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In this paper, we are concerned with differentially private stochastic gradient descent 
(SGD) algorithms in the setting of stochastic convex optimization (SCO). Most of 
the existing work requires the loss to be Lipschitz continuous and strongly smooth, 
and the model parameter to be uniformly bounded. However, these assumptions 
are restrictive as many popular losses violate these conditions including the hinge 
loss for SVM, the absolute loss in robust regression, and even the least square loss 
in an unbounded domain. We significantly relax these restrictive assumptions and 
establish privacy and generalization (utility) guarantees for private SGD algorithms 
using output and gradient perturbations associated with non-smooth convex losses. 
Specifically, the loss function is relaxed to have an α-Hölder continuous gradient 
(referred to as α-Hölder smoothness) which instantiates the Lipschitz continuity 
(α = 0) and the strong smoothness (α = 1). We prove that noisy SGD with α-
Hölder smooth losses using gradient perturbation can guarantee (ε, δ)-differential 
privacy (DP) and attain optimal excess population risk O

( √
d log(1/δ)

nε
+ 1√

n

)
, up 

to logarithmic terms, with the gradient complexity O(n
2−α
1+α + n). This shows an 

important trade-off between α-Hölder smoothness of the loss and the computational 
complexity for private SGD with statistically optimal performance. In particular, 
our results indicate that α-Hölder smoothness with α ≥ 1/2 is sufficient to guarantee 
(ε, δ)-DP of noisy SGD algorithms while achieving optimal excess risk with a linear 
gradient complexity O(n).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic gradient descent (SGD) algorithms are widely employed to train a wide range of machine 
learning (ML) models such as SVM, logistic regression, and deep neural networks. It is an iterative algorithm 
which replaces the true gradient on the entire training data by a randomized gradient estimated from a 
random subset (mini-batch) of the available data. As opposed to gradient descent algorithms, this reduces 
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the computational burden at each iteration trading for a lower convergence rate [5]. There is a large amount 
of work considering the optimization error (convergence analysis) of SGD and its variants in the linear case 
[2,19,20,29,30] as well as the general setting of reproducing kernel Hilbert spaces [10,23,28,36,37,32].

At the same time, data collected often contain sensitive information such as individual records from 
schools and hospitals, financial records for fraud detection, online behavior from social media and genomic 
data from cancer diagnosis. Modern ML algorithms can explore the fine-grained information about data in 
order to make a perfect prediction which, however, can lead to privacy leakage [8,31]. To a large extent, 
SGD algorithms have become the workhorse behind the remarkable progress of ML and AI. Therefore, it 
is of pivotal importance for developing privacy-preserving SGD algorithms to protect the privacy of the 
data. Differential privacy (DP) [12,14] has emerged as a well-accepted mathematical definition of privacy 
which ensures that an attacker gets roughly the same information from the dataset regardless of whether an 
individual is present or not. Its related technologies have been adopted by Google [15], Apple [25], Microsoft 
[11] and the US Census Bureau [1].

In this paper, we are concerned with differentially private SGD algorithms in the setting of stochastic 
convex optimization (SCO). Specifically, let the input space X be a domain in some Euclidean space, the 
output space Y ⊆ R, and Z = X × Y . Denote the loss function by � : Rd × Z �→ [0, ∞) and assume, for any 
z ∈ Z, that �(·, z) is convex with respect to (w.r.t.) the first argument. SCO aims to minimize the expected 
(population) risk, i.e. R (w) := Ez[�(w, z)], where the model parameter w belongs to a (not necessarily 
bounded) domain W ⊆ Rd, and the expectation is taken w.r.t. z according to a population distribution D. 
While the population distribution is usually unknown, we have access to a finite set of n training data points 
denoted by S = {zi ∈ Z : i = 1, 2, . . . , n}. It is assumed to be independently and identically distributed 
(i.i.d.) according to the distribution D on Z. In this context, one often considers SGD algorithms to solve 
the Empirical Risk Minimization (ERM) problem defined by

min
w∈W

{
RS(w) := 1

n

n∑
i=1

�(w, zi)
}

.

For a randomized algorithm (e.g., SGD) A to solve the above ERM problem, let A(S) be the output of 
algorithm A based on the dataset S. Then, its statistical generalization performance is measured by the 
excess (population) risk, i.e., the discrepancy between the expected risk R (A(S)) and the least possible one 
in W , which is defined by

εrisk(A(S)) = R (A(S)) − min
w∈W

R (w).

Along this line, there are a considerable amount of work [35,4,16] on analyzing the excess risk of private 
SGD algorithms in the setting of SCO. However, most of such approaches often require two assumptions: 1) 
the loss � is L-Lipschitz and β-smooth; 2) the domain W is uniformly bounded. These assumptions are very 
restrictive as many popular losses violate these conditions including the hinge loss (1 − ywT x)q

+ for q-norm 
soft margin SVM and the q-norm loss |y − wT x|q in regression with 1 ≤ q ≤ 2. More specifically, the work 
[35] assumed the loss to be Lipschitz continuous and strongly smooth and showed that the private SGD 

algorithm with output perturbation can achieve (ε, δ)-DP and an excess risk rate O( (d log(1/δ))1/4
√

nε
) when the 

gradient complexity (i.e. the number of computing gradients) T = n. The study [4] proved, under the same 
assumptions, that the private SGD algorithm with gradient perturbation can achieve an optimal excess risk 

rate O
(√

d log(1/δ)
nε + 1√

n

)
while guaranteeing its (ε, δ)-DP. To deal with the non-smoothness, it used the 

Moreau envelope technique to smooth the loss function and got the optimal rate. However, the algorithm 
is computationally inefficient with a gradient complexity O

(
n4.5√

ε + n6.5ε4.5

(d log(1/δ))2

)
. The work [16] improved 

the gradient complexity of the algorithm to O(n2 log(1
δ )) by localizing the approximate minimizer of the 

population loss on each phase. Recently, [3] showed that a simple variant of noisy projected SGD yields the 
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optimal rate with gradient complexity O(n2). However, it only focused on the Lipschitz continuous losses 
and assumed that the parameter domain W is bounded.

Our main contribution is to significantly relax these restrictive assumptions and to prove both privacy 
and generalization (utility) guarantees for private SGD algorithms with non-smooth convex losses in both 
bounded and unbounded domains. Specifically, the loss function �(w, z) is relaxed to have an α-Hölder 
continuous gradient w.r.t. the first argument, i.e., there exists L > 0 such that, for any w, w′ ∈ W and any 
z ∈ Z,

‖∂�(w, z) − ∂�(w′, z)‖2 ≤ L‖w − w′‖α
2 ,

where ‖ · ‖2 denotes the Euclidean norm, ∂�(w, z) denotes a subgradient of � w.r.t. the first argument. For 
the sake of notional simplicity, we refer to this condition as α-Hölder smoothness with parameter L. The 
smoothness parameter α ∈ [0, 1] characterizes the smoothness of the loss function �(·, z). The case of α = 0
corresponds to the Lipschitz continuity of the loss � while α = 1 means its strong smoothness. This definition 
instantiates many non-smooth loss functions mentioned above. For instance, the hinge loss for q-norm soft-
margin SVM and q-norm loss for regression mentioned above with q ∈ [1, 2] are (q − 1)-Hölder smooth. In 
particular, we prove that noisy SGD with α-Hölder smooth losses using gradient perturbation can guarantee 

(ε, δ)-DP and attain the optimal excess population risk O
(√

d log(1/δ)
nε + 1√

n

)
, up to logarithmic terms, with 

gradient complexity O(n
2−α
1+α +n). This shows an important trade-off between α-Hölder smoothness of the loss 

and the computational complexity for private SGD in order to achieve statistically optimal performance. In 
particular, our results indicate that α-Hölder smoothness with α ≥ 1/2 is sufficient to guarantee (ε, δ)-DP of 
noisy SGD algorithms while achieving the optimal excess risk with linear gradient complexity O(n). Table 1
summarizes the upper bound of the excess population risk, gradient complexity of the aforementioned 
algorithms in comparison to our methods.

Our key idea to handle general Hölder smooth losses is to establish the approximate non-expansiveness 
of the gradient mapping, and the refined boundedness of the iterates of SGD algorithms when domain W is 
unbounded. This allows us to show the uniform argument stability [24] of the iterates of SGD algorithms with 
high probability w.r.t. the internal randomness of the algorithm (not w.r.t. the data S), and consequently 
estimate the generalization error of differentially private SGD with non-smooth losses.
Organization of the Paper. The rest of the paper is organized as follows. The formulation of SGD algorithms 
and the main results are given in Section 2. We provide the proofs in Section 3 and conclude the paper in 
Section 4.

2. Problem formulation and main results

2.1. Preliminaries

Throughout the paper, we assume that the loss function � : W ×Z → R is convex w.r.t. the first argument, 
i.e., for any z ∈ Z and w, w′ ∈ W, there holds �(w, z) ≥ �(w′, z) +〈∂�(w′, z), w−w′〉 where ∂�(w′, z) denotes 
a subgradient of �(·, z) in the first argument. We restrict our attention to the (projected) stochastic gradient 
descent algorithm which is defined as below.

Definition 1 (Stochastic Gradient Descent). Let W ⊆ Rd be convex, T denote the number of iterations, and 
ProjW denote the projection to W . Let w1 = 0 ∈ Rd be an initial point, and {ηt}T

t=1 be a sequence of 
positive step sizes. At step t ∈ {1, . . . , T }, the update rule of (projected) stochastic gradient decent is given 
by

wt+1 = ProjW
(
wt − ηt∂�(wt, zit

)
)
, (1)
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Table 1
Comparison of different (ε, δ)-DP algorithms. We report the method, utility (generalization) bound, gradient complexity and 
parameter domain for three types of convex losses, i.e. Lipschitz, Lipschitz and smooth, and α-Hölder smooth. Here Output, 
Gradient, Phased Output and Phased ERM denote output perturbation which adds Gaussian noise to the output of non-private 
SGD, gradient perturbation which adds Gaussian noise at each SGD update, phased output perturbation and phased ERM output 
perturbation [16], respectively. The gradient complexity is the total number of computing the gradient on one datum in the 
algorithm.

Reference Loss Method Utility bounds Gradient Complexity Domain

[35] Lipschitz & smooth Output O
( (d log( 1

δ
))

1
4

√
nε

)
O

(
n

)
bounded

[4] Lipschitz & smooth Gradient O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n1.5√

ε + (nε)2.5

d log( 1
δ

)

)
bounded

Lipschitz Gradient O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n4.5√

ε + n6.5ε4.5

(d log( 1
δ

))2

)
bounded

[16] Lipschitz & smooth Phased Output O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n

)
bounded

Lipschitz Phased ERM O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n2 log( 1

δ )
)

bounded

[3] Lipschitz Gradient O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n2)

bounded

Ours α-Hölder smooth Output O
( (d log( 1

δ
))

1
4

√
log( n

δ
)

√
nε

)
O

(
n

2−α

1+α + n
)

bounded

α-Hölder smooth Output O
( √

d log( 1
δ

) log( n

δ
)

n
2

3+α ε
+ log( n

δ
)

n
1

3+α

)
O

(
n

−α2−3α+6
(1+α)(3+α) + n

)
unbounded

α-Hölder smooth Gradient O
( √

d log( 1
δ

)
nε + 1√

n

)
O

(
n

2−α

1+α + n
)

bounded

where {it} is uniformly drawn from [n] := {1, 2, . . . , n}. When W = Rd, then (1) is reduced to wt+1 =
wt − ηt∂�(wt, zit

).

For a randomized learning algorithm A : Zn → W , let A(S) denote the model produced by running A
over the training dataset S. We say two datasets S and S′ are neighboring datasets, denoted by S 
 S′, if 
they differ by a single datum. We consider the following high-probabilistic version of the uniform argument 
stability (UAS), which is an extension of the UAS in expectation [24].

Definition 2 (Uniform argument stability). We say an algorithm A has ΔA -UAS with probability at least 
1 − γ (γ ∈ (0, 1)) if

PA( sup
S�S′

δA(S, S′) ≥ ΔA) ≤ γ,

where δA(S, S′) := ‖A(S) − A(S′)‖2.

We will use UAS to study generalization bounds with high probability. In particular, the following 
lemma as a straightforward extension of Corollary 8 in [7] establishes the relationship between UAS and 
generalization errors. The proof is given in the Appendix for completeness.

Lemma 1. Suppose � is nonnegative, convex and α-Hölder smooth with parameter L. Let M0 = supz∈Z �(0, z)
and M = supz∈Z ‖∂�(0, z)‖2. Let A be a randomized algorithm with the output of A bounded by G and

PA( sup
S�S′

δA(S, S′) ≥ ΔA) ≤ γ0.

Then there exists a constant c > 0 such that for any distribution D over Z and any γ ∈ (0, 1), there holds
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PS∼Dn,A

[
|R (A(S)) − RS(A(S))|

≥ c

(
(M + LGα)ΔA log(n) log(1/γ) +

(
M0 + (M + LGα)G

)√
n−1 log(1/γ)

)]
≤ γ0 + γ.

Differential privacy [13] is a de facto standard privacy measure for a randomized algorithm A.

Definition 3 (Differential Privacy). We say a randomized algorithm A satisfies (ε, δ)-DP if, for any two 
neighboring datasets S and S′ and any event E in the output space of A, there holds

P (A(S) ∈ E) ≤ eεP (A(S′) ∈ E) + δ.

In particular, we call it satisfies ε-DP if δ = 0.

We also need the following concept called �2-sensitivity.

Definition 4 (�2-sensitivity). The �2-sensitivity of a function (mechanism) M : Zn → W is defined as 
Δ = supS�S′ ‖M(S) − M(S′)‖2, where S and S′ are neighboring datasets.

A basic mechanism to obtain (ε, δ)-DP from a given function M : Zn → W is to add a random noise 
from a Gaussian distribution N (0, σ2Id) where σ is proportional to its �2-sensitivity. This mechanism is 
often referred to as Gaussian mechanism as stated in the following lemma.

Lemma 2 ([14]). Given a function M : Zn → W with the �2-sensitivity Δ and a dataset S ⊂ Zn, and assume 

that σ ≥
√

2 log(1.25/δ)Δ
ε . The following Gaussian mechanism yields (ε, δ)-DP:

G(S, σ) := M(S) + b, b ∼ N (0, σ2Id),

where Id is the identity matrix in Rd×d.

Although the concept of (ε, δ)-DP is widely used in privacy-preserving methods, its composition and 
subsampling amplification results are relatively loose, which are not suitable for iterative SGD algorithms. 
Based on the Rényi divergence, the work [26] proposed Rényi differential privacy (RDP) as a relaxation of 
DP to achieve tighter analysis of composition and amplification mechanisms.

Definition 5 (RDP [26]). For λ > 1, ρ > 0, a randomized mechanism A satisfies (λ, ρ)-RDP, if, for all 
neighboring datasets S and S′, we have

Dλ

(
A(S) ‖ A(S′)

)
:= 1

λ − 1 log
∫ ( PA(S)(θ)

PA(S′)(θ)

)λ

dPA(S′)(θ) ≤ ρ,

where PA(S)(θ) and PA(S′)(θ) are the density of A(S) and A(S′), respectively.

As λ → ∞, RDP reduces to ε-DP, i.e., A satisfies ε-DP if and only if D∞
(
A(S)||A(S′)

)
≤ ε for any 

neighboring datasets S and S′. Our analysis requires the introduction of several lemmas on useful properties 
of RDP listed below.

First, we introduce the privacy amplification of RDP by uniform subsampling, which is fundamental 
to establish privacy guarantees of noisy SGD algorithms. In general, a uniform subsampling scheme first 
draws a subset with size pn uniformly at random with a subsampling rate p ≤ 1, and then applies a known 
randomized mechanism to the subset.
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Lemma 3 ([22]). Consider a function M : Zn → W with the �2-sensitivity Δ, and a dataset S ⊂ Zn. 
The Gaussian mechanism G(S, σ) = M(S) + b, where b ∼ N (0, σ2Id), applied to a subset of samples 
that are drawn uniformly without replacement with subsampling rate p satisfies (λ, 3.5p2λΔ2/σ2)-RDP if 
σ2 ≥ 0.67Δ2 and λ − 1 ≤ 2σ2

3Δ2 log
( 1

λp(1+σ2/Δ2)
)
.

The following adaptive composition theorem of RDP establishes the privacy of a composition of sev-
eral adaptive mechanisms in terms of that of individual mechanisms. We say a sequence of mechanisms 
(A1, . . . , Ak) are chosen adaptively if Ai can be chosen based on the outputs of the previous mechanisms 
A1(S), . . . , Ai−1(S) for any i ∈ [k].

Lemma 4 (Adaptive Composition of RDP [26]). If a mechanism A consists of a sequence of adaptive mech-
anisms (A1, . . . , Ak) with Ai satisfying (λ, ρi)-RDP, i ∈ [k], then A satisfies (λ, 

∑k
i=1 ρi)-RDP.

Lemma 4 tells us that the derivation of the privacy guarantee for a composition mechanism is simple and 
direct. This is the underlying reason that we adopt RDP in our subsequent privacy analysis. The following 
lemma allows us to further convert RDP back to (ε, δ)-DP.

Lemma 5 (From RDP to (ε, δ)-DP [26]). If a randomized mechanism A satisfies (λ, ρ)-RDP, then A satisfies 
(ρ + log(1/δ)/(λ − 1), δ)-DP for all δ ∈ (0, 1).

The following lemma shows that a post-processing procedure always preserves privacy.

Lemma 6 (Post-processing [26]). Let A : Zn → W1 satisfy (λ, ρ)-RDP and f : W1 → W2 be an arbitrary 
function. Then f ◦ A : Zn → W2 satisfies (λ, ρ)-RDP.

2.2. Main results

We present our main results here. First, we state a key bound of UAS for SGD when W ⊆ Rd and the loss 
function is α-Hölder smooth. Then, we propose two privacy-preserving SGD-type algorithms using output 
and gradient perturbations, and present the corresponding privacy and generalization (utility) guarantees. 
The utility guarantees in terms of the excess risk typically rely on two main errors: optimization errors and 
generalization errors, as shown soon in (3) and (4) for the algorithms with output and gradient perturbations, 
respectively. We will apply techniques in optimization theory to handle the optimization errors [27], and the 
concept of UAS [6,17,24], which was given in Definition 2 in Subsection 2.1, to estimate the generalization 
errors.

2.2.1. UAS bound of SGD with non-smooth losses
We begin by stating the key result on the distance between two iterate trajectories produced by SGD on 

neighboring datasets. Let

cα,1 =
{

(1 + 1/α)
α

1+α L
1

1+α , if α ∈ (0, 1]
M + L, if α = 0,

(2)

and cα,2 =
√

1−α
1+α (2−αL)

1
1−α , where M = supz∈Z ‖∂�(0, z)‖2. In addition, define Cα = 1−α

1+α c
2(1+α)

1−α

α,1
(

α
1+α

) 2α
1−α

+ 2 supz∈Z �(0; z). Furthermore, let B(0, r) denote the Euclidean ball of radius r > 0 centered at 0 ∈ Rd. 
Without loss of generality, we assume η > 1/T .
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Algorithm 1 Differentially Private SGD with Output perturbation (DP-SGD-Output)
1: Inputs: Data S = {zi ∈ Z : i = 1, . . . , n}, α-Hölder smooth loss �(w, z) with parameter L, the convex set W , step size η, number 

of iterations T , and privacy parameters ε, δ
2: Set: w1 = 0
3: for t = 1 to T do
4: Sample it ∼ Unif([n])
5: wt+1 = ProjW (wt − η∂�(wt; zit

))
6: end for
7: if W = Rd then
8: let Δ = ΔSGD(δ/2)
9: else if W ⊆ B(0, R) then

10: let Δ = Δ̃SGD(δ/2)
11: end if
12: Compute: σ2 = 2 log(2.5/δ)Δ2

ε2

13: return: wpriv = 1
T

∑T
t=1 wt + b where b ∼ N (0, σ2Id)

Theorem 7. Suppose that the loss function � is convex and α-Hölder smooth with parameter L. Let A be 
the SGD with T iterations and ηt = η < min{1, 1/L}, and w̄ = 1

T

∑T
t=1 wt be the output produced by A. 

Further, let cγ,T = max
{(

3n log(n/γ)/T
) 1

2 , 3n log(n/γ)/T
}

.

(a) If � is nonnegative and W = Rd, then, for any γ ∈ (0, 1), there holds

PA

(
sup

S�S′
δA(S, S′) ≥ ΔSGD(γ)

)
≤ γ,

where ΔSGD(γ) =
(

e
(
c2

α,2Tη
2

1−α + 4
(
M + L(CαTη) α

2
)2

η2
(

1 + T
n (1 + cγ,T )

)
T
n (1 + cγ,T )

))1/2
.

(b) If W ⊆ B(0, R) with R > 0, then, for any γ ∈ (0, 1), there holds

PA

(
sup

S�S′
δA(S, S′) ≥ Δ̃SGD(γ)

)
≤ γ,

where Δ̃SGD(γ) =
(

e
(
c2

α,2Tη
2

1−α + 4
(
M + LRα

)2
η2

(
1 + T

n (1 + cγ,T )
)

T
n (1 + cγ,T )

))1/2
.

Remark 1. Under the reasonable assumption of T ≥ n, we have cγ,T = O(log(n/γ)). Then ΔSGD(γ) =
O

(√
Tη

1
1−α + (T η)1+α/2 log(n/γ)

n

)
and Δ̃SGD(γ) = O

(√
Tη

1
1−α + T η log(n/γ)

n

)
. In addition, if � is strongly 

smooth, i.e., α = 1, the first term in the UAS bounds tends to 0 under the typical assumption of η < 1. In 

this case we have ΔSGD(γ) = O
((

T η
)3/2 log(n/γ)

n

)
and Δ̃SGD(γ) = O

(
T η log(n/γ)

n

)
. The work [3] established 

the high probability upper bound of the random variable of the argument stability δSGD in the order of 
O(

√
Tη + T η

n ) for Lipschitz continuous losses under an additional assumption γ ≥ exp(−n/2). Our result 
gives the upper bound of supS�S′ δSGD(S, S′) in the order of O(

√
Tη + T η log(n/γ)

n ) for any γ ∈ (0, 1) for the 
case of α = 0. The work [17] gave the bound of O(Tη/n) in expectation for Lipschitz continuous and smooth 
loss functions. As a comparison, our stability bounds are stated with high probability and do not require the 
Lipschitz condition. Under a further Lipschitz condition, our stability bounds actually recover the bound 
O(Tη/n) in [17] in the smooth case. Indeed, both the term 

(
M + (CαTη) α

2
)2 and the term 

(
M + LRα

)2

are due to controlling the magnitude of gradients, and can be replaced by L2 for L-Lipschitz losses.

2.2.2. Differentially private SGD with output perturbation
Output perturbation [9,13] is a common approach to achieve (ε, δ)-DP. The main idea is to add a random 

noise b to the output of the SGD algorithm, where b is randomly sampled from the Gaussian distribution 
with mean 0 and variance proportional to the �2-sensitivity of SGD. In Algorithm 1, we propose the private 
SGD algorithm with output perturbation for non-smooth losses in both bounded domain W ⊆ B(0, R) and 
unbounded domain W = Rd. The difference in these two cases is that we add random noise with different 
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variances according to the sensitivity analysis of SGD stated in Theorem 7. In the sequel, we present the 
privacy and utility guarantees for Algorithm 1.

Theorem 8 (Privacy guarantee). Suppose that the loss function � is convex, nonnegative and α-Hölder smooth 
with parameter L. Then Algorithm 1 (DP-SGD-Output) satisfies (ε, δ)-DP.

According to the definitions, the �2-sensitivity of SGD is identical to the UAS of SGD: supS�S′ δSGD(S, S′). 
In this sense, the proof of Theorem 8 directly follows from Theorem 7 and Lemma 2. For completeness, we 
include the detailed proof in Subsection 3.2.

Recall that the empirical risk is defined by RS(w) = 1
n

∑n
i=1 �(w, zi), and the population risk is R (w) =

Ez[�(w, z)]. Let w∗ ∈ arg minw∈W R (w) be the one with the best prediction performance over W . We use 
the notation B � B̃ if there exist constants c1, c2 > 0 such that c1B̃ < B ≤ c2B̃. Without loss of generality, 
we always assume ‖w∗‖2 ≥ 1.

Theorem 9 (Utility guarantee for unbounded domain). Suppose the loss function � is nonnegative, convex 
and α-Hölder smooth with parameter L. Let wpriv be the output produced by Algorithm 1 with W = Rd

and η = n
1

3+α /
(
T (log( 1

γ ))
1

3+α
)
. Let T � n

−α2−3α+6
(1+α)(3+α) if 0 ≤ α <

√
73−7
4 , and T � n else. Then, for any 

γ ∈ (4 max{exp(−d/8), δ}, 1), with probability at least 1 − γ over the randomness in both the sample and 
the algorithm, there holds

R (wpriv) − R (w∗) = ‖w∗‖2
2 · O

( √
d log(1/δ)log(n/δ)

(log(1/γ))
1+α

4(3+α) n
2

3+α ε
+

log(n)
(

log(1/γ)
) 2

3+α log(n/δ)
n

1
3+α

)
.

To examine the excess population risk R (wpriv) − R (w∗), we use the following error decomposition:

R (wpriv) − R (w∗) = [R (wpriv) − R (w̄)] + [R (w̄) − RS(w̄)] + [RS(w̄) − RS(w∗)] + [RS(w∗) − R (w∗)], (3)

where w̄ = 1
T

∑T
t=1 wt is the output of non-private SGD. The first term is due to the added noise b, which 

can be estimated by the Chernoff bound for Gaussian random vectors. The second term is the generalization 
error of SGD, which can be handled by the stability analysis. The third term is an optimization error and 
can be controlled by standard techniques in optimization theory. Finally, the last term can be bounded by 
O(1/

√
n) by Hoeffding inequality. The proof of Theorem 9 is given in Subsection 3.2.

Now, we turn our attention to the utility guarantee for the case with a bounded domain.

Theorem 10 (Utility guarantees for bounded domain). If the loss function � is nonnegative, convex 
and α-Hölder smooth with parameter L. Let wpriv be the output produced by Algorithm 1 with W ⊆
B(0, R). Let T � n

2−α
1+α if α < 1

2 , T � n else, and choose η = 1/
(

T max
{√

log(n/δ) log(n) log(1/γ)√
n

,(
d log(1/δ)

)1/4√
log(n/δ)(log(1/γ))1/8
√

nε

})
. Then for any γ ∈ (4 max{exp(−d/8), δ}, 1), with probability at least 

1 − γ over the randomness in both the sample and the algorithm, there holds

R (wpriv) − R (w∗) = ‖w∗‖2
2 · O

((
d log(1/δ)

) 1
4 (log(1/γ)) 1

8
√

log(n/δ)√
nε

+
√

log(n) log(1/γ)log(n/δ)√
n

)
.

The definition of α-Hölder smoothness and the convexity of � imply the following inequalities

‖∂�(w, z)‖2 ≤ M + LRα and �(w, z) ≤ �(0, z) + MR + LR1+α, ∀z ∈ Z, w ∈ W .
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Algorithm 2 Differentially Private SGD with Gradient perturbation (DP-SGD-Gradient)
1: Inputs: Data S = {zi ∈ Z : i = 1, . . . , n}, loss function �(w, z) with Hölder parameters α and L, the convex set W ⊆ B(0, R), 

step size η, number of iterations T , privacy parameters ε, δ, and constant β.
2: Set: w1 = 0
3: Compute σ2 = 14(M+LRα)2T

βn2ε

(
log(1/δ)
(1−β)ε + 1

)
4: for t = 1 to T do
5: Sample it ∼ Unif([n])
6: wt+1 = ProjW

(
wt − η(∂�(wt; zit

) + bt)
)
, where bt ∼ N (0, σ2Id)

7: end for
8: return: wpriv = 1

T

∑T
t=1 wt

These together with Theorem 9 imply the utility guarantee in the above theorem. The detailed proof is 
given in Subsection 3.2.

Remark 2. The private SGD algorithm with output perturbation was studied in [35] under both the 
Lipschitz continuity and the strong smoothness assumption, where the excess population risk for one-
pass private SGD (i.e. the total iteration number T = n) with a bounded parameter domain was 
bounded by O

(
(nε)− 1

2 (d log(1/δ) 1
4
)
. As a comparison, we show that the same rate (up to a logarithmic 

factor) O
(
(nε)− 1

2 (d log(1/δ)) 1
4 log

1
2 (n/δ)

)
can be achieved for general α-Hölder smooth losses by taking 

T = O(n
2−α
1+α +n). Our results extend the output perturbation for private SGD algorithms to a more general 

class of non-smooth losses.

2.2.3. Differentially private SGD with gradient perturbation
An alternative approach to achieve (ε, δ)-DP is gradient perturbation, i.e., adding Gaussian noise to 

the stochastic gradient at each update. The detailed algorithm is described in Algorithm 2, whose privacy 
guarantee is established in the following theorem.

Theorem 11 (Privacy guarantee). Suppose the loss function � is nonnegative, convex and α-Hölder smooth 
with parameter L. Then Algorithm 2 (DP-SGD-Gradient) satisfies (ε, δ)-DP if there exists β ∈ (0, 1) such 

that σ2

4(M+LRα)2 ≥ 0.67 and λ − 1 ≤ σ2

6(M+LRα)2 log
(

n

λ(1+ σ2
4(M+LRα)2 )

)
hold with λ = log(1/δ)

(1−β)ε + 1.

Since W ⊆ B(0, R), the Hölder smoothness of � implies that ‖∂�(wt, z)‖2 ≤ M + LRα for any t ∈ [T ] and 
any z ∈ Z, from which we know that the �2-sensitivity of the function Mt = ∂�(wt, z) can be bounded by 
2(M + LRα). By Lemma 3 and the post-processing property of DP, it is easy to show that the update of 
wt satisfies ( log(1/δ)

(1−β)ε + 1, βε
T )-RDP for any t ∈ [T ]. Furthermore, by the composition theorem of RDP and 

the relationship between (ε, δ)-DP and RDP, we can show that the proposed algorithm satisfies (ε, δ)-DP. 
The detailed proof can be found in Subsection 3.3.

Other than the privacy guarantees, the DP-SGD-Gradient algorithm also enjoys utility guarantees as 
stated in the following theorem.

Theorem 12 (Utility guarantee). Suppose the loss function � is nonnegative, convex and α-Hölder smooth 

with parameter L. Let wpriv be the output produced by Algorithm 2 with η = 1
T max

{√
log(n) log(n/γ) log(1/γ)√

n
,√

d log(1/δ)(log(1/γ))
1
4

nε

}
. Furthermore, let T � n

2−α
1+α if α < 1

2 , and T � n else. Then, for any γ ∈
(18 exp(−Td/8), 1), with probability at least 1 −γ over the randomness in both the sample and the algorithm, 
there holds

R (wpriv) − R (w∗) = ‖w∗‖2
2 · O

(√
d log(1/δ) log(1/γ)

+
√

log(n)log(n/γ) log(1/γ)√
)

.

nε n
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Fig. 1. The sufficient condition for the existence of β in Lemma 13. The shaded area is the area where the sufficient condition in 
Lemma 13 holds true, i.e., ε ≥

(
7(n

1
3 − 1) + 4 log(n)n + 7

)
/

(
2n(n

1
3 − 1)

)
.

Our basic idea to prove Theorem 12 is to use the following error decomposition:

R (wpriv) − R (w∗) = [R (wpriv) − RS(wpriv)] + [RS(wpriv) − RS(w∗)] + [RS(w∗) − R (w∗)]. (4)

Similar to the proof of Theorem 9, the generalization error R (wpriv) −RS(wpriv) can be handled by the UAS 
bound, the optimization error RS(wpriv) −RS(w∗) can be estimated by standard techniques in optimization 
[e.g. 27], and the last term RS(w∗) −R (w∗) can be bounded by the Hoeffding inequality. The detailed proof 
can be found in Subsection 3.3.

Remark 3. We now compare our results with the related work under a bounded domain assumption. The 
work [4] established the optimal rate O( 1

nε

√
d log(1/δ) + 1√

n
) for the excess population risk of private SCO 

algorithm in either smooth case (α = 1) or non-smooth case (α = 0). However, their algorithm has a large 

gradient complexity O
(

n4.5√
ε + n6.5ε4.5

(d log( 1
δ ))2

)
. The work [16] proposed a private phased ERM algorithm for 

SCO, which can achieve the optimal excess population risk for non-smooth losses with a better gradient 
complexity of the order O(n2 log(1/δ)). The very recent work [3] improved the gradient complexity to O(n2). 
As a comparison, we show that SGD with gradient complexity O(n

2−α
1+α +n) is able to achieve the optimal (up 

to logarithmic terms) excess population risk O( 1
nε

√
d log(1/δ)+ 1√

n
) for general α-Hölder smooth losses. Our 

results match the existing gradient complexity for both the smooth case in [4] and the Lipschitz continuity 
case [3]. An interesting observation is that our algorithm can achieve the optimal utility guarantee with the 
linear gradient complexity O(n) for α ≥ 1/2, which shows that a relaxation of the strong smoothness from 
α = 1 to α ≥ 1/2 does not bring any harm in both the generalization and computation complexity.

Now, we give a sufficient condition for the existence of β in Theorem 11 under a specific parameter 
setting.

Lemma 13. Let n ≥ 18, T = n and δ = 1/n2. If ε ≥ 7(n
1
3 −1)+4 log(n)n+7

2n(n
1
3 −1)

, then there exists β ∈ (0, 1) such 

that Algorithm 2 satisfies (ε, δ)-DP.
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Remark 4. Privacy parameters ε and δ together quantify the privacy risk. ε is often called the privacy 
budget controlling the degree of privacy leakage. A larger value of ε implies higher privacy risk. Therefore, 
the value of ε depends on how much privacy the user needs to protect. Theoretically, the value of ε is less 
than 1. However, in practice, to obtain the desired utility, a larger privacy budget, i.e., ε ≥ 1, is always 
acceptable [35,33]. For instance, Apple uses a privacy budget ε = 8 for Safari Auto-play intent detection, 
and ε = 2 for Health types1. Parameter δ is the probability with which eε fails to bound the ratio between 
the two probabilities in the definition of differential privacy, i.e., the probability of privacy protection failure. 
For meaningful privacy guarantees, according to [14] the value of δ should be much smaller than 1/n. In 
particular, we always choose δ = 1/n2. For DP-SGD-Gradient algorithm, another constant we should discuss 
is β which depends on the choice of the number of iterations T , size of training data n, privacy parameters 
ε and δ. The appearance of this parameter is due to the use of subsampling result for RDP (see Lemma 3). 
The condition in Lemma 13 ensures the existence of β ∈ (0, 1) such that Algorithm 2 satisfies DP. Fig. 1
shows how the range of ε changes as we increase the size of training dataset n. In practical applications, 
we search in (0, 1) for all β that satisfy the RDP conditions in Theorem 11. Note that the closer the β is 
to 1/2, the smaller the variance of the noise added to the algorithm in each iteration. Therefore, we choose 
the value that is closest to 1/2 of all β that meets the RDP conditions as the value of β.

We end this section with a final remark on the challenges of proving DP for Algorithm 2 when W is 
unbounded.

Remark 5. To make Algorithm 2 satisfy DP when W = Rd, the variance σt of the noise bt added in the 
t-th iteration should be proportional to the �2-sensitivity Δt = ‖∂�(wt, zit

) − ∂�(wt, z′
it

)‖2. The definition 
of Hölder smoothness implies that Δt ≤ 2(M + L‖wt‖α

2 ). When α = 0, we have Δt ≤ 2(M + L) and the 
privacy guarantee can be established in a way similar to Theorem 11. When α ∈ (0, 1], we have to establish 
an upper bound of ‖wt‖2. Since wt = wt−1 − η(∂�(wt−1, zit−1) + bt−1) (bt−1 ∼ N (0, σ2

t−1Id)), we can only 
give a bound of ‖wt‖2 with high probability. Thus, the sensitivity Δt can not be uniformly bounded in this 
case. Therefore, the first challenge is how to analyze the privacy guarantee when the sensitivity changes at 
each iteration and all of them can not be uniformly bounded. Furthermore, by using the property of the 

Gaussian vector, we can prove that ‖wt‖2 = O(
√

tη + η
∑t−1

j=1 σj + η
√

d
∑t−1

j=1 σ2
j ) with high probability. 

However, as mentioned above, the variance σt should be proportional to Δt whose upper bound involves 
‖wt‖α

2 . Thus, σt is proportional to (tη)α/2 + ηα(
∑t−1

j=1 σj)α + ηα(d 
∑t−1

j=1 σ2
j )α/2. For this reason, it seems 

difficult to give a clear expression for an upper bound of ‖wt‖2.

3. Proofs of main results

Before presenting the detailed proof, we first introduce some useful lemmas on the concentration behavior 
of random variables.

Lemma 14 (Chernoff bound for Bernoulli variable [34]). Let X1, . . . , Xk be independent random variables 
taking values in {0, 1}. Let X =

∑k
i=1 Xi and μ = E[X]. The following statements hold.

(a) For any γ̃ ∈ (0, 1), with probability at least 1 − exp
(

− μγ̃2/3
)
, there holds X ≤ (1 + γ̃)μ.

(b) For any γ̃ ≥ 1, with probability at least 1 − exp
(

− μγ̃/3
)
, there holds X ≤ (1 + γ̃)μ.

1 https://www .apple .com /privacy /docs /Differential _Privacy _Overview .pdf

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
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Lemma 15 (Chernoff bound for the �2-norm of Gaussian vector [34]). Let X1, . . . , Xk be i.i.d. standard 
Gaussian random variables, and X = [X1, . . . , Xk] ∈ Rk. Then for any t ∈ (0, 1), with probability at least 
1 − exp(−kt2/8), there holds ‖X‖2

2 ≤ k(1 + t).

Lemma 16 (Hoeffding inequality [18]). Let X1, . . . , Xk be independent random variables such that ai ≤ Xi ≤
bi with probability 1 for all i ∈ [k]. Let X = 1

k

∑k
i=1 Xi. Then for any t > 0, with probability at least 

1 − exp(−2t2/ 
∑

i(bi − ai)2), there holds X − E[X] ≤ t.

Lemma 17 (Azuma-Hoeffding inequality [18]). Let X1, . . . , Xk be a sequence of random variables where Xi

may depend on the previous random variables X1, . . . , Xi−1 for all i = 1, . . . , k. Consider a sequence of 
functionals ξi(X1, . . . , Xi), i ∈ [k]. If |ξi − EXi

[ξi]| ≤ bi for each i. Then for all t > 0, with probability at 
least 1 − exp(−t2/(2 

∑
i b2

i )), there holds 
∑k

i=1 ξi −
∑k

i=1 EXi
[ξi] ≤ t.

Lemma 18 (Tail bound of sub-Gaussian variable [34]). Let X be a sub-Gaussian random variable with mean 
μ and sub-Gaussian parameter v2. Then, for any t ≥ 0, we have, with probability at least 1 −exp

(
−t2/(2v2)

)
, 

that X − μ ≤ t.

3.1. Proofs on UAS bound of SGD on non-smooth losses

Our stability analysis for unbounded domain requires the following lemma on the self-bounding property 
for Hölder smooth losses.

Lemma 19. ([21,37]) Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter 
L. Then for cα,1 defined as (2) we have

‖∂�(w, z)‖2 ≤ cα,1�
α

1+α (w, z), ∀w ∈ Rd, z ∈ Z.

Based on Lemma 19, we develop the following bound on the iterates produced by the SGD update (1)
which is critical to analyze the privacy and utility guarantees in the case of unbounded domain. Recall that 
M = supz∈Z ‖∂�(0, z)‖2.

Lemma 20. Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter L. Let 
{wt}T

t=1 be the sequence produced by SGD with T iterations when W = Rd and ηt < min{1, 1/L}. Then, 
for any t ∈ [T ], there holds

‖wt+1‖2
2 ≤ Cα

t∑
j=1

ηj ,

where Cα = 1−α
1+α c

2(1+α)
1−α

α,1
(

α
1+α

) 2α
1−α + 2 supz∈Z �(0; z).

Proof. The update rule wt+1 = wt − ηt∂�(wt, zit
) implies that

‖wt+1‖2
2 = ‖wt − ηt∂�(wt, zit

)‖2
2 = ‖wt‖2

2 + η2
t ‖∂�(wt, zit

)‖2
2 − 2ηt〈wt, ∂�(wt, zit

)〉. (5)

First, we consider the case α = 0. By the definition of Hölder smoothness, we know � is (M + L)-Lipschitz 
continuous. Furthermore, by the convexity of �, we have

ηt‖∂�(wt, zit
)‖2

2 − 2〈wt, ∂�(wt, zit
) ≤ ηt‖∂�(wt, zit

)‖2
2 + 2

(
�(0, zit

) − �(wt, zit
)
)

≤ (M + L)2 + 2 sup
z∈Z

�(0, z),
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where in the last inequality we have used ηt < 1 and the nonnegativity of �. Now, putting the above 
inequality back into (5) and taking the summation gives

‖wt+1‖2
2 ≤

(
(M + L)2 + 2 sup

z∈Z
�(0, z)

) t∑
j=1

ηj . (6)

Then, we consider the case α = 1. In this case, Lemma 19 implies ‖∂�(w, z)‖2
2 ≤ 2L�(w, z). Therefore,

ηt‖∂�(wt, zit
)‖2

2 − 2〈wt, ∂�(wt, zit
)〉 ≤ 2ηtL�(wt, zit

) + 2�(0, zit
) − 2�(wt, zit

) ≤ 2�(0, zit
),

where we have used the convexity of � and ηt < 1/L. Plugging the above inequality back into (5) and taking 
the summation yield that

‖wt+1‖2
2 ≤ 2 sup

z∈Z
�(0, z)

t∑
j=1

ηj . (7)

Finally, we consider the case α ∈ (0, 1). According to the self-bounding property and the convexity, we 
know

‖∂�(wt, zit
)‖2 ≤ cα,1�

α
1+α (wt, zit

) ≤ cα,1
(
〈wt, ∂�(wt, zit

)〉 + �(0, zit
)
) α

1+α .

Therefore, for α ∈ (0, 1) there holds

‖∂�(wt, zit
)‖2

2 ≤ c2
α,1

(
〈wt, ∂�(wt, zit

)〉 + �(0, zit
)
) 2α

1+α

=
(1 + α

αηt

(
〈wt, ∂�(wt, zit

)〉 + �(0, zit
)
)) 2α

1+α ·
(

c2
α,1

(1 + α

αηt

)− 2α
1+α

)

≤ 2α

1 + α

(1 + α

αηt

(
〈wt, ∂�(wt, zit

)〉 + �(0, zit
)
))

+ 1 − α

1 + α

(
c2

α,1
(1 + α

αηt

)− 2α
1+α

) 1+α
1−α

= 2η−1
t

(
〈wt, ∂�(wt, zit

)〉 + �(0, zit
)
)

+ 1 − α

1 + α
c

2(1+α)
1−α

α,1
( α

1 + α

) 2α
1−α η

2α
1−α

t ,

where the last inequality used Young’s inequality ab ≤ 1
pap + 1

q bq with 1
p + 1

q = 1. Putting the above 
inequality into (5), we have

‖wt+1‖2
2 ≤ ‖wt‖2

2 + 1 − α

1 + α
c

2(1+α)
1−α

α,1
( α

1 + α

) 2α
1−α η

2
1−α

t + 2�(0, zit
)ηt.

If the step size ηt < 1, then

‖wt+1‖2
2 ≤ ‖wt‖2

2 +
(

1 − α

1 + α
c

2(1+α)
1−α

α,1
( α

1 + α

) 2α
1−α + 2 sup

z∈Z
�(0; z)

)
ηt.

Taking a summation of the above inequality, we get

‖wt+1‖2
2 ≤

(1 − α

1 + α
c

2(1+α)
1−α

α,1
( α

1 + α

) 2α
1−α + 2 sup

z∈Z
�(0; z)

) t∑
j=1

ηj . (8)

The desired result follows directly from (6), (7) and (8) for different values of α. �
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The following lemma shows the approximately non-expensive behavior of the gradient mapping w �→
w − η∂�(w, z). The case α ∈ [0, 1) can be found in Lei and Ying [21], and the case α = 1 can be found in 
Hardt [17].

Lemma 21. Suppose the loss function � is convex and α-Hölder smooth with parameter L. Then for all 
w, w′ ∈ Rd and η ≤ 2/L there holds

‖w − η∂�(w, z) − w′ + η∂�(w′, z)‖2
2 ≤ ‖w − w′‖2

2 + 1 − α

1 + α
(2−αL)

2
1−α η

2
1−α .

With the above preparation, we are now ready to prove Theorem 7.

Proof of Theorem 7. (a) Assume that S and S′ differ by the i-th datum, i.e., zi �= z′
i. Let {wt}T

t=1 and 
{w′

t}T
t=1 be the sequence produced by SGD update (1) based on S and S′, respectively. For simplicity, let 

c2
α,2 = 1−α

1+α (2−αL)
2

1−α . Note that when W = Rd, Eq. (1) reduces to wt+1 = wt − η∂�(wt, zit
). For any 

t ∈ [T ], we consider the following two cases.
Case 1: If it �= i, Lemma 21 implies that

‖wt+1 − w′
t+1‖2

2 = ‖wt − ηt∂�(wt, zit
) − w′

t + ηt∂�(w′
t, zit

)‖2
2 ≤ ‖wt − w′

t‖2
2 + c2

α,2η
2

1−α

t .

Case 2: If it = i, it follows from the elementary inequality (a + b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 that

‖wt+1 − w′
t+1‖2

2 = ‖wt − ηt∂�(wt, zi) − w′
t + ηt∂�(w′

t, z′
i)‖2

2

≤ (1 + p)‖wt − w′
t‖2

2 + (1 + 1/p)η2
t ‖∂�(w′

t, z′
i) − ∂�(wt, zi)‖2

2.

According to the definition of Hölder smoothness and Lemma 20, we know

‖∂�(wt, z)‖2 ≤ M + L
(

Cα

t−1∑
j=1

ηj

) α
2 := cα,t. (9)

Combining the above two cases and (9) together, we have

‖wt+1 − w′
t+1‖2

2 ≤ (1 + p)I[it=i]‖wt − w′
t‖2

2 + c2
α,2η

2
1−α

t + 4(1 + 1/p)I[it=i]c
2
α,tη

2
t ,

where I[it=i] is the indicator function, i.e., I[it=i] = 1 if it = i and 0 otherwise. Applying the above inequality 
recursively, we get

‖wt+1−w′
t+1‖2

2 ≤
t∏

k=1

(1+p)I[ik=i]‖w1−w′
1‖2

2+
(

c2
α,2

t∑
k=1

η
2

1−α

k +4
t∑

k=1

c2
α,kη2

k(1+1/p)I[ik=i]

) t∏
j=k+1

(1+p)I[ij =i] .

Since w1 = w′
1 and ηt = η, we further get

‖wt+1 − w′
t+1‖2

2 ≤
t∏

j=2
(1 + p)I[ij =i]

(
c2

α,2tη
2

1−α + 4η2
t∑

k=1

c2
α,k(1 + 1/p)I[ik=i]

)

≤ (1 + p)
∑t

j=2 I[ij =i]
(

c2
α,2tη

2
1−α + 4c2

α,tη
2(1 + 1/p)

t∑
k=1

I[ik=i]

)
. (10)
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Applying Lemma 14 with Xj = I[ij=i] and X =
∑t

j=1 Xj , for any exp(−t/3n) ≤ γ ≤ 1, with probability at 
least 1 − γ

n , there holds

t∑
j=1

I[ij=i] ≤ t

n

(
1 +

√
3 log(n/γ)√

t/n

)
.

For any 0 < γ < exp(−t/3n), with probability at least 1 − γ
n , there holds

t∑
j=1

I[ij=i] ≤ t

n

(
1 + 3 log(n/γ)

t/n

)
.

Plug the above two inequalities back into (10), and let cγ,t = max
{√

3 log(n/γ)
t/n , 3 log(n/γ)

t/n

}
. Then, for any 

γ ∈ (0, 1), with probability at least 1 − γ
n , we have

‖wt+1 − w′
t+1‖2

2 ≤ (1 + p) t
n (1+cγ,t)

(
c2

α,2tη
2

1−α + 4c2
α,tη

2(1 + 1/p) t

n
(1 + cγ,t)

)
.

Let p = 1
t
n (1+cγ,t) . Then we know (1 + p) t

n (1+cγ,t) ≤ e and therefore

‖wt+1 − w′
t+1‖2

2 ≤ e
(

c2
α,2tη

2
1−α + 4c2

α,tη
2
(

1 + t

n
(1 + cγ,t)

) t

n
(1 + cγ,t)

)
. (11)

This together with the inequality c2
α,t ≤

(
M + L(Cαtη) α

2
)2 due to Lemma 20, we have, with probability at 

least 1 − γ
n , that

‖wt+1 − w′
t+1‖2

2 ≤ e
(

c2
α,2tη

2
1−α + 4

(
M + L(Cαtη) α

2
)2

η2
(

1 + t

n
(1 + cγ,t)

) t

n
(1 + cγ,t)

)
.

By taking a union bound of probabilities over i = 1, . . . , n, with probability at least 1 − γ, there holds

sup
S�S′

‖wt+1 − w′
t+1‖2

2 ≤ e
(

c2
α,2tη

2
1−α + 4

(
M + L(Cαtη) α

2
)2

η2
(

1 + t

n
(1 + cγ,t)

) t

n
(1 + cγ,t)

)
.

Let ΔSGD(γ) =
(

e
(
c2

α,2Tη
2

1−α + 4
(
M + L(CαTη) α

2
)2

η2
(

1 + T
n (1 + cγ,T )

)
T
n (1 + cγ,T )

))1/2
. Recall that A is 

the SGD with T iterations, and w̄ = 1
T

∑T
t=1 wt is the output produced by A. Hence, supS�S′ δA(S, S′) =

supS�S′ ‖w̄ − w̄′‖2. By the convexity of the �2-norm, with probability at least 1 − γ, we have

sup
S�S′

δA(S, S′) ≤ 1
T

T∑
t=1

sup
S�S′

‖wt − w′
t‖2 ≤ ΔSGD(γ).

This completes the proof of part (a).

(b) For the case W ⊆ B(0, R), the analysis is similar to the case W = Rd except using a different estimate for 
the term ‖∂�(wt, z)‖2. Indeed, in this case we have ‖wt‖2 ≤ R, which together with the Hölder smoothness, 
implies ‖∂�(wt, z)‖2 ≤ M + LRα for any t ∈ [T ] and z ∈ Z. Now, replacing cα,t = M + LRα in (9) and 
putting cα,t back into (11), with probability at least 1 − γ

n , we obtain

sup ‖wt+1 − w′
t+1‖2

2 ≤ e
(

c2
α,2tη

2
1−α + 4

(
M + LRα

)2
η2

(
1 + t (1 + cγ,t)

) t (1 + cγ,t)
)

.

S�S′ n n
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Now, let Δ̃SGD(γ) =
(

e
(
c2

α,2Tη
2

1−α + 4
(
M + LRα

)2
η2

(
1 + T

n (1 + cγ,T )
)

T
n (1 + cγ,T )

))1/2
. The convexity of 

a norm implies, with probability at least 1 − γ, that

sup
S�S′

δA(S, S′) ≤ 1
T

T∑
t=1

sup
S�S′

‖wt − w′
t‖2 ≤ Δ̃SGD(γ).

The proof of the theorem is completed. �

3.2. Proofs on differentially private SGD with output perturbation

In this subsection, we prove the privacy and utility guarantees for output perturbation (i.e. Algorithm 1). 
We consider both the unbounded domain W = Rd and bounded domain W ⊆ B(0, R).

We first prove Theorem 8 on the privacy guarantee of Algorithm 1.

Proof of Theorem 8. Let A be the SGD with T iterations, w̄ = 1
T

∑T
t=1 wt be the output of A. First, 

consider the unbounded domain case, i.e., W = Rd. Let I = {i1, . . . , iT } be the sequence of sampling after 
T iterations in A. Define

B =
{

I : sup
S�S′

δA(S, S′) ≤ ΔSGD(δ/2)
}

.

Part (a) in Theorem 7 implies that P (I ∈ B) ≥ 1 − δ/2. Further, according to the definitions, we know 
the �2-sensitivity of A is identical to the UAS of A. Thus, if I ∈ B, then Lemma 2 with δ′ = δ/2 implies 
Algorithm 1 satisfies (ε, δ/2)-DP. For any neighboring datasets S and S′, let wpriv and w′

priv be the output 
produced by Algorithm 1 based on S and S′, respectively. Hence, for any E ⊆ Rd we have

P (wpriv ∈ E) = P (wpriv ∈ E ∩ I ∈ B) + P (wpriv ∈ E ∩ I ∈ Bc)

≤ P (wpriv ∈ E|I ∈ B)P (I ∈ B) + δ

2 ≤
(

eεP (w′
priv ∈ E|I ∈ B) + δ

2

)
P (I ∈ B) + δ

2
≤ eεP (w′

priv ∈ E ∩ I ∈ B) + δ ≤ eεP (w′
priv ∈ E) + δ,

where in the second inequality we have used the definition of DP. Therefore, Algorithm 1 satisfies (ε, δ)-DP 
when W = Rd. The bounded domain case can be proved in a similar way by using part (b) of Theorem 7. 
The proof is completed. �

Now, we turn to the utility guarantees of Algorithm 1. Recall that the excess population risk R (wpriv) −
R (w∗) can be decomposed as follows (w̄ = 1

T

∑T
t=1 wt)

R (wpriv) − R (w∗) = [R (wpriv) − R (w̄)] + [R (w̄) − RS(w̄)] + [RS(w̄) − RS(w∗)] + [RS(w∗) − R (w∗)].
(12)

We now introduce three lemmas to control the first three terms on the right hand side of (12). The 
following lemma controls the error resulting from the added noise.

Lemma 22. Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter L. 
Let wpriv be the output produced by Algorithm 1 based on the dataset S = {z1, · · · , zn} with ηt = η <

min{1, 1/L}. Then for any γ ∈ (4 exp(−d/8), 1), the following statements hold true.
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(a) If W = Rd, then, with probability at least 1 − γ
4 , there holds

R (wpriv) − R (w̄) = O
(

(Tη) α
2 σ

√
d(log(1/γ)) 1

4 + σ1+αd
1+α

2 (log(1/γ))
1+α

4

)
.

(b) If W ⊆ B(0, R) with R > 0, then, with probability at least 1 − γ
4 , we have

R (wpriv) − R (w̄) = O
(

σ
√

d(log(1/γ)) 1
4 + σ1+αd

1+α
2 (log(1/γ))

1+α
4

)
.

Proof. (a) First, we consider the case W = Rd. Note that

R (wpriv) − R (w̄) = Ez[�(wpriv, z) − �(w̄, z)] ≤ Ez[〈∂�(wpriv, z), wpriv − w̄〉]
≤ Ez[‖∂�(wpriv, z)‖2‖b‖2] ≤ (M + L‖wpriv‖α

2 )‖b‖2

≤ (M + L‖w̄‖α
2 )‖b‖2 + L‖b‖1+α

2 , (13)

where the first inequality is due to the convexity of �, the second inequality follows from the Cauchy-Schwartz 
inequality, the third inequality is due to the definition of Hölder smoothness, and the last inequality uses 
wpriv = w̄+b. Hence, to estimate R (wpriv) −R (w̄), it suffices to bound ‖b‖2 and ‖w̄‖2. Since b ∼ N (0, σ2I), 
then for any γ ∈ (4 exp(−d/8), 1), Lemma 15 implies, with probability at least 1 − γ

4 , that

‖b‖2 ≤ σ
√

d
(

1 +
(8

d
log

(
4/γ

)) 1
4
)

. (14)

Further, by the convexity of a norm and Lemma 20, we know

‖w̄‖2 ≤ 1
T

T∑
t=1

‖wt‖2 ≤
(
CαTη

) 1
2 . (15)

Putting the above inequality and (14) back into (13) yields

R (wpriv) − R (w̄) ≤
(
M + L(CαTη) α

2
)
σ

√
d
(

1 +
(8

d
log

(
4/γ

)) 1
4
)

+ Lσ1+αd
1+α

2

(
1 +

(8
d

log
(
4/γ

)) 1
4
)1+α

= O
(

(Tη) α
2 σ

√
d
(

log(1/γ)
) 1

4 + σ1+αd
1+α

2
(

log(1/γ)
) 1+α

4
)

.

This completes the proof of part (a).

(b) The proof for the unbounded domain case is similar to that of the bounded domain. Since ‖wt‖2 ≤ R

for t ∈ [T ] in this case, then

‖w̄‖2 ≤ 1
T

T∑
t=1

‖wt‖2 ≤ R. (16)

Plugging (16) and (14) back into (13) yield the result in part (b). �
In the following lemma, we use the stability of SGD to control the generalization error R (w̄) − RS(w̄).

Lemma 23. Suppose the loss function � is nonnegative, convex, and α-Hölder smooth with parameter L. Let 
A be the SGD with T iterations and ηt = η < min{1, 1/L} based on the dataset S = {z1, · · · , zn}, and 
w̄ = 1 ∑T wt be the output produced by A. Then for any γ ∈ (4δ, 1), the following statements hold true.
T t=1
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(a) If W = Rd, then, with probability at least 1 − γ
4 , there holds

R (w̄) − RS(w̄) = O
(

(Tη) α
2 ΔSGD(δ/2) log(n) log(1/γ) + (Tη)

1+α
2

√
n− 1

2 log(1/γ)
)

.

(b) If W ⊆ B(0, R) with R > 0, then, with probability at least 1 − γ
4 , we have

R (w̄) − RS(w̄) = O
(

Δ̃SGD(δ/2) log(n) log(1/γ) +
√

n− 1
2 log(1/γ)

)
.

Proof. (a) Consider the unbounded domain case. Part (a) in Theorem 7 implies, with probability at least 
1 − δ

2 , that

sup
S�S′

δA(S, S′) ≤ ΔSGD(δ/2). (17)

Since γ ≥ 4δ, then we know (17) holds with probability at least 1 − γ
8 . According to the result ‖w̄‖2 ≤

√
CαTη

by (15) and Lemma 1 with G =
√

CαTη together, we derive the following inequality with probability at 
least 1 − γ

8 − γ
8 = 1 − γ

4

R (w̄) − RS(w̄) ≤ c

(
(M + L(CαTη) α

2 )ΔSGD(δ/2) log(n) log(8/γ)

+
(

sup
z∈Z

�(0, z) + (M + L(Tη) α
2 )

√
Tη

)√
log(8/γ)

n

)

= O
(

(Tη) α
2 ΔSGD(δ/2) log(n) log(1/γ) + (Tη)

1+α
2

√
log(1/γ)

n

)
,

where c > 0 is a constant. The proof of part (a) is completed.

(b) For the case W ⊆ B(0, R), the proof follows a similar argument as part (a). Indeed, part (b) in Theorem 7
implies, with probability at least 1 − γ

8 , that

sup
S�S′

δA(S, S′) ≤ Δ̃SGD(δ/2). (18)

Note that ‖w̄‖2 ≤ R in this case, then combining (18) and Lemma 1 with G = R together, with probability 
at least 1 − γ

4 , we have

R (w̄) − RS(w̄) ≤ c

(
(M + LRα)Δ̃SGD(δ/2) log(n) log(8/γ) +

(
sup
z∈Z

�(0, z) + (M + LRα)R
)√

log(8/γ)
n

)

= O
(

Δ̃SGD(δ/2) log(n) log(1/γ) +
√

log(1/γ)
n

)
,

where c > 0 is a constant. This completes the proof of part (b). �
In the following lemma, we use techniques in optimization theory to control the optimization error 

RS(w̄) − RS(w∗).

Lemma 24. Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter L. Let 
A be the SGD with T iterations and ηt = η < min{1, 1/L} based on the dataset S = {z1, · · · , zn}, and 
w̄ = 1 ∑T wt be the output produced by A. Then, for any γ ∈ (0, 1), the following statements hold true.
T t=1
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(a) If W = Rd, then, with probability at least 1 − γ
4 , there holds

RS(w̄) − RS(w∗) = O
(

η
1+α

2 T
α
2

√
log(1/γ) + ‖w∗‖1+α

2

√
log(1/γ)

T
+ ‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η

)
.

(b) If W ⊆ B(0, R) with R > 0, then, with probability at least 1 − γ
4 , we have

RS(w̄) − RS(w∗) = O
(

‖w∗‖1+α
2

√
log(1/γ)

T
+ ‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η

)
.

Proof. (a) We first consider the case W = Rd. From the convexity of �, we have

RS(w̄) − RS(w∗) ≤ 1
T

T∑
t=1

RS(wt) − RS(w∗)

= 1
T

T∑
t=1

[RS(wt) − �(wt, zit
)] + 1

T

T∑
t=1

[�(w∗, zit
) − RS(w∗)] + 1

T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)].

(19)

First, we consider the upper bound of 1
T

∑T
t=1[RS(wt) − �(wt; zit

)]. Since {zit
} is uniformly sampled from 

the dataset S, then for all t = 1, . . . , T we obtain

Ezit
[�(wt, zit

)|w1, ..., wt−1] = RS(wt).

By the convexity of �, the definition of Hölder smoothness and Lemma 20, for any z ∈ Z and all t ∈ [T ], 
there holds

�(wt, z) ≤ sup
z

�(0, z) + 〈∂�(wt, z), wt〉 ≤ sup
z

�(0, z) + ‖∂�(wt, z)‖2‖wt‖2

≤ sup
z

�(0, z) + (M + L‖wt‖α
2 )‖wt‖2 ≤ sup

z
�(0, z) + M(CαTη) 1

2 + L(CαTη)
1+α

2 . (20)

Similarly, for any z ∈ Z, we have

�(w∗, z) ≤ sup
z

�(0; z) + M‖w∗‖2 + L‖w∗‖1+α
2 . (21)

Now, combining Lemma 17 with (20) and noting η > 1/T , we get the following inequality with probability 
at least 1 − γ

8

1
T

T∑
t=1

[RS(wt) − �(wt, zit
)] ≤

(
sup

z
�(0, z) + M(CαTη) 1

2 + L(CαTη)
1+α

2
)√

2 log( 8
γ )

T

= O
(

η
1+α

2 T
α
2

√
log(1/γ)

)
. (22)

According to Lemma 16, with probability at least 1 − γ
8 , there holds

1
T

T∑
t=1

[�(w∗; zit
) − RS(w∗)] ≤

(
sup

z
�(0, z) + M‖w∗‖2 + L‖w∗‖1+α

2
)√

log(8/γ)
2T

= O
(

‖w∗‖1+α
2

√
log(1/γ)

T

)
.

(23)
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Finally, we consider the term 1
T

∑T
t=1[�(wt, zit

) − �(w∗, zt)]. The update rule implies wt+1 − w∗ =
(
wt −

w∗)
− η∂�(wt, zit

), from which we know

‖wt+1 − w∗‖2
2 = ‖

(
wt − w∗)

− η∂�(wt, zit
)‖2

2

= ‖wt − w∗‖2
2 + η2‖∂�(wt, zit

)‖2
2 − 2η〈∂�(wt, zit

), wt − w∗〉.

It then follows that

〈∂�(wt, zit
), wt − w∗〉 = 1

2η

(
‖wt − w∗‖2

2 − ‖wt+1 − w∗‖2
2
)

+ η

2‖∂�(wt, zit
)‖2

2.

Combining the above inequality and the convexity of � together, we derive

1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)] ≤ 1
T

T∑
t=1

[ 1
2η

(
‖wt − w∗‖2

2 − ‖wt+1 − w∗‖2
2
)

+ η

2‖∂�(wt, zit
)‖2

2

]

≤ 1
2Tη

‖w1 − w∗‖2
2 + η

2T

T∑
t=1

‖∂�(wt, zit
)‖2

2. (24)

Since 0 ≤ 2α
1+α ≤ 1, Lemma 19 implies the following inequality for any t = 1, . . . , T

‖∂�(wt; zit
)‖2

2 ≤ cα,1�
2α

1+α (wt; zit
) ≤ cα,1 max{�(wt; zit

), 1} ≤ cα,1�(wt; zit
) + cα,1.

Putting ‖∂�(wt; zit
)‖2

2 ≤ cα,1�(wt; zit
) + cα,1 back into (24) and noting ‖w1‖2 = 0, we have

1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)] ≤ ‖w∗‖2
2

2ηT
+ cα,1η

2T

T∑
t=1

�(wt, zit
) + cα,1η

2 .

Rearranging the above inequality and using (21), we derive

1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)] ≤ 1
1 − cα,1η

2

(‖w∗‖2
2

2ηT
+ cα,1η

2T

T∑
t=1

�(w∗, zit
) + cα,1η

2

)

= O
(‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η

)
. (25)

Now, plugging (22), (23) and (25) back into (19), we derive

RS(w̄) − RS(w∗) = O
(

η
1+α

2 T
α
2

√
log(1/γ) + ‖w∗‖1+α

2

√
log(1/γ)

T
+ ‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η

)

with probability at least 1 − γ
4 , which completes the proof of part (a).

(b) Consider the bounded domain case. Since ‖wt‖2 ≤ R for any t ∈ [T ], then by the convexity of � and 
the definition of Hölder smoothness, for any z ∈ Z, there holds �(wt, z) ≤ supz �(0, z) + (M + LRα)R. 
Combining the above inequality and Lemma 17 together, with probability at least 1 − γ

8 , we obtain

1
T

T∑
t=1

[RS(wt) − �(wt, zit
)] ≤

(
sup

z
�(0, z) + (M + LRα)R

)√
2 log( 8

γ )
T

= O
(√

log(1/γ)
T

)
. (26)
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Since ‖wt+1 − w∗‖2
2 = ‖ProjW

(
wt − η∂�(wt, zit

)
)

− w∗‖2
2 ≤ ‖(wt − w∗) − η∂�(wt, zit

)‖2
2, then (25) also 

holds true in this case. Putting (26), (23) and (25) back into (19), with probability at least 1 − γ
4 , we have

RS(w̄) − RS(w∗) = O
(

‖w∗‖1+α
2

√
log(1/γ)

T
+ ‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η

)
.

The proof is completed. �
Now, we are in a position to prove the utility guarantee for DP-SGD-Output algorithm. First, we give the 

proof for the unbounded domain case (i.e. Theorem 9).

Proof of Theorem 9. Note that RS(w∗) −R (w∗) = RS(w∗) −ES [RS(w∗)]. By Hoeffding inequality and (21), 
with probability at least 1 − γ

4 , there holds

RS(w∗) − R (w∗) ≤
(

sup
z∈Z

�(0, z) + M‖w∗‖2 + L‖w∗‖1+α
2

)√
log(4/γ)

2n
= O

(
‖w∗‖1+α

2

√
log(1/γ)

n

)
. (27)

Combining part (a) in Lemmas 22, 23, 24 and (27) together, with probability at least 1 −γ, the population 
excess risk can be bounded as follows

R (wpriv) − R (w∗)

= [R (wpriv) − R (w̄)] + [R (w̄) − RS(w̄)] + [RS(w̄) − RS(w∗)] + [RS(w∗) − R (w∗)]

= O
(

(Tη) α
2 σ

√
d
(

log(1/γ)
) 1

4 + σ1+αd
1+α

2 (log(1/γ))
1+α

4 + (Tη) α
2 ΔSGD(δ/2) log(n) log(1/γ)

+ η
1+α

2

(
T

1+α
2

√
log(1/γ)

n
+ T

α
2

√
log(1/γ)

)
+ ‖w∗‖2

2
ηT

+ ‖w∗‖1+α
2 η + ‖w∗‖1+α

2

√
log(1/γ)

n

)
. (28)

Plugging ΔSGD(δ/2) = O
(√

Tη
1

1−α + (T η)1+ α
2 log(n/δ)
n

)
and σ = O(

√
log(1/δ)ΔSGD(δ/2)

ε ) back into (28), we 
have

R (wpriv) − R (w∗)

= O
(

T
1+α

2

√
log(1/γ)

n
η

1+α
2 +

T 1+α
√

d log(1/δ)
(

log(1/γ)
) 1

4 log(n/δ)
nε

η1+α

+
d

1+α
2 (log(1/γ)) 1+α

4
(
T log( 1

δ )
) 1+α

2

ε1+α
η

1+α
1−α

+
(
d log(1/δ)

) 1+α
2 (log(1/γ)) 1+α

4 T (1+ α
2 )(1+α)( log(n/δ)

)1+α

(nε)1+α
η(1+ α

2 )(1+α)

+
T

1+α
2

√
d log(1

δ )
(

log(1/γ)
) 1

4

ε
η

2+α−α2
2(1−α) + T

1+α
2 log(n) log(1/γ)η

2+α−α2
2(1−α)

+ T 1+α log(n/δ) log(n) log(1/γ)
n

η1+α + 1
ηT

+ η +
√

log(1/γ)
n

)
· ‖w∗‖2

2. (29)

Taking the derivative of 1
T η + T

1+α
2

√
log(1/γ)

n η
1+α

2 w.r.t η and setting it to 0, then we have η =
n

1
3+α /

(
T (log(1/γ))

1
3+α

)
. Putting this η back into (29), we obtain
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R (wpriv) − R (w∗)

= O
(

n
(2−α)(1+α)

2(1−α)(3+α)
√

d log(1/δ)

T
1+α

2(1−α) ε
(

log(1/γ)
) 1+4α−α2

4(1−α)(3+α)

+
√

d log(1/δ) log(n/δ)

n
2

3+α ε
(

log(1/γ)
) 1+α

4(3+α)
+

( √
d log(1/δ) log(n/δ)

n
4+α

2(3+α) ε
(

log(1/γ)
) 1+α

4(3+α)

)1+α

+
( n

1
(1−α)(3+α)

√
d log(1/δ)

T
1+α

2(1−α) ε
(

log(1/γ)
) (1+α)2

4(1−α)(3+α)

)1+α

+ log(n) log(n/δ)
(

log(1/γ)
) 2

3+α

(n
2+α−α2

2(3+α)(1−α)

T
1+α

2(1−α)
+ 1

n
2

3+α

+ 1
n

1
3+α

+ n
1

3+α

T

))
· ‖w∗‖2

2. (30)

To achieve the best rate with a minimal computational cost, we choose the smallest T such that 
n

(2−α)(1+α)
2(1−α)(3+α)

T
1+α

2(1−α)
= O( 1

n
2

3+α
), n

1+α
(1−α)(3+α)

T
(1+α)2
2(1−α)

= O( 1

n
(4+α)(1+α)

2(3+α)
) and n

2+α−α2
2(3+α)(1−α)

T
1+α

2(1−α)
+ 1

n
2

3+α
+ n

1
3+α

T = O( 1
n

1
3+α

). Hence, 

we set T � n
−α2−3α+6
(1+α)(3+α) if 0 ≤ α ≤

√
73−7
4 , and T � n else. Now, putting the choice of T back into (30), we 

derive

R (wpriv) − R (w∗) =O
( √

d log(1/δ) log(n/δ)
(log(1/γ))

1+α
4(3+α) n

2
3+α ε

+
( √

d log(1/δ) log(n/δ)
(log(1/γ))

1+α
4(3+α) n

4+α
2(3+α) ε

)1+α

+
log(n)

(
log(1/γ)

) 2
3+α log(n/δ)

n
1

3+α

)
· ‖w∗‖2

2.

Without loss of generality, we assume the first term of the above utility bound is less than 1. Therefore, 
with probability at least 1 − γ, there holds

R (wpriv) − R (w∗) = ‖w∗‖2
2 · O

( √
d log(1/δ) log(n/δ)

(log(1/γ))
1+α

4(3+α) n
2

3+α ε
+

log(n)
(

log(1/γ)
) 2

3+α log(n/δ)
n

1
3+α

)
.

The proof is completed. �
Finally, we provide the proof of utility guarantee for the DP-SGD-Output algorithm when W ⊆ B(0, R)

(i.e. Theorem 10).

Proof of Theorem 10. The proof is similar to that of Theorem 9. Indeed, plugging part (b) in Lemmas 22, 
23, 24 and (27) back into (12), with probability at least 1 − γ, the population excess risk can be bounded 
as follows

R (wpriv) − R (w∗) = O
(

σ
√

d(log(1/γ)) 1
4 + σ1+αd

1+α
2 (log(1/γ))

1+α
4 + Δ̃SGD(δ/2) log(n) log(1/γ)

+
√

log(1/γ)
n

+ ‖w∗‖2
2

Tη
+ ‖w∗‖1+α

2 η + ‖w∗‖1+α
2

√
log(1/γ)

n

)
.

Note that Δ̃SGD(δ/2) = O(
√

Tη
1

1−α + T η log(n/δ)
n ) and σ =

√
2 log(2.5/δ)Δ̃SGD(δ/2)

ε . Then we have

R (wpriv) − R (w∗) = O
((T log(n/δ)) log(n) log(1/γ)

n
+

T
√

d log(1/δ) log(n/δ)(log(1/γ)) 1
4

nε

)
η

+
(√

log(1/δ)Td(log(1/γ)) 1
4

+
√

T log(n) log(1/γ)
)
η

1
1−α
ε
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+ (Td log(1/δ)) 1+α
2 (log(1/γ)) 1+α

4

ε1+α
η

1+α
1−α

+
(T

√
d log(1/δ) log(n/δ)(log(1/γ)) 1

4

nε

)1+α
η1+α + 1

Tη
+

√
log(1/γ)

n

)
· ‖w∗‖2

2.

(31)

We consider the tradeoff between 1/η and η. Taking the derivative of 1
T η +

( T log(n/δ) log(n) log(1/γ)
n +

T
√

d log(1/δ) log(n/δ)(log(1/γ))1/4

nε

)
η w.r.t η and setting it to 0, we have η = 1/

(
T max

{ √
log(n/δ) log(n) log(1/γ)√

n
,(

d log(1/δ)
)1/4√

log(n/δ)(log(1/γ))1/8
√

nε

})
. Then putting the value of η back into (31), we obtain

R (wpriv) − R (w∗) =O
((

d log(1/δ)
) 1

4 (log(1/γ)) 1
8
√

log(n/δ)√
nε

+
((

d log(1/δ)
) 1

4 (log(1/γ)) 1
8
√

log(n/δ)√
nε

)1+α

+
(
d log(1/δ)

) 1−2α
4(1−α) (log(1/γ))

1−2α
8(1−α) n

1
2(1−α) ε

2α−1
2(1−α)

T
1+α

2(1−α) (log(n/δ))
1

2(1−α)

+
((

d log(1/δ)
) 1−2α

4(1−α) (log(1/γ))
1−2α

8(1−α) n
1

2(1−α) ε
2α−1

2(1−α)

T
1+α

2(1−α) (log(n/δ))
1

2(1−α)

)1+α

+
√

log(n) log(1/γ) log(1/δ)
( 1√

n
+ n

1
2(1−α)

T
1+α

2(1−α)

))
· ‖w∗‖2

2.

Similarly, we choose the smallest T such that n
1

2(1−α)

T
1+α

2(1−α)
= O( 1√

n
). Hence, we set T � n

2−α
1+α if α < 1

2 , and 

T � n else. Since 1
4 ≥ 1−2α

2(1−α) , we have

R (wpriv) − R (w∗) = O
((

d log(1/δ)
) 1

4 (log(1/γ)) 1
8
√

log(n/δ)√
nε

+
((

d log(1/δ)
) 1

4 (log(1/γ)) 1
8
√

log(n/δ)√
nε

)1+α

+
√

log(n) log(1/γ) log(n/δ)√
n

)
· ‖w∗‖2

2.

It is reasonable to assume the first term is less than 1 here. Therefore, with probability at least 1 − γ, there 
holds

R (wpriv) − R (w∗) = ‖w∗‖2
2 · O

((
d log(1/δ)

) 1
4 (log(1/γ)) 1

8
√

log(n/δ)√
nε

+
√

log(n) log(1/γ) log(n/δ)√
n

)
.

The proof is completed. �
3.3. Proofs on differential privacy of SGD with gradient perturbation

We now turn to the analysis for DP-SGD-Gradient algorithm (i.e. Algorithm 2) and provide the proofs 
for Theorems 11 and 12. We start with the proof of Theorem 11 on the privacy guarantee for Algorithm 2.

Proof of Theorem 11. Consider the mechanism Gt = Mt + bt, where Mt = ∂�(wt, zit
). For any wt ∈ W

and any zit
, z′

it
∈ Z, the definition of α-Hölder smoothness implies that

‖∂�(wt, zit
) − ∂�(wt, z′

i )‖2 ≤ 2
(
M + L‖wt‖α

2
)

≤ 2(M + LRα).

t
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Therefore, the �2-sensitivity of Mt is 2(M + LRα). Let

σ2 = 14(M + LRα)2T

βn2ε

( log(1/δ)
(1 − β)ε

+ 1
)

.

Lemma 3 with p = 1
n implies that Gt satisfies 

(
λ, λβε

T
( log(1/δ)

(1−β)ε +1
))

-RDP if the following conditions hold

σ2

4(M + LRα)2 ≥ 0.67 (32)

and

λ − 1 ≤ σ2

6(M + LRα)2 log
( n

λ(1 + σ2

4(M+LRα)2 )

)
. (33)

Let λ = log(1/δ)
(1−β)ε +1. We obtain that Gt satisfies ( log(1/δ)

(1−β)ε +1, βε
T )-RDP. Then by the post-processing property of 

RDP (see Lemma 6), we know wt+1 also satisfies ( log(1/δ)
(1−β)ε +1, βε

T )-RDP for any t = 0, ..., T −1. Furthermore, 
according to the adaptive composition theorem of RDP (see Lemma 4), Algorithm 2 satisfies ( log(1/δ)

(1−β)ε +1, βε)-
RDP. Finally, by Lemma 5, the output of Algorithm 2 satisfies (ε, δ)-DP as long as (32) and (33) hold. �

Now, we turn to the generalization analysis of Algorithm 2. First, we estimate the generalization error 
R (wpriv) − RS(wpriv) in (4).

Lemma 25. Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter L. Let 
wpriv be the output produced by Algorithm 2 based on S = {z1, · · · , zn} with ηt = η < min{1, 1/L}. Then 
for any γ ∈ (0, 1), with probability at least 1 − γ

3 , there holds

R (wpriv) − RS(wpriv) = O
(

Δ̃SGD(γ/6) log(n) log(1/γ) +
√

log(1/γ)
n

)
.

Proof. Part (b) in Theorem 7 implies that Δ̃SGD(γ/6) = O
(√

Tη
1

1−α + T η log(n/γ)
n

)
with probability at least 

1 − γ
6 . Since the noise added to the gradient in each iteration is the same for the neighboring datasets S and 

S′, the noise addition does not impact the stability analysis. Therefore, the UAS bound of the noisy SGD 
is equivalent to the SGD. According to Lemma 1 and ‖wpriv‖2 ≤ R, we derive the following inequality with 
probability at least 1 − (γ

6 + γ
6 )

R (wpriv) − RS(wpriv) ≤ c
(

(M + LRα)Δ̃SGD(γ/6) log(n) log(6/γ) +
(
M0 + (M + LRα

)
R

√
log(6/γ)

n

)

= O
(

Δ̃SGD(γ/6) log(n) log(1/γ) +
√

log(1/γ)
n

)
,

where c > 0 is a constant. The proof is completed. �
The following lemma gives an upper bound for the second term RS(wpriv) − RS(w∗) in (4).

Lemma 26. Suppose the loss function � is nonnegative, convex and α-Hölder smooth with parameter L. Let 
wpriv be the output produced by Algorithm 2 based on S = {z1, · · · , zn} with ηt = η < min{1, 1/L}. Then, 
for any γ ∈ (18 exp(−dT/8), 1), with probability at least 1 − γ , there holds
3



330 P. Wang et al. / Appl. Comput. Harmon. Anal. 56 (2022) 306–336
RS(wpriv) − RS(w∗) =O
(

‖w∗‖1+α
2

√
log(1/γ)

T
+ ‖w∗‖2

2
Tη

+ η +
√

log(1/δ) log(1/γ)(‖w∗‖2 + η)
nε

+
ηTd log(1

δ )
√

log( 1
γ )

n2ε2

)
.

Proof. To estimate the term RS(wpriv) − RS(w∗), we decompose it as

RS(wpriv) − RS(w∗) ≤ 1
T

T∑
t=1

[RS(wt) − �(wt, zit
)] + 1

T

T∑
t=1

[�(w∗, zit
) − RS(w∗)]

+ 1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)]. (34)

Similar to the analysis in (20) and (21), we have �(w∗, z) = O(‖w∗‖1+α
2 ) for all z ∈ Z and �(wt, z) =

O(R + R1+α) for all t = 1, . . . , T and z ∈ Z. Therefore, Azuma-Hoeffding inequality (see Lemma 17) yields, 
with probability at least 1 − γ

9 , that

1
T

T∑
t=1

[RS(wt) − �(wt, zt)] ≤
(

sup
z∈Z

�(0, z) + sup
t=1,...,T ;z∈Z

�(wt, z)
)√

log(9/γ)
2T

= O
(

(R + R1+α)
√

log(1/γ)
T

)
.

(35)

In addition, Hoeffding inequality (see Lemma 16) implies, with probability at least 1 − γ
9 , that

1
T

T∑
t=1

[�(w∗, zit
) − RS(w∗)] ≤ (sup

z∈Z
�(0, z) + sup

z∈Z
�(w∗, z))

√
log(9/γ)

2T
= O

(
‖w∗‖1+α

2

√
log(1/γ)

T

)
. (36)

Finally, we try to bound 1
T

∑T
t=1[�(wt, zit

) − �(w∗, zit
)]. The SGD update rule implies that ‖wt+1 −w∗‖2

2 =
‖ProjW

(
wt − η(∂�(wt, zit

) + bt)
)

− w∗‖2
2 ≤ ‖(wt − w∗) − η(∂�(wt, zit

) + bt)‖2
2, then we have 〈wt −

w∗, ∂�(wt, zit
)〉 ≤ 1

2η

(
‖wt −w∗‖2

2 −‖wt+1 −w∗‖2
2
)
+ η

2
(
‖∂�(wt, zit

)‖2
2 +‖bt‖2

2
)
−〈bt, wt −w∗ −η∂�(wt, zit

)〉. 
Further, noting ‖w1‖2 = 0, then by the convexity of � we have

1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)] ≤ ‖w∗‖2
2

2Tη
+ η

2T

T∑
t=1

‖∂�(wt, zit
)‖2

2

− 1
T

T∑
t=1

〈bt, wt − w∗ − η∂�(wt, zit
)〉 + η

2T

T∑
t=1

‖bt‖2
2.

The definition of α-Hölder smoothness implies that ‖∂�(wt, zit
)‖2 ≤ M + L‖wt‖α

2 ≤ M + LRα for any t. 
Then, there hold

η

2T

T∑
t=1

‖∂�(wt, zit
)‖2

2 ≤ η

2T

T∑
t=1

(M + L‖wt‖α
2 )2 = O(η),

and

‖wt − w∗ − η∂�(wt, zit
)‖2 ≤ ‖w∗‖2 + R + η(M + LRα).

Since bt is an σ2-sub-Gaussian random vector, 1
T 〈bt, wt − w∗ − η∂�(wt, zit

)〉 is an σ2

T 2

(
‖w∗‖2 + R +

η(M + LRα)
)2-sub-Gaussian random vector. Note that the sub-Gaussian parameter σ2

2

(
‖w∗‖2 + R +
T
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η(M + LRα)
)2 is independent of wt−1 and bt−1. Hence, 1

T

∑T
t=1〈bt, wt − w∗ − η∂�(wt, zit

)〉 is an 
σ2 ∑T

t=1(‖w∗‖2+R+η(M+LRα))2

T 2 -sub-Gaussian random vector. Since σ2 = O(T log(1/δ)
n2ε2 ), the tail bound of Sub-

Gaussian variables (see Lemma 18) implies, with probability at least 1 − γ
18 , that

1
T

T∑
t=1

〈bt, wt − w∗ − η∂�(wt, zit
)〉 ≤

(
σ2(

‖w∗‖2 + R + η(M + LRα)
)2

) 1
2

√
T

√
2 log(18/γ)

= O
(

σ(‖w∗‖2 + η)
√

log(1/γ)
T

)
= O

(√
log(1/δ) log(1/γ)(‖w∗‖2 + η)

nε

)
.

According to the Chernoff bound for the �2-norm of Gaussian vector with X = [b11, ..., b1d, b21..., bT d] ∈
RT d(see Lemma 15), for any γ ∈ (18 exp(−dT/8), 1), with probability at least 1 − γ

18 , there holds

η

2T

T∑
t=1

‖bt‖2
2 ≤ ηd

2T

(
1 + (1

d
log(18/γ)) 1

2

)
Tσ2 = O

(ηTd log(1
δ )

√
log( 1

γ )

n2ε2

)
.

Therefore, with probability at least 1 − γ
9 , there holds

1
T

T∑
t=1

[�(wt, zit
) − �(w∗, zit

)] ≤O
(‖w∗‖2

2
Tη

+ η +
√

log(1/δ) log(1/γ)(‖w∗‖2 + η)
nε

+
ηTd log(1/δ)

√
log(1/γ)

n2ε2

)
. (37)

Putting (35), (36) and (37) back into (34), we obtain, with probability at least 1 − γ
3 , that

RS(wpriv) − RS(w∗) =O
(

‖w∗‖1+α
2

√
log(1/γ)

T
+ ‖w∗‖2

2
Tη

+ η +
√

log(1/δ) log(1/γ)(‖w∗‖2 + η)
nε

+
ηTd log(1/δ)

√
log(1/γ)

n2ε2

)
.

The proof is completed. �
Now, we are ready to prove the utility theorem for DP-SGD-Gradient algorithm.

Proof of Theorem 12. The Hoeffding inequality implies, with probability at least 1 − γ
3 , that

RS(w∗) − R (w∗) ≤
(

sup
z∈Z

�(0, z) + sup
z∈Z

�(w∗, z)
)√

log(3/γ)
2n

= O
(

‖w∗‖1+α
2

√
log(1/γ)

n

)
.

Combining Lemma 25, Lemma 26 and the above inequality together, with probability at least 1 − γ, we 
obtain

R (wpriv) − R (w∗) = O
(

Δ̃SGD(γ/6) log(n) log(1/γ) + ‖w∗‖2
2

Tη
+ η +

√
log(1/δ) log(1/γ)(‖w∗‖2 + η)

nε

+
ηTd log(1

δ )
√

log( 1
γ )

n2ε2 + ‖w∗‖1+α
2

√
log(1/γ)

n

)
.

Now, putting Δ̃SGD(γ/6) = O(
√

Tη
1

1−α + T η log(n/γ) ) back into the above estimate, we have
n
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R (wpriv) − R (w∗) =O
(√

T log(n) log(1/γ)η
1

1−α + ‖w∗‖2
2

Tη
+ η

(Td log(1/δ)
√

log(1/γ)
n2ε2

+ T log(n) log(n/γ) log(1/γ)
n

)

+ ‖w∗‖1+α
2

√
log(1/γ)

n
+

‖w∗‖2
√

log(1/δ) log(1/γ)
nε

)
. (38)

To choose a suitable η and T such that the algorithm achieves the optimal rate, we consider the trade-off 

between 1/η and η. We take the derivative of 1
T η + η

( T d log(1/δ)
√

log(1/γ)
n2ε2 + T log(n) log(n/γ) log(1/γ)

n

)
w.r.t η

and set it to 0, then we have η = 1/T · max
{ √

log(n) log(n/γ) log(1/γ)√
n

, 
√

d log(1/δ)(log(1/γ))
1
4

nε

}
. Putting the value 

of η back into (38), we obtain

R (wpriv) − R (w∗) =O
((

log(n) log(1/γ)
) 1−2α

2(1−α) n
1

2(1−α)

T
1+α

2(1−α) (log(n/γ))
1

2(1−α)
+

√
d log(1/δ) log(1/γ)

nε

+
√

log(n) log(n/γ) log(1/γ)√
n

)
· ‖w∗‖2

2.

In addition, if n = O(T
1+α
2−α ), then there holds

R (wpriv) − R (w∗) =‖w∗‖2
2 · O

(√
d log(1/δ) log(1/γ)

nε
+

√
log(n) log(n/γ) log(1/γ)√

n

)
.

The above bound matches the optimal rate O
(√

d log(1/δ)
nε + 1√

n

)
. Furthermore, we want the algorithm to 

achieve the optimal rate with a low computational cost. Therefore, we set T � n
2−α
1+α if α < 1

2 , and T � n

else. The proof is completed. �
Finally, we give the proof of Lemma 13 on the existence of β for Algorithm 2 to be (ε, δ)-DP.

Proof of Lemma 13. We give sufficient conditions for the existence of β ∈ (0, 1) such that RDP conditions 
(32) and (33) hold with σ2 = 14(M+LRα)2λ

βnε and λ = 2 log(n)
(1−β)ε + 1 in Theorem 11. Condition (32) with T = n

and δ = 1
n2 is equivalent to

f(β) := β2 −
(

1 + 7
1.34nε

)
β + 7(2 log(n) + ε)

1.34nε2 ≥ 0. (39)

If 
(
1 + 7

1.34nε

)2
< 28(2 log(n)+ε)

1.34nε2 , then f(β) ≥ 0 for all β. Then (32) holds for any β ∈ (0, 1). If 
(
1 + 7

1.34nε

)2 ≥
28(2 log(n)+ε)

1.34nε2 , then β ∈ (0, β1] ∪ [β2, +∞) such that the above condition holds, where β1,2 = 1
2

((
1 + 7

1.34nε

)
∓√(

1 + 7
1.34nε

)2 − 28(2 log(n)+ε)
1.34nε2

)
are two roots of f(β) = 0.

Now, we consider the second RDP condition. Plugging σ2 = 14(M+LRα)2λ
βnε back into (33), we derive

3βnε(λ − 1)
7λ

+ log(λ) + log(1 + 7λ

2βnε
) ≤ log(n). (40)

To guarantee (40), it suffices that the following three inequalities hold

3βnε(λ − 1) ≤ log(n)
, (41)
7λ 3
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log(λ) ≤ log(n)
3

, (42)

log
(
1 + 7λ

2βnε

)
≤ log(n)

3
. (43)

We set λ = 2 log(n)
(1−β)ε + 1 in the above three inequalities. Since λ > 1, then (41) holds if β ≤ 7 log(n)/9nε. Eq. 

(42) reduces to β ≤ 1 − 2 log(n)
(n1/3−1)ε

. Moreover, (43) is equivalent to the following inequality

g(β) := β2 − (1 + 7
2n(n 1

3 − 1)ε
)β + 7(2 log(n) + ε)

2n(n 1
3 − 1)ε2

≤ 0. (44)

There exists at least one β such that g(β) ≤ 0 if (1 + 7
2n(n1/3−1)ε

)2 − 14(2 log(n)+ε)
n(n1/3−1)ε2 ≥ 0, which can be 

ensured by the condition ε ≥ 7
2n(n1/3−1) + 2

√
7 log(n)

n(n1/3−1) . Furthermore, g(β) ≤ 0 for all β ∈ [β3, β4], where 

β3,4 = 1
2

((
1 + 7

2n(n1/3−1)ε

)
∓

√(
1 + 7

2n(n1/3−1)ε

)2 − 14(2 log(n)+ε)
n

(
n1/3−1

)
ε2

)
are two roots of g(β) = 0. Finally, note 

that

max
{

7
2n(n 1

3 − 1)
+ 2

√
7 log(n)

n(n 1
3 − 1)

,
log(n)

(
14 log(n)(n 1

3 − 1) + 162n − 63
)

9n
(
2 log(n)(n 1

3 − 1) − 9
) }

≤ 7(n 1
3 − 1) + 4 log(n)n + 7

2n(n 1
3 − 1)

.

Then if n ≥ 18 and

ε ≥ 7(n 1
3 − 1) + 4 log(n)n + 7

2n(n 1
3 − 1)

,

there hold

β3 ≤ min
{

7 log(n)
9nε

, 1 − 2 log(n)
(n 1

3 − 1)ε

}
(45)

and

β3 ≤ β1 if
(
1 + 7

1.34nε2

)2 ≥ 28(2 log(n) + ε)
1.34nε2 . (46)

Conditions (45) and (46) ensure the existence of at least one consistent β ∈ (0, 1) such that (39), (41), (42), 
(43) and (44) hold, which imply that (32) and (33) hold. The proof is completed. �
4. Conclusion

In this paper, we are concerned with differentially private SGD algorithms with non-smooth losses in 
the setting of stochastic convex optimization. In particular, we assume that the loss function is α-Hölder 
smooth (i.e., the gradient is α-Hölder continuous). We systematically studied the output and gradient 
perturbations for SGD and established their privacy as well as utility guarantees. For the output perturba-
tion, we proved that our private SGD with α-Hölder smooth losses in a bounded W can achieve (ε, δ)-DP 

with the excess risk rate O
(

(d log(1/δ))1/4√
log(n/δ)√

nε

)
, up to some logarithmic terms, and gradient complexity 

T = O(n
2−α
1+α + n), which extends the results of [35] in the strongly-smooth case. We also established sim-

ilar results for SGD algorithms with output perturbation in an unbounded domain W = Rd with excess 
risk O

( √
d log(1/δ) log(n/δ)

2 + log(n/δ)
1

)
, up to some logarithmic terms, which are the first-ever known results 
n 3+α ε n 3+α
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of this kind for unbounded domains. For the gradient perturbation, we show that private SGD with α-
Hölder smooth losses in a bounded domain W can achieve optimal excess risk O

(√
d log(1/δ)

nε + 1√
n

)
with 

gradient complexity T = O(n
2−α
1+α + n). Whether one can derive privacy and utility guarantees for gradient 

perturbation in an unbounded domain still remains a challenging open question to us.
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Appendix. Proof of Lemma 1

In the appendix, we present the proof of Lemma 1. To this aim, we introduce the following lemma.

Lemma 27. Suppose � is nonnegative, convex and α-Hölder smooth. Let A be a randomized algorithm with 
supS�S′ δA(S, S′) ≤ ΔA . Suppose the output of A is bounded by G > 0 and let M0 = supz∈Z �(0, z), M =
supz∈Z ‖∂�(0, z)‖2. Then for any γ ∈ (0, 1), there holds

PS∼Dn,A

[
|R (A(S)) − RS(A(S))| ≥ c

(
(M + LGα)ΔA log(n) log(1/γ)

+
(
M0 + (M + LGα)G

)√
n−1 log(1/γ)

)]
≤ γ.

Proof. By the convexity of � and the definition of α-Hölder smoothness, we have for any S and S′,

�(A(S), z) ≤ sup
z∈Z

�(0, z) + 〈∂�(A(S), z),A(S)〉 ≤ M0 + ‖∂�(A(S), z)‖2‖A(S)‖2

≤ M0 + (M + L‖A(S)‖α
2 )‖A(S)‖2 ≤ M0 + (M + LGα)G (47)

and

sup
z∈Z

|�(A(S), z) − �(A(S′), z)| ≤ max
{

‖∂�(A(S), z)‖2, ‖∂�(A(S′), z)‖2
}

‖A(S) − A(S′)‖2

≤ (M + LGα)‖A(S) − A(S′)‖2.

Note supS�S′ δA(S, S′) ≤ ΔA and δA(S, S′) = ‖A(S) − A(S′)‖2. Then for any neighboring datasets S 
 S′, 
we have

sup
z∈Z

|�(A(S), z) − �(A(S′), z)| ≤ (M + LGα)ΔA . (48)

Combining Eq. (47), Eq. (48) and Corollary 8 in [7] together, we derive the following probabilistic inequality

PS∼Dn,A

[
|R (A(S)) − RS(A(S))| ≥ c

(
(M + LGα)ΔA log(n) log(1/γ)

+
(
M0 + (M + LGα)G

)√
n−1 log(1/γ)

)]
≤ γ.



P. Wang et al. / Appl. Comput. Harmon. Anal. 56 (2022) 306–336 335
The proof is completed. �
Proof of Lemma 1. Let E1 = {A : supS�S′ ‖A(S) − A(S′)‖2 ≥ ΔA} and E2 =

{
(S, A) : |R (A(S)) −

RS(A(S))| ≥ c
(

(M + LGα)ΔA log(n) log(1/γ) +
(
M0 + (M + LGα)G

)√
n−1 log(1/γ)

)}
. Then by the 

assumption we have PA [A ∈ E1] ≤ γ0. Further, according to Lemma 27, for any γ ∈ (0, 1), we have 
PS,A [(S, A) ∈ E2 ∩ A /∈ E1] ≤ γ. Therefore,

PS,A [(S,A) ∈ E2] = PS,A [(S,A) ∈ E2 ∩ A ∈ E1] + PS,A [(S,A) ∈ E2 ∩ A /∈ E1]

≤ P [A ∈ E1] + PS,A [(S,A) ∈ E2 ∩ A /∈ E1] ≤ γ0 + γ.

The proof is completed. �
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