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ABSTRACT

Projections of bipartite or two-mode networks capture co-occurrences, and are used in diverse fields (e.g., ecology, economics,
bibliometrics, politics) to represent unipartite networks. A key challenge in analyzing such networks is determining whether an
observed number of co-occurrences between two nodes is significant, and therefore whether an edge exists between them.
One approach, the fixed degree sequence model (FDSM), evaluates the significance of an edge’s weight by comparison to
a null model in which the degree sequences of the original bipartite network are fixed. Although the FDSM is an intuitive
null model, it is computationally expensive because it requires Monte Carlo simulation to estimate each edge’s p-value, and
therefore is impractical for large projections. In this paper, we explore four potential alternatives to FDSM: fixed fill model
(FFM), fixed row model (FRM), fixed column model (FCM), and stochastic degree sequence model (SDSM). We compare these
models to FDSM in terms of accuracy, speed, statistical power, similarity, and ability to recover known communities. We find
that the computationally-fast SDSM offers a statistically conservative but close approximation of the computationally-impractical
FDSM under a wide range of conditions, and that it correctly recovers a known community structure even when the signal is
weak. Therefore, although each backbone model may have particular applications, we recommend SDSM for extracting the
backbone of bipartite projections when FDSM is impractical.

Introduction

Bipartite or two-mode networks are composed of two types of nodes, which we call agents and artifacts, and edges between
nodes of one type and nodes of the other type. These networks can be used to represent a wide range of phenomena and
therefore are studied in a diverse range of disciplines. For example, natural selection unfolds as species (the agents) compete
over sites (the artifacts), commerce is possible as traders exchange resources, scientific advances are reported as scholars write
papers, and laws are adopted as legislators sponsor bills. Although bipartite networks are useful in their own right, they can
also be useful for inferring unipartite (i.e., one-mode) networks that are difficult to measure directly. For example, while it
may be difficult to directly survey politicians about their political alliances because they are busy and may have reasons to
misrepresent their true alliances, it may be possible to infer political alliances from politicians’ co-sponsorship of legislation,
which is readily observable.!:? A bipartite projection transforms a bipartite network into a unipartite co-occurrence network
in which pairs of agents are connected by edges whose weights capture their number of shared artifacts.>> For example,
competitive interaction networks can be inferred from species’ co-occurrence in sites,® trade networks can be inferred from
firm co-location’™ or product co-exchange,* scholarly collaboration networks can be inferred from paper co-authorship, '
and political alliance networks can be inferred from bill co-sponsorship.! Throughout the paper we use these applications to
offer concrete examples, however the models we discuss are general and can be applied to derive unipartite backbones in such
diverse contexts as flavor,'! misinformation,'? text,' and genetic'* networks. Indeed, in principle any unipartite network can
be represented as the projection of some bipartite network. '3~

Despite their promise, bipartite projections (i.e., co-occurrence networks) are challenging to analyse because they are
typically dense and weighted, and because the edge weights do not necessarily capture the strength of the relationship between
nodes.'® As a result, it is often useful to analyze the backbone of a bipartite projection, which is an unweighted and typically
sparser network that retains only the most ‘important’ edges. Although well-known methods exist for extracting the backbone
of weighted networks that are not bipartite projections,'®>2? methods designed specifically for bipartite projections have recently
been developed.® '3:21:22 Among these methods, the fixed degree sequence model (FDSM) relies on an intuitive null model,
but requires computationally expensive Monte Carlo simulations, making it impractical for extracting the backbone of large
bipartite projections. Faster methods are available, however relatively little is known about whether they yield backbones that



are similar to those that would be obtained from using FDSM,?? and therefore whether they offer computationally efficient
alternatives. To offer guidance to researchers wishing to extract an FDSM-like backbone from a large bipartite projection, in
this paper we consider four potential alternatives to FDSM: fixed fill model (FFM) fixed row model (FRM), fixed column
model (FCM), and stochastic degree sequence model (SDSM).

The paper is organized in six sections. We begin by formally defining bipartite projections, backbones, and the five backbone
models, presenting proofs of the probability mass functions for their respective edge weight distributions in the Supplementary
Text S1. In study 1, we evaluate the accuracy and speed of different approaches for estimating cell-filling probabilities used
by the SDSM. In study 2, we evaluate the statistical power of the SDSM relative to the FDSM. In study 3, we examine how
degree distributions impact the similarity of backbones extracted using FDSM and each of the alternative models. In study 4,
we examine the extent to which backbones extracted using different models accurately recover a known community structure.
Finally, we conclude with recommendations for backbone model selection and opportunities for future model development.

Backbone extraction for bipartite projections

Preliminaries

A bipartite network captures connections between nodes of one type (agents) and nodes of a second type (artifacts). Throughout
this section, we use the ecological case of Darwin’s Finches to provide a concrete example.”*2> On his voyage to the Galapagos
Islands on the H.M.S. Beagle, Darwin observed that only some species of finches lived on each island. These patterns can be
represented as a bipartite network in which finch species (the agent nodes) are connected to the islands (the artifact nodes)
where they are found.?® A bipartite network can be represented as a binary matrix in which the agents are arrayed as rows, and
the artifacts are arrayed as columns. We use B to denote a bipartite network’s representation as a matrix, where B;; = 1 if agent
i is connected to artifact k, and otherwise is 0. The sequence of row sums and the sequence of column sums of B are called the
agent and artifact degrees sequences, respectively. These sequences are among the bipartite network’s most significant features
and are known to have implications for bipartite projections and backbones.'>?7-28 In the ecological case, the agent degree
sequence captures the number of islands where each species is found, while the artifact degree sequence captures the number of
species found on each island.

The projection of a bipartite network is a weighted unipartite co-occurrence network in which a pair of agents is connected
by an edge with a weight equal to their number of shared artifacts. For example, the bipartite projection of Darwin’s finch
network is a species co-occurrence network in which a pair of finch species is connected by an edge with a weight equal to the
number of islands where they are both found. We use P to denote the matrix representation of a bipartite projection, which is
computed as BB”, where BT indicates the transpose of B. In a projection P, P, ; indicates the number of times agents i and j
were connected to the same artifact k in B. The diagonal entries of P, P;, are equal to the agent degrees, but in practice are
ignored.

The backbone of a bipartite projection is a binary representation of P that contains only the most ‘important’ or ‘significant
edges. For example, the backbone of a species co-occurrence network connects pairs of species if they are found on a significant
number of the same islands, which might be interpreted as evidence that the two species do not compete for resources and
perhaps are symbiotic. We use P’ to denote the matrix representation of the backbone of P. Because multiple methods exist for
deciding when an edge is significant and thus should be preserved in the backbone, we use PM denote a backbone extracted
using method M. It is important to note that for a given bipartite projection, there is no ‘true’ backbone, but only backbones
corresponding to specific backbone methods M. The backbone extracted using FDSM (i.e. P/FDSM) may be similar or different
from a backbone extracted using another method such as SDSM (i.e. P/SDSM), and these similarities and differences depend on
the information that is considered by the respective methods when determining whether edges’ weights are significant. It is
these similarities and differences that we explore in the four studies below.

Backbone extraction methods that were originally developed for non-projection weighted networks are often also applied to
weighted bipartite projections. One simple method preserves an edge in the backbone if its weight in the projection exceeds
some global threshold T. However, when T = 0, which is common, the backbone is very dense and has a high clustering
coefficient because each artifact of degree d induces d(d — 1) /2 edges in the backbone.?® Using T > 0 can yield a sparser
and less clustered backbone,>*3? but still yields highly clustered networks in which low-degree nodes are excluded while
high-degree nodes are preserved.'® More sophisticated methods, including the disparity filter'® and likelihood filter,’° aim to
overcome these limitations of the global threshold method by using a different threshold for each edge based on a null model.
However, all methods that can be applied to non-projection weighted networks have the same shortcoming when applied to
weighted bipartite projections: they ignore information about the artifacts, which is lost when generating the projection.'® In
the ecological case, the global threshold, disparity filter, and likelihood filter methods all decide whether two species should
be connected in the backbone only by examining how many islands these two species are both found on, but do not consider
the characteristics of those islands, including how many other species are found there, or even how many islands there are.

)
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Therefore, although these methods are promising for extracting the backbone from non-projection weighted networks, different
methods are required for extracting the backbone from a bipartite projection.

Bipartite ensemble backbone models
Bipartite ensemble backbone models decide whether an edge’s observed weight F;; is significantly large, and thus whether a
corresponding edge should be included in the backbone by comparing it to an ensemble of random bipartite networks. Let 2
be the set of all bipartite networks B* having the same number of agents and artifacts as B. In the ecological case, B* might be
viewed as representing a possible world containing the same species and islands, but in which locations of species on islands is
different, and likewise Z is the set of all such possible worlds. The bipartite ensembles used in backbone models take a subset
M of A, subject to certain constraints M, and impose a probability distribution on it. In all models except the SDSM, the
uniform probability distribution is imposed on %M, that is, each element of the ensemble is equally likely. The backbone is
then extracted from the projection of B by using the distribution of edge weights arising from projections of members of the
ensemble to evaluate their statistical significance.

We use P} to denote a random variable equal to (B*B*");; for B* € #M. Thatis, F}; is the number of artifacts shared by i

and j in a bipartite network randomly drawn from %M. In the ecological case, F}; represents the number of islands that are
home to both species i and j in a possible world, while the distribution of P;;- is the distribution of the number of islands shared
by species i and j in all possible worlds.

Decisions about which edges should appear in a backbone extracted at the statistical significance level o are made by
comparing £ to Fj;

P {1 if Pr(R; > Pj) < §.
0 otherwise.
This test includes edge R’J in the backbone if its weight in the observed projection F;; is uncommonly large compared to its
weight in projections of members of the ensemble F;;. We use a two-tailed significance test in the studies below because, in
principle, an edge’s weight in the observed projection could be uncommonly larger or uncommonly smaller than its weight in
projections of members of the ensemble, however a one-tailed test may also be used. In the ecological case, two species are
connected in the backbone if their number of shared islands in the observed world is uncommonly large compared to their
number of shared islands in all possible worlds.

There are many ways that % can be constrained,?* with each set of constraints describing a particular ensemble %™, which
is used in a particular ensemble backbone model M to yield a particular backbone P'M_ In the case of ensembles used to extract
the backbone of bipartite projections, our focus in this paper, two broad types of constraints are common.>* First, ensembles
can be distinguished by what they constrain: only the number of edges, the degrees of the agent nodes, the degrees of the
artifact nodes, or the degrees of both the agent and artifact nodes. Second, ensembles can be distinguished by how they impose
these constraints: the constraints can be satisfied exactly, or only on average. In statistical physics, ensembles that impose
exact or ‘hard’ constraints are known as microcanonical, while ensembles that satisfy constraints on average or impose ‘soft’
constraints are known as canonical.’

Prior work on these ensembles generally adopts either a theoretical focus on the ensembles themselves, or an applied
focus on the consequences of ensemble choice. In the theoretical literature, some (primarily mathematicians) have aimed to
characterize the properties of ensembles, such as estimating the cardinality of the ensemble of matrices with fixed rows and
columns (below, we call this ensemble Z"PSM) 34 Others (primarily physicists) have aimed to identify conditions under which
ensembles are equivalent or non-equivalent, typically interpreting ensembles as representing thermodynamic systems.?>-37
In the applied literature, the focus is not on identifying fundamental properties of ensembles, but instead on understanding
the implications of choosing a particular ensemble when detecting a particular pattern, such as nestedness>® or community
structure.>>?” The present work falls into this latter group: we are not directly concerned with identifying fundamental
properties of ensembles, but instead on identifying the consequences of ensemble choice, with the ultimate goal of offering
practical guidance to applied researchers wishing to extract the backbone of a bipartite projection.

In the remaining subsections below, we first describe the FDSM in terms of its ensemble. We then present four potential
alternative backbone models whose ensembles differ only slightly from FDSM, in terms of either what they constrain or how
they impose constraints. We then turn to exploring the consequences of choosing one of these alternatives over FDSM when
extracting a backbone.

Fixed Degree Sequence Model (FDSM)

In the fixed degree sequence model (FDSM), B* € 28¥PSM are constrained to have the same agent and artifact degree sequences
as B. That is, FDSM constrains the degrees of both the agent and artifact nodes, and requires that these constraints are satisfied
exactly, making it a tightly-constrained microcanonical ensemble. Adopting the FDSM implies, for example, that in all possible
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worlds a given species is found on exactly the same number of islands, and a given island is home to exactly the same number
of species. The distribution of F;; arising from ABFPSM is unknown, but can be approximated by uniformly sampling B* from

HBPSM | constructing P¥, and saving the values P;; In the studies below, we use 1000 samples of B* generated using the

3

curveball’ algorithm, which is among the fastest methods to sample %"PSM uniformly at random.**>*’ The FDSM has been
used to extract the backbone of bipartite projections of, for example, movies co-liked by viewers>' and conference panel
co-participation by scholars.*!4?

The FDSM offers an intuitively appealing approach to extracting the backbone of bipartite projections because it fully
controls for both bipartite degree sequences, which are known to be responsible for many of the projection’s structural
characteristics.'>1® However, because the distribution of F;; must be computed via Monte Carlo sampling, it is computationally
costly, making it impractical for all but relatively small bipartite projections. There are at least three distinct computational
challenges. First, although the curveball algorithm is the fastest among existing methods for randomly sampling a bipartite
graph with fixed degree sequences (i.e. for sampling B* from %"PSM)_ it still can require several seconds per sample for large
graphs. Second, once a B* has been sampled, constructing each P* requires matrix multiplication, which must be performed
repeatedly and has complexity of at least & (n%>37).*® Finally, computing an edge’s p-value (i.e. Pr(P;;- > P;j)) with sufficient
precision to achieve a specified familywise error rate that controls for Type-I error inflation due to multiple testing®” can require
these sampling and multiplication steps to be performed a very large number of times (see Supplementary Text S2).

These computational challenges have led researchers to develop other backbone models.>® '8 Many such models exist,
however here we are focused on identifying methods that yield backbones similar to what would be obtained using FDSM, and
thus which may serve as computationally-feasible alternatives to FDSM. Therefore, we consider only those models whose
ensembles involve at least one of the two types of constraints imposed by FDSM. That is, we consider models that either (1)
impose exact constraints, or (2) impose constraints on both the agent and artifact degrees.

Fixed Fill Model (FFM)

In the fixed fill model (FFM), B* € "™ are simply constrained to contain the same number of Is as B. That is, the FFM
constrains only the number of edges, but requires that this constraint is satisfied exactly. Adopting the FFM implies, for
example, that in all possible worlds only the total number of species-island pairs is fixed, but any given species may be found
on a different number of islands and any given island may be home to a different number of species. The distribution of F;;
arising from %™ has not been described before, but is derived in Supplementary Text S1.1. We call it a Jacobi distribution
because it is related to Jacobi polynomials.

Fixed Row Model (FRM)

In the fixed row model (FRM), B* € %"M are constrained to have the same agent degree sequence as B, but have unconstrained
artifact degree sequences. That is, the FRM constrains the degrees of the agent nodes, and requires that this constraint is
satisfied exactly. A canonical variant of the FRM, the BiPCM,, also constrains the degrees of the agent nodes, but only
requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s constraints.’
Adopting the FRM for backbone extraction implies, for example, that in all possible worlds a given species is found on the

same number of islands, but a given island may be home to a different number of species. The distribution of F;; arising from

PBFRM s hypergeometric (see Supplementary Text S1.2), and for this reason it is sometimes referred to as the hypergeometric

model.?>%3% The FRM has been used to extract the backbone of bipartite projections of, for example, movies co-starring

actors,?” papers co-written by authors,?> parties co-attended by women,** majority opinions joined by Supreme Court justices,**,
and microRNAs co-associated with diseases.*’

Fixed Column Model (FCM)

In the fixed column model (FCM), B* € ™M are constrained to have the same artifact degree sequence as B, but have
unconstrained agent degree sequences. That is, the FCM constrains the degrees of the artifact nodes, and requires that this
constraint is satisfied exactly. A canonical variant of the FCM, the BiPCM,, also constrains the degrees of the artifact nodes,
but only requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s
constraints.” Adopting the FCM for backbone extraction implies, for example, that in all possible worlds a given species may be
found on a different number of islands, but a given island is home to the same number of species. The distribution of F;; arising

from Z2"M has not been described before, but is derived in Supplementary Text S1.3, where we show it is Poisson-binomial.

Stochastic Degree Sequence Model (SDSM)

Finally, the stochastic degree sequence model (SDSM) takes Z5PSM to be all binary m x n matrices, but also gives a process
for generating these matrices with different probabilities. Each B* is generated by filling the cells B}, with a 0 or 1 depending
on the outcome of an independent Bernoulli trial with probability p7,. The distribution of the random variable Pj} arising from

#5PSM i Poisson-binomial with parameters which can be computed using the p; (see Supplementary Text S1.4).27-46 There
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are many ways to choose pj, but in the studies below we choose p} so that it approximates Pr(B};, = 1) for B* € #PSM,
This choice of p}, ensures that the SDSM constrains the degrees of both the agent and artifact nodes, but only requires these
constraints to be satisfied on average. Adopting such a version of SDSM implies, for example, that in each possible world a
given species may be found on many or few islands and a given island may be home to many or few species, but the average
number of islands on which a given species lives in all possible worlds and the average number of species that live on an
given island in all possible worlds matches these values the observed world. The SDSM has been used to extract the backbone
of bipartite projections of, for example, legislators co-sponsoring bills, 18479 zebrafish (Danio rerio) sharing operational
taxonomic units,”° countries sharing exports,’ and genes expressed in genesets.’!

Study 1: Choosing cell-filling probabilities for the SDSM

The SDSM requires choosing p7, which we want to approximate Pr(B}, = 1) for B* € JB¥PSM  There are three types of
methods that might be used for doing so: arithmetic, general linear models, and entropy maximization. First, we can choose
Py = (ri X cx)/f, where r; is the sum of entries in row i of B, ¢ is the sum of entries in column k of B, and f is the sum of
all entries in B. When pj; falls outside the [0, 1] range, it is simply truncated toward O or 1, respectively. This method has a
long history in ecology;> we call it RCF because the value is chosen based on a row sum, a column sum, and the number of
entries of B that are filled with a one, but elsewhere it has been called the ‘Chung-Lu method’.>>>3 Second, an estimate can be
obtained by fitting a general linear model of the form:

Bix = Po+ Biri+ Pack + €, or
Bix = Bo+ Biri + Back + Bsrick + €,

where the ’s are estimated coefficients and € is an error term. If the model is treated as a linear regression and the coefficients
are estimated using ordinary least squares, then the predicted value of By is chosen for p}, either truncating values outside the
required [0, 1] range (linear probability model; LPM) or transforming them into the required range using a linear discriminant
model (LDM).>* If the model is treated as a logistic regression and the coefficients are estimated using maximum likelihood,
then the predicted probability that Bz = 1 is chosen for pj. In prior work, the logistic regression approach has used a scobit or
logit link function, with or without an interaction term ($3)." %47 Finally, an estimate can be obtained by entropy maximization
methods, including the polytope method (Poly)?”-3> or bipartite configuration model (BiCM).> %3¢ In this study, we evaluate
the accuracy and speed of these methods for choosing pj, that approximate Pr(Bj = 1) for B* € %M,

Methods

To evaluate accuracy, we begin by enumerating all the members of a small "M, For example, given an agent degree
sequence of [1,1,2] and an artifact degree sequence of [1,1,2], B"PSM contains 5 members (see Table 1A). Second, from
this complete enumeration, we compute the probabilities we wish pj, to approximate (i.e., Pr(B}, = 1) for B* € BFPM | see
Table 1B). Third, we compute pj, using each of nine methods (see Table 1C for values obtained using the BiCM method).
Finally, we quantify the accuracy with which p7, approximates the desired probabilities using the absolute mean difference for
all i, k. In the example shown in Table 1, BiCM’s accuracy for these degree sequences is 0.028. That is, on average pj, chosen
using BiCM deviates from the desired probabilities by 4= 0.028 on average. Because evaluating accuracy in this way requires
enumerating all members of Z"°SM it is possible only for short degree sequences that define "M with small cardinality.

We focus on degree sequences ranging in length from 2 to 5, which define 384 unique #PM ranging in cardinality from 4 to
2040.
(A) Members of Z"PSM
11010 0101 0101 0101 0]11]0
01011 1 0 0101 0]110 01011

ojr{r{ (ojrj1r}y |r{r{o} |rjoj1ry}y |{1{ojt

(B) Desired probabilities (C) p};, computed using BICM
0210206 0.216 | 0.216 | 0.568
0210206 0.216 | 0.216 | 0.568
06|06 |08 0.568 | 0.568 | 0.863

Table 1. SDSM probabilities given agent and artifact degree sequences [1,1,2]
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Figure 1. (A) Accuracy and (B) speed computing p}, using different methods. Lines show means, while shaded regions show
95% confidence intervals.

After identifying each method’s accuracy, we evaluate the computational running time of the four most accurate methods by
using them to choose p}, for bipartite graphs defined by up to 1000 agents and up to 1000 artifacts, and thus requiring choosing
up to 1,000,000 probabilities.

Results
Figure 1A shows the accuracy of each method’s computation of pj. Each gray line plots the accuracy of each method for
a single Z"PSM, while the red line and shaded region plots the mean and 95% confidence interval of the accuracy of each
method over all 384 "PSM_ We find that choosing P}, using a logistic regression with an interaction term (i.e., Scobit-I and
Logit-T) is on average least accurate,"!® while choosing P}, using the two entropy maximization method (BiCM and Poly)
yield numerically equivalent results, which were on average most accurate.>

Figure 1B shows the number of seconds required to compute p7, using a 2.3 GhZ Intel i7 processor; lines illustrate the
mean running time, while the shaded regions show the 95% confidence interval. Among the two most accurate methods, BiCM
is several orders of magnitude faster than Polytope. When computing more than 10* probabilities, BICM is also faster than
the two slightly less accurate Logit and LDM methods. In the largest case we evaluated, computing 10° probabilities, BiCM
took only about 0.026 seconds. Therefore, we use BiCM for choosing pj, when extracting SDSM backbones in the remaining
studies because it is both the most accurate and fastest.

Study 2: Statistical power of SDSM

Ensemble backbone models require the specification of a statistical significance level o, which determines how uncommonly
large an observed edge weight P;; must be when compared to edge weights P;; arising from an ensemble in order for a
corresponding edge to be included in the backbone. For a given model, smaller values of ¢ represent more stringent criteria
for retaining edges, and therefore yield sparser backbones. Although FDSM and SDSM define their respective ensembles by
constraining both agent and artifact degree sequences, and thus aim to yield similar backbones, a given ¢ does not necessarily
represent the same level of stringency in these two models. Because the SDSM allows variation in the degree sequences of
B* € #5PSM the distribution of Pl’; is wider.>?® These wider distributions mean that the SDSM provides a more conservative
test of edge weight significance than FDSM, or alternatively the SDSM has less statistical power to detect significant edges
than FDSM.

A concrete example serves to illustrate this difference. In economic geography, it is common to study the world city
network using a bipartite projection where two cities are linked to the extent that firms maintain locations in both cities. The
Globalization and World Cities (GaWC) dataset has been widely-used in this context, and takes the form of a bipartite network
recording the presence or absence of 100 firms (artifacts) in 196 cities (agents) in the year 2000.”-2® In this bipartite network,
the agent degrees are right-tailed because most cities contain only a few firms, while a few cities such as New York contain
many. Likewise, the artifact degrees are also right tailed because most firms maintain locations in only a few cities, while a few
firms such as the accounting firm KPMG maintain locations in many.

Figure 2A illustrates the distribution of the Milan-Paris edge weight in projections arising from Z"PM and %5PSM of
which the observed bipartite network is a member (i.e., the random variable Pf;) These distributions allow a researcher to
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Figure 2. Statistical power of SDSM. (A) Distribution of weights for the Paris-Milan edge in projections derived from FDSM
and SDSM ensembles. (B) Similarity of an FDSM backbone extracted at & = 0.05 to SDSM backbones extracted at various o
from an empirical bipartite network (green line) and from 100 synthetic bipartite networks (purple line = mean, purple region =
10—90™ percentile).

decide whether Milan and Paris’s observed number of co-located firms is significantly large, and therefore whether Milan and
Paris should be connected in a world city network backbone. The SDSM distribution is wider than the FDSM distribution, 2328
which has implications for whether the Milan-Paris edge will be included in a backbone extracted at a given significance level
using each model. In the observed data, there are 26 firms co-located in Milan and Paris (i.e., P,; = 26). The probability of
observing the same or larger edge weight in projections from the FDSM ensemble is 0.0033, which is less than %, and
therefore a Milan-Paris edge is deemed significant by the FDSM and is included in the FDSM backbone extracted at oc = 0.05.
In contrast, the probability of observing the same or larger edge weight in projections from the SDSM ensemble is 0.0275,
which is not less than %, and therefore a Milan-Paris edge is not deemed significant by the SDSM and is not included in
the SDSM backbone extracted at o¢ = 0.05. For a given level of significance «, this difference in statistical power leads the
SDSM backbone to be sparser than the FDSM backbone (density = 0.004 vs. 0.012), and means that these two backbones are
dissimilar (Jaccard = 0.36).

In this study, we investigate SDSM’s statistical power relative to FDSM, and specifically whether extracting an SDSM

backbone using a more liberal (i.e., larger) o makes it more similar to an FDSM backbone extracted at @ = 0.05.

Methods

To evaluate SDSM’’s statistical power and the effect of significance levels on the similarity of SDSM and FDSM backbones, we
first extracted the FDSM backbone from the GaWC bipartite network at o = 0.05. We then extracted SDSM backbones from
the GaWC bipartite network at 0.01 < o < 0.3 in 0.001 increments, each time computing the Jaccard index (J) to measure
the similarity between the SDSM and FDSM backbones. After comparing SDSM and FDSM backbones extracted from the
empirical GaWC bipartite network, we repeat this process using 100 synthetic bipartite networks with the same dimensions
(196 x 100), density (0.08) and right-tailed agent and artifact degree distributions.

Results
The green line in Figure 2B shows the Jaccard similarity between an FDSM backbone extracted from the empirical GaWC
network at o = 0.05 and SDSM backbones extracted at the significance levels shown on the x-axis. We find that an SDSM
backbone achieves its maximum similarity to the FDSM backbone (/ = 0.81) when it is extracted using the more liberal
significance level of & = 0.12. Returning to the example in Figure 2A, using this more liberal significance level would result in
the Milan-Paris edge being deemed significant and included in the SDSM backbone because its SDSM p-value 0.0275 < %.
Because this more liberal significance level results in the inclusion of additional edges, the new SDSM backbone extracted at
o = 0.12 has a density (0.01), which is closer to that of the FDSM backbone extracted at & = 0.05 (0.012).

The purple line in Figure 2B shows the mean Jaccard similarity between an FDSM backbone extracted using & = 0.05 and
SDSM backbones extracted using 0.01 < o < 0.3 from 100 bipartite networks generated to resemble the empirical GaWC
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Degree Distribution

Authors (agents)

Papers (artifacts)

Right-tailed ~ B (1, 10)
Left-tailed ~ $(10,1)
Uniform ~ $(1,1)

Constant ~ (10000, 10000)

Normal ~ 3(10,10)

Most write some papers, but a few are pro-
lific (most departments).

Most are prolific, but some are inactive (elite
departments).

There is substantial diversity in scholarly out-
put (e.g., interdisciplinary departments).
There are strong norms about how many pa-
pers an author should have (e.g., for perfor-
mance evaluations).

Scholarly output varies around some typical
level.

Most papers are sole-authored, but some are
written by large teams (e.g., sociology).
Most papers are written by large teams, but
some are sole-authored (e.g., physics).
There is substantial diversity in the size of
authorship teams (e.g., an entire university).
There are strong norms about how many au-
thors a paper should have (e.g., two: a senior
author & a junior author)

Authorship teams vary around some typical
size.

Table 2. Bipartite degree distributions, with examples in the context of a scholarly authorship bipartite network

network. The shaded purple region shows the 10" and 90™ percentile of Jaccard similarities of these backbones. We find that
these synthetic networks behave similarly to the empirical network. Specifically, SDSM and FDSM backbones extracted from a
low-density 196 x 100 bipartite network with right-tailed degree distributions achieve a maximum similarity of 0.49 < J < 0.76
when the FDSM backbone is extracted using & = 0.05 and the SDSM backbone is extracted using o = 0.14. This is promising
because it suggests that, given the characteristics of an empirical bipartite network, it may be possible to select a significance
level for extracting a computationally-efficient SDSM backbone that closely resembles a computationally-infeasible FDSM
backbone.

Study 3: Backbone similarity under varying degree distributions

Agent and artifact degree distributions are a key feature of a bipartite network, and are known to have implications for bipartite
projections.’>?”-28 The FDSM is particularly appealing because it allows decisions about the significance of edges in a
projection to be conditioned on both bipartite degree sequences, thereby taking into account these important features. However,
because the computational requirements of the FDSM make it impractical for extracting the backbone from most bipartite
projections, it is often necessary to use a different backbone model. In this study, we evaluate the similarity of an FDSM
backbone and backbones extracted using more computationally efficient models. We perform this comparison for backbones
extracted from bipartite networks characterized by five types of degree distributions: right-tailed, left-tailed, normal, constant,
and uniform.

For the sake of concreteness, in this section we use the example of a bipartite network in which authors (agents) are linked
to the papers they have written (artifacts). The projection of such a network yields a co-authorship network in which the edge
weight between a pair of authors indicates their number of co-authored papers.'? These edge weight values will depend heavily
on the distribution of papers written by authors (i.e., the agent degree sequence), and on the distribution of authors on each paper
(i.e., the artifact degree sequence). Different degree distributions describe different kinds of scholarly environments as shown in
Table 2. The choice of a backbone model affects whether these distributions are considered, and in this example affects whether
decisions about the significance of two authors’ number of co-authored papers consider the scholarly environment. The FDSM
compares their observed number of co-authored papers to the number that might be observed in alternative realizations of the
same environment, while other backbone models relax the extent to which the environment is held constant.

Methods

We evaluate similarities among the backbones extracted using different models by comparing backbones extracted from
synthetic 100 x 100 bipartite networks with a density of 0.1, and with a combination of agent and artifact degree distributions
shown in Table 2. Following our example, these synthetic bipartite networks might represent a college of 100 faculty who
collectively wrote 100 papers, in a particular type of scholarly environment where each individual had a 10% chance of being
an author on each paper. After generating a bipartite network with a given size, density, and degree distributions, we extract five
different backbones from the generated bipartite network, using the fixed fill model, fixed row model, fixed column model,
stochastic degree sequence model, and fixed degree sequence model; in all cases we use o@ = 0.05. We compute the similarity
of the first four backbones to the FDSM backbone using a Jaccard index, repeating this process 100 times for each of the 25
possible combinations of agent and artifact degree distributions.
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Figure 3. Jaccard similarity of a backbone extracted at o = 0.05 using the Fixed Degree Sequence Model and a backbone
extracted using (A) the Fixed Fill Model, (B) Fixed Row Model, (C) Fixed Column Model, (D) Stochastic Degree Sequence
Model. Each cell represents the mean over 100 instances of a 100 x 100 bipartite network with given agent and artifact degree
distributions.

Results

The heatmaps in Figure 3 illustrate the similarity between an FDSM backbone and a backbone extracted using an alternative
model. The rows of each heat map correspond to different agent degree distributions, and the columns correspond to different
artifact degree distributions, in the synthetic bipartite networks from which the backbones were extracted. The lightest patches
identify conditions under which a given backbone model yields a backbone that is similar to what would be obtained using
the computationally costly FDSM, while darker patches identify conditions under which these two backbones differ. We find
that when agent degrees are constant (i.e., every agent has the same degree) and artifact degrees are constant or left-tailed, all
backbone models yield the same backbone as FDSM (Mean J = 1). However, beyond this special case, which is likely to be
rare in empirical data, similarity to FDSM-extracted backbones varies.

As expected, the similarity of backbones extracted using FRM and FDSM depends primarily on the distribution of artifact
degrees, not agent degrees (see Figure 3B). For example, for any agent degree distribution, these two models yield very different
backbones when artifact degrees follow a right-tailed distribution (Mean J = 0.186), but very similar backbones when artifact
degrees follow a normal distribution (Mean J = 0.863). This occurs because both models exactly control for agent degrees,
however FDSM also controls for artifact degrees, while FRM does not.

A similar but rotated pattern emerges when considering the FCM: the similarity of backbones extracted using FCM and
FDSM depends primarily on the distribution of agent degrees, not artifact degrees (see Figure 3C). For any artifact degree
distribution, these two models yield very different backbones when agent degrees follow a right-tailed or uniform (Mean
J = 0.084) distribution , but more similar backbones when agent degrees follow a left-tailed distribution or are constant (Mean
J =0.617). This occurs because both models exactly control for artifact degrees, however FDSM also controls for agent
degrees, while FRM does not. However, there is a notable exception to this general pattern: when artifact degrees follow a
uniform distribution, FCM and FDSM always yield different backbones (Mean J = 0.151).

The conditions under which the FFM yields FDSM-similar backbones occur at the intersection of the conditions under
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Figure 4. (A) Given agent and artifact degree distributions, there exists a statistical significance level ¢ that maximizes the
similarity between an SDSM backbone extracted at this level and an FDSM backbone extracted at & = 0.05, and (B) when
used yields an SDSM backbone that is very similar to the corresponding FDSM backbone.

which the FRM and FCM both yield FDSM-like backbones (see Figure 3A). When artifact degrees follow a right-tailed
distribution or the agent degrees follow a right-tailed or uniform distribution, then FFM and FDSM backbones differ (Mean
J =0.1). In contrast, for other combinations of degree distributions, FFM and FDSM backbones are more similar (Mean
J =0.724).

Finally, as expected based on the findings from study 2, we observe that the SDSM generally yields different backbones
than FDSM when both are extracted at o¢ = 0.05 (see Figure 3D). Specifically, except in the narrow case where agent degrees
are constant and artifact degrees are constant or left-tailed (Mean J = 1), SDSM and FDSM backbones exhibit only modest
similarity (Mean J = 0.314). This lack of similarity occurs because SDSM offers a less statistically powerful (or more
conservative) test of edges statistical significance than FDSM, and therefore retains fewer edges in the backbone. However,
findings from study 2 also suggested that careful selection of the significance level used for extracting an SDSM backbone can
yield results more similar to FDSM.

To explore this possibility, we expanded the analysis reported in figure 3D by extracting SDSM backbones at different
significance levels o©. We find that when a suitably more liberal (i.e., larger) significance level « is used to extract an
SDSM backbone, the resulting SDSM backbone is very similar to an FDSM backbone extracted at & = 0.05 (see Figure
4A). Specifically, for backbones extracted from bipartite networks with any agent or artifact degree distributions, these two
backbones tend to be very similar (Mean J = 0.865). This suggests that in principle the fast SDSM can be used to obtain a
close approximation of a computationally-infeasible FDSM backbone from any bipartite network.

In practice, using SDSM to obtain an FDSM-like backbone requires selecting an & value for the SDSM that corresponds to
a = 0.05 in the FDSM. We observe that there are three distinct values of such an ‘optimal’ « that depend on agent and artifact
degree distributions (see Figure 4B). First, when agent degrees are constant, a value only slightly higher than 0.05 (Mean
=0.062, SD = 0.021) achieves the best approximation of an FDSM backbone. Second, when artifact degrees are constant,
a value roughly double (Mean = 0.09, SD = 0.022) achieves the best approximation of an FDSM backbone. Finally, when
neither agent nor artifact degrees are constant, which is likely in most empirical bipartite networks, a value roughly 2.5 times
larger (Mean = 0.13, SD = 0.014) achieves the best approximation of an FDSM backbone. Although further work is needed
to facilitate the a priori selection of an o that allows an SDSM backbone to closely approximate an FDSM,_¢ o5 backbone,
these results suggest that under the most common circumstances (i.e., when there is variation in degrees) & ~ 0.13 may be
appropriate.

Study 4: Recovery of community structure

Studies 1-3 examine the backbones extracted from random bipartite networks; however, empirical bipartite networks are not
random. Frequently they contain a block structure that implies a particular community structure in the bipartite projection. In
this study, we evaluate the extent to which backbones extracted using different models reflect a known community structure that
is encoded in the bipartite data from which they are extracted.’’” Recent work has shown that FDSM, FRM, SDSM, and BiPCM
(a canonical variant of FRM) each yield backbones with similar communities structures.”> Other work has shown that SDSM
and FDSM backbones extracted from a bipartite network representing bill co-sponsorship in the 114" session of the US Senate
more clearly captured the hypothesized partisan community structure than an FRM backbone.?” We build on this prior work
using synthetic data that is constructed to contain a ground truth communities, which allows us to evaluate backbone models’
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ability to recover true communities, and not simply similar or hypothesized ones.

Methods

We investigate the ability for backbones to recover a known community structure in three steps. First, we simulate a 200 x 1000
bipartite network with a density of 0.1 and right-tailed agent and artifact degree distributions. We focus on a bipartite
network with more artifacts than agents to ensure that these data contain sufficient information to encode potential community
memberships. We focus on a bipartite network with right-tailed degree distributions because they are common in many empirical
unipartite®® and bipartite networks.!>!1-28 This synthetic bipartite network could represent a legislative body composed of 200
legislators casting votes on 1000 bills, where any given legislator had a 10% chance of voting in favor of any given bill. The
right-tailed degree distributions capture the fact that most legislators vote in favor of only a few bills, and that most bills receive
the support of only a few legislators, which is typical of legislative bodies. The backbone of a projection of such a bipartite
network would represent a network of collaboration or ideological alignment among legislators. !

Second, we incorporate evidence of communities in this bipartite network by randomly assigning each agent and each
artifact to one of two groups. We then perform checkerboard swaps, which preserve the degree distributions, until a given
fraction of edges W are within-group, connecting an agent and artifact from the same group.>® Figure 5A provides graphical
depictions of the matrices describing synthetic bipartite networks at two values of W. In each plot, the rows represent agents
assigned to group A or B, the columns represent artifacts assigned to group A or B, and a cell is shaded black if the row agent is
connected to the column artifact. When W = 0.5, agents in a given group are equally likely to associate with artifacts in either
group, placing ~ 0.5 of the edges (i.e., shaded cells) in the diagonal blocks and ~ 0.5 of the edges in the off-diagonal blocks.
In contrast, when W = 0.8, agents in a given group are much more likely to associate with artifacts from their own group than
artifacts in the other group, placing ~ 0.8 of the edges in the diagonal blocks and =~ 0.2 of the edges in the off-diagonal blocks.
Returning to our example, the groups could represent political parties: each legislator belongs to one of two parties (i.e., there
are conservative and liberal legislators), and each bill advances the agenda of one of these parties (i.e., there are conservative
and liberal bills). When W = (.5, a conservative legislator is equally likely to vote for conservative and liberal bills, while
when W = 0.8, a conservative legislator is four-times more likely to vote for a conservative bill than a liberal bill.

Finally, we extract a backbone from the bipartite network using a given model and compute the backbone’s modularity O
with respect to the agents’ group assignments.®’ If a backbone model is able to recover the community structure from evidence
in the bipartite network, then we expect a positive association between W and Q. In the legislative example, if legislators are
bipartisan in their voting patterns (i.e., W = 0.5), then legislators should not be clustered by party in the backbone (i.e., Q =~ 0).
In contrast, if legislators are strongly partisan in their voting patterns (i.e., W = 0.8), then legislators should be clustered by
party in the backbone (i.e., Q > 0).

We repeat these three steps 10 times for 0.5 < W < 0.8 in 0.05 increments. When evaluating the SDSM backbone, we
consider both a backbone extracted using the conventional significance level of oo = 0.05 and one extracted at the more liberal
a = 0.13, which study 3 suggests yields a backbone similar to FDSM.

Results

Figure 5B shows the modularity (y-axis; with respect to known community memberships) of backbones extracted using different
models from bipartite networks containing different fractions of within-community edges (x-axis). Solid lines illustrate the
mean modularity across 10 replications, while the shaded regions illustrate 95% confidence intervals. All six lines increase
monotonically, confirming that all backbone models yield backbones that can recover a known community structure; however,
there is notable variation among the models. As evidence of community structure grows stronger in the bipartite network, the
modularity of backbones extracted using the FFM and FCM slowly increase, but even when the evidence of such a structure is
quite strong (i.e., when W = 0.8) they only achieve average values of Q = 0.15 and 0.18, respectively. Backbones extracted
using the FRM display a similar pattern, but achieve a statistically significantly higher average modularity (Q = 0.39) value
when W is large.

In contrast, backbones extracted using FDSM and SDSM yield modularity values that are statistically significantly larger
than those obtained from FFM, FRM, or FCM backbones, but that are not statistically significantly different from each other.
That is, these backbone models are indistinguishable in their ability to recover the known community structure, and do so very
well. As evidence of a community structure grows stronger in the bipartite network, the modularity of backbones extracted using
these models rapidly increases. When the evidence of community structure is strong (i.e., when W = 0.8), these backbones
have very high modularity (mean Q = 0.49). However, even when there is only modest evidence of community structure in
the bipartite network (e.g., when W = 0.65), these backbones are still able to identify the community structure and have a
distinctively high modularity (mean Q = 0.37).

These findings suggest that although all backbone models can yield backbones that recover a known community structure,
SDSM and FDSM backbones are able to detect this structure more clearly and from a weaker signal.
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Figure 5. (A) Synthetic bipartite networks with varying levels of block structure, from which (B) backbones extracted using
different models exhibit varying modularity.

Discussion

Bipartite networks can be used to represent a wide range of phenomena in the social and natural worlds including interspecies
competition, global trade, scientific advances, and legislative deliberation. Likewise, projections of bipartite networks, which
take the form of co-occurrence networks, can be useful for inferring unipartite networks whose edges would otherwise be
difficult to measure directly. The fixed degree sequence model (FDSM) offers an appealing null model for making such
inferences, but its computational complexity often makes it impractical. Several computationally simpler alternatives to FDSM
have been, including the fixed fill model (FFM) fixed row model (FRM), fixed column model (FCM), and stochastic degree
sequence model (SDSM). In this paper we have systematically compared FDSM to each of these alternatives to evaluate their
aspects of their accuracy, speed, statistical power, backbone similarity, and ability to recover a known community structure.

In study 1, we examined several methods for choosing the probabilities used by the stochastic degree sequence model
(SDSM), finding that the bipartite configuration model (BiCM) is both the fastest and most accurate. In study 2, we examined
the statistical power of the SDSM relative to the fixed degree sequence model (FDSM), finding that the SDSM can be viewed
as a statistically less powerful (or more conservative) variant of the FDSM. In study 3, we examined the similarity of an
FDSM-extracted backbone to backbones extracted using other models, finding that the SDSM and FDSM extract very similar
backbones from bipartite networks with a wide range of possible degree distributions when an appropriate significance level
« is chosen. Finally, in study 4, we examined the ability for backbones extracted using different models to recover a known
community structure, finding that although all models yield a backbone that recovers the structure, SDSM and FDSM can
detect a community structure more clearly and from a weaker signal.

Based on these findings, and with the goal of offering researchers some guidance in extracting the backbones of bipartite
projections, we offer three recommendations. First, we recommend the stochastic degree sequence model (SDSM) for extracting
the backbones of bipartite projections because it is fast, controls for both agent and artifact degree sequences, and yields
modular backbones when the bipartite data contains even modest evidence of within-community clustering. Second, when the
SDSM is used, we recommend that the cell-filling probabilities p}, be chosen using the Bipartite Configuration Model (BiCM)
because it is faster and more accurate than any other currently available method. Third, when an FDSM backbone extracted at
the o = 0.05 significance level is desired but computationally infeasible, we recommend extracting an SDSM backbone at the
o = 0.13 significance level, which we observe is very similar when there is variation in the agent and artifact degree sequences.
The models and options necessary to adopt these recommendations are implemented in the backbone package for R.?’

These findings and recommendations must be viewed in light of the fact that, due to the computational requirements of
the FDSM and of extracting a large number of backbones across the four studies, these studies have relied on small synthetic
bipartite networks ranging in size from 3 x 3 (study 1) to 200 x 1000 (study 4). However, in practice bipartite networks
may be several orders of magnitude larger. For example, a bipartite network used to infer collaborations in the US House
of Representatives includes 435 agents (representatives) and over 6000 artifacts (bills),!>> while a bipartite network used to
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infer movie recommendations includes 17,770 agents (films) and nearly 500,000 artifacts (viewers).2! Future research should
explore whether these findings extend to backbones extracted from such large bipartite networks. Limitations of existing
backbone models also point to directions for future research. First, using the FDSM will generally be computationally infeasible
in practice because the distribution of Pl’; arising from Z"PSM must be estimated via numerical simulation. Identifying this
distribution’s probability mass function, which is known for the other ensembles (see Supplementary Text S1), would facilitate
the use of this otherwise attractive model. Second, all the ensemble models we have considered impose constraints on the degree
sequences, but other types of constraints may also be useful. For example, in some contexts it may be necessary to constrain
all members of an ensemble to contain a 0 in a particular cell (e.g., to represent that an author was not alive to co-author a
paper, or a legislator was not present to co-sponsor a bill).®! These limitations and future directions notwithstanding, the results
presented above provide a starting point for further development of backbone models, and provide applied researchers with
some practical guidance on model selection.
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Supplementary Information for:
“Comparing Models for Extracting the Backbone of Bipartite Projections”
Zachary P. Neal, Rachel Domagalski, & Bruce Sagan

1 Probability Mass Functions of projection edge weights under ensemble backbone
models

In the subsections below, we derive the probability mass functions of Plj used by ensemble backbone models to evaluate the
statistical significance of the weight of edge F;; in a bipartite projection. We use the following notation:

* Let B be an m x n bipartite matrix, with a vector of row sums R = (ry,...,7), a vector of column sums C = (ci,...,cn),
and f cells containing a 1. So
m n
f = Z ri = Z Cj.
i i=1

* Let M be the ensemble of all m x n matrices B* = (Bj‘j) that obey the constraints of the respective model. In all models,
Eleet g;ipl%%bél%%gbs&n\k;grt}a & rel(i%al tg Pﬁlfﬁm}) o ztﬂllnliheé to@ns Noi@ifiat we have
P}, =B;B}| +BpBj, + -+ B;,B; (1)

in* jn*

1.1 Fixed Fill Model (FFM)
Let the fixed fill model constrain all B* € %™ to contain the same number of 1s (i.e. fill) as B.

Theorem 1.1. Under the fixed fill model, the distribution of Fj; for i = j satisfies

n Zznikir n—k (m—2)n
k)= r f—n—k+r
Pr(P = k) = ‘ @)
mn
(7)
Proof. For the denominator we need to compute the cardinality #"™. If B* € %™ then B* has mn entries of which f must

be chosen to be ones. So
#gFFM _ (mn)
f

For the numerator, suppose P; = k. We see from equation (1) that there are exactly k columns ¢ where B, = B’ = 1. There

are ( k) ways to choose these columns. Now define the following parameters:

p = number of columns ¢ where B;, = 1 and B, =0,
g = number of columns ¢ where B;, = 0 and B}, = 1,

r = number of columns ¢ where B;. = 0 and B, = 0.

The number of ways to pick the columns counted by these parameters from the n — k columns which do not contains ones in
both rows is the trinomial coefficients ( ) Now we have used 2k + p + g ones in rows i and j. So there are f —2k—p —q

left to distribute to the remaining m — 2 rows And these rows have (m —2)n entries. So the number of possibilities for these

remaining ones is ( ff';kfl)] 7(1). Thus the total number of choices from this and the previous paragraph is

8 o 1 0 R (o e P 08
QR
-z () ()

as desired. O
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For even modestly large B, computing equation (2) involves values larger than can be handled by some programs. In
practice, we use logs to make these computations practical.

We now show that the sum in the numerator of this probability is related to the famous Jacobi orthogonal polynomials. This
sum is a terminating hypergeometric series. Given a real number a and a nonnegative integer r the corresponding Pochhammer
symbol or rising factorial is

(@)y=ala+1)(a+2)---(a+r—1).

Note that if a is an integer with —r < a < 0 then (a), = 0 because the product contains 0 as a factor. Given real numbers

ay,az,...,ap and by, bs, ... b, as well as a variable z, the corresponding hypergeometric series is
F ay a ... ap | = (al)r(a2)r"'(ap)r§
PR by by bq ” >0 (bl)r(bZ)r"'(bq)r rl’

Note that if any of the a; are negative integers then, because of the remark above, this series will terminate and become a
polynomial in z.
To convert a binomial coefficient into Pochhammer symbols, we write

(n> _ (=1 (n—rt1)

r

The following identity will also be useful

(@)psr=(a)(a+1)---(a+b—1)x (a+b)(a+b+1)---(a+b+r—1)
= (a)p(a+b),.

We now return to the sum in the numerator of equation (2). We will ignore the factor of 2" since it is constant with
respect to the sum and so can be pulled outside. For simplicity of calculation we will also use the substitutions

s=(m—=2)n, t=f—-n—k.

(7)o

(1 =)y (DT Shar |
L Wy

e k= (—s)(s ), (1)2)
=CUL T e, W,

( ) ( ,Z —s+1), (1/2)"

- t+1 r!

s k—n —s+t 1
= F L=
(z)z 1[ ]

We are indebted to Marko Petkovsek [personal communication] for pointing out that this o Fj is, up to a factor, a specialization
of a Jacobi polynomial. Given a nonnegative integer ¢ and real numbers «, 3 the associated Jacobi polynomial is

4 — 1—
Pg(a’ﬁ)(z)_<a+)2F1[ ( {+a+B+1 . z]

Thus we have

()55

1 o+1 )
To make these o F| polynomials agree we canlet/ =n—k,x =t=f—n—k,

B=—-s+t—(l+a+1)=k—(m—1)n—1
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and z = 0. With these substitutions we get

o ooam e
;2_r(n: )( (m—2)n >: fon=k) pln-kk=n-tn=1)

Fon—k+r ook Ik
n—k
1.2 Fixed Row Model (FRM)
Let the fixed row model constrain all B* € ™M to have the same row sums as B.

Theorem 1.2. Under the fixed row model, the distribution of Plj for i = jis hypergeometric and satisfies

M%HG%%JO.

Proof. The total number of ways to pick 7; of the n columns for ones in the ith row and r; of the n columns for ones in the jth

row is
n n n n!
() ()= G v

So that will go in the denominator of the desired probability.
For the numerator we follow the same line of reasoning as in the previous proof, where the parameters therein can be
expressed as

p:ri_kv
q:rjikv

r=n—ri—rj+k.

So we have a total of

n n—k _ n! 4
<k> (p,q,r> _k!(r,-—k)!(rj—k)!(n—r,-—r,-—&-k)! “)

choices.
Dividing equation (4) by (3) and cancelling n! gives

k!(r:j!k)! ' (r,»k)!EZ_:f)! ritk)! (rkj) (Z,_—VIQ

Pr(P) = k) = g =
(- ()

as desired. O

1.3 Distribution of projection edge weights under the Fixed Column Model (FCM)
Let the fixed column model constrain all B* € %YM to have the same column sums as B.
Let X1, ...,X, be independent Bernoulli random variables. Let the probability of success for X; be

The random variable
X=X+ --+X, 3)

is said to have the Poisson binomial distribution with parameters py,..., py.
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Theorem 1.3. Under the fixed column model, the distribution of Pf; for i # jis Poisson binomial with parameters

_ci(e1—1) 1) ~ calen—1)
pP1= m(m—l) y P2 = m(m—l) PEERRR Pn*m-

Proof. The Bj, are all either zero or one and are independent in different columns when only the column sums are fixed. So as
k varies, the products Bj-‘kijk are independent Bernoulli random variables. Comparing equations (1) and (5), we see that the
distribution of P,’; is Poisson binomial.

If column k has column sum ¢ = ¢ then all zero-one vectors with sum c are equally likely for that column of B*. So there
are (T) possible kth columns. The number of ways to have a success is the number of possible columns which have ones in
both positions i and j where i # j. So the number of choices is the number of ways to choose the remaining ¢ — 2 ones in that

column from the other m — 2 positions, that is, (”~5). Thus
m—?2
c—2 c(c—1)

Pk = Pr(B:ka;k =1)= ( =

()

which finishes the demonstration. O

1.4 Stochastic Degree Sequence Model (SDSM)

In the stochastic degree sequence model, 5PSM consists of all binary m x n matrices. A method is then chosen to generate
probabilities pj,. Finally, matrices B* € JB5PSM are generated using these probabilities for independent Bernoulli trials, where
B}, is filled with a one with probability pj; and zero otherwise.

Theorem 1.4. Under the stochastic degree sequence model, the distribution of Pl’; for i # j is Poisson binomial with parameters

PL=DiPj1 s Pn = PinP’n-

Proof. The fact that the distribution is Poisson binomial follows immediately from the independence assumption on the Pr(B;; )
and equation (1). Furthermore, the probability that the kth variable is one is

pk = Pr(ByBj = 1) = Pr(By = 1) Pr(Bj, = 1) = pip-

So we are done. O

2 Familywise error rates in backbone extraction

When testing the hypothesis that an observed statistic s is different from what would be expected at random (i.e. under a given
null model), the researcher must specify a significance level «. The researcher then computes the probability p of observing a
value greater than or equal to s under the null model. The null hypothesis is rejected and the alternative hypothesis is supported
if p < or. When only one hypothesis is being tested, this procedure ensures a Type-I error rate — a false positive, or the risk of
rejecting the null hypothesis when it is true — of a.

In the context of backbone extraction, the ‘statistic’ s is the number of co-occurrences between two agent nodes or the edge
weight in the bipartite projection, and the ‘null model’ is defined by the chosen bipartite ensemble backbone models. When
deciding whether a given edge should be included in the backbone, the researcher is testing a single hypothesis where the
null hypothesis is that the edge’s weight is no stronger than would be expected under the null model. If the null hypothesis is
rejected, then the edge is included in the backbone. Committing a Type-I error in this context results in including the edge in
the backbone when it should be excluded (i.e. a false positive).

When multiple independent hypotheses are tested simultaneously, the Type-I error rate is inflated. Specifically, the
familywise error rate & — the risk of making one or more Type-I errors —is 1 — (1 — o), where 7 is the number of independent
tests. For example, if the Type-I error rate for each hypothesis test is o = 0.05, and ¢ = 100 independent tests are performed,
then @ = 1 — (1 —0.05)'% = 0.995. That is, it is virtually guaranteed that at least one Type-I error will be committed in these
100 hypothesis tests. Because extracting a backbone requires the researcher to conduct a hypothesis test for every edge (with
non-zero weight) in the network, backbone extraction nearly always involves testing multiple independent hypotheses.
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Many different procedures exist for controlling & when multiple independent hypothesis tests are conducted. All of these
procedures involve using a corrected significance level o* for each hypothesis test so that & is maintained at the desired
tolerance for Type-I error. The simplest but also most conservative approach is the Bonferroni correction, which defines o* = %.
Other less conservative and more powerful corrections include the Holm-Bonferroni correction®” which has been used to extract
the backbone of a political network®®, and the False Discovery Rate® which has been used to extract the backbones of movie
rating and international trade networks®. These correction procedures, as well as several others, are available in the backbone
package we use to extract backbones in our studies>’.

Using one of these procedures to control & is usually appropriate when extracting the backbone of a bipartite projection.
Doing so is often straightforward because (1) many backbone models we consider (FRM, FCM, FFM, SDSM) yield exact
p-values, and (2) the backbone package we use to extract backbones in our studies implements several different methods for
correcting @ and thus controlling &. However, for reasons we describe below, it is computationally infeasible to control &
when extracting backbones using FDSM. While this represents a significant limitation to using FDSM backbones in practice,
and is a key reason we are seeking alternatives, this is not a problem for our studies. Within each of our studies, the rate
of Type-I error inflation is identical for all backbones, which means that uncorrected FDSM backbones can be compared to
uncorrected non-FDSM backbones.

2.1 Controlling FWER in FDSM backbones
It is computationally infeasible to control @ when the backbone is extracted from a bipartite projection using FDSM. The
challenge arises because each edge’s p-value is estimated via a Monte Carlo procedure, and estimating these p-values with
sufficient precision and confidence requires an impractically large number of Monte Carlo trials. In this section, we describe
one way to estimate the required number of trials, and illustrate why controlling & in FDSM backbones is impractical.
Because the associated probability mass function is unknown, when using FDSM to extract a backbone, the p-value of
a given edge’s weight (i.e. the probability that the same or larger edge weight would be observed under the null model) is
estimated via Monte Carlo methods. Following N Monte Carlo trials in which a projection P* is constructed from a random
B* € %'PSM the p-value of the edge between i and j is

number of trials where Pl*] > B
N .

pij =

Therefore, the estimation of p;; is equivalent to estimating a proportion from a sample.

Determining the sample size required to estimate a proportion from a sample with a given error tolerance is a well-studied
problem in statistical inference, under the heading of power analysis.** show that the required minimum sample N to determine
whether an estimated proportion P; differs from a hypothesized proportion Py, with a Type-I error rate of € and Type-II error

rate of &, is
2
N> Z,sl\/Po(l —P0)+Z82\/P1 (1 —Pl)

P —P

s

where z represents the critical value corresponding to €; or & in the standard normal distribution. Note that the Type-II error
rate is the opposite of the Type-I error rate, the risk of failing to rejecting the null hypothesis when it is, in fact, false (i.e. a false
negative). In the backbone context, committing a Type-II error results in excluding an edge from the backbone when it should
be included. They further recommend performing a minor correction to arrive at a final estimate N’

1
N >Nt ——.
[P — Py
With a small adaptation to their first expression, we can use these to estimate the required number of FDSM Monte Carlo
trials. We wish to use it to determine the required minimum number of Monte Carlo samples N to determine whether an edge’s
estimated p-value p;; differs from our corrected significance level a*. Accordingly, we can re-write the expression given by®*

as:
2
N> | Vot (I —a*) +ze,+/pij (1= pij)

pij—o*

Two examples serves to illustrate how this expression implies that an impractically large number of Monte Carlo trials
will be required under even modest assumptions. Suppose we are using FDSM to extract the backbone from a projection of a
100 agent x 1000 artifact bipartite network, and we wish to maintain a familywise error rate of & = 0.05. If we assume that our
bipartite projection will be dense (hence the need for extracting its backbone) and will not contain any zero-weight edges, then

we must conduct w = 4950 independent hypothesis tests. Using the Bonferroni correction for simplicity of illustration,
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this implies a corrected two-tailed significance level of o* = w ~ 0.000005 for each test. Further, assume that we

are willing to tolerate a 5% risk of incorrectly including an edge (i.e. Type-I error, €1 = 0.05), and a 5% risk of incorrectly
excluding an edge (i.e. Type-II error, & = 0.05), because both types of errors are equally problematic for graphs.

Under these assumptions, we can consider two scenarios. First, we can determine how many (additional) trials are necessary
to make a decision about an edge whose statistical significance appears unambiguous after some number of initial trials. When
it appears that p;; = 0, this represents a ‘best case scenario’ in which it should be relatively easy to reach a decision about
whether the edge should be included in the backbone. We can compute the required number of trials as:

2
> | 2051/0.000005 (T —0.000005) +205/0(1 —0)
= 0— 0.000005

2
v > | 1:641/0.000005 (T —0.000005) + 1.64,/0 (1 —0)
= 0—0.000005

N > 535 695 (initial estimate)

N >5356954+—————
= +10=0.000003|

N’ > 733 695 (adjusted estimate)

Under this best case scenario, at least 733,695 Monte Carlo trials are required to reach a decision given our familywise error
rate and tolerances for Type-I and Type-II errors. Recall that each Monte Carlo trial requires sampling one B* € ZPSM ysing
the curveball algorithm, then multiplying B* by its transpose. Although the running time of these two operations is relatively
fast (approximately 0.07 seconds on the system we use to evaluate running times in Study 1), performing the required number
of trials under this best case scenario would take around 14 hours.

Second, consider a more realistic scenario in which, after some initial number of trials, an edge’s statistical significance is
more ambiguous because p;; is near a*. For the sake of illustration, consider an edge whose p-value we initially estimate as
pij = 0.0000038, which appears smaller than o* = 0.000005, but is close and therefore riskier. In this case,

N > 29 845 088 (initial estimate)
N’ >30 637 088 (adjusted estimate)

Under this more realistic scenario, where the edge’s statistical significance is not unambiguous, over 30 million Monte Carlo
trials are required to reach a decision given our error tolerance. This would require a running time of approximately 25 days.
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