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In this paper, we are concerned with differentially private stochastic gradient descent
(SGD) algorithms in the setting of stochastic convex optimization (SCO). Most of
the existing work requires the loss to be Lipschitz continuous and strongly smooth,
and the model parameter to be uniformly bounded. However, these assumptions
are restrictive as many popular losses violate these conditions including the hinge
loss for SVM, the absolute loss in robust regression, and even the least square loss
in an unbounded domain. We significantly relax these restrictive assumptions and
establish privacy and generalization (utility) guarantees for private SGD algorithms
using output and gradient perturbations associated with non-smooth convex losses.
Specifically, the loss function is relaxed to have an a-Holder continuous gradient
(referred to as a-Hdélder smoothness) which instantiates the Lipschitz continuity
(e = 0) and the strong smoothness (o« = 1). We prove that noisy SGD with a-
Holder smooth losses using gradient perturbation can guarantee (e, d)-differential

Valog(1/8) | 1
ne + ﬁ)? up

to logarithmic terms, with the gradient complexity O(nﬁi3 + n). This shows an
important trade-off between a-Ho6lder smoothness of the loss and the computational
complexity for private SGD with statistically optimal performance. In particular,
our results indicate that a-Holder smoothness with oo > 1/2 is sufficient to guarantee
(¢,6)-DP of noisy SGD algorithms while achieving optimal excess risk with a linear
gradient complexity O(n).

privacy (DP) and attain optimal excess population risk O(
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1. Introduction

Stochastic gradient descent (SGD) algorithms are widely employed to train a wide range of machine

learning (ML) models such as SVM, logistic regression, and deep neural networks. It is an iterative algorithm

which replaces the true gradient on the entire training data by a randomized gradient estimated from a

random subset (mini-batch) of the available data. As opposed to gradient descent algorithms, this reduces
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the computational burden at each iteration trading for a lower convergence rate [5]. There is a large amount
of work considering the optimization error (convergence analysis) of SGD and its variants in the linear case
(2,19,20,29,30] as well as the general setting of reproducing kernel Hilbert spaces [10,23,28,36,37,32].

At the same time, data collected often contain sensitive information such as individual records from
schools and hospitals, financial records for fraud detection, online behavior from social media and genomic
data from cancer diagnosis. Modern ML algorithms can explore the fine-grained information about data in
order to make a perfect prediction which, however, can lead to privacy leakage [8,31]. To a large extent,
SGD algorithms have become the workhorse behind the remarkable progress of ML and Al. Therefore, it
is of pivotal importance for developing privacy-preserving SGD algorithms to protect the privacy of the
data. Differential privacy (DP) [12,14] has emerged as a well-accepted mathematical definition of privacy
which ensures that an attacker gets roughly the same information from the dataset regardless of whether an
individual is present or not. Its related technologies have been adopted by Google [15], Apple [25], Microsoft
[11] and the US Census Bureau [1].

In this paper, we are concerned with differentially private SGD algorithms in the setting of stochastic
convex optimization (SCO). Specifically, let the input space X be a domain in some Euclidean space, the
output space 9 C R, and Z = X x 9. Denote the loss function by £ : R? x Z + [0,00) and assume, for any
z € 2, that £(-, z) is convex with respect to (w.r.t.) the first argument. SCO aims to minimize the expected
(population) risk, i.e. ®R(w) := E,[¢(w, z)], where the model parameter w belongs to a (not necessarily
bounded) domain % C R%, and the expectation is taken w.r.t. z according to a population distribution D.
While the population distribution is usually unknown, we have access to a finite set of n training data points
denoted by S = {z; € Z2:¢=1,2,...,n}. It is assumed to be independently and identically distributed
(ii.d.) according to the distribution D on Z. In this context, one often considers SGD algorithms to solve
the Empirical Risk Minimization (ERM) problem defined by

1 n
i = — f y 24 }
BRSO 1= 3 3, 2)

For a randomized algorithm (e.g., SGD) 4 to solve the above ERM problem, let 4(S) be the output of
algorithm 4 based on the dataset S. Then, its statistical generalization performance is measured by the
excess (population) risk, i.e., the discrepancy between the expected risk ®(4(S)) and the least possible one
in W, which is defined by

crisk(A(S5)) = R(A(S)) — min R(w).
Along this line, there are a considerable amount of work [35,4,16] on analyzing the excess risk of private
SGD algorithms in the setting of SCO. However, most of such approaches often require two assumptions: 1)
the loss ¢ is L-Lipschitz and S-smooth; 2) the domain 9 is uniformly bounded. These assumptions are very
restrictive as many popular losses violate these conditions including the hinge loss (1 — wa:zc)q+ for g-norm
soft margin SVM and the g-norm loss |y — w’'z|? in regression with 1 < ¢ < 2. More specifically, the work
[35] assumed the loss to be Lipschitz continuous and strongly smooth and showed that the private SGD

( % ) when the

algorithm with output perturbation can achieve (e, §)-DP and an excess risk rate O
gradient complexity (i.e. the number of computing gradients) T' = n. The study [4] proved, under the same
assumptions, that the private SGD algorithm with gradient perturbation can achieve an optimal excess risk
\/dlog(1/6) 1
rate O e + %

Moreau envelope technique to smooth the loss function and got the optimal rate. However, the algorithm
n6,5€4,5

is computationally inefficient with a gradient complexity O(n“’\/g + W)' The work [16] improved

) while guaranteeing its (e, d)-DP. To deal with the non-smoothness, it used the

the gradient complexity of the algorithm to O(n? 1og(%)) by localizing the approximate minimizer of the
population loss on each phase. Recently, [3] showed that a simple variant of noisy projected SGD yields the
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optimal rate with gradient complexity O(n?). However, it only focused on the Lipschitz continuous losses
and assumed that the parameter domain 9/ is bounded.

Our main contribution is to significantly relax these restrictive assumptions and to prove both privacy
and generalization (utility) guarantees for private SGD algorithms with non-smooth convex losses in both
bounded and unbounded domains. Specifically, the loss function ¢(w,z) is relaxed to have an a-Holder
continuous gradient w.r.t. the first argument, i.e., there exists L > 0 such that, for any w, w’ € W and any
2 € 2,

106(w, z) — DLW, 2)[l2 < Lw — w'l[3,

where || - |2 denotes the Euclidean norm, 9¢(w, z) denotes a subgradient of ¢ w.r.t. the first argument. For
the sake of notional simplicity, we refer to this condition as a-Hélder smoothness with parameter L. The
smoothness parameter « € [0, 1] characterizes the smoothness of the loss function £(-, z). The case of & =0
corresponds to the Lipschitz continuity of the loss £ while & = 1 means its strong smoothness. This definition
instantiates many non-smooth loss functions mentioned above. For instance, the hinge loss for ¢g-norm soft-
margin SVM and ¢-norm loss for regression mentioned above with ¢ € [1,2] are (¢ — 1)-Holder smooth. In
particular, we prove that noisy SGD with a-Hélder smooth losses using gradient perturbation can guarantee
(¢,0)-DP and attain the optimal excess population risk O<7vdbi(l/6) + ﬁ), up to logarithmic terms, with

gradient complexity O(nﬁ*g +n). This shows an important trade-off between a-Hélder smoothness of the loss
and the computational complexity for private SGD in order to achieve statistically optimal performance. In
particular, our results indicate that a-Holder smoothness with o« > 1/2 is sufficient to guarantee (e, §)-DP of
noisy SGD algorithms while achieving the optimal excess risk with linear gradient complexity O(n). Table 1
summarizes the upper bound of the excess population risk, gradient complexity of the aforementioned
algorithms in comparison to our methods.

Our key idea to handle general Holder smooth losses is to establish the approximate non-expansiveness
of the gradient mapping, and the refined boundedness of the iterates of SGD algorithms when domain W is
unbounded. This allows us to show the uniform argument stability [24] of the iterates of SGD algorithms with
high probability w.r.t. the internal randomness of the algorithm (not w.r.t. the data S), and consequently
estimate the generalization error of differentially private SGD with non-smooth losses.

Organization of the Paper. The rest of the paper is organized as follows. The formulation of SGD algorithms

and the main results are given in Section 2. We provide the proofs in Section 3 and conclude the paper in
Section 4.

2. Problem formulation and main results
2.1. Preliminaries

Throughout the paper, we assume that the loss function £ : Wx Z — R is convex w.r.t. the first argument,
i.e., forany z € Zand w,w’ € W, there holds ¢(w, z) > {(w', 2)+(0(W', z), w—w') where O¢(w’, z) denotes
a subgradient of £(-, z) in the first argument. We restrict our attention to the (projected) stochastic gradient
descent algorithm which is defined as below.

Definition 1 (Stochastic Gradient Descent). Let W C R be convex, T denote the number of iterations, and
Proj,, denote the projection to W. Let w; = 0 € R? be an initial point, and {n;}/_, be a sequence of
positive step sizes. At step t € {1,...,T}, the update rule of (projected) stochastic gradient decent is given
by

Wii1 = Projgy(wy — n:00(wy, 23,)), (1)
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Table 1

Comparison of different (e, d)-DP algorithms. We report the method, utility (generalization) bound, gradient complexity and
parameter domain for three types of convex losses, i.e. Lipschitz, Lipschitz and smooth, and a-Hoélder smooth. Here Output,
Gradient, Phased Output and Phased ERM denote output perturbation which adds Gaussian noise to the output of non-private
SGD, gradient perturbation which adds Gaussian noise at each SGD update, phased output perturbation and phased ERM output
perturbation [16], respectively. The gradient complexity is the total number of computing the gradient on one datum in the
algorithm.

Reference Loss Method Utility bounds Gradient Complexity Domain
1 1
[35] Lipschitz & smooth Output O(W) o(n) bounded
\/dlog(t - :
[4] Lipschitz & smooth Gradient O( og(‘s) + %) O(”l'o\/E + %) bounded
5
y/dl 5 5.5 4.1
Lipschitz Gradient O( og( ) + %) O(n4"’\/E + (cﬁ;;g(iij) bounded
. R A /dlog( ) 1
[16] Lipschitz & smooth Phased Output O( + ﬁ) o(n) bounded
/dl
Lipschitz Phased ERM O( Og( ) + ﬁ) o(n?log(1)) bounded
[d1
[3] Lipschitz Gradient O( Og( ) + 1n) o(n?) bounded
d i it —a
Ours a-Hoélder smooth Output O(( os( )) Jros(d) )) o(ni? +n) bounded
/d lo. log(™ n —a?-3a+46
a-Hélder smooth Output O( s ) g( ) log(15 )> o(n<1+u)<s+u> + n) unbounded
3ta e n3ta
\/dl 2-a
a-Hoélder smooth Gradient O( og( ) %) O(nfm + n) bounded
where {i;} is uniformly drawn from [n] := {1,2,...,n}. When % = R%, then (1) is reduced to w; 1 =

Wi — ntag(wtv Zit)'

For a randomized learning algorithm 4 : z" — W, let 4(S) denote the model produced by running 4
over the training dataset S. We say two datasets S and S’ are neighboring datasets, denoted by S ~ S’, if
they differ by a single datum. We consider the following high-probabilistic version of the uniform argument
stability (UAS), which is an extension of the UAS in expectation [24].

Definition 2 (Uniform argument stability). We say an algorithm 4 has Az-UAS with probability at least

L—7 (ve (0,1) it

Pa(sup da(S,5") > Aa) <,
S~S’

where §4(5,5") := [ A(S) — A(S")||2-

We will use UAS to study generalization bounds with high probability. In particular, the following
lemma as a straightforward extension of Corollary 8 in [7] establishes the relationship between UAS and
generalization errors. The proof is given in the Appendix for completeness.

Lemma 1. Suppose ¢ is nonnegative, convex and a-Hélder smooth with parameter L. Let My = sup, ¢ (0, z)
and M = sup,c ||0€(0, z)||2. Let A be a randomized algorithm with the output of A bounded by G and

Pa(sup da(S,S") > Aa) < 0.
S~

Then there exists a constant ¢ > 0 such that for any distribution D over Z and any v € (0, 1), there holds
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Py 1 [IR(A(S)) R (AW))]

> c<(M + LG*)Aglog(n)log(1/7) + (Mo + (M + LG*)G)/n~1 log(l/v)ﬂ
<7 +7-
Differential privacy [13] is a de facto standard privacy measure for a randomized algorithm 4.

Definition 3 (Differential Privacy). We say a randomized algorithm A satisfies (¢,d)-DP if, for any two
neighboring datasets S and S’ and any event F in the output space of A4, there holds

P(A(S) € E) <eP(A(S') € E) + 6.
In particular, we call it satisfies e-DP if § = 0.
We also need the following concept called f2-sensitivity.

Definition 4 (¢5-sensitivity). The fs-sensitivity of a function (mechanism) M : zZ" — W is defined as
A =supgog |[M(S) — M(S")||2, where S and S’ are neighboring datasets.

A basic mechanism to obtain (¢,0)-DP from a given function M : Z" — W is to add a random noise
from a Gaussian distribution A/(0,0%I;) where o is proportional to its fo-sensitivity. This mechanism is
often referred to as Gaussian mechanism as stated in the following lemma.

Lemma 2 ([14]). Given a function M : 2" — W with the {a-sensitivity A and a dataset S C Z™, and assume
that o > —W. The following Gaussian mechanism yields (e, 6)-DP:

G(S,0) := M(S)+b, b~ N(0,0°1,),
where Iy is the identity matriz in R¥?,

Although the concept of (€,9)-DP is widely used in privacy-preserving methods, its composition and
subsampling amplification results are relatively loose, which are not suitable for iterative SGD algorithms.
Based on the Rényi divergence, the work [26] proposed Rényi differential privacy (RDP) as a relaxation of
DP to achieve tighter analysis of composition and amplification mechanisms.

Definition 5 (RDP [26]). For A > 1, p > 0, a randomized mechanism 4 satisfies (), p)-RDP, if, for all
neighboring datasets S and S’, we have

DA(A(S) | a(s")) =

Pags)(6) \*
LPas)(0) <
log/(P/q(s/)(e)) APacs(0) < p,

where Pys)(0) and Py(g:)(6) are the density of A(S) and A(S’), respectively.

1
A—1

As XA — oo, RDP reduces to e-DP, i.e., 4 satisfies e-DP if and only if Do (A(5)[|2(S")) < € for any
neighboring datasets S and S’. Our analysis requires the introduction of several lemmas on useful properties
of RDP listed below.

First, we introduce the privacy amplification of RDP by uniform subsampling, which is fundamental
to establish privacy guarantees of noisy SGD algorithms. In general, a uniform subsampling scheme first
draws a subset with size pn uniformly at random with a subsampling rate p < 1, and then applies a known
randomized mechanism to the subset.
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Lemma 3 (/22]). Consider a function M : 2" — W with the {3-sensitivity A, and a dataset S C Z".

The Gaussian mechanism G(S,0) = M(S) + b, where b ~ N(0,021,), applied to a subset of samples

that are drawn uniformly without replacement with subsampling rate p satisfies (X, 3.5p’ A% /a?)-RDP if
0_2

The following adaptive composition theorem of RDP establishes the privacy of a composition of sev-
eral adaptive mechanisms in terms of that of individual mechanisms. We say a sequence of mechanisms
(A1,...,A) are chosen adaptively if 4; can be chosen based on the outputs of the previous mechanisms
4(S),...,2-1(5) for any i € [k].

Lemma 4 (Adaptive Composition of RDP [26]). If a mechanism A consists of a sequence of adaptive mech-
anisms (A, ..., A) with 4; satisfying (A, p;)-RDP, i € [k], then A satisfies (A, Zle pi)-RDP.

Lemma 4 tells us that the derivation of the privacy guarantee for a composition mechanism is simple and
direct. This is the underlying reason that we adopt RDP in our subsequent privacy analysis. The following
lemma allows us to further convert RDP back to (e, §)-DP.

Lemma 5 (From RDP to (e,6)-DP [26]). If a randomized mechanism A satisfies (X, p)-RDP, then A satisfies
(p+1og(1/6)/(A—1),6)-DP for all § € (0,1).

The following lemma shows that a post-processing procedure always preserves privacy.

Lemma 6 (Post-processing [20]). Let 4 : z" — WA satisfy (A, p)-RDP and f : WA — Wh be an arbitrary
function. Then foA:2Z" — Wh satisfies (A, p)-RDP.

2.2. Main results

We present our main results here. First, we state a key bound of UAS for SGD when W C R? and the loss
function is a-Ho6lder smooth. Then, we propose two privacy-preserving SGD-type algorithms using output
and gradient perturbations, and present the corresponding privacy and generalization (utility) guarantees.
The utility guarantees in terms of the excess risk typically rely on two main errors: optimization errors and
generalization errors, as shown soon in (3) and (4) for the algorithms with output and gradient perturbations,
respectively. We will apply techniques in optimization theory to handle the optimization errors [27], and the
concept of UAS [6,17,24], which was given in Definition 2 in Subsection 2.1, to estimate the generalization

eIrors.

2.2.1. UAS bound of SGD with non-smooth losses
We begin by stating the key result on the distance between two iterate trajectories produced by SGD on
neighboring datasets. Let
(1+1/a)Ta Lita, ifa € (0,1]
Ca,l = . (2)
M+ L, if a =0,

2(1+a) 20
and ¢y 2 = ,/ﬁ—g(Q_aL)ﬁ, where M = sup, ¢ [|04(0, z)||2. In addition, define C, = ﬁ—gcah’a (p%a) 1=e
+ 2sup, ¢ £(0; z). Furthermore, let B(0,7) denote the Euclidean ball of radius r > 0 centered at 0 € R%.

Without loss of generality, we assume n > 1/T.
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Algorithm 1 Differentially Private SGD with Output perturbation (DP-SGD-Output)

1: Inputs: Data S = {2z, € 2:1=1,...,n}, a-Holder smooth loss £(w, z) with parameter L, the convex set W, step size 1, number
of iterations 7', and privacy parameters €, &

2: Set: wy =0

3: for t=1toT do

4 Sample iy ~ Unif([n])

5: Wit1 = Projg, (we — ndl(wy; z;,))

6: end for

7

8

9

. if W = R9 then
: let A = Asgp(6/2)
: else if 9 C B(0, R) then
10: let A = ASGD(6/2)
11: end if
12: Compute: o2 = 210g(2€.7§/5w
13: return: wp,iy = % Zthl w; + b where b ~ A(0, azld)

Theorem 7. Suppose that the loss function € is convex and a-Holder smooth with parameter L. Let 4 be
the SGD with T iterations and 1y = n < min{1,1/L}, and W = + Zthl w; be the output produced by A.

Further, let ¢y 7 = max { (3nlog(n/v)/T) : ,3n log(n/’y)/T},
(a) If £ is nonnegative and W = R?, then, for any v € (0,1), there holds

Pﬂ( sup 04(9,S5") > Asco(v)) <7,
S~S’

, . 1/2
where Asap(y) = (e(ciQTnm + 4(]\/[ + L(CaTn)5)2n2 (1 + %(1 + C%T)) %(1 + C%T))) )
(b) If W C B(0, R) with R > 0, then, for any v € (0,1), there holds

]qu( sup 04(S,5") > Ascp(v)) <7,
S~S’

. 1/2
where Agsap(y) = (e(ci’QTU% + 4(M + LRO‘)QW2 (1 + %(1 + C%T)) %(1 + c%T))) .

Remark 1. Under the reasonable assumption of 7' > n, we have ¢y = O(log(n/v)). Then Agcp(y) =
O(\/Tnﬁ + sz> and ASGD(v) = O(\/Tnﬁ + Inloet/n)) 1y addition, if ¢ is strongly

n

smooth, i.e., & = 1, the first term in the UAS bounds tends to 0 under the typical assumption of n < 1. In

this case we have Aggp(y) = O w and ASGD(’Y) =0 %("/7)) The work [3] established
the high probability upper bound of the random variable of the argument stability dsgp in the order of
O(V/Tn + L) for Lipschitz continuous losses under an additional assumption v > exp(—n/2). Our result
gives the upper bound of supg.g: 6sap(S,S’) in the order of O(v/Tn + %("/7)) for any v € (0,1) for the
case of a = 0. The work [17] gave the bound of O(T'n/n) in expectation for Lipschitz continuous and smooth
loss functions. As a comparison, our stability bounds are stated with high probability and do not require the
Lipschitz condition. Under a further Lipschitz condition, our stability bounds actually recover the bound
O(Tn/n) in [17] in the smooth case. Indeed, both the term (M + (CaTn)%)2 and the term (M + LR"‘)2

are due to controlling the magnitude of gradients, and can be replaced by L? for L-Lipschitz losses.

2.2.2. Differentially private SGD with output perturbation

Output perturbation [9,13] is a common approach to achieve (e, §)-DP. The main idea is to add a random
noise b to the output of the SGD algorithm, where b is randomly sampled from the Gaussian distribution
with mean 0 and variance proportional to the fo-sensitivity of SGD. In Algorithm 1, we propose the private
SGD algorithm with output perturbation for non-smooth losses in both bounded domain W C B(0, R) and
unbounded domain W = R?. The difference in these two cases is that we add random noise with different
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variances according to the sensitivity analysis of SGD stated in Theorem 7. In the sequel, we present the
privacy and utility guarantees for Algorithm 1.

Theorem 8 (Privacy guarantee). Suppose that the loss function £ is convex, nonnegative and a-Hélder smooth
with parameter L. Then Algorithm 1 (DP-SGD-Output) satisfies (e,0)-DP.

According to the definitions, the ¢5-sensitivity of SGD is identical to the UAS of SGD: supg.g dsap(S,S’).
In this sense, the proof of Theorem 8 directly follows from Theorem 7 and Lemma 2. For completeness, we
include the detailed proof in Subsection 3.2.

Recall that the empirical risk is defined by Rs(w) = % S, €(w,z;), and the population risk is R (w) =
E.[l(w,z)]. Let w* € argmingecq R(W) be the one with the best prediction performance over W. We use
the notation B = B if there exist constants c1,co > 0 such that 013 < B< CQB . Without loss of generality,

we always assume ||w*[[2 > 1.

Theorem 9 (Utility guarantee for unbounded domain). Suppose the loss function ¢ is nonnegative, convex

and a-Hélder smooth with parameter L. Let Wpry, be the output produced by Algorithm 1 with W = R?
2 (3

and n = nﬁ/(T(log(%))sia) Let T < nGimGTe if0 < a< ‘/?77, and T < n else. Then, for any

v € (dmax{exp(—d/8),d},1), with probability at least 1 — v over the randomness in both the sample and

the algorithm, there holds

R(Wprir) = R(W") = w3 o((lvo :(lf/gj)l)/%;n/cﬂ " 1°g<n>(10g<14;>3 [ log(n/ 5)).

To examine the excess population risk R(Wpwiv) — R(W*), we use the following error decomposition:

R(Wpriv) = R(W") = [R(Wpriv) — R(W)] + [R(W) — Rs(W)] + [Rs (W) — Rs(W")] + [Rs(W") — R(W")], (3)

where w = L ZtT:I w; is the output of non-private SGD. The first term is due to the added noise b, which
can be estimated by the Chernoff bound for Gaussian random vectors. The second term is the generalization
error of SGD, which can be handled by the stability analysis. The third term is an optimization error and
can be controlled by standard techniques in optimization theory. Finally, the last term can be bounded by
0(1/+/n) by Hoeflding inequality. The proof of Theorem 9 is given in Subsection 3.2.

Now, we turn our attention to the utility guarantee for the case with a bounded domain.

Theorem 10 (Utility guarantees for bounded domain). If the loss function € is nonnegative, convex
and a-Hélder smooth with parameter L. Let Wy, be the output produced by Algorithm 1 with W C

BO,R). Let T = nite if a < T = n else, and choose n = 1/<Tmax{\/log(n/é)log(”)log(l/v),

\/ﬁ
V4 flomrss /
(dlog(1/%) 1?/% /9)og(1/1)""® }) Then for any v € (4max{exp(—d/8),40},1), with probability at least

1 — v over the randomness in both the sample and the algorithm, there holds

1
9

(dlog(l/d))% (log(1/~))% \/log(n/d) \/log ) log( l/w)log(n/é))
Vne vn '

The definition of a-Hélder smoothness and the convexity of ¢ imply the following inequalities

R(Wprin) — R(w*) = w3 o(

|06(w,2)||l2 < M 4+ LR* and £(w,z) < £(0,2) + MR+ LR**®, Vz€ z,we W.
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Algorithm 2 Differentially Private SGD with Gradient perturbation (DP-SGD-Gradient)

1: Inputs: Data S = {z; € 2:4¢=1,...,n}, loss function ¢(w, z) with Holder parameters « and L, the convex set W C B(0, R),
step size 7, number of iterations T, privacy parameters €, §, and constant 3.

2: Set: wy =0

3: Compute o2 = 14(1‘/1;11413“) T (lsgilﬁ/)i) + l)

4: for t=1to T do

5: Sample i; ~ Unif([n])

6: Wi = Projw(wt —n(0L(wy; z;,) + bt)), where by ~ (0, U2Id)

7: end for

8: return: wpyiy = % ZZ;I Wy

These together with Theorem 9 imply the utility guarantee in the above theorem. The detailed proof is
given in Subsection 3.2.

Remark 2. The private SGD algorithm with output perturbation was studied in [35] under both the
Lipschitz continuity and the strong smoothness assumption, where the excess population risk for one-
pass private SGD (i.e. the total iteration number T = n) with a bounded parameter domain was
bounded by O((ne)*%(dlog(l/d)i). As a comparison, we show that the same rate (up to a logarithmic
factor) O((ne)_%(dlog(l/é))i 1og%(n/6)) can be achieved for general a-Holder smooth losses by taking
T= O(nﬁ_g +n). Our results extend the output perturbation for private SGD algorithms to a more general
class of non-smooth losses.

2.2.3. Differentially private SGD with gradient perturbation

An alternative approach to achieve (e,0)-DP is gradient perturbation, i.e., adding Gaussian noise to
the stochastic gradient at each update. The detailed algorithm is described in Algorithm 2, whose privacy
guarantee is established in the following theorem.

Theorem 11 (Privacy guarantee). Suppose the loss function £ is nonnegative, convex and a-Hélder smooth
with parameter L. Then Algorithm 2 (DP -SGD-Gradient) satisfies (e,0)-DP if there exists § € (0,1) such

o2 n 103(1/5)
that TeTES A >0.67and A —1< 6(M+LRQ)2 log )\(1+4(M+5R04) ) hold with \ = B)e + 1.

Since W C B(0, R), the Holder smoothness of ¢ implies that ||0¢(wy, 2)||l2 < M + LR for any t € [T] and
any z € 2, from which we know that the fs-sensitivity of the function M; = 9¢(wy, z) can be bounded by
2(M + LR®). By Lemma 3 and the post-processing property of DP, it is easy to show that the update of
w; satisfies (1?1g£1ﬁ/)i) +1, %)-RDP for any ¢ € [T]. Furthermore, by the composition theorem of RDP and
the relationship between (e,d)-DP and RDP, we can show that the proposed algorithm satisfies (e, §)-DP.
The detailed proof can be found in Subsection 3.3.

Other than the privacy guarantees, the DP-SGD-Gradient algorithm also enjoys utility guarantees as
stated in the following theorem.

Theorem 12 (Utility guarantee). Suppose the loss function £ is nonnegative convex and a-Hdlder smooth
{ Viog(n) log(n/~) log(1/~)

Jn

with parameter L. Let W,y be the output produced by Algorithm 2 with n = 75 Max

leog(l/ézl(elog(l/”)zk } Furthermore, let T = nire if « < %, and T =< n else. Then, for any v €

2 )
(18 exp(—Td/8),1), with probability at least 1 —~ over the randomness in both the sample and the algorithm,
there holds

V/dlog(1/5)log(1/7) \/log Jog(n )10g(1/7))'

R(Wyrin) — R(w") = w3 o( o G/
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T T T T T T T T

7(n'/* —1)+4log(n)n+7
2n(nt/?-1)

35} €=

25} 9

privacy budget ¢

1 2 3 4 5 6 7 8 9 10
size of training set n %108

Fig. 1. The sufficient condition for the existence of 8 in Lemma 13. The shaded area is the area where the sufficient condition in
Lemma 13 holds true, i.e., € > (7(77,% — 1)+ 4log(n)n + 7)/(2n(n§ —1)).

Our basic idea to prove Theorem 12 is to use the following error decomposition:

R(Wpriv) = R(W*) = [R(Wpriv) = Rs(Wpriv)] + [Rs (Wpriv) — Rs(W)] + [Rs (W) — R(w")]. (4)

Similar to the proof of Theorem 9, the generalization error R (Wpyiv) — Rs(Wpriv) can be handled by the UAS
bound, the optimization error Ks(Wpyiv) — Rs(W*) can be estimated by standard techniques in optimization
[e.g. 27], and the last term Rs(w*) — R(w*) can be bounded by the Hoeffding inequality. The detailed proof
can be found in Subsection 3.3.

Remark 3. We now compare our results with the related work under a bounded domain assumption. The
work [4] established the optimal rate O(--+/dlog(1/4) + ﬁ) for the excess population risk of private SCO
algorithm in either smooth case (o = 1) or non-smooth case (o = 0). However, their algorithm has a large

gradient complexity O(n4'5\/g + %). The work [16] proposed a private phased ERM algorithm for
SCO, which can achieve the optimal excess population risk for non-smooth losses with a better gradient
complexity of the order O(n?log(1/4)). The very recent work [3] improved the gradient complexity to O(n?).
As a comparison, we show that SGD with gradient complexity O(nl:r_((j +n) is able to achieve the optimal (up
to logarithmic terms) excess population risk O(-=/dlog(1/8)+ ﬁ) for general a-Holder smooth losses. Our
results match the existing gradient complexity for both the smooth case in [4] and the Lipschitz continuity
case [3]. An interesting observation is that our algorithm can achieve the optimal utility guarantee with the
linear gradient complexity O(n) for v > 1/2, which shows that a relaxation of the strong smoothness from

a=1to a>1/2 does not bring any harm in both the generalization and computation complexity.

Now, we give a sufficient condition for the existence of 5 in Theorem 11 under a specific parameter
setting.

1
Lemma 13. Let n > 18, T =n and 6 = 1/n?. If e > 7(n3721)(+4%10g1()n)n+7, then there exists B € (0,1) such
that Algorithm 2 satisfies (€,8)-DP.
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Remark 4. Privacy parameters € and § together quantify the privacy risk. e is often called the privacy
budget controlling the degree of privacy leakage. A larger value of € implies higher privacy risk. Therefore,
the value of € depends on how much privacy the user needs to protect. Theoretically, the value of € is less
than 1. However, in practice, to obtain the desired utility, a larger privacy budget, i.e., € > 1, is always
acceptable [35,33]. For instance, Apple uses a privacy budget ¢ = 8 for Safari Auto-play intent detection,
and € = 2 for Health types'. Parameter ¢ is the probability with which e€ fails to bound the ratio between
the two probabilities in the definition of differential privacy, i.e., the probability of privacy protection failure.
For meaningful privacy guarantees, according to [14] the value of ¢ should be much smaller than 1/n. In
particular, we always choose § = 1/n?. For DP-SGD-Gradient algorithm, another constant we should discuss
is 8 which depends on the choice of the number of iterations T, size of training data n, privacy parameters
€ and 0. The appearance of this parameter is due to the use of subsampling result for RDP (see Lemma 3).
The condition in Lemma 13 ensures the existence of g € (0,1) such that Algorithm 2 satisfies DP. Fig. 1
shows how the range of € changes as we increase the size of training dataset n. In practical applications,
we search in (0, 1) for all 8 that satisfy the RDP conditions in Theorem 11. Note that the closer the f is
to 1/2, the smaller the variance of the noise added to the algorithm in each iteration. Therefore, we choose
the value that is closest to 1/2 of all 5 that meets the RDP conditions as the value of §.

We end this section with a final remark on the challenges of proving DP for Algorithm 2 when % is
unbounded.

Remark 5. To make Algorithm 2 satisfy DP when W = R¢, the variance o; of the noise b, added in the
t-th iteration should be proportional to the fo-sensitivity Ay = [|0€(wy, 2;,) — (W, 2], )||2. The definition
of Holder smoothness implies that A; < 2(M + L||w||$). When o = 0, we have A; < 2(M + L) and the
privacy guarantee can be established in a way similar to Theorem 11. When « € (0, 1], we have to establish
an upper bound of ||wy||2. Since wy = w1 —n(dl(wi_1,2;,_,) +bi_1) (bi_1 ~ N(0,07_,14)), we can only
give a bound of ||w¢|2 with high probability. Thus, the sensitivity A; can not be uniformly bounded in this
case. Therefore, the first challenge is how to analyze the privacy guarantee when the sensitivity changes at
each iteration and all of them can not be uniformly bounded Furthermore, by using the property of the

Gaussian vector, we can prove that ||w|ls = O(v/tn + 7]2 1 oj + m/dzj 105 2) with high probability.
However, as mentioned above, the variance o; should be proportional to Ay whose upper bound involves

|[w¢||$. Thus, oy is proportional to (tn)®/? + 77"‘(22 1103) n*(d Z] 1 ])Q/Q For this reason, it seems
difficult to give a clear expression for an upper bound of ||WtH2.

3. Proofs of main results

Before presenting the detailed proof, we first introduce some useful lemmas on the concentration behavior
of random variables.

Lemma 14 (Chernoff bound for Bernoulli variable [3}]). Let X1, ..., Xy be independent random variables
taking values in {0,1}. Let X = Zle X; and p =E[X]. The following statements hold.

(a) For any 4 € (0,1), with probability at least 1 — exp ( — /fy2/3), there holds X < (14 7)u.
(b) For any % > 1, with probability at least 1 — exp (— puy/3), there holds X < (14 7)p.

L https://www.apple.com/privacy/docs/Differential Privacy Overview.pdf
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Lemma 15 (Chernoff bound for the €y-norm of Gaussian vector [3]]). Let Xi,..., X} be i.i.d. standard
Gaussian random variables, and X = [X1,..., Xy] € R*. Then for any t € (0,1), with probability at least
1 — exp(—kt?/8), there holds || X||3 < k(1 +¢).

Lemma 16 (Hoeffding inequality [18]). Let X1,..., X} be independent random variables such that a; < X; <
b; with probability 1 for all i € [k]. Let X = %Zle X;. Then for any t > 0, with probability at least
1 —exp(—2t2/ >, (bi — a;)?), there holds X — E[X] < ¢.

Lemma 17 (Azuma-Hoeffding inequality [18]). Let X1,..., X} be a sequence of random variables where X;
may depend on the previous random variables Xy,...,X;—1 for all i = 1,... k. Consider a sequence of
functionals &;(X1,...,X;), i € [k]. If |& — Ex,[&]| < b; for each i. Then for all t > 0, with probability at
least 1 — exp(—t%/(23,b7)), there holds Zle & — Zle Ex,[&] <t

Lemma 18 (Tail bound of sub-Gaussian variable [3/]). Let X be a sub-Gaussian random variable with mean
w and sub-Gaussian parameter v2. Then, for anyt > 0, we have, with probability at least 1—exp (7t2/(21)2)) ,
that X — pu <t.

8.1. Proofs on UAS bound of SGD on non-smooth losses

Our stability analysis for unbounded domain requires the following lemma on the self-bounding property
for Holder smooth losses.

Lemma 19. (/21,37]) Suppose the loss function £ is nonnegative, convex and a-Hdélder smooth with parameter

L. Then for cq,1 defined as (2) we have
[06(w, 2)[|2 < ca,Ml%a(w,z), vwe Rz e z.

Based on Lemma 19, we develop the following bound on the iterates produced by the SGD update (1)
which is critical to analyze the privacy and utility guarantees in the case of unbounded domain. Recall that
M = sup, ¢ [|04(0, 2) 2.

Lemma 20. Suppose the loss function € is nonnegative, convex and a-Hdélder smooth with parameter L. Let
{w}E | be the sequence produced by SGD with T iterations when W = R¢ and n; < min{1,1/L}. Then,
for any t € [T], there holds

t
[Werall3 < Ca Zﬂj’

j=1

2(1+a)

2a
where C,, = ﬁ—gca’lf“ (HLQ) e 4 2sup, 5 £(0;2).

Proof. The update rule w; 1 = wy — 7;00(Wy, 2;,) implies that
[Wiall3 = [[we = 0:00(wi, i) I3 = [[Well3 + 07 06(we, 2i,) |15 — 2ne(wi, DU(We, 23,)).- (5)

First, we consider the case a = 0. By the definition of Holder smoothness, we know £ is (M + L)-Lipschitz
continuous. Furthermore, by the convexity of ¢, we have

e[| 06wy, 23,13 — 2(w, 06wy, 2i,) < mel|0(we, 23, )15 +2(0(0, 24,) — €(wy, 23,))
< (M + L) + 2sup (0, 2),

2€EZ
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where in the last inequality we have used 7; < 1 and the nonnegativity of ¢. Now, putting the above
inequality back into (5) and taking the summation gives

t

el < (01 + £+ 250p0.) Y (6)

zZ€EZ

Then, we consider the case a = 1. In this case, Lemma 19 implies ||0¢(w, 2)||3 < 2L¢(w, z). Therefore,
ellOC(we, 23, I3 — 2(we, 0U(We, 23,)) < 2 LUWe, 23,) + 2000, 23,) — 26(We, 24,) < 20(0, 2,),

where we have used the convexity of £ and n; < 1/L. Plugging the above inequality back into (5) and taking
the summation yield that

t
[wiii]]3 < QSupZ 0,z Z (7)

Finally, we consider the case « € (0,1). According to the self-bounding property and the convexity, we
know

100(we, 23,) |2 < can T8 (W, 2i,) < cat ((We, 00wy, 23,)) + £(0, 2;,)) 0.

Therefore, for o € (0, 1) there holds

106w, 23, )II3 < cd 1 ((we, O(we, 2i,)) + €(0, 2,)) ik

: e 14 a,_ 2e
- < Oj;]ta ((wy, 0L(wy, 2;,)) +f(072u))) Ta (02,1(%) 1+a)
20 1+« l—a/, d+a,-2e lta
B 1+O‘( Qany (<Wt’8€(wtvzit)>+£(O’Zi"))) * 1+« (Ca 1( ang ) B )
1 —o 2022 20 20
- 277;1(<Wt, 8€(Wt7 th)> + 6(07 z’bt)) + - < )1—0¢ ntl—aa

1—1—040‘1 1+«

where the last inequality used Young’s inequality ab < %ap + %bq with % + % = 1. Putting the above

inequality into (5), we have

2 o - 2050 a2 20
Iwial < welld + Tt ™ (=) " m 4260, )m
If the step size 1 < 1, then
1—a 2t o 20
2 2 1 1—a
w < ||wyll5 + + 2sup £(0; z
[Witallz < [lwellz <1+ 1+a) ZEIZD ( ))Ut

Taking a summation of the above inequality, we get

1l—a 240 o

t
11— 1 a
—1_1_0[0(171 (1—|—a) +2ilépz)€()z>z:: (8)

il < (

The desired result follows directly from (6), (7) and (8) for different values of a. O
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The following lemma shows the approximately non-expensive behavior of the gradient mapping w —
w — ndl(w, z). The case o € [0,1) can be found in Lei and Ying [21], and the case o = 1 can be found in
Hardt [17].

Lemma 21. Suppose the loss function £ is convexr and «-Holder smooth with parameter L. Then for all
w,w’ € R? and n < 2/L there holds

1—
@ gy,

[w —ndl(w, z) — W' +ndl(w', 2)||3 < [|w —w'[[3 +
With the above preparation, we are now ready to prove Theorem 7.

Proof of Theorem 7. (a) Assume that S and S’ differ by the i-th datum, i.e., z; # 2/. Let {w;}]_, and
{wi 1 be the sequence produced by SGD update (1) based on S and S’, respectively. For simplicity, let
2= 1+a & (27 O‘L)l . Note that when %W = R4, Eq. (1) reduces to wy11 = w; — ndl(wy,2;,). For any
t € [T, we consider the following two cases.

Case 1:If iy # i, Lemma 21 implies that

C

2
IWerr = Wi ll3 = lwe = 1:00(we, 2i,) = Wi+ m0l(wy, zi,) |5 < lwe = Will5 + g om) "
Case 2: If iy = i, it follows from the elementary inequality (a + b)? < (1 + p)a? + (1 + 1/p)b? that

W1 — Wi I3 = l[we — mdb(wi, 22) — wh+ 00w}, 2))|3
< (L+p)llwe = will3 + (1 + 1/p)n 06w, ;) — 0w, i) 3-
According to the definition of Holder smoothness and Lemma 20, we know
t—1

06w, 2)ll2 < M+ L(Ca Yo m;) " = can (9)

j=1

vlR

Combining the above two cases and (9) together, we have

W1 — Wt+1 H2 (1+ p)H[” Hiwy — Wt||2 + Ca 277t 41+ l/p)ﬂ[it:i]ci,tnfv

where [[;,—; is the indicator function, i.e., I;,—; = 1 if i; = i and 0 otherwise. Applying the above inequality
recursively, we get

t

w1—wi |3+ (mZn +4an W (141 /p) T, Z) [T (+p)e=

j=k+1

t
Wi —wi il H 1+p)Tie=d

Since wy = w} and n; = 7, we further get

t t
2
||Wt+1 _W;JrlH H 1 +p lij =l (Ci,Qtnlia +4772202,k(1 + 1/p)H[lk:1]>
j=2 k=1

t
< (14 p)Sie = ( 2T 4R P (14 1/p) S e ]) (10)
k=1
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Applying Lemma 14 with X; = Ij; _; and X = ZJ 1 X, for any exp(—t/3n) < v < 1, with probability at
least 1 — 2, there holds

3

¢ t 3log(n/7)

For any 0 < v < exp(—t/3n), with probability at least 1 — I, there holds

Plug the above two inequalities back into (10), and let ¢, ; = max{ 310?}2/ 0, 310%}2/ 7) } Then, for any
€ (0,1), with probability at least 1 — I, we have

Wi = Wl < (L p) 0000 (2 ™% 42 21+ 1/p) (14 ¢3,0)).

Let p = . Then we know (1 + p)=(1T¢t) < ¢ and therefore

1
L (14cq,4)
2 t t
Iwess = Wi 3 < e otn ™= +ded o (14 —(1+ e, )~ (1+ e0))- (11)

This together with the inequality ¢Z, , < (M + L(C’Oﬂfn)%)2 due to Lemma 20, we have, with probability at
least 1 — 2, that

(14 ) (1 + ).

a t
[witr —wi |3 < €< 275771 & 4+ 4(M + L(Cqtn)?) 772<1 + -

By taking a union bound of probabilities over ¢ = 1,...,n, with probability at least 1 — =y, there holds

2 ay?2 4 t
sup [ wiiy = Wi |3 < e ot 44+ L(Cat)3) (14 (1t e0)) 20+ 0.

o 1/2
Let Asep(y) = (e(ciaTU% +4(M+L(CQT77)5)2772 (1 +Z01 —l—c%T)> L1+ C%T))) . Recall that 4 is

the SGD with T iterations, and w = %ZtT:l w; is the output produced by 4. Hence, supg.g da(S,S") =
Supg~g ||[W — W'||2. By the convexity of the ¢3-norm, with probability at least 1 — v, we have

T

sup 8a(S,5) < 7 Z sup [wi = will> < Asap (7).

This completes the proof of part (a).

(b) For the case W C B(0, R), the analysis is similar to the case % = R? except using a different estimate for
the term ||04(wy, 2)||2. Indeed, in this case we have ||w;||2 < R, which together with the Holder smoothness,
implies ||0¢(wy, z)|l2 < M + LR® for any ¢ € [T] and z € Z. Now, replacing cot = M + LR® in (9) and
putting cq ¢ back into (11), with probability at least 1 — X, we obtain

2 ay2 t t
Ssug/ lwirr — w;_HH% < e(ci,ztnl—a + 4(M + LR ) n? (1 + E(l + 07715)) E(l + C%t)).
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- 1/2
Now, let Agap(y) = (e(cinTn% +4(M + LRO‘)Qn2 <1 + L1+ c%T)) L+ C%T))) . The convexity of
a norm implies, with probability at least 1 — ~, that

T

1 -
sup da(9,5") < T E sup |[w; — wylla < Asap(7)-
S~5’ =1 S~

The proof of the theorem is completed. O

3.2. Proofs on differentially private SGD with output perturbation

In this subsection, we prove the privacy and utility guarantees for output perturbation (i.e. Algorithm 1).
We consider both the unbounded domain W = R% and bounded domain W C B(0, R).

We first prove Theorem 8 on the privacy guarantee of Algorithm 1.

Proof of Theorem 8. Let 4 be the SGD with T iterations, w = %Zle w; be the output of 4. First,
consider the unbounded domain case, i.e., W = R%. Let I = {iy,...,ir} be the sequence of sampling after
T iterations in 4. Define

B = {I: sup d4(S,5") < Asap(6/2)}.
S~S’
Part (a) in Theorem 7 implies that P(I € B) > 1 — §/2. Further, according to the definitions, we know
the lo-sensitivity of A4 is identical to the UAS of 4. Thus, if I € B, then Lemma 2 with §' = §/2 implies
Algorithm 1 satisfies (¢,d/2)-DP. For any neighboring datasets S and .S”, let Wi, and w,;,
produced by Algorithm 1 based on S and S, respectively. Hence, for any £ C R? we have

be the output

P(Wpiv € E) =P(wpiv € ENT € B) + P(wpiy € ENT € B°)

5 5
< P(Wpiy € BT € BIP(I € B) + 5 < (P (Wi € EIL € B) + §)]P(I € B)+

N

< e P( eENTIeB)+6<eP( € E)+9,

/ /
Wpriv Wpriv

where in the second inequality we have used the definition of DP. Therefore, Algorithm 1 satisfies (e, §)-DP
when % = R?. The bounded domain case can be proved in a similar way by using part (b) of Theorem 7.
The proof is completed. O

Now, we turn to the utility guarantees of Algorithm 1. Recall that the excess population risk R(Wpriv) —
R (w*) can be decomposed as follows (W = = Zle W)

R(Wpriv) = R(W") = [R(Wpriv) = R(W)] + [R(W) — Rs(W)] + [Rs (W) — Rs(W7)] + [Rs(W") — R(W")].
(12)

We now introduce three lemmas to control the first three terms on the right hand side of (12). The
following lemma controls the error resulting from the added noise.

Lemma 22. Suppose the loss function ¢ is nonnegative, conver and c-Hélder smooth with parameter L.
Let Wy be the output produced by Algorithm 1 based on the dataset S = {z1,---,2z,} withm, = n <
min{1,1/L}. Then for any v € (4exp(—d/8),1), the following statements hold true.
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(a) If W = RY, then, with probability at least 1 — 7, there holds

R(Wyrin) = R(W) = 0((Tn) ¥ ov/d(10g(1/7))} + 0 +2d"5" (10g(1/7)) ).

(b) If W C B(0, R) with R > 0, then, with probability at least 1 — 7, we have

_ 1 o g lta 1ta
R(Wyria) = R(W) = O(oV/d(log(1/7) + ' +2d" 5" (log(1/7)) 5 ).
Proof. (a) First, we consider the case W = R?. Note that

K(WPFiV) - K(V_V) = IEZ[E(Wpriva Z) - K(‘Xh Z)] < Ez[<6£(wprivv Z), Woriv — W>]
< E:fl|06(Wpriv, 2)[[2[Ibll2] < (M + L{wpriv[[5) b2
< (M + L[|w][$)[[bll2 + L[bl| ", (13)

where the first inequality is due to the convexity of ¢, the second inequality follows from the Cauchy-Schwartz
inequality, the third inequality is due to the definition of Holder smoothness, and the last inequality uses
Wpriv = W+b. Hence, to estimate R (Wpriy) — R(W), it suffices to bound ||b||2 and ||W||2. Since b ~ A[(0, 0*I),
then for any v € (4exp(—d/8),1), Lemma 15 implies, with probability at least 1 — 7, that

Ibll2 < oV (1+ (Slog (4/7))%). (14)

Further, by the convexity of a norm and Lemma 20, we know

[N

T
_ 1
1]z < = D Iwill2 < (CaT)*. (15)
t=1

Putting the above inequality and (14) back into (13) yields

1ta 1ta

Km0 (0 1+ (7)) 1470 (1 (s )

o 1 o ite
= o((Tm)% aVd(log(1/7)) " +0*+a"F* (log(1/7) T ).
This completes the proof of part (a).

(b) The proof for the unbounded domain case is similar to that of the bounded domain. Since ||w¢|j2 < R
for t € [T] in this case, then

T
_ 1
Iwll2 < D llwellz < R. (16)
t=1

Plugging (16) and (14) back into (13) yield the result in part (b). O
In the following lemma, we use the stability of SGD to control the generalization error ®(w) — Rg(W).

Lemma 23. Suppose the loss function £ is nonnegative, convex, and a-Hélder smooth with parameter L. Let
A be the SGD with T iterations and ny = n < min{l,1/L} based on the dataset S = {z1,--- ,2zn}, and
w = %Zle w; be the output produced by A. Then for any v € (44, 1), the following statements hold true.
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(a) If W =RY, then, with probability at least 1 — 3, there holds

R(W) = Rs(W) = 0((Tn)# Asc(6/2) log(n) log(1/7) + (Tn) +* \/n~+ log(1/7)).

b) If W C B(0, R) with R > 0, then, with probability at least 1 — X, we have
( 1

R(W) — Rs (W) = 0(Asap(8/2) log(n) log(1/7) + \/n~ * log(1/7)).

Proof. (a) Consider the unbounded domain case. Part (a) in Theorem 7 implies, with probability at least
1— 2, that
2

sup 04(5,S5") < Asgp(d/2). (17)
S~

Since y > 44, then we know (17) holds with probability at least 1—3. According to the result [[W|ls < /CoTn
by (15) and Lemma 1 with G = /C,Tn together, we derive the following inequality with probability at
least 1 -2 —2=1-12

8 B %

R (W) — Rs (W) < c(<M T L(CaT) ) Asan(6/2) log(n) log(8/7)

+ (sup£(0, 2) + (M+L(Tn)%)\/ﬂ)\/@

ZE€EZ

— O((TU)SASGD (5/2) log(n) log(l/y) + (Tn)HTCY \/@) 7

where ¢ > 0 is a constant. The proof of part (a) is completed.

(b) For the case W C B(0, R), the proof follows a similar argument as part (a). Indeed, part (b) in Theorem 7
implies, with probability at least 1 — , that

sup (554(5, Sl) S ASGD(é/Q). (18)
S~S’

Note that |[w||2 < R in this case, then combining (18) and Lemma 1 with G = R together, with probability
at least 1 — 7, we have

R(W) = Rs(W) < c((M + LR*)Asan(8/2) log(n) log(8/) + (sup (0,2) + (M + LR*)R) %)
= O<ASGD(5/2) log(n)log(1/~v) + w> ’

where ¢ > 0 is a constant. This completes the proof of part (b). O

In the following lemma, we use techniques in optimization theory to control the optimization error

Rs(W) — Rs(w").

Lemma 24. Suppose the loss function £ is nonnegative, conver and a-Holder smooth with parameter L. Let
A be the SGD with T iterations and ny = n < min{l,1/L} based on the dataset S = {z1,-- ,z,}, and
w = %Zle w; be the output produced by A. Then, for any v € (0,1), the following statements hold true.
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(a) If W = RY, then, with probability at least 1 — 2, there holds

o(w) — Ro(w") = 0" 7 log(17n) + w7 2L 4 LB ey )

b) If W C B(0, R) with R > 0, then, with probability at least 1 — X, we have
( Y 7]

1 w* 2
( /7) + ” HQ +||W*é+a77>~

_ log
_ *) * 1 1+a
s(w) — Rs(w?) = 0f w1y 2 o 2

Proof. (a) We first consider the case W = R?. From the convexity of ¢, we have

1 T
Rs(W) — Rg(w*) < T D Rs(wi) — Rs(w)
t=1
1 <& 1 <& 1 <&
= L ol L3 )~ ¢ S ) )
t=1 t=1 t=1

(19)

First, we consider the upper bound of 7 2;1[%(“’:&) — U(wWy; 2;,)]. Since {z;,} is uniformly sampled from
the dataset S, then for all t =1,...,T we obtain

Ez,',t (W, 2i, ) [W1, s Wi1] = Rs(Wy).

By the convexity of £, the definition of Holder smoothness and Lemma 20, for any z € Z and all t € [T],
there holds

U(wy, z) < sup (0, 2) + (l(we, 2), wi) < sup (0, 2) + [|0(we, 2)[|2]|we |2
< sup (0, ) + (M + Llwil|$)llwel2 < sup £(0, 2) + M(CaTn)? + L(CaTr) 5" (20)
Similarly, for any z € Z, we have

Lw*,z) < supf(O z) + M||w*||2 + L||w* HH'C“ (21)

Now, combining Lemma 17 with (20) and noting n > 1/T, we get the following inequality with probability
at least 1 — %
8

T N Tt 210g(%)
Z Rs (W) — (Wi, 2;,)] < (sup (0, 2) + M(CoTn)? + L(CoTn) =) T
— z
lta o
= o(n"5* 1% /log(1/7)). (22)
According to Lemma 16, with probability at least 1 — %, there holds
T
log(8/7) log(1/7)
* * x| 1+ * |1+
Tg whiz,) = Rs(wh)] < (sup £(0.2) + Mw 2 + Lllw [57) 1/ 2527 = oflw 137/ 257 ).

(23)
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Finally, we consider the term Zthl[E(wt, 2;,) — £(w*, z)]. The update rule implies w; 11 — w* = (w; —
w*) — ndl(wy, z;,), from which we know

IWesr = w3 = || (W = w*) = nd(wi, z,)[13

= |lwi — w3 + (| 0(wr, zi,) |13 — 20(0L( Wy, 21,), Wi — W*).
It then follows that
1
(0l(w, 2i,), Wi — W") = %(Hwt - W*Hg = [[Wip1 — W*||§) + gHaf(Wtazn)H%

Combining the above inequality and the convexity of ¢ together, we derive

T T
1 1 1 N N n
T 2w ) = )] < S (Iwe = B = lwes = we ) + G 10¢(we, 20) 3]
rI =1
1 n da
* (|2 2
< gy = I + 5 D 190w, )1 (24)
Since 0 < 12-|-—aa < 1, Lemma 19 implies the following inequality for any t =1,...,T

2a
106(w5 22, )13 < canl ™5 (Wi 2i,) < cag max{l(we; z;,), 1} < canl(Wei 23,) + a1

Putting [|0€(we; 2,)|13 < ca,10(We; 2i,) + a1 back into (24) and noting ||wy ||z = 0, we have

T T
w Ca Ca
Z Wt’ th (W er)} S ||277T N Z Wi, th ;77'

Rearranging the above inequality and using (21), we derive

T
1 . 1 lw*ll3 , caan | Cautl
T;[e(wt,zit)—e(w )] € 7 cﬂél,,( s+ 57 Zﬁ w*,z,) + <)

_ HW*”Z #|| 1+
= o7+ Iwl3). (25)

Now, plugging (22), (23) and (25) back into (19), we derive

_ . FET o, log(1/7) | [Iw*[I3 o
R (W) = Rs(w") = 0(n ¥ 7% Viog(1/7) + w57\ FE570 4+ B2 4 [w[37)
with probability at least 1 — I, which completes the proof of part (a).

(b) Consider the bounded domain case. Since ||w¢||2 < R for any ¢ € [T, then by the convexity of ¢ and
the definition of Holder smoothness, for any z € Z, there holds ¢(wy,2) < sup, £(0,z) + (M + LRY)R.
Combining the above inequality and Lemma 17 together, with probability at least 1 — %, we obtain

1

T 8
= Z Rs(wy) — U(wy, z;,)] < (sup(0,2) + (M + LR*)R) % = O( M) (26)

T T

)ﬂ
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Since [|[wiy1 — W3 = [|Projy, (wi — ndl(we, z;,)) — w3 < [[(wy — w*) — ndl(wy, 2;,)|3, then ( 5) also
holds true in this case. Putting (26), (23) and (25) back into (19), with probability at least 1 — 2, we have

— * * a 1 1 *1I3 * e’
o(w) - Rs(w?) = 0 w37 FEGLY 4 L ey ).

The proof is completed. O

Now, we are in a position to prove the utility guarantee for DP-SGD-0utput algorithm. First, we give the
proof for the unbounded domain case (i.e. Theorem 9).

Proof of Theorem 9. Note that 9{5( = R(W*) = Rg(w*) —Eg[Rs(w™)]. By Hoeffding inequality and (21),
with probability at least 1 — X, there holds

Rs(w) = R(w?) < (5up00,2) + Mllw* o + Llwe 155 [ 2E) = of e ey 200 (o)

Combining part (a) in Lemmas 22, 23, 24 and (27) together, with probability at least 1—+, the population
excess risk can be bounded as follows

R(WpriV) - R(W*>
= [R(Wpriv) = R(W)] + [R(W) — Rs(W)] + [Rs (W) — Rs(W")] + [Rs(W") — R(W")]

=O((T17)30\/3(10g(1/7))‘1‘ o A5 (log(1/7)) 7 + (T) # Asan(§/2) log(n) log(1/7)

14+ [e) W* 2 o
+nT (T 1 g(l/’Y) m) |77T!|2 + ” *H1+an+ ” *||1+a lg(,i/'V)) (28)

n

Plugging Asgp(d/2) = O(\/TUﬁ + w> and o = O( Vlog(l/é)fSGD(é/m) back into (28), we
have
R(Wpriv) - R(W*)

_o(Tlt“ log(;/’y)anaJrT“a dlog(1/5)(nl:g(1/v))zlog(n/5)nl+a

L 4% log(1/7) * (Tlog() ¥ 1
el+a ne

. (dlog(1/9)) = (1og(1/7)() ) A (log("/5))1+an(1+%>(1+a>

1
T Jdlog(3) (log(1/7)) " p0
( ) 0 T log(n) log(1/)n 20

1 log(1 1 log(1
oaos(U/) vy Ly fls1))
n nl n

_|_

w3 (29)

Taking the derivative of Tl + T = - nlza w.r.t n and setting it to 0, then we have n =
n5+a /(T(log(1/7))#= ). Putting this 7 back into (29), we obtain
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R(Wpriv) - K(W*)

O( e dlog(1/5) \/dlog 1/9) log n/5 Jr( v/dlog(1/6)log(n/d) )1+Of

o _144a—a? _dta _lta
7255 ¢(log(1/7)) ST n3+“ e(log(1/7)) T\t e(log(1/7)) ¥

+

nT @™ \/dlog(1/8)  \l+a
( 1+o %)
Ta0-o) E(log(l/’y)) I(T—a)(3Ta)

1
n2(3+a)(1 @) 1 1 n3+a .
+ log(n) log(n/3) (1og(1/7)) ™ ( e+ ))-w 13 (30)
T2(17r1) n3ta n3+a

To achieve the best rate with a minimal computational cost, we choose the smallest T such that
(2—a)(l+a) 14+« 24a—a

n20-)@B+a) 1 n(d=a)B+a) 1 n2B+a)(d-a) 1 n3+a _ 1
TFa = O( 5 ), ta)? = O(W) and T + — + T = O( T ) Hence,
T72(1-a) n3+ta T20-a) TLW T2(1-a) n3+a n3+a

—a?-3a+6 VT3—7 . . : .
we set T' < nTFaGre if 0 < a < ¥4=" and T < n else. Now, putting the choice of T" back into (30), we
derive

v/ dlog( 1/6 log n/5 ( Vdlog( 1/6 log n/6 )Ha
(

iK(VV'priv) - R(W*) <
(log(1/7)) e nte e log(1/7)) et n 6Ey) €

_1
ns+

. log(m) (log(1/7)) *** oY

Without loss of generality, we assume the first term of the above utility bound is less than 1. Therefore,
with probability at least 1 — =y, there holds

/dlog( 1/5 log(n/d) log(n)(log(l/fy))?’%‘* log(n/é))

R(Wpriv) — R(W") = [|w* 2.0(
(Wrie) = RO =IO gt o mstee T .

The proof is completed. O

Finally, we provide the proof of utility guarantee for the DP-SGD-Output algorithm when %W C B(0, R)
(i.e. Theorem 10).

Proof of Theorem 10. The proof is similar to that of Theorem 9. Indeed, plugging part (b) in Lemmas 22,
23, 24 and (27) back into (12), with probability at least 1 — -y, the population excess risk can be bounded
as follows

R(Wpriv) — R(w") = 0(aV(log(1/7)} + 0 2d"5 (log(1/7)) 5 + Asep(5/2) log(n) log(1/7)

1og(1/’y) ||W*||2 * |1 1+a * |14+« log(l/V))
I 20,

Note that ASGD((S/Q) — O(\/Tnﬁ + %(”/5)) and o — \/210g(2‘5/6€)ASGD(5/2) Then we have

(Tlog(n/é))log( n)log(1/7) T\/dlog (1/6) log n/6 (log 1/7))%)

n

(i) = R(w") = O

T log(1/6)Td(log(1/7))* + VT log(n) log(1/7))y =

€
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| (Tdlog(1/6)"=" (log(1/7)) ** 120

nl—a
61+a
T+/dlog(1/9) log n/6 (log(1/7)) 7 \14a 140 , 1 log(1/7) 12
( ) Ui + T_n + " -[w[3-

(31)

We consider the tradeoff between 1/n and 7. Taking the derivative of Tin + (Tlog("/ %) lof(n) log1/y) 4

T'v/dlog(1/9) 1og7(::/6)(1og(1/~/))1/4)n w.r.t n and setting it to 0, we have n = 1/<T max { Vlog(n/8) log(n) log(1/)

\/ﬁ I

og 1/4 og(n (0] 1/8 . . .
(d1og(1/9)) ™ v/1og(n/)(log(1/7)) }) Then putting the value of 1 back into (31), we obtain

Ve

(dlog(1/6)) * (log(1/)) 1og<n/5)+((d10g<1/5>)i< g(1/7))4 1og<n/6>)1+a
Vne Ve
N (dlog(1/6)) =D (log(l/q/))és}fz)nzulfa)62??21)
T (log(n/8)) 7
(dlog(1/6)) T (log(1/7)) 287 n 705w 3650 | 14
i ( T (log(n/é))ﬁ )

R(wp) ~ R(w) =0

Vo 8L Tog(1/3) (= + o) ) I

T20-a)
1
- 2-a
Similarly, we choose the smallest T' such that —Q(fr) = O(%) Hence, we set T < ni¥e if a < %, and
T20-a)
T = n else. Since i > ﬁ7 we have

(dlog(1/8))* (log(1/7)) % 1og(n/5>+((d10g(1/a>)%< g(1/7))% Tog(1 /0], 140

R(wn) ~ 2(w") = of

Vne Vne
\/log ) log 1/7)10g(n/5)> w2
NG 2‘

It is reasonable to assume the first term is less than 1 here. Therefore, with probability at least 1 — -y, there
holds

R(Wpriv) — R(W*) = [|[w*[|3 - O( (dl‘)g(l/é))i g(1/7)) \/log (n/6) \/log ) log(1 )log(n/é)).

\/ﬁ vn

The proof is completed. O
8.8. Proofs on differential privacy of SGD with gradient perturbation

We now turn to the analysis for DP-SGD-Gradient algorithm (i.e. Algorithm 2) and provide the proofs
for Theorems 11 and 12. We start with the proof of Theorem 11 on the privacy guarantee for Algorithm 2.

Proof of Theorem 11. Consider the mechanism G = M; + by, where My = 94(wy, z;,). For any w, € W
and any z;,,2;, € Z, the definition of a-Hélder smoothness implies that

96w z1,) — Db(we, 2,12 < 2(M + Lwill3) < 2(M + LR®).
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Therefore, the f5-sensitivity of M, is 2(M + LR%). Let

o 14(M + LR*)*T (log(1/)
N BnZe ((1 — Be 1)

g

Lemma 3 with p = £ implies that G, satisfies ()\, #Z)H))—RDP if the following conditions hold

" T( A—B)e

2

g
> 067 32
A(M + LR*)? = (82)

and

0.2

n
A-1< 1
= 6(M + LRz ® ()\(

= (33)
L+ 4(M+LRa)2)

Let A = I?g(l/)‘s) +1. We obtain that G; satisfies (lz)g 1/)6) +1, ﬁe) RDP. Then by the post-processing property of

RDP (see Lemma 6), we know w1 also satisfies (l(()fﬁlﬁ/)i) +1, L;f)—RDP forany t =0, ..., T — 1. Furthermore,

according to the adaptive composition theorem of RDP (see Lemma 4), Algorithm 2 satisfies (l?filﬁ/)i) +1, Be)-

RDP. Finally, by Lemma 5, the output of Algorithm 2 satisfies (e, )-DP as long as (32) and (33) hold. O

Now, we turn to the generalization analysis of Algorithm 2. First, we estimate the generalization error

R(Wpriv) — Rs(Wpriv) In (4).

Lemma 25. Suppose the loss function £ is nonnegative, conver and a-Hdolder smooth with parameter L. Let
Wprin e the output produced by Algorithm 2 based on S = {z1, -+, z,} with n, = n < min{1,1/L}. Then
for any v € (0,1), with probability at least 1 — %, there holds

~ log(1/~
R(3¥pri) — Rs(Wyris) = O( Bsin(y/6) log(n) og(1/) + ) LY.
Proof. Part (b) in Theorem 7 implies that Agap(v/6) = O(\/T nTe M) with probability at least
1- %. Since the noise added to the gradient in each iteration is the same for the neighboring datasets S and
S’, the noise addition does not impact the stability analysis. Therefore, the UAS bound of the noisy SGD
is equivalent to the SGD. According to Lemma 1 and ||Wpyiv|2 < R, we derive the following inequality with

probability at least 1 — (¢ + %)

R(Wpriv) — Rs(Wpriv) < c((M + LRO‘)ASGD(V/G) log(n) log(6/7) + (Mo + (M + LR“)R %)

= O(ASGD(7/6) log(n)log(1/7) + W)v

where ¢ > 0 is a constant. The proof is completed. O
The following lemma gives an upper bound for the second term Rs(Wpriv) — Rg(w*) in (4).
Lemma 26. Suppose the loss function ¢ is nonnegative, conver and a-Holder smooth with parameter L. Let

Wopriv be the output produced by Algorithm 2 based on S = {zl, <o zn} with iy = n < min{l,1/L}. Then,
for any v € (18 exp(—dT/8), 1), with probability at least 1 — L, there holds
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log(1/) , w13 | +/1o(1/8) oa(L/7)(Iw | +)

. _ *) * (| 1+a
RS’(Wprw) RS(W ) O(HW ||2 T T77 ne

nTdlog(s) log(%))

+ 2.2

n<e

Proof. To estimate the term Rs(Wpiv) — Rg(W*), we decompose it as

T T
1 1 x
-‘RS(Wpriv) - T Z Wt - Z Wtazzt + T Z W th) - RS(W )}
t=1 t=1
1 T
+ T ; Wi, Zzt W Zh)] (34)

Similar to the analysis in (20) and (21), we have f(w*,z) = O(||w*||3T®) for all z € Z and £(wy,2) =
O(R+ R'Y®) forallt =1,...,T and z € Z. Therefore, Azuma-Hoeffding inequality (see Lemma 17) yields,
with probability at least 1 — 2, that

T
= Z Rs(wy) — U wy, 2)] < (supl(0,2) +  sup  £(wy,z)) log(9/7) = O((R—l—RHO‘) M)
T —1 2€Z t=1,...,T;z€2 2T T
(35)
In addition, Hoeffding inequality (see Lemma 16) implies, with probability at least 1 — 2, that
T
. . log(9/7) . log(1/7)
Z W', 2i,) = Rs(w*)] < (sup (0, 2) + sup flw*, )y | 22 = o w3y [ B ). (36)
=1 2€D 2€Z

Finally, we try to bound + Zle[ﬁ(wt, 2i,) — (W™, 2;,)]. The SGD update rule implies that ||w;,1 —w*||3 =
[Projoy(we — 1(0l(we, 2i,) + b)) — w3 < [[(wWy — w*) — 1(d(we, z;,) + by)||3, then we have (w; —
w0l 2i,)) < g (W =W |3 = [[Werr =w*[[3) + 5 ([0€(we, 23,) 3+ [be]13) — (be, Wi —W* —ndb(wy, 2i,)).
Further, noting ||w1||2 = 0, then by the convexity of ¢ we have

T
1 W* 2

L we ) vz < B S o )
t=1

T T
1 . n
-7 > by, wi — Wt = nol(wy, z,)) + o7 > lIbell3.
t=1

The definition of a-Holder smoothness implies that ||0€(wy, 2, )||2 < M + L||w¢||$ < M + LR for any t.
Then, there hold

T
l06(we, 23, )13 < o 3 (M + Lilwe|$)? = 0(n),

and
[we —w* —n0l(wy, 2i,)||l2 < [W*[l2 + R+ n(M + LR*).

(HW*HQ + R +
z(Iw*lla + R+

Since b; is an o2-sub-Gaussian random vector, &(b;, w; — W* — ndl(wy, 2 is an
b) T ) ) t

H|ij|q

n(M + LRQ))Z—sub—Gaussian random vector. Note that the sub-Gaussian parameter
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n(M + LRQ))2 is independent of w;_; and b;_;. Hence, %ZtT:l<bt,wt — w* — nol(wy,z,)) is an

2 T * a2
o Xz (lw ”z;fﬂ(MHJR )" _sub-Gaussian random vector. Since o2 = O(Tlfl%i(lg/é)) the tail bound of Sub-

Gaussian variables (see Lemma 18) implies, with probability at least 1 — 7k, that
2\ 3
r (o> (Iw"llz + B+ n(M + LE))®)
T ; by, Wi — W —ndl(wi, z,)) < N 2log(18/7)
_ . log(1/7)Y _ ¢ \/log(1/8)log(1/7)([[w*|l2 + 1)
_O(J(”w l2+m) T ) _0( ne )

According to the Chernoff bound for the £3-norm of Gaussian vector with X = [byy,...,b14, ba1...,brg] €

R74(see Lemma 15), for any v € (18 exp(—dT'/8),1), with probability at least 1 — 7%, there holds

. nTdlog(;)y/log(5)
QTZHbtuz 2 (14 (G los(18/7) ) Tio? = o —— 3 "0,

Therefore, with probability at least 1 — 3, there holds

w13 P Vlog(1/6)log(1/7)([w*]l2 +n)

T
1
_ ) — * <
T;:l:[e(wt,z“) fw*, z,)] <o T -

N anlog(lT/Lg)€2 log(l/v)).

(37)

Putting (35), (36) and (37) back into (34), we obtain, with probability at least 1 — 3, that

log(1/7) | w*[l3 Vlog(1/6) log(1/7)([w*[l2 +n)
T + Tn et ne

N anlog(lflng log(l/v)).

Rs(Wpriv) — Rs(w") = O [w* |3

The proof is completed. O
Now, we are ready to prove the utility theorem for DP-SGD-Gradient algorithm.

Proof of Theorem 12. The Hoeffding inequality implies, with probability at least 1 — %, that

Rg(w*) — R(w™) < (supE(O, z) + sup {(w”", z))

zZ€Z Z€EZ

10g(3/7) (” H;+a log(l/V)).

n

Combining Lemma 25, Lemma 26 and the above inequality together, with probability at least 1 — ~, we

obtain
R(Wpriv) — R(W") = O(Ascn(v/ 6) log(n) log(1/v) + w +n+ Vioe(1/9) log(:&éw(uw*'b )
nTdlog(;)y/log(5) o
b LT e e RO,

Now, putting Agap(7/6) = O(\/Tﬁﬁ + %("/7)) back into the above estimate, we have
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w*||3 o
Riws) ~ R(w") =0 VT ogn) g1yt + 151 1 (T108(0/%) losL )

N Tlog(n) log(z/’Y) log(1/7)>

L wr e log(1/7) HW*II2\/1og(1/5)1og(1/7)>. (38)

n ne

To choose a suitable n and T' such that the algorithm achieves the optimal rate, we consider the trade-off
U(Td 1og<1/62>gm 4 Tlog(n) log(n/7) log(l/v))

between 1/n and 1. We take the derivative of T%? + w.r.t n

and set it to 0, then we have = 1/T - max { Viog(n) logE;L_/’Y) log(1/4) +/dlog(1/8)(log(1/~)) % . Putting the value
of n back into (38), we obtain

(log(m) log(1/)) " =) \/dlog(1/5) Tog(1/7)

()~ R(w) =0

T (log(n /7)) 71 ne
. Vlog(n)log(n/7)log(1/7) .2
v w3

In addition, if n = O(T%), then there holds

Vdlog(1/8) log(1/7) %log ) log(n/v) log(1/7) )
ne Vn

\/dlog(1/6) +
ne

R (W) — R(w") =3 0
The above bound matches the optimal rate O( ﬁ) Furthermore, we want the algorithm to

achieve the optimal rate with a low computational cost. Therefore, we set T =< niFe if a < %, and T'=xn
else. The proof is completed. O

Finally, we give the proof of Lemma 13 on the existence of 5 for Algorithm 2 to be (¢, d)-DP

Proof of Lemma 13. We give sufficient conditions for the existence of 5 € (0,1) such that RDP conditions

(32) and (33) hold with 0% = M(M;%)Q)‘ nd \ = Q(iogg;) + 1 in Theorem 11. Condition (32) with T'=n

and § = # is equivalent to

7 7(2log(n) + ¢€)
2
=p0"—1(1 ) > 0.
1(B) =5 ( + 1.34ne A+ 1.34ne2 20 (39)
2 og(n)+e . 2
If (14 15o—)” < ZCL8MTI then £(8) > 0 for all B Then (32) holds for any § € (0,1). If (14 155-)" >
%, then 8 € (0, 1) U[B2, +00) such that the above condition holds, where £ 2 = %((1 +30) F

\/(1 + 1_31”)2 - 28(21_1;%512“)) are two roots of f(3) = 0.

Now, we consider the second RDP condition. Plugging o2 = M(ME%)Z)‘ back into (33), we derive
3B8ne(A —1 [P
# + log(A) + log(1 + m) < log(n). (40)

To guarantee (40), it suffices that the following three inequalities hold

3Pne(A —1) < log(n)
A - 3
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1
log(3) < "), (12)
A log(n)

1 1 < . 4
og( + QBne) - 3 (43)
We set A = z(icfﬁ(;lg + 1 in the above three inequalities. Since A > 1, then (41) holds if 8 < Tlog(n)/9ne. Eq.

(42) reduces to f <1 — (311?3%%“1))5' Moreover, (43) is equivalent to the following inequality
7 7(2log(n) + ¢)
2

=52 - (1+ n < 44
9(8) = 5"~ ( 2n(ns — 1)6)6 2n(ns —1)e (44)

There exists at least one 3 such that g(3) < 0 if (1 + ! )5)2 — 14@log()+9) > ( which can be

2n(nl/3—-1 n(nl/3—1)e2

ensured by the condition € > Wﬁi’»—l) + 24/ %@D. Furthermore, g(8) < 0 for all § € [Bs, f4], where

2 O n € .
B34 = %((1 + m) F \/(1 + Qn(nljg,l)ﬁ) - ligiié(_l))t;) are two roots of ¢g(8) = 0. Finally, note
that

<

{ 7 7Tlog(n) log(n)(14log(n)(ns — 1) + 162n — 63) }
maxq ——— + 2 T ; 1
2n(ns —1) n(ns — 1) In(2log(n)(ns — 1) —9)

Then if n > 18 and

€ 2 1 )
2n(ns — 1)
there hold
. [ 7log(n) 2log(n)
< — 45
ﬁB - mll’l{ 9Ine (n% — 1)5 ( )
and
. 7 2 _ 28(2log(n) +¢€)
< f(1 . 4
Bs< B it (14 49 s) 2 — g (46)

Conditions (45) and (46) ensure the existence of at least one consistent 3 € (0,1) such that (39), (41), (42),
(43) and (44) hold, which imply that (32) and (33) hold. The proof is completed. O

4. Conclusion

In this paper, we are concerned with differentially private SGD algorithms with non-smooth losses in
the setting of stochastic convex optimization. In particular, we assume that the loss function is a-Hélder
smooth (i.e., the gradient is a-Holder continuous). We systematically studied the output and gradient
perturbations for SGD and established their privacy as well as utility guarantees. For the output perturba-

tion, we proved that our private SGD with a-Holder smooth losses in a bounded % can achieve (e, §)-DP
1/4
with the excess risk rate O((dlog(l/é)) Vlog(n/d)

e

), up to some logarithmic terms, and gradient complexity

T = O(nﬁ*Z + n), which extends the results of [35] in the strongly-smooth case. We also established sim-

ilar results for SGD algorithms with output perturbation in an unbounded domain W = R? with excess
risk O(Mdlog(l@log(n/é) + log(?/é)
+

), up to some logarithmic terms, which are the first-ever known results
n3tae n3to
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of this kind for unbounded domains. For the gradient perturbation, we show that private SGD with a-
Holder smooth losses in a bounded domain % can achieve optimal excess risk 0(4”“056(1/5) + ﬁ) with

gradient complexity T = O(nﬁ_a + n). Whether one can derive privacy and utility guarantees for gradient
perturbation in an unbounded domain still remains a challenging open question to us.
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Appendix. Proof of Lemma 1

In the appendix, we present the proof of Lemma 1. To this aim, we introduce the following lemma.

Lemma 27. Suppose { is nonnegative, conver and a-Hélder smooth. Let 4 be a randomized algorithm with
supg~gs 0a(S,S") < Aa. Suppose the output of A is bounded by G > 0 and let My = sup,c,£(0,2), M =
sup,ez [|0€(0, 2)||2. Then for any v € (0,1), there holds

Poopea | |R(A(S)) — Rs(A(S))] > c(<M 1 LG™) A log(n) log(1/7)

+ (Mo + (M + LG*)G)/n~t log(l/'y))] <.

Proof. By the convexity of £ and the definition of a-Holder smoothness, we have for any S and S,

€(A(S), z) < sup (0, 2) + (OUA(S), 2), A(5)) < Mo + [|9£(A(S), 2) |2[A(S)]|2

< Mo+ (M + LIAS) ) A(S) ]2 < Mo + (M + LG*)G (47)

and

sup [£(A(S), 2) - U(A(S), 2)| < max {[|00(A(S5), 2) |2, [9£(A(S"), 2)l|2 }[A(S) — A(S") |12

< (M + LGM)[A(S) = A(S)|2-

Note supg.g 04(5,5") < Az and 04(S5,S") = [|A(S) — A(S")||2. Then for any neighboring datasets S ~ S’,
we have

sup [£(A(S), z) — £(A(S"),2)| < (M + LG*)A4. (48)

zZ€EZ

Combining Eq. (47), Eq. (48) and Corollary 8 in [7] together, we derive the following probabilistic inequality
Ps~pn a||R(A(S)) — Rs(A(S))] = C((M + LG*)Aqlog(n)log(1/7)

+ (Mo + (M + LG*)G)/n~" 1og(1/*y))] <n.
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The proof is completed. O

Proof of Lemma 1. Let By = {4 : supg.g ||A(S) — A(S)|l2 > Az} and Ey = {(S,ﬂ) D R(A(S)) —

Rs(AS))| > c((M + LG*)Aqlog(n)log(1/7) + (Mo + (M + LG*)G) n—llog(l/v))}. Then by the
assumption we have P[4 € E;] < ~. Further, according to Lemma 27, for any v € (0,1), we have
Ps.4((S,4) € E; N A ¢ Eq] <. Therefore,

]P’S’,q[(S, .7[) S EQ] = ]P)S’/q[(s, ﬂ.) cFbEyNAace El] + ]P’S,,q[(S, ﬂ) cb,yNnAa ¢ El]
<PlAa€ Ei]+Psal(S,A) € EaNAE E1] <o+ 7.

The proof is completed. O
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