East coast. Its degree scaling exponent v = 1.83 remains inconsistent with
a hub-and-spoke transportation network [22}23].

We can extract a disparity filter backbone from this network using;:

> backbone <- disparity(airport, alpha = 0.001, class = "igraph", narrative = TRUE)

=== Suggested manuscript text and citations ===

We used the backbone package for R (v2.1.0; Neal, 2022) to extract the unweighted
backbone of a weighted and undirected unipartite network containing 382 nodes.

An edge was retained in the backbone if its weight was statistically significant
(alpha = 0.001) using the disparity filter (Serrano et al., 2009). This reduced
the number of edges by 91.4%, and reduced the number of connected nodes by 14.7%.

Neal, Z. P. (2022). backbone: An R Package to Extract Network Backbones.
arXiv:2203.11055 [cs.SI]. https://doi.org/10.48550/arXiv.2203.11055

Serrano, M. A., Boguna, M., & Vespignani, A. (2009). Extracting the multiscale
backbone of complex weighted networks. Proceedings of the National Academy of
Sciences, 106(16), 6483-6488. https://doi.org/10.1073/pnas.0808904106

In this example, following [|4] we use a conservative statistical significance level of

a = 0.001. We also include the narrative = TRUE argument, which automatically
generates text and citations describing what the disparity() function has done, and
that can be used or adapted for a manuscript. The resulting backbone, which preserves
edges whose weights are unusually large compared to the null model, is shown in the
right panel of Fig|3|l It is quite sparse: the narrative text indicates that the number of
edges was reduced by 91.4%, and we observe it has a small mean degree (k) = 4.34. Its
degree scaling exponent v = 2.34 is now consistent with a transportation infrastructure
known to have a hub-and-spoke organization [22,23]. Indeed, the visualization clearly
illustrates this organization, which is anchored by the hub airports of ORD (Chicago),
DEN (Denver), DEW (Dallas-Fort Worth), and ATL (Atlanta).

Backbones of bipartite projections

Background

A bipartite projection is a special type of weighted network in which the edge weights
capture the number of artifacts shared in common by two agents, and thus capture
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co-occurrence relations [24]. They arise in a wide range of contexts, including co-author
networks where authors (the agents) share papers (the artifacts), co-sponsorship
networks where legislators share bills, co-attendance networks where people share
events, and co-expression networks where genes share expressed proteins. As a variety
of weighted network, the backbone of a bipartite projection can be extracted using
global() or disparity(). However, it is usually more appropriate to extract the
backbone of a bipartite projection using a backbone model designed specifically for this
purpose.

To understand why a specialized backbone model is needed for a bipartite projection,
it is helpful to consider how the edge weights in a bipartite projection are defined. A
bipartite network in which authors (the agents) are connected to the papers (the
artifacts) they have written can be represented by an incidence matrix B, where where
B;i = 1 if author ¢ wrote paper k. We obtain the adjacency matrix of the bipartite
projection P from the incidence matrix of the bipartite network B as P = BB’, where
each entry P;; indicates the number of papers co-authored by authors ¢ and j (i.e., the
edge weight). Applying a conventional backbone model such as the disparity filter to
this bipartite projection would decide which edges to preserve based only on these edge
weights, but would fail to consider two important pieces of information that are
contained in the original bipartite network. First, the row sums of B record how many
papers the 7*" author wrote (i.e., the agent degrees). This is important to consider
because if two authors each wrote many papers, it is likely they would have co-authored
a few just by chance. Second, the column sums of B record how many authors the k'"
paper has (i.e., the artifact degrees). This is important to consider because if a paper
has many authors, then observing that two people are both on the author list is not
particularly noteworthy.

Backbone models designed specifically for bipartite projections are unique because
they are applied directly to the bipartite network, not to its projection, so that they can
incorporate this information. While there are multiple such models [24}28], they all use
a common approach: An edge’s observed weight in the projection is compared to its
expected weight in a projection obtained from a random bipartite network generated by
a null model. An edge is preserved in the backbone if its observed weight is statistically
significantly (at a specified « significance level) stronger than expected under the null
model. These models differ in the constraints they impose on the random bipartite
networks. In this section, we illustrate the Stochastic Degree Sequence Model (SDSM),
which constrains the random bipartite networks to have row sums and column sums
that match those of the observed bipartite network on average. The SDSM is faster
than the Fized Degree Sequence Model, and more accurately recovers known structural
characteristics than the Fized Row, Fized Column, or Fized Fill models [2§].

Toy Example

To illustrate extracting the SDSM backbone from a bipartite projection using the
backbone package, we begin with a simple toy example:

> B <- rbind(cbind(matrix(rbinom(250,1,.8),10),
matrix(rbinom(250,1,.2),10),
matrix(rbinom(250,1,.2),10)),
cbind(matrix(rbinom(250,1,.2),10),
matrix(rbinom(250,1,.8),10),
matrix(rbinom(250,1,.2),10)),
cbind(matrix(rbinom(250,1,.2),10),
matrix(rbinom(250,1,.2),10),
matrix(rbinom(250,1,.8),10)))
> sum(B[1,]) #Agent 1’s degree
[1] 28
> sum(B[,1]) #Artifact 1’s degree
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Fig 4. Extracting the backbone of a bipartite projection (toy example).

[1] 11

This generates a random bipartite network, represented as an incidence matrix in B.
This network consists of 30 agents and 75 artifacts, and is embedded with a community
structure. The agents are split into three groups of 10, and the artifacts are split into
three groups of 25. There is an 80% chance of an edge between an agent and artifact
belonging to the same group (i.e., people are likely to attend their own group’s events),
and only a 20% chance of an edge between an agent and artifact belonging to different
groups (i.e., people are unlikely to attend another group’s events). Examining this
bipartite network, we observe that Agent 1 is associated with 28 artifacts (i.e., agent
degree), and that Artifact 1 is associated with 11 agents (i.e., artifact degree).

Given this bipartite network, we can construct and examine its bipartite projection:

> P <- B *), t(B) #Construct bipartite projection
> P[1,2] #Edge weight for two agents in the same group

[1] 17

> P[1,20] #Edge weight for two agents in different groups
[11 7

> min(P) #Smallest edge weight

[11 3

The projection is constructed by multiplying the bipartite network B by its transpose
t(B). In the projection, we observe that agents 1 and 2 shared 17 artifacts in common,
a large number because they are members of the same group. In contrast, agents 1 and
20 share only 7 artifacts in common, a small number because they are members of
different groups. Notably, however, the smallest number of artifacts shared by any pair
of agents is still 3. This means that all agents share at least some artifacts in common,
which makes the bipartite projection not particularly useful as a network, and occurs
because the construction of a bipartite projection “induces an inflation in the number of
links” [29]. Indeed, as illustrated in the left panel of Fig[4] the weighted bipartite
projection is so dense that no particular structure is visible, including the community
structure that is known to exist.

Because the bipartite projection is a weighted network, we could extract its
backbone using the disparity filter:
> disparity <- disparity(P, alpha = 0.05, class = "igraph")
This object looks like it could be a bipartite projection. If so, consider extracting

the backbone using a model designed for bipartite projections: sdsm, fdsm, fixedfill,
fixedrow, or fixedcol.

The middle panel of Fig ] shows the disparity backbone, which is empty. That is, the
disparity filter is unable to identify any significant edges to preserve in the backbone.
This occurs because the disparity filter is relying only on information contained in the
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bipartite projection, but does not use any of the information contained in the
underlying bipartite network. Here, the disparity() function detects that the source
network appears to be a bipartite projection, and recommends instead using a backbone
model specifically designed for such a network.

Following this advice, we can instead extract a backbone using the stochastic degree
sequence model and sdsm() function:

> backbone <- sdsm(B, alpha = 0.05, class = "igraph")

Like the disparity () function, the sdsm() function also takes alpha and class
arguments. However, the source network is not the bipartite projection P, but the
original bipartite network B from which it was constructed. The right panel of Fig [4]
shows the SDSM backbone, which is sparse and clearly displays the known
three-community structure.

Empirical Example

To illustrate the extraction of a bipartite projection backbone in practice, we use data
on bill sponsorship patterns in the US Senate’s 115" session (2017-2018) [30./31]. In the
US Senate, legislators can express support for a bill by ‘sponsoring’ it. Therefore,
bipartite projections of bill sponsorship data yield co-sponsorship networks that are
often used to study political alliances among legislators. The bipartite network’s
incidence matrix records the bill sponsorships of 105 Senators on 3665 bills. We can
inspect the details of this bipartite network:

> senate[1:2,1:2] #First two rows and columns

S.1 8.100
Sen. Alexander, Lamar [R-TN] 0 1
Sen. Baldwin, Tammy [D-WI] 0 0
> sum(senate["Sen. Stabenow, Debbie [D-MI]",]) #Sponsorships by Sen. Stabenow
[1]1 316
> sum(senate[,"S.1006"]) #Sponsors of Equality Act
[1]1 48

Looking at the first four entries of the incidence matrix, we see that neither Senators
Alexander nor Baldwin sponsored Senate Bill 1, and that Senator Alexander sponsored
Senate Bill 100 while Senator Baldwin did not. Row sums indicate each Senator’s
number of sponsorships, for example, Senator Stabenow sponsored 316 bills in this
session. Similarly, column sums indicate each bill’s number of sponsors, for example,
Senate Bill 1006 had 48 sponsors. This bill, known as the Equality Act, would have
amended the Civil Rights Act of 1964 to prohibit discrimination by sex, sexual
orientation, and gender identity, and was sponsored only by Democrats and
Independents.

Given this bipartite network, we can construct and examine its bipartite projection:

> P <- senate %%}, t(senate) #Construct bipartite projection

> P["Sen. Stabenow, Debbie [D-MI]", "Sen. Peters, Gary C. [D-MI]"]
[1] 151

> P["Sen. Stabenow, Debbie [D-MI]", "Sen. Cruz, Ted [R-TX]"]

[1] 14

We see that the Senators Stabenow and Peters co-sponsored 151 bills together,
reflecting their likely alliance as members of the same party and representatives of the
same state. In contrast, we see that Senators Stabenow and Cruz sponsored only 14
bills together, reflecting their lack of partnership as members of opposing parties and
representatives of different states. Notably, however, despite the sharp ideological
differences between Stabenow and Cruz, they still co-sponsored some bills together and
are still connected in the bipartite projection.
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Fig 5. Extracting the backbone of a bipartite projection of bill co-sponsorship in the
115*" US Senate.

The weighted bipartite projection is shown in the left panel of Fig [} Democrats and
Independents are shown in blue, while Republicans are shown in red. It illustrates
several problems with relying on a raw projection. First, the network has a high density
and large weighted mean degree (k) = 4688.48 that obscures any structure. Second, the
visualization fails to capture the known partisan polarization of the US Senate [5/30}32],
which is confirmed by the network’s small modularity (@ = 0.18) with respect to
political party affiliation. Finally, the network includes as connected two nodes
representing Senators Jeff Sessions (R-AL) and Jon Kyl (R-AZ). Although these
senators did co-sponsor some bills with their Republican colleagues, they co-sponsored
very few because their terms were unusually short: Sessions served only 36 days before
being appointed US Attorney General, while Kyl served only 117 days to fill a vacancy
left by the death of Senator John McCain.

Because this bipartite projection is a weighted network, we could extract its
backbone using the disparity filter:
> disparity <- disparity(P, alpha = 0.1, class = "igraph")

This object looks like it could be a bipartite projection. If so, consider extracting

the backbone using a model designed for bipartite projections: sdsm, fdsm, fixedfill,
fixedrow, or fixedcol.

The disparity backbone is shown in the middle panel of Fig[5| Even using a relatively
liberal significance level (« = 0.1), this backbone is so sparse ((k) = 3.64) that the
majority of Senators are disconnected. Additionally, although there are small clusters of
Democrats and Republicans, its modest modularity (@ = 0.24) highlights that it fails to
capture the known partisan polarization. These problems arise because the disparity
filter is applied directly to the bipartite projection, and is unable to incorporate the
more detailed information contained in the original bipartite network.

Finally, we can extract a backbone using the stochastic degree sequence model:

> backbone <- sdsm(senate, alpha = 0.05, class = "igraph", narrative = TRUE)

=== Suggested manuscript text and citations ===

We used the backbone package for R (v2.1.0; Neal, 2022) to extract the unweighted backbone
of the weighted projection of an unweighted bipartite network containing 105 agents and
3665 artifacts. An edge was retained in the backbone if its weight was statistically
significant (alpha = 0.05) using the stochastic degree sequence model (SDSM; Neal,

2014). This reduced the number of edges by 69.7%, and reduced the number of connected
nodes by 1.9%.

Neal, Z. P. (2022). backbone: An R Package to Extract Network Backbones. arXiv:
2203.11055 [cs.SI]. https://doi.org/10.48550/arXiv.2203.11055

Neal, Z. P. (2014). The backbone of bipartite projections: Inferring relationships

June 2, 2022 10


https://doi.org/10.1371/journal.pone.0269137

This is a post-print. Please cite as:

Neal, Z.P. (2022). backbone: An R package to extract network backbones.
PLoS ONE, 17, €0269137. https://doi.org/10.1371/journal.pone.0269137

from co-authorship, co-sponsorship, co-attendance and other co-behaviors. Social
Networks, 39, 84-97. https://doi.org/10.1016/j.socnet.2014.06.001

By including the narrative = TRUE argument, the function generates text and
citations describing the backbone extraction. The SDSM backbone is shown in the right
panel of Fig 5| Tt is sparse ({(k) = 30.7), but not as sparse as the disparity backbone.
Accordingly, with the desirable exceptions of Sessions and Kyl, all the Senators are
connected in a single component. Moreover, this connected component clearly
illustrates the known partisan polarization of the US Senate, which is confirmed by the
network’s high modularity (Q = 0.47).

Backbones of unweighted networks

Background

Backbone extraction from weighted networks and weighted bipartite projections is
facilitated by the availability of information about edge weights. A different approach is
required for extracting the backbone from unweighted networks because there are no
edge weights. Many backbone models for unweighted networks have been

proposed [33H38], but they all follow a common process: score, normalize, filter, connect:

1. Because there are no weights associated with the edges, each edge is assigned a
score. These scores can be random [38], but more often are topologically-derived.
For example, an edge may be assigned a score that counts the number of
triangles [36] or quadrangles [33] it completes, or that captures the amount of
overlap in the neighborhoods of the two nodes it connects [35//37].

2. These edge scores can then be normalized. The normalization step is omitted by
some backbone models [35}[38], while other backbone models normalize through
rankings [341[37] or more sophisticated transformations [33,36].

3. The (optionally normalized) edge scored are filtered according to a user-specified
sparsification parameter. Different backbone models interpret this sparsification
parameter in different ways. For example, this parameter may specify the fraction
of strongest scoring edges to retain (38|, the threshold edge score above which
edges are retained [33}35[36], or a non-linear parameter controlling the stringency
of edge retention [34}37].

4. Because unweighted backbone models can frequently yield disconnected networks,
some models ensure the connectedness of the backbone by also including edges
that appear in the union of minimum spanning trees [33].

Each of these steps in the process represent a decision point in the specification of a
backbone model. The sparsify() function in the backbone package allows users to
explicitly specify how (or whether) each step is performed, and therefore to customize a
unique backbone model. However, some combinations represent named backbone
models that have been investigated in the literature. In this paper, we focus on two
such models that are fast and often yield informative backbones: Local Sparsification
(L-Spar) [37] and Local Degree (LD) [34].

The L-Spar model [37] scores edges using the Jaccard coefficient, which measures the
amount of overlap in the neighbors of the two nodes it connects, ranging from 0 (no
overlap) to 1 (complete overlap). Here, the intuition is that relationships are stronger
between individuals who share many of the same contacts, which makes this model most
appropriate for extracting backbones that preserve clustering structures. Next, the edge
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Fig 6. Extracting the backbone of an unweighted network with embedded communities
(toy example).

scores are normalized by ranking them from the perspective of each node, such that a
node’s top scoring edge is ranked highest. Finally, for a node with degree d, the d*®
highest-ranked edges are preserved in the backbone, where s is the sparsification
parameter ranging from 0 to 1. When s = 0, which is the smallest value yielding the
sparsest backbone, every node’s one strongest edge is retained because d° = 1 for all d.
Alternatively, when s = 1, which is the largest value yielding the densest backbone, all
of a node’s edges are retained because d' = d for all d. Intermediate values of s retain
more or fewer edges, but non-linearly with the goal of removing edges of “nodes with
higher degree more aggressively than nodes with lower degree” [37].

The LD model [34] scores edges, from the perspective of each node, using the degree
of the node at the other end. Here, the intuition is that the most important edges are
those that lead to hubs, which makes this model most appropriate for extracting
backbones that preserve branching, hub-and-spoke, or hierarchical structures. After this
scoring step, the LD model proceeds identically to the L-Spar model: edges are
normalized by rank, then the d® highest-ranking edges for each node are preserved in
the backbone.

Toy Examples

To illustrate extracting backbones from unweighted networks using the backbone
package, we begin with two separate toy examples:

L-Spar and communities. The L-Spar backbone model is designed to extract
backbones that preserve hidden community structures. To illustrate, we begin by
generating a random unweighted network embedded with a hidden community structure:

> pref.matrix <- matrix(c(.75,.25,.25,.25,.75,.25,.25,.25,.75),3,3)
> unweighted <- sbm.game(60, pref.matrix, c(20,20,20))

The sbm.game () function is from the igraph |39] package, and is used to generate
stochastic block models. In this case, it yields a 60-node unweighted, undirected
network composed of three 20-node communities, such that there is a 75% chance of a
within-community edge and a 25% change of a between-community edge. The left panel
of Fig [6] shows the resulting network, which is so dense that the community structure is
obscured.

We can extract the L-Spar backbone using either the flexible sparsify() function
or the simpler sparsify.with.lspar() function:

> backbone <- sparsify(unweighted, escore = "jaccard", normalize = "rank",
filter = "degree", umst = FALSE, s = 0.5)
> backbone <- sparsify.with.lspar(unweighted, s = 0.5)
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Fig 7. Extracting the backbone of an unweighted network with embedded hub/spoke
structure (toy example).

The sparsify() function is highly customizable by allowing the user to specify how to
perform each of the four steps in an unweighted backbone model, while the
sparsify.with.lspar() function is a simplified wrapper that performs these steps
according to the L-Spar model. In either case, the sparsification parameter s specifies
the stringency of the backbone model in preserving edges. The right panel of Fig [6]
shows the L-Spar backbone, which clearly reveals the known three-community structure
of this network.

LD and hubs. The LD backbone model is designed to extract backbones that
preserve hidden hub-and-spoke or hierarchical structures. To illustrate, we begin by
generating a random unweighted netwokr embedded with hidden hubs:

> unweighted <- as.undirected(sample_pa(60, m = 3), mode = "collapse")

The sample_pa() function is from the igraph [39] package, and is used to generate
random networks formed via preferential attachment. In this case, it yields a 60-node
unweighted, undirected network in which a few nodes occupy high-degree hub positions.
The left panel of Fig [7] shows the resulting network, which is so dense that the hubs are
obscured.

We can extract the L-Spar backbone using either the flexible sparsify () function
or the simpler sparsify.with.localdegree() function:

> backbone <- sparsify(unweighted, escore = "degree", normalize = "rank",
filter = "degree", umst = FALSE, s = 0.1)
> backbone <- sparsify.with.localdegree(unweighted, s = 0.1)

Here, the sparsify.with.localdegree() function is a wrapper for the more flexible
sparsify() function that performs each of the steps according to the local degree
model. The right panel of Fig[7] shows the LD backbone, which clearly reveals the
network’s hierarchical structure around a few high-degree hubs.

Empirical Examples

To illustrate the extraction of backbones from unweighted networks in practice, we use
two separate empirical examples:

L-Spar and friendship. To illustrate the use the L-Spar model to reveal a hidden
community structure, we use data on the undirected and unweighted friendships among
79 faculty at a UK university |6]. Each individual is a member of a single school, which
provides an expectation for a community structure. The left panel of Fig (8| shows the
original network, with nodes colored according to their school membership. For a small
network, it is relatively dense, with a mean degree (k) = 14.25, which can hamper the
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Fig 8. Extracting the backbone of an unweighted network of faculty email exchanges.

identification of communities. In this case, the communities are relatively obvious only
because the nodes are already colored according to their known community
memberships. However, communities detected by applying a fast-greedy algorithm to
this network yields only a moderate recovery of the true memberships as measured by
the Adjusted Rand Index (ARI;, = 0.76) [40].

We can extract the network’s L-Spar backbone using:

> backbone <- sparsify.with.lspar(faculty, s = 0.5, class = "igraph", narrative = TRUE)

=== Suggested manuscript text and citations ===

We used the backbone package for R (v2.1.0; Neal, 2022) to extract the unweighted backbone
of an unweighted and undirected unipartite network containing 79 nodes. Specifically,

we used Satuluri et al.’s (2011) L-Spar model with a sparsification threshold of 0.5.

This reduced the number of edges by 62J,, and reduced the number of connected nodes by 0%.

Neal, Z. P. (2022). backbone: An R Package to Extract Network Backbones. arXiv:
2203.11055 [cs.SI]. https://doi.org/10.48550/arXiv.2203.11055

Satuluri, V., Parthasarathy, S., & Ruan, Y. (2011, June). Local graph sparsification
for scalable clustering. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data (pp. 721-732). https://doi.org/10.1145/1989323.1989399

By including the narrative = TRUE argument, the function generates text and
citations describing the backbone extraction. The resulting backbone is shown in the
right panel of Fig|8 It is substantially less dense, with a much smaller mean degree
(k) = 5.32, which more clearly reveals the three-community structure. Indeed, detecting
communities by applying a fast-greedy algorithm to the backbone yields an excellent
recovery of the true memberships (ARIs, = 0.92) [40].

LD and air traffic. To illustrate the use the LD model to reveal hidden hubs, we
return to the US air traffic data discussed earlier. From the original weighted network,
we focus on the unweighted version:
> unweighted <- simplify(graph_from_adjacency_matrix(airport, mode = "undirected",

diag = FALSE))
> unweighted["JFK","LAX"] #Are there flights between New York and Los Angeles?

[11 1

> unweighted ["LAN","LAX"] #Are there flights between Lansing and Los Angeles
[11 o

> sum(unweighted["LAN",]) #How many destinations are reachable from Lansing?
[1]1 40

The simplify () function from the igraph [39] package transforms the originally
weighted airline network into an unweighted network in which two airports are
connected if any number of passagers flew between them. Examining this unweighted
network, we observe that there are flights between JFK (New York) and LAX (Los
Angeles), but not between LAN (Lansing) and LAX (Los Angeles), and indeed that it is
possible to reach only 40 airports from LAN. The left panel of Fig [9] shows this
unweighted network, which is so dense and has such a high mean degree ((k) = 50.67)
that the underlying structure of the US airline infrastructure is obscured. Additionally,
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Fig 9. Extracting the backbone of an unweighted network of continental US airline
traffic in 2019.

its degree scaling exponent v = 6.84 is inconsistent with the transportation network’s
expected in a hub-and-spoke transportation network [22}23].
We can extract the network’s LD backbone using:

> backbone <- sparsify.with.localdegree(unweighted, s = 0.3, narrative = TRUE)

=== Suggested manuscript text and citations ===

We used the backbone package for R (v2.1.0; Neal, 2022) to extract the unweighted backbone
of an unweighted and undirected unipartite network containing 382 nodes. Specifically,

we used Hamann et al.’s (2016) local degree model with a sparsification threshold of

0.3. This reduced the number of edges by 90.7%, and reduced the number of connected

nodes by 0%.

Neal, Z. P. (2022). backbone: An R Package to Extract Network Backbones. arXiv:
2203.11055 [cs.SI]. https://doi.org/10.48550/arXiv.2203.11055

Hamann, M., Lindner, G., Meyerhenke, H., Staudt, C. L., & Wagner, D. (2016). Structure-
preserving sparsification methods for social networks. Social Network Analysis and
Mining, 6(1), 22. https:://10.1007/s13278-016-0332-2

By including the narrative = TRUE argument, the function generates text and
citations describing the backbone extraction. The resulting backbone is shown in the
right panel of Fig @ It is much sparser, with a smaller mean degree (k) = 4.71, which
makes it easier to see the hub-and-spoke structure of the network anchored by the hub
airports of ORD (Chicago), DEN (Denver), DFW (Dallas-Fort Worth), and ATL
(Atlanta). Additionally, its degree scaling exponent v = 1.94 is consistent with a
transportation infrastructure known to have a hub-and-spoke organization [22}23].

Issues in statistical inference

Some of the backbone models implemented in the backbone package are ‘structural’

models that choose edges to retain based on their topological properties. For example,
the global threshold model makes such decisions on the basis of edge weights, while the
L-Spar model makes such decisions on the basis of an edge’s Jaccard coefficient, which
functions as an imputed edge weight. However, other models are ‘statistical’ in the sense
that they choose edges to retain by considering their probability relative to a statistical
null model. These statistical models compute a p-value for each edge, where the p-value
captures the probability of observing a larger weight associated with the same edge in a
random network. The statistical models are identifiable from the presence of an alpha
parameter; an edge is retained if its p-value is smaller than the specified a-value. This
section briefly reviews several issues related to statistical backbone models’ p-values.
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Exact versus approximate p-values

Most statistical models can compute edges’ p-values exactly using analytic methods [28].
However, the fixed degree sequence model used for extracting the backbone from
bipartite projections and implemented in the fdsm() requires estimating these p-values
using Monte Carlo simulation. This function uses efficient methods for simulating
random networks under the FDSM null model [41], however it is still necessary to
perform a large number of simulations to estimate p-values with sufficient confidence
that they can be compared to the a-value. The trials parameter of the fdsm()
function allows the user to explicitly specify how many simulations are used to estimate
the p-value. When the trials parameter is not specified, the function automatically
determines the required number of simulations to estimate p-value with sufficient
confidence. Using the US Senate data, for example:

> backbone <- fdsm(senate, alpha = 0.05, trials = 1000)
Constructing empirical edgewise p-values using 1000 trials -

| | 100%
> backbone <- fdsm(senate, alpha = 0.05)

Constructing empirical edgewise p-values using 80297 trials -

| | 100%

When trials = 1000 is specified, the p-values are estimated from 1000 random
bipartite networks, which takes only a few seconds but yields potentially unstable
results. In contrast, when the trials parameter is omitted, fdsm() automatically
determines that testing the p-values against a significance level of a = 0.05 will require
80,297 random bipartite networks, which takes several minutes. This highlights why the
FDSM backbone model is often impractical for extracting the backbone from large
bipartite projections, or at conservative significance levels (e.g., a < 0.05).

Obtaining p-values

Typically statistical backbone models evaluate edges’ p-values and return an unweighted
backbone that only contains the edges deemed statistically significant. However,
specifying alpha = NULL instead returns the p-values themselves, rather than the
backbone they imply. For example, in the case of the US airport network:

> bb.object <- disparity(airport, alpha = NULL)
This matrix object is being treated as a weighted undirected network containing 382 nodes.

> bb.object$G[1:3,1:3]
ALB ATL AVP
ALB 0 24349 13
ATL 24349 0 5761
AVP 13 5761 0

> bb.object$Pupper[1:3,1:3]

ALB ATL AVP
ALB 1.00000000000 0.00006619769 0.986723244
ATL 0.00006619769 1.00000000000 0.001924381
AVP 0.98672324370 0.00192438055 1.000000000

> bb.object$Plower[1:3,1:3]

ALB ATL AVP
ALB 1.00000000 0.9999338 0.01327676
ATL 0.99993380 1.0000000 0.99807562
AVP 0.01327676 0.9980756 1.00000000

> bb.object$model
[1] "disparity"
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By specifying alpha = NULL, the disparity() function returns a backbone object that
contains four items. First, it contains the original weighted network; here we see that
24,349 passengers flew between Atlanta (ATL) and Albuquerque (ALB). Second, it
contains the upper-tail p-values, which capture the probability of observing an edge
weight as large or larger in a random network. For example, we see that observing so
many passengers flying between ATL and ALB is very unlikely in a random network,
which offers evidence that the ATL-ALB edge is significant. Third, it contains the
lower-tail p-values, which capture the probability of observing an edge weight as small
or smaller in a random network. For example, we see that observing so few passengers
flying between ALB and Scranton (AVP) is very unlikely in a random network. Finally,
it contains a string indicating the backbone model that generated these p-values.

Returning a backbone object containing p-values can be useful in cases where
computing the p-values is slow (e.g., using £dsm() ), and backbones extracted using
multiple « significance levels are desired. In such cases, backbone extraction is a
two-step process: first generate a backbone object containing the p-values, then use
backbone.extract to extract a backbone at the desired « significance level. For
example,

> bb.object <- disparity(airport, alpha = NULL) #Compute p-values
> bbl <- backbone.extract(bb.object, alpha = 0.001) #Backbone at alpha
> bb2 <- backbone.extract(bb.object, alpha = 0.005) #Backbone at alpha

0.001
0.005

The first line computes the p-values for each edge in the airport network using the
disparity filter model. Then, the second line extracts the backbone using a significance
level of o = 0.001. The third line extracts a different backbone using the more liberal
significance level of a = 0.005, which can be performed without needing to re-compute
the p-values.

Correcting p-values

The chosen « significance level defines the Type-I error rate, which in the backbone
extraction context is the probability of deciding an edge has a larger weight than would
be expected in a random network, when in fact it does not (i.e., a false positive). In
practice, backbone extraction requires evaluating every edge with a non-zero weight,
which inflates the Type-I error rate. For example, if @ = 0.05, then the probability of
incorrectly deciding a single edge is significant is 0.05. However, the probability of
making at least one such incorrect decision across m edges is 1 — (1 — 0.05)™, which can
dramatically inflate the risk of false positives even when extracting relatively small
backbones. Performing a Multiple Test Correction (MTC), which involves adjusting the
computed p-values, is necessary to control for this error inflation. The statistical
backbone models implemented in the backbone package can perform any of the MTC
corrections that are provided by R’s p.adjust () function via the mtc parameter.

We can use the empirical airport data to examine the effect of correcting for multiple
tests:

> backbone_nomtc <- disparity(airport, alpha

= 0.001, class = "igraph", mtc = "none")
> backbone_mtc <- disparity(airport, alpha = 0.001

0
001, class = "igraph", mtc = "holm")

The left panel of Fig [10| shows the disparity filter backbone extracted from the weighted
network using an edgewise error rate of & = 0.001. That is, each edge’s p-value is
compared to 0.001 and retained if it is smaller. This yields a backbone in which there is
only a 0.001% chance that any given retained edge is, in fact, not significant. However,
because 9678 edges’ significance is tested, there is a 1 — (1 —0.001)%7® ~ 99.99% chance
that at least one retained edge is not significant. The right panel of Fig [10] shows the
disparity filter backbone extracted using a familywise error rate of a = 0.001, achieved
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Fig 10. Disparity filter backbone of a weighted network of continental US airline traffic
in 2019 at a edgewise error rate (left) or familywise error rate (right) of o = 0.001.

Signed SDSM Backbone
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Fig 11. Extracting the signed backbone of a bipartite projection of bill co-sponsorship
in the 115" US Senate.

by applying a Holm-Bonferroni correction to the p-values . This yields a much
sparser backbone in which there is only a 0.001% chance that one or more retained edge
is, in fact, not significant. Although the MTC-corrected backbone is much sparser, it
still displays the expected hub-and-spoke structure.

Signed backbones

In most cases, backbone extraction involves identifying and retaining the statistically
significantly strong edges in the backbone. However, statistical backbone models are also
capable of identifying and retaining the statistically significantly weak edges. Specifying
signed = TRUE yields a signed backbone in which significantly strong edges are
retained in the backbone as positive edges, while significantly weak edges are retained in
the backbone as negative edges. For example, returning to the US Senate data:

> signed <- sdsm(senate, alpha = 0.05, signed = TRUE)

Fig |11) shows the signed backbone, with positive edges drawn in green and negative
edges drawn in red. This example illustrates that, as expected, positive relations of
cooperation exist primarily between legislators from the same party, while negative
relations of opposition exist primarily between legislators from different parties [5].

Extracting an unweighted (i.e., not signed) backbone involves a one-tailed
significance test, that is, testing whether an edge’s observed weight is larger than the
weight of the corresponding edge in random networks generated under the null model.
In a one-tailed significance test, and edge is deemed significant if p < a. However,
extracting a signed backbone involves a two-tailed significance test because it requires
evaluating whether an edge’s observe weight it larger or smaller than expected in a
random network. In such two-tailed significance tests, an edge is deemed significant and
negative if its lower-tail p < §, and is deemed significant and positive if its upper-tail
p< 3.
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Conclusion

Applications

The models implemented in the backbone package are generic and can be used to
extract the backbone of networks observed in many different domains. To date, the
majority of applications have been in political, developmental, and biological sciences.
In political science, the backbone package has been used to infer networks of political
alliances among legislators from a bipartite projection of their bill

sponsorships [30H32,43-45]. While two legislators may be viewed as having an alliance
when they are observed to sponsor many of the same bills (i.e., the edge weight in a
co-sponsorship network), backbone models offer a way to identify pairs of legislators
that have sponsored significantly more bills together than expected. In developmental
science, the backbone package has been used to measure childrens’ social networks from
their peer-reported or observed group memberships [46,47]. This is useful because data
on childrens’ social relations are difficult to collect directly, but they can often be
inferred from bipartite projections. In the biological sciences, the backbone package has
been used to examine organism co-occurrences in both plants [48] and animals [49], and
is used by the genetonic package [50] to extract the backbone of gene-geneset graphs.
Beyond these scientific applications, the backbone package has also been used to
examine the collaboration relations among the writers, pencilers, and editors responsible
for the X-men comic book series [51], and to recommend holiday movies [52]. These
applications highlight the flexibility of the backbone extraction functions implemented
in the backbone package and offer additional illustrations of its functionality.

Limitations and future work

The backbone package remains under development, and the models it implements are
relatively new, which means that both the package and models are subject to some
limitations that highlight opportunities for future work. First, many backbone models
exist for both weighted and unweighted [7H17}[53H55] networks that are not yet
implemented in the backbone package. However, the backbone package provides a
generic framework for the implementation of additional models in future releases.
Second, relatively little research has focused on validating backbone models or
establishing their scope conditions, which leaves researchers with limited guidance on
model selection. The backbone.suggest () function already provides rudimentary
model selection assistance. However, by implementing multiple models in a single
framework, the backbone package can facilitate future work comparing backbone
models on data with a ground truth (for validation) or with different characteristics (to
establish scope conditions). Finally, because the goal of backbone extraction is
simplification, backbone models are most useful in very large networks, however certain
backbone models computationally intensive. Thus, future work on backbone models and
their implementations should focus on scalability and efficiency.
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