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Abstract6

Representations of crystal frameworks are important for structure description, design, and7

discovery of new frameworks. Zeolite frameworks with cartesian coordinates-based representation of8

atomic positions in three dimensions are convenient for human perception but are computationally9

inefficient due to the large information required to describe the framework. We exploit the Hamiltonian10

representation of crystal frameworks that incorporates a graph-theoretic approach for efficiently11

capturing relative atomic positions and connectivity. We introduce a new building block, namely12

the smallest repeating unit (SRU), that utilizes fewer T-nodes to describe a zeolite in comparison13

to the traditional unit cell. The Hamiltonian graph-based representation is both invertible and14

scalable in the sense that it only uses topologically distinctive T-nodes, thereby significantly15

reducing the description space. We also develop algorithmic and optimization-based approaches to16

identify SRUs of large crystallographic frameworks. SRU identification is formulated as a special17

instance of traveling salesman problem(TSP). Overall, we describe the SRUs of 158 existing zeolites18

with up to 4 times reduction in T-nodes and over 10,000 hypothetical zeolite frameworks. For19

example, Chabazite framework can be represented using only 12 T-nodes in the Hamiltonian graph20

representation as opposed to 36 T-nodes in the traditional unit cell. One additional benefit of SRU21

representation is that it provides a systematic and efficient approach to generate and analyze all22

plausible cation(e.g., Aluminum) substituted frameworks for different Si/Al ratios. We envision this23

representation to also open new avenues for the design and discovery of novel nanoporous materials.24
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1 Introduction27

Zeolites are microporous crystalline materials with a wide range of industrial, medical, environmental,28

and microelectronics applications.1,2 They are used as catalysts and adsorbents3 due to their cage-like29

porous structures and their ability to trap cations for ion exchange. The design and discovery of new30

zeolites have been an active field of interest since the 1940s.4,5 Many computational methods, such31

as molecular modeling, charge calculations, force fields, and GCMC simulations, have been developed32

and used for zeolite characterization and screening.633

The crystal structure of pure-silica frameworks contains several tetrahedral nodes (T-nodes) of Si34

with O as connecting atoms. Changing the chemical composition of these frameworks by replacing35

∗Correspondence concerning this article should be addressed to M.M. Faruque Hasan at hasan@tamu.edu, Tel.:

979-862-1449.
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some of the Si with Al or other tetrahedral atoms induces a noticeable change in the properties36

of zeolites. This affects the affinity of the framework to other cations that can be exploited to37

customize ion-exchange properties and different adsorbent surfaces. Given the three-dimensional38

geometry of these tetrahedral atoms, rings, cages, channels, and pores are generated that lead to39

diverse frameworks. To date, there exists over 241 distinct pure-silica frameworks that have been40

listed in the International Zeolite Association (IZA-SC) database.7 It is important to note here that,41

of these 241, only 229 are frameworks are built with all tetrahedral nodes.42

Figure 1: Representation of large zeolite frameworks (a) Example framework for Chabazite, (b)

tetrahedral unit of Si and O as the basic unit of the framework, (c) examples of secondary building

units (SBU) with only Si atoms, (d) composite building unit (CBU) observed in Chabazite with only

Si atoms on vertices.

To describe complex frameworks such as zeolites, it is essential to develop a representation that43

can efficiently capture the details of the lattice. Crystal lattices are often represented by the unit cell44

that is defined by a parallelepiped shape within which the spatial positions of atoms are specified.45

While describing any new crystal framework, it is sufficient to define the parameters defining the unit46

cell and the coordinates of the atoms within the unit cell. The unit cell is defined as the smallest unit47

having the full symmetry of the crystal structure that can be repeated.8 The constraint is that it has48

to be a parallelepiped, defined by the cell edges and the angles between the edges (a, b, c, α, β, γ), as49

well as the coordinates of the atoms. Another notable representation is the Smooth Overlap of Atomic50

Position (SOAP)9,10 Representations that utilize the advantages of machine learning approaches are51

an active field of interest.1152

Unit cells have been used to generate many potential zeolite frameworks. Using the parameters53

that define a unit cell, Monte Carlo methods have led to several feasible structures.12 The result54

of these simulations has been of great use in identifying hypothetical frameworks and over 5 million55

hypothetical zeolite frameworks have been defined to date.13 The advent of computational power56

and new algorithms have led to many potential zeolite frameworks.14 These approaches employ57

secondary building units (SBU), composite building units (CBU), and the difference in ring sizes58

(Figure 1).15 These building blocks can be used to build new structures and verify the feasibility59
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of hypothetical structures. They can also be used for inverse design of crystalline structures.16,1760

Identifying these key units within a framework has been used in other representations including the61

Simplified Molecular-Input Line-Entry System (SMILES).18 Determination of largest free sphere in62

the lattice is done using Delaunay tessellation and Voronoi networks.19 Using tessellation techniques,63

tiling notations on the faces of the structures have been developed using TOPOS program package64

and further applied to address the zeolite conundrum.20,21 The smooth overlap of atomic positions65

(SOAP) representation has been applied to several hypothetical zeolite frameworks to accurately66

capture structure-property relations.10 Characterization of portals, channels, and cages within zeolites67

are done using Markov chain models.22 Graph theory has been applied to study network properties68

of zeolite frameworks. For example, some zeolites are observed to have Hamiltonian cycles within69

their crystallographically independent nodes.23–26 Natural tiling of periodic networks in zeolites27 and70

machine learning approaches28 are also used to obtain insights into the zeolite frameworks.29,3071

Development of different descriptors for zeolite frameworks has been fueled by their utility towards72

predicting properties of the frameworks. The SOAP representation originally proposed in 201373

has been developed further and has been used in machine learning algorithms towards predicting74

properties such as volume and energy of frameworks.31 The machine learning models can predict75

certain properties of the framework with the input of the distances and the angles of the neighboring76

T-atoms. While this approach is definitely useful, the SRU representation is different from the77

SOAP representation in the form that it serves a different purpose of addressing the design of zeolite78

frameworks. The SRU representation retains the distances and angles within the descriptor while79

also obtaining certain insights by representing the framework using graph theory. That being said, it80

is also possible to apply the SOAP representation to the SRU as an advantage since it is a reduced81

representation which can further be used for property prediction. Further in the results, we explain82

how this representation is better at capturing the Al-substitutions and generating new compositions83

following Loewenstein’s rule. Thus, currently the SRUs are posed from a design perspective in contrast84

to the application of the SOAP representation using machine learning for property prediction. The85

natural building units (NBUs) or natural tilings also aim to address the structure of the framework86

using packing units and individual packing units are then used to identify the feasibility of the87

framework.2188

The fundamental principle behind most of these approaches relies on determining the number of89

T-atoms (Si) in the unit cell and their coordinates, the structural orientation of the atoms, pore sizes,90

and cell dimensions. The unit cell captures the details of the lattice by defining the symmetry for91

the T-atoms across 3-d planes. However, for a given zeolite framework, the number of T-atoms that92

are needed to obtain a unit cell can be much greater than required to capture the repetition. This is93

because more T-atoms are required to satisfy the constraint of the unit cell to be parallelepiped.94

The systematic characterization of geometric configurations, chemical compositions, and structural95

properties have generated new approaches towards the design and screening of new zeolites and96

Metal-Organic frameworks (MOFs).17,32,33 Zeolites have been classified based on the size and orientation97

of the rings present within their structures. Topological descriptors have been developed for zeolites98

that aim to take advantage of machine learning,34–37 optimization,38 and algorithmic approaches.1699

These approaches have an inherent dependence on enumeration that leads to a large combinatorial,100
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symmetric, and degenerate design space.101

To this extent, we propose a new representation of zeolite frameworks where we capture the102

symmetry of the cell and details such as the ring sizes. We call this Smallest Repeating Unit (SRU).103

An SRU is unique for each zeolite and thus captures the essence of the framework and connectivity104

within it. It is different from the unit cell since it has fewer tetrahedral nodes. By analyzing the SRU105

structures and by studying their properties, we claim that the SRUs brings a unique perspective to the106

design and characterization of zeolites. SRUs drastically reduce the details that are needed to define107

zeolite frameworks (see Figure 2). The lattices can now be defined using fewer T-nodes, along with a108

connectivity matrix.109

Figure 2: Zeolite frameworks, unit cells, and SRUs. Using SOD, CHA, and AST as examples, we see

that SRU based representation of zeolite frameworks require fewer T-nodes if the connectivity rules

are defined appropriately.

In this work, we describe the methods to identify SRUs for zeolite frameworks. We also check110

whether the graphs of the SRUs are Hamiltonian (more in Section 2). A Hamiltonian cycle is said to111

exist in a graph if one can traverse every node of the graph exactly once before returning to the initial112

node. We propose two methodologies for identifying SRUs. The first is based on an optimization113

model that is formulated as a special instance of the traveling salesman problem (TSP). The second114
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is an algorithmic approach that employs backtracking and a depth-first search for the Hamiltonian.115

The rest of the article is structured as follows. A brief explanation of what Hamiltonian graphs are116

and how these graphs are useful in the representation of zeolite frameworks is given in Section 2. The117

methods to identify SRUs are described in Section 3. This includes a step-by-step procedure starting118

from the CIF file available on the IZA website to finally generate the SRUs. We present the results119

and discuss the implications of SRUs in Section 4 before concluding.120

2 Smallest Repeating Unit (SRU) and Hamiltonian Representation121

Hamiltonian paths are graphs where one can traverse all nodes exactly once without re-using a122

connection. A Hamiltonian cycle, on the other hand, exists when the first and last nodes of a123

Hamiltonian path are also connected. Identification of Hamiltonian cycles is an NP-complete problem124

and has been studied extensively in the literature. Several algorithmic, mathematical programming and125

heuristic approaches have been suggested to reduce the complexity of the problem.39–41 The necessary126

and sufficient conditions for the identification of a Hamiltonian cycle are also known.42 Enumerative127

algorithms guarantee a solution at the cost of computational complexity since they explore all possible128

paths.43,44 The importance of the property of a graph being Hamiltonian is essential to several129

problems including the TSP. Different linear and mixed-integer linear programming (LP and MILP)130

formulations of the TSP can be applied to identify the Hamiltonian cycles in a graph.45,46131

Hamiltonian cycles allow us to identify the largest rings in zeolite frameworks. In this context,132

Hamiltonian graphs provide an avenue to break down the complex frameworks into simpler modules,133

which we call SRUs. The SRU is defined using only topologically independent T-nodes in their134

respective multiplicities of occurrence in the framework and forming a Hamiltonian path. Essentially,135

the SRU is a collection of connected T-nodes that adhere to the ratio of topological independent136

T-nodes in the lattice. The connectivity matrix is the governing rule that defines how these SRUs137

are to be connected at every T-node to generate the lattice. The matrix value in position (i, j)138

defines if T-nodes from categories i and j are connected in the lattice. The unit cell enforces139

parallelepiped structures but it does not capture the connections between T-nodes. The Hamiltonian140

graph representation, on the other hand, is a visual way to capture the information provided in a141

connectivity matrix. For a given zeolite framework, its SRU is the smallest and single building block142

that can be repeatedly used to construct the framework. The copies of the SRU block are connected143

by a corresponding connectivity matrix. An example is shown in Figure 3. Figure 3a is the SOD144

framework while Figure 3b demonstrates the position of the SRU in the framework. Figure 3c has the145

connectivity matrix of size 6 since the SOD framework has 6 topologically independent T-nodes that146

make up the SRU. Figure 3e, the SRU in red, node 1 is connected to nodes 3 and 6 of the same SRU147

and nodes 2 and 4 of other SRUs. The repetitive use of this connectivity rule (as shown in Figure 3e)148

and the SRUs leads to generating an entire zeolite framework.149
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Figure 3: Sodalite (SOD) framework and its SRU. (a) SOD framework, (b) SRU shown in the

framework, (c) connectivity matrix that defines the connectivity rules in SOD SRU, (d) SOD SRU with

labeled T-nodes, and (e) SOD framework generation using SRUs following the connectivity matrix.

The three colors used are illustrative of three different layers in the lattice.

In the case of Chabazite(CHA), the SRU requires only 12 T-nodes shown in Figure 4. On the other150

hand, 36 T-nodes are necessary to represent the framework using the traditional approach of the unit151

cell. In Figure 4b, the matrix is of size 12 because of the number of T-node categories in CHA as also152

seen in Figure 4a. In the connectivity matrix, node 12 is connected to nodes 4, 11, and 8 of the same153

SRU and node 10 of another SRU. The connectivity matrix should have the sum of each row and the154

sum of each column has to be equal to four due to the tetrahedral nature. The Hamiltonian graph155

representation is another way of capturing the information in the connectivity matrix. The max sized156

Hamiltonian is captured in the circumference of this notation (shown in blue) while the smaller rings157

are also captured in red. The six-membered ring of CHA is also captured by the T-nodes set [1, 4, 12,158

11, 2, 3].159

(a) CHA SRU (b) Connectivity matrix for CHA (c) Hamiltonian graph representation

Figure 4: Representing the SRU of zeolite framework CHA using a Hamiltonian graph. (a) The CHA

SRU, (b) connectivity matrix for the SRU structure, (c) Hamiltonian graph representation of the

connectivity matrix, where the largest Hamiltonian cycle is the circumference of the network.
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3 SRU identification160

Here we describe how to identify the SRU of a given crystalline framework. We start from the standard161

Crystallographic Information File (CIF) and obtain all nodes and the connectivity between the nodes.162

We then classify nodes based on their directional tetrahedral structure followed by categorizing them163

such that all nodes of the same class are together. Next, we obtain the multiplicity of each class within164

the unit cell to ensure that the proposed SRU contains the appropriate number of T-atoms from each165

class. This data is then used towards the identification of the SRU. These steps are also summarized166

in Figure 5.167

Figure 5: SRU identification methodology summarized. (a) xyz coordinates are generated from

the CIF file, (b) connections are obtained between Si-Si neighbors, (c) T-nodes are classified into

different categories using directional vector tuples, (d) T-nodes with the same class are categorized,

(e) multiplicity of each class is calculated based on the occurrence in the traditional unit cell, (f) all

these data are then used to obtain the SRU structures and connectivity matrices(g).

The CIF file contains data for a framework in a compressed fashion that uses planes of symmetry168

within the unit cell. We first obtain the CIF files from the IZA Database7 and generate the xyz169

coordinates for the atoms within the lattice. We then perform a nearest neighbor search on the lattice170

to identify the connectivity between nodes.171

We use the coordinates of the T-atoms and O-atoms(oxygen) given in the CIF file to generate172

the unit cell. This computation is performed in fractional coordinates of the cell dimensions. After173

executing all symmetry operations on the T-atoms and O-atoms, we remove atoms with positional174

duplicity, i.e., overlapping fractional coordinates. The fractional coordinates are generated on the175
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vectors along with the unit cell that may not be aligned with the orthogonal xyz axis. Thus, one needs176

to take care of the angles between the vectors of the unit cell and consider the components of each177

vector on each axis while converting from the fractional coordinates to the orthogonal xyz system.178

For identifying the unique structural T-nodes, we need a sufficiently large lattice. Thus, we consider179

a system of 3×3×3 unit cells. Since we only need T-atoms to identify unique structural T-nodes, we180

discard the O-atoms and save the xyz coordinates of all T-atoms in this lattice.181

3.1 Nearest neighbor search within the lattice182

Having obtained xyz coordinates, our goal is to identify the neighbors of each T-node. To maintain183

consistency of notation with graph theory, we refer to each T-node as a node. If node i is within a184

certain distance of node j then we say that these two nodes are connected. This distance may change185

for different zeolites because of the bond length and the strain on the bond angles to ensure minimum186

energy for stability. For zeolite frameworks, we choose a lower bound on the distance of 2.5Å and an187

upper bound of 3.4Å. These bounds are approximated from the upper and lower bounds of the Si-O-Si188

bond distances and angles.189

Ideally, we would like to find and compare the distances between all possible pairs of nodes but190

this has a computational complexity of O(n2), where n is the total number of nodes in the lattice.191

For larger zeolites, where n is more than 1000, the computational demand is too high. Therefore,192

we perform a grid search method over the pairs of nodes. For every node, we consider a cube with193

the node at the center and the length of the cube to be twice the maximum distance permitted for194

the bond, i.e., 6.8Å. This reduces the computational complexity from O(n2) to O(n), thus making it195

possible to perform this step on larger zeolite frameworks.196

3.2 Directional vectors, vector tuples, and classification of T-nodes197

After generating the connections between nodes, we obtain directional vectors from node i to node j198

and associate this vector with node i. For nodes that are not on the boundary of the lattice, each node199

i has exactly four such unit vectors associated with it due to the tetrahedral nature of the T-nodes.200

We store this tuple of four-unit vectors mapped to node i and perform this operation for all nodes.201

For nodes lying on the boundary, there may not exist all four-vectors. Therefore, we remove them202

from our consideration for the next step. We then categorize together all nodes that have the same203

directional unit vector tuple. In other words, we group the nodes that have all four of their directional204

unit vectors the same. This ensures that all nodes that were considered earlier are either removed205

from consideration for not having four neighbors or are classified based on their unit directional vector206

tuple.207

To understand the filtering of nodes, we demonstrate with the case of CHA in Table 1, beginning208

with 288 T-nodes. Some of these T-nodes being on the boundary of the 3×3×3 only have 3 neighbors209

and thus only 3 directional vectors. After removing them from consideration, a total of 172 T-nodes210

are left with a tuple of four directional vectors. If they are classified based on uniqueness of the tuple,211

12 classes are identified and all of these 172 T-nodes can be classified into these 12 classes.212
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Table 1: Classification of T-nodes of CHA. After filtering, 172 T-nodes have been classified into 12

categories from the initial 288 T-nodes.

Class Node numbers in class

1 5, 6, 9, 10, 13, 14, 15, 16, 19, 23

2 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 45, 47

3 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69

4 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93

5 101, 102, 105, 106, 109, 110, 111, 112, 115, 119

6 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 139, 141

7 147, 148, 149, 150, 151, 152, 159, 160, 162, 166

8 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 188, 190, 192

9 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 212, 216

10 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 236, 240

11 243, 244, 245, 246, 247, 248, 255, 256, 258, 262

12 267, 268, 269, 270, 271, 272, 273, 274, 277, 278, 279, 280, 282, 284, 288

For zeolites with moderate to large unit cells, there may present smaller substructures that occur213

multiple times within the unit cell. For example, if 3 nodes from class 1 and only 1 node from class214

2 are present in the traditional unit cell, we want to ensure that the proposed SRU has the same215

multiplicity. Note that when we speak of repeating units within a unit cell, we are looking for only216

translational similarity, since rotational symmetry exists for all T-nodes with different orientations of217

the tetrahedral atom. This ensures that when the lattice is generated using SRU, it captures each218

type of node the number of times it occurs. A clear understanding of incorporating multiplicity can be219

understood from the lattice image for zeolite MWF, shown in Figure 6. The blue square marked over220

the structure is the unit cell for MWF. The positions marked by red circles occur more often than the221

one with a purple triangle. The ratio of red circles to purple triangles remains to be 5:1. To ensure222

that this ratio is maintained, multiplicity needs to be considered while defining the SRU. In principle,223

this is equivalent to adhering to the pigeonhole principle47 that ensures that there are not extra nodes224

of any class or shortage of any nodes from a class when we reconstruct the framework using the SRU.225

Figure 6: Multiplicities in MWF zeolite framework. Here, the traditional unit cell is outlined in blue.

Different structural patterns are present with different frequency of occurrence.
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3.3 Connectivity matrix226

We define the connectivity matrix as a rule that governs how the SRU structures are placed and227

connected as a network for lattice generation. After classifying and obtaining all nodes within each228

class, we want to obtain the connectivity matrix for this network of nodes. To generate the connectivity229

matrix, we create a matrix of size U × U , where U is the total number of unique classes. We230

add a value of 1 to the matrix position (l,m) if T-nodes of class ul and um are connected. There231

may be classes of T-nodes that are connected more than once to another class, which will make the232

value of the corresponding element in the connectivity matrix to be greater than 1. We will discuss233

this phenomenon in detail in Section 4. We investigate if the matrix generated in this fashion is234

Hamiltonian. Several smaller Hamiltonian cycles may exist within this matrix due to the different235

portals and rings present in the zeolite frameworks. In this work, we check if the entire matrix236

contains a max-sized Hamiltonian cycle of a certain size, and whether this size is equal to the number237

of T-nodes in an SRU.238

3.4 SRU structure identification239

Towards the identification of the SRU structure, the goal is to utilize the multiplicity of each of the240

classes of T-nodes to come up with an SRU such that using this SRU and the connectivity matrix as241

the governing rule, one can generate the entire lattice. The SRU and the connectivity matrix together242

are capable of capturing the complexity of the zeolite in a notation that is smaller compared to the243

unit cell.244

Let N = {1, ..., N} be the set of total nodes in consideration, U = {1, ..., U} be the set of classes245

identified, and Lu ⊂ N ∀u ∈ U , where Lu contains the subset of nodes n ∈ N that belong in246

class u ∈ U . We also define the set T = {1, ..., T} where T is the total number of nodes in the247

SRU. Note that T is known because of the multiplicity obtained of the topologically unique T-nodes.248

Let Mn,n represent the connectivity between nodes, CMu,u be the Connectivity Matrix denoting the249

connectivity between classes of T-nodes, and mu denotes the multiplicities of the number of nodes for250

each class. Given these sets, the SRU identification problem is to identify a structure from the n nodes251

forming a Hamiltonian path using edges in M(n, n). The final structure should have connectivity of252

classes between the first and the last node in CM(u, u).253

3.4.1 Mathematical programming approach254

Here, we describe a MILP formulation for obtaining a compact solution for the SRU. Using the above255

declared parameters and sets, we declare the following variables for the MILP formulation:256

yi : 0-1 binary variable to denote if node i ∈ N is selected to be a part of SRU,

zi,j : 0-1 continuous variable to capture if the edge between node i

and node j is selected to be a part of SRU,

hi,l : 0-1 binary variable to capture if node i belongs to SRU in position l ∈ T ,
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flu : 0-1 binary variable to denote if the first node in SRU belongs to class u,

llu : 0-1 binary variable to denote if the last node in SRU belongs to class u,

FLu,u′ : 0-1 binary variable to denote if the first node belongs to class u,

and the last node belongs to class u′.

The SRU identification model is as follows:257

max
N∑
i=1

N∑
j=i+1

zi,j , (1)

s.t.
∑
i∈Lu

yi = mu, u ∈ U , (2)

N∑
i=1

yi = T, (3)

zi,j ≤ yiMi,j , i 6= j, i ∈ N , j ∈ N , (4)

zi,j ≤ yjMi,j , i 6= j, i ∈ N , j ∈ N , (5)

zi,j ≤Mi,j(1− yi − yj), i 6= j, i ∈ N , j ∈ N , (6)

T∑
l=1

hi,l = 1, i ∈ N , (7)

N∑
i=1

hi,l = 1, l ∈ T , (8)

hi,l−1 + hj,l ≤ 1 + zi,j i ∈ N , j ∈ N , l ∈ T (9)

U∑
u=1

∑
i∈Lu

u× hi,1 =

U∑
u=1

u× flu, (10)

U∑
u=1

flu = 1, (11)

U∑
u=1

∑
i∈Lu

u× hi,T =
U∑

u=1

u× llu, (12)

U∑
u=1

llu = 1, (13)

FLu,u′ ≤ flu, u ∈ U , u′ ∈ U , (14)

FLu,u′ ≤ llu′ , u ∈ U , u′ ∈ U , (15)

FLu,u′ ≥ flu + llu′ − 1, u ∈ U , u′ ∈ U , (16)

U∑
u=1

U∑
u′=1

FLu,u′ × CMu,u′ = 1, (17)

yi, hi,l, f lu, llu, FLu,u′ ∈ {0, 1},

0 ≤ zi,j ≤ 1 ∈ RN×N .
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The goal of the optimization model is to identify a Hamiltonian path in the lattice that would258

represent the SRU. The nodes selected for SRU should be connected such that they satisfy the condition259

of a Hamiltonian cycle. Equation 1 represents the objective that maximizes the connectivity for an260

SRU to ensure a densely packed SRU. A compact structure helps in perceiving the SRU with the261

maximum number of edges. Equation 2 ensures that the number of nodes selected in the SRU from262

a class is equal to the multiplicity mu for that class. The total number of selected nodes in the SRU263

must equal to a specific number T , which is enforced by Equation 3. This total number is the sum264

of all multiplicities over all classes that maintain the ratio observed in the unit cell. This constraint265

may seem redundant over Equation 2 but has been observed to assist the solver (CPLEX) to converge266

faster. Equations 4, 5, and 6 assign zi,j a value of 1 if edge (i, j) is included in the final SRU solution267

and to a value of 0 otherwise. Mi,j is a parameter table which is assigned a value of 1 if nodes i and268

node j are connected in the lattice.269

The binary variable hi,l. hi,l takes the value of 1 for node i if it represents the lth position visited in270

the Hamiltonian path. The construction of the Hamiltonian path is formulated as a special instance271

of TSP. The traveling salesman does not need to visit all nodes but visits only a specific number272

(multiplicity) of each class in his route, and node i is visited in the lth position of the traveling273

sequence. Equations 7 and 8 ensure that this condition is met. Equation 9 ensures that the path274

defined by hi,l is indeed a Hamiltonian path. Equations 10, 11, 12, 13 assign values to the variables275

flu and llu which denote the class of the first node and last node of the path. Equation 17 imposes276

the condition that the SRU contains a Hamiltonian cycle by making the first and last selected nodes’277

classes to be connected.278

3.4.2 Algorithmic approach279

In this case, we use a backtracking algorithm44 to avoid enumerating all solution possibilities. The280

detailed algorithmic process is explained in Figure 7 with the help of a flowchart. The algorithmic281

approach starts from a single node in the lattice and follows the connectivity for the next node in search282

of a Hamiltonian path with a depth-first search. The Hamiltonian cycle is enforced between the class283

of the first node and the last node in this explored path. We explore the neighbors recursively until284

we reach a solution or when the multiplicity threshold is violated. Using such a recursive approach,285

we effectively enumerate the best paths.286

When the search for structure begins, the algorithm loads the information related to all nodes,287

classes, connectivity matrix, and multiplicity of each class in the framework. From this framework of288

nodes, the algorithm starts at (i) base node n, (ii) the total length t initialized at T , and (iii) parent289

tree that is initialized with a null value. The next check is to verify if the number of feasible solutions290

has already been obtained. The algorithm proceeds to expand the neighbors of node n that are given291

by [bw, bx, by, bz], and the class of these nodes [lw, lx, ly, lz]. As a depth-first approach, we expand on292

any one of these neighbors. The neighbor that is expanded on, is stored in B, and its class is stored293

in L.294

If L violates the multiplicity of its class mu, the search continues on the next neighbor. After295

finding a neighbor that satisfies multiplicity, B is appended to a list of the children of n. This branch296
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is recorded for future considerations. If the total length explored at this stage is equal to the desired297

length of T , a check is performed for the first and last node in this branch. The solution is stored if the298

Hamiltonian cycle criteria is fulfilled and discarded otherwise. In the case that the length is not equal299

to T , all other neighbors are expanded and stored for future expansion if needed. This list of recorded300

solutions operates in a last-in-first-out manner when restarting a search from a discarded solution.301

Once all neighbors are examined, (i) the base node is updated to the current neighbor B, (ii) the302

length of the remaining tree to be explored is updated to t − 1, and (iii) the node n is appended to303

the parent list. The parent list contains the solution explored until now. The recursive search is then304

performed with the new base node and the desired length to be explored reduced by 1 unit. The305

search stops when the algorithm reports the desired number of SRU structure solutions.306

Figure 7: Flowchart of the proposed algorithm for generating SRU solutions using backtracking

approach in a depth-first search.

Figure 8 illustrates the working of the algorithm for the case of Sodalite. The algorithm involves307

expanding on the base node that is updated at every recursive call. The node number is in the circle,308

while the superscript is the class of that node. The blue dashed line denotes no expansion on that309

path since it leads to the parent. The orange color nodes cannot be expanded, since they violate the310

multiplicity of class in the solution. For the case of SOD, there are 6 classes, each with a multiplicity311

of 1. Thus resulting in a value of 6 for T . The connectivity matrix is previously given in Figure 3c.312

The algorithm begins with node 10 of class 6, and its neighbors are [67, 118, 172, 274]. A randomly313

selected node is expanded on, in this case, node 67 (class 4) followed by node 148 (class 5). It should314

be noted here that node 10 cannot be expanded as it is present in the parent of the current tree. When315

considering neighboring nodes of 148, we encounter node 41, which cannot be explored since the class316
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of node 41 (class 6) already exists in the parent tree i.e. node 10 (class 6). At every step, the parent317

is updated and the base node is reset. The algorithm ends when the total number of nodes in the318

parent is equal to T , and the class of the last node is connected to the class of the first node in the319

tree. The green path highlights the Hamiltonian path where the classes of the first and last nodes are320

connected in the connectivity matrix, thus leading to a Hamiltonian cycle.321

Figure 8: Illustrating the algorithmic approach that explains how node tracking works on SOD

framework. Beginning with node 10, the algorithm recursively iterates local neighbors using depth

first search with unique class of T-nodes and eventually identifies the green path as the solution.

3.4.3 Hybrid Approach322

The hybrid approach combines both the optimization model and the algorithmic approach to gain323

the benefits of each. The original optimization model (Equations 1–17) is complete in the sense324

that it generates the final feasible solutions satisfying the Hamiltonian cycle constraints (Equations325

7–17). While the model is succinct, the required number of binary variables and constraints to satisfy326

the Hamiltonian nature of the SRUs can increase the computation. In the hybrid approach, we327

relax the Hamiltonian constraints to generate a feasible SRU configuration with smallest number of328

T-nodes. Therefore, the relaxed optimization model in the hybrid approach includes only Equations329

1–6. The obtained SRU connectivity matrix is checked for the Hamiltonian cycle using a part of the330

original algorithmic approach. This guarantees that the solution generated by the relaxed optimization331

model is Hamiltonian. Rather than obtaining the complete solution from both approaches, the hybrid332

approach exploits the strengths of each and generates the complete SRU solution. After that we find the333

Hamiltonian cycle using a part of the algorithmic approach. We use the backtracking algorithm starting334

with the first element of the connectivity matrix and keep appending nodes as the algorithm explores335

the path. If the explored path size matches with the size of the matrix, we check for connectivity of336

the first and the last nodes of the path to ensure the existence of Hamiltonian cycle. Otherwise, the337

14



backtracking continues towards exploring a feasible path. Overall, the hybrid approach reduces the338

computation time drastically.339

4 Results and Discussion340

In comparison to unit cells that require six parameters (a, b, c, α, β, γ) and coordinates for the341

T-nodes, SRUs utilize fewer T-nodes and have been observed to have Hamiltonian properties. SRUs342

do not need to be parallelepiped. With well-defined connectivity, structures with fewer T-atoms exist343

that can uniquely represent the zeolite framework. A total of 229 zeolites were studied as listed on the344

IZA Database,7 and connectivity matrices were obtained for 180 zeolites. Within these 180 zeolites,345

179 were observed to have a full-sized Hamiltonian cycle, i.e., the size of the largest Hamiltonian cycle346

was equal to the size of the matrix. The SRU of zeolite AFY was observed with no Hamiltonian cycle.347

Further investigation is needed to elucidate why this is the case. The SRU for AFY consists of 17348

T-nodes, and a total of 214,321 possible paths for Hamiltonian have been explored. Not all zeolites349

have to be Hamiltonian cycles of the full size. An interesting observation is that most of the zeolites350

(179 out of 180) have SRUs with connectivity among nodes that are Hamiltonian cycles. These SRUs351

and their connectivity matrices are reported in the Supporting Information.352

We analyzed the reduction in T-nodes that SRU representation has to offer. SRUs require less353

than half of the T-nodes compared to unit cells for most of the zeolites studied. While some SRUs354

have non-intuitive structures of selected T-nodes, the use of the fewest possible number of T-nodes355

is the greatest advantage of the SRU-based representation of crystalline frameworks. From Figure356

9a, we observe that the SRU representation reduces the number of T-nodes necessary to describe the357

zeolite framework by 2, 3, and in some cases even 4 times in magnitude (Figure 9b). Several zeolite358

SRUs have the number of T-nodes same as their original unit cells but offer insights into their nature359

through their Hamiltonian graphs. The detailed reduction for each zeolite is given in Table 2.360

(a) (b)

Figure 9: Reduction in the number of T-nodes that are required to describe a zeolite framework using

the proposed SRU in comparison with the traditional unit cell (a) Number of T-nodes in SRU vs unit

cell, (b) Summary of reduction in T-nodes provided by SRUs.
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Table 2: Number of T-nodes in zeolite SRUs. The value corresponding to each zeoliite is the number

of T-nodes in the SRU. A factor of 1x, 2x, 3x, and 4x is observed between the unit cell and SRU

T-nodes.

Zeolites with T-node no reduction

PTY 10 AFV 30 PON 24 SOS 24 BEC 32 MTT 24 NPT 36

PWW 33 OWE 16 ASV 20 DFT 8 MVY 12 VET 17 UOZ 40

AWW 24 BRE 16 LTL 36 LTJ 16 SFS 56 CGS 32 IRR 52

CZP 24 LTA 24 SSY 28 GME 24 BPH 28 JBW 6 MAZ 36

BOF 24 ZON 32 SFE 14 LIO 36 AVL 42 JNT 32 IFY 48

OFF 18 THO 10 MRT 24 EDI 5 IFO 32 ERI 36 LOV 18

SBN 10 MEP 46 SFF 32 ETV 14 CAN 12 ATT 12 AFI 24

ETR 48 AFS 56 SVV 36 JOZ 20 CSV 22 NPO 6 OSO 9

RRO 18 AFR 32 MEI 34 JSN 16 PUN 36 AFX 48 PWO 20

JSW 48 UOS 24 SAV 48

Zeolites with T-node reduction factor 2x

EWO 12 RWR 16 MFS 18 SGT 32 MER 16 RWY 24 GOO 16

ITH 28 CAS 12 AFN 16 ATN 8 BOZ 46 GIS 8 SAF 32

SZR 18 MTF 22 TON 12 EPI 12 SAS 16 PCR 30 IHW 56

ITW 12 CDO 18 JRY 12 WEI 10 SAO 28 USI 20 CON 28

OSI 16 KFI 48 NAT 10 OKO 34 TER 40 LAU 12 RTE 12

ATS 12 NSI 6 AEL 20 BOG 48 ITE 32 BIK 6 ACO 8

SOD 6 RTH 16 OBW 38 NAB 5 APC 16 SFN 16 STF 16

MEL 48 IFR 16 PHI 16 SFH 32 GON 16 ABW 4 EZT 24

AWO 24 CFI 16 UFI 32 SOF 20 AEN 24 APD 16 MON 8

ANA 24 IWR 28 FER 18 MOR 24 DAC 12 YUG 8

AHT 12 VSV 18 DON 32 BCT 4 AEI 24 SFO 16

MTW 14 ATV 12 RHO 24 AFO 20 UTL 38 AET 36

Zeolites with T-node reduction factor 3x

CHA 12 SBT 48 ATO 12

Zeolites with T-node reduction factor 4x

MTN 34 STI 18 EEI 50 NES 34 UEI 34 NON 22 IWV 38

AST 10

We proposed two different approaches to identify the SRU structures. Both approaches satisfy the361

criteria of their ability to recreate the lattice using SRUs and the connectivity matrix. The difference362

arises in the number of edges or the compactness of the SRU structures. Figure 10 shows the differences363

in SRU structures obtained from the optimization and the algorithmic approach, respectively, for364

Chabazite. The number of edges in SRU obtained using the optimization model (Equations 1-17) is365

18 (global maxima), which takes several minutes to solve, whereas the solutions from the algorithmic366

approach (Figure 7) are obtained within a fraction of a second. The optimization model is large367
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and involves many discrete variables, making it difficult to solve due to the inherent symmetry and368

the presence of multiple global optimal solutions. The SRUs are defined as the building units of the369

zeolites and these are contained in numbers in the lattice. This poses challenges for the solvers since370

no branch can be cut off while searching for the global optima.371

To understand the cause of symmetry, consider an example of an SRU that has T-nodes from372

three classes (denoted by 1, 2, and 3). If a Hamiltonian path as [123] is a solution, so are [231] and373

[312] due to Hamiltonian cycle constraints imposed. Since these are just the classes of the structure,374

a Hamiltonian cycle exists for any three nodes (denoted by i in the model) along the path that is375

defined by classes [12312...123]. An algorithmic approach was developed to overcome this limitation.376

The drawback of the algorithmic approach, however, is that we may not obtain a compact structure for377

the SRU that would ease visualization. The advantage is that it allows us to obtain potentially many378

feasible solutions in a quick time that may be used to initialize the solver for solving the optimization379

model where solver time is a bottleneck.380

Figure 10: Differences in Chabazite SRU structures obtained from optimization and algorithmic

approaches. (a) The optimization model generated a solution with maximum connectivity, while

(b) the algorithmic approach generated several sub-optimal but feasible solutions.

We can also now comment on the uniqueness of the solutions of SRUs. As discussed above, the381

optimization model gives the most compact structure (which could have multiplicity as well), whereas382

the algorithmic approach generates several feasible solutions. Irrespective of whether the solution is383

just a feasible solution or optimal, the SRU structure obtained is capable of generating the lattice.384

Each feasible structural solution has the same connectivity matrix. For Chabazite, we see in Figure385

11 that irrespective of the solution, the final lattice generated using the connectivity matrix generates386

the CHA framework. Even though the structures obtained are different, they obey the rule of having387

exactly 1 node from each of the classes from 1 through 12. This adheres to the multiplicity defined388

earlier since, in the unit cell, 3 of each of the 12 occur adding up to the 36 T-nodes.389
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Figure 11: Multiple feasible SRU structures obtained for CHA from the same connectivity matrix

demonstrating the non-uniqueness of SRU structures.

The isomorphic nature of the connectivity matrix of an SRU is another important issue to consider.390

Two graphs are isomorphic if renaming the vertices in a different order generates the same matrix.391

Note that two different solutions for the same framework are obtained from the same connectivity392

matrix. The isomorphic nature is not the same as the multiplicity of the solutions. If two different393

frameworks having different structures have matrices that can be relabeled to give the same matrix,394

they would be called isomorphic. This property would be a defining factor in the determination of395

the upper bound of possible SRUs that can be designed for a given number of T-nodes. As shown in396

Figure 12, the network graphs for DFT and MON are not the same at first glance. However, under the397

following mapping [(1, 1), (2, 5), (3, 7), (4, 2), (5, 3), (6, 4), (7, 8), (8, 6)], where the pair is represented398

as vertex label (DFT, MON), they are essentially the same. Even though their connectivity matrices399

are isomorphic, their SRUs are different (see Supporting Information).400
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Figure 12: Hamiltonian graphs for DFT and MON. Under the mapping [(1, 1), (2, 5), (3, 7), (4, 2),

(5, 3), (6, 4), (7, 8), (8, 6)], they are essentially the same graphs and thus isomorphic.

Additional rules that can be used to determine the possible number of unique matrices are given401

below. For a n × n matrix M , where each element is denoted by Mi,j , the following rules hold for402

the number of tetrahedral T-nodes. Equations 18 and 19 ensure that each node in the connectivity403

matrix has exactly 4 adjacent nodes.404

n∑
i=1

Mi,j = 4 j ∈ N , (18)

n∑
j=1

Mi,j = 4 i ∈ N . (19)

The distribution of SRU size for the zeolites studied is given in Figure 13a. This information405

combined with the upper bound obtained for zeolites can direct the search for new zeolite materials406

for a given number of T-nodes. The SRU representation can be potentially used for new framework407

prediction. The rules of the connectivity matrices themselves limit the number of possible structural408

solutions thus giving an upper bound of such designs. For inverse design of new nanoporous frameworks,409

such as zeolites, we need to design new SRUs. This will involve constructing new connectivity matrices410

for fixed number of topologically independent T-nodes. If the size of a new SRU is denoted by N, then411

we need to design a new connectivity matrix of size N × N while satisfying the following general412

conditions: (i) the matrix is symmetric since the node connectivity are symmetric, (ii) diagonal413

elements of the matrix is zero for pure silica frameworks, (iii) the matrix elements take the values414

of 0, 1, 2, or 3. Although no observation has been made in this work for a connectivity value of415

three, the possibility of such a structure should not be eliminated, and (iv) the sums of all the416

elements in each row and each column are both equal to four for pure silica frameworks. Based on our417

observation, one can also include that the connectivity matrix should be Hamiltonian, to restrict the418

already large combinatorial design space. Furthermore, we can reduce the computation by imposing419

that the designed matrix is isomorphically unique. Given these rules, the number of feasible matrices420

of size N ×N is finite, which provides with an upper bound towards the existence of frameworks. It is421

important to note here that the inverse design of zeolites requires both the design of connectivity matrix422

and 3-D geometric configuration. While we layout the rules for connectivity matrix, the geometric423

aspect of the SRU needs further work.424
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Observing the current hypothetical zeolites and then identifying the potential gap where certain425

types of frameworks might not have been observed can also be beneficial. To that end, a sample426

of 10,570 hypothetical zeolite frameworks from the Atlas of Prospective Zeolite Structures (formerly427

known as Database of Hypothetical Zeolites Structures, or Deem Database)48 is studied in terms of428

their SRUs using the hybrid approach. The distribution of SRU sizes in terms of the number of429

T-nodes is shown in Figure 13b. Interestingly, we observe that most of the frameworks have SRUs430

with 40 or less number of T-nodes.431

Figure 13: Distribution of SRU sizes: (a) existing 158 zeolite frameworks, and (b) 10,570 hypothetical

zeolite structures.

Earlier, we referred to the possibility of some matrix elements having a connectivity value of 2. This432

can be associated with an AB type of symmetry of layers within the zeolite. The connectivity matrix433

of ATN, as shown in Figure 14, is an example of such a situation. The SRU has r T-nodes (Figure434

14c) While each T-node is connected with four other T-nodes, due to the tetrahedral structure, some435

of these T-nodes are connected to two T-nodes of the same class. For example, as shown in Figure436

14d, node 1 is connected to node 8 of two different SRUs. This is possible when the SRU has a small437

length in one of the dimensions. The connectivity of 2 is obtained in a manner that one of the nodes438

is within one SRU and the other node (of the same category) is from another SRU. This can be seen439

from Figure 14e, where class 7 of red SRU is connected to nodes of class 2 of both red and blue SRUs.440
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Figure 14: Understanding the observed special feature in some frameworks. (a) ATN framework

represented using T-nodes, (b) traditional unit cell for ATN, (c)SRU generated for ATN, (d)

connectivity matrix for ATN with highlihgted special value, and (e) ATN SRUs stacked using

connectivity matrix explaining the observed feature.

Aluminum substitution in place of Silicon in the zeolite framework changes the acidic nature441

of the zeolite. This Al substituted Bronsted acid contains certain cations to balance the charge thus442

introducing an acidic nature. Several possible sites exist for Al substitutions which will lead to different443

properties of the zeolites and these Al substitutions are governed by the Loewenstein’s rule which states444

that there should not exist any Al-O-Al bond in the framework.49 Though there are exceptions, the445

Loewenstein’s rule holds for most zeolites. 50 Determining the possible locations of Al substitutions446

using the unit cell representation is computationally expensive for at least two reasons. First, there447

are more candidate positions for substitution which exponentially increases the number of possibilities.448

Second, it is nontrivial to enforce the Loewenstein’s rule for large number of T-atoms within a unit449

cell. On the contrary, the SRU representation provides a clear advantage due to its smallest size450

and number of unique T-atoms. Furthermore, the connectivity matrices provide a systematic way to451

generate all possible Al substitutions under the assumption that the translational symmetry of Al and452

Si in the zeolite framework also holds within the SRU.23453

To describe how one can use the connectivity matrix of an SRU to generate different Al-substituted454

frameworks, we first introduce the concept of node index (NI), which is a number assigned to each455

T-atom based on the types of atoms (Si or Al) that constitute the T-atom and its connected neighbors.456

For a pure silica framework, the NI for each Si T-atom is always four, because it is connected with457

four other Si T-atoms. However, when a T-atom is substituted by Al, the node index value changes.458

The NI for a central Si increases with +1 if it is connected to another Si and decreases by -1 if it is459

connected to Al. For a central Al atom, another -2 is added to distinguish it from a central Si atom.460

Since each atom is connected with four other atoms, this gives rise to five other possible NI values,461

as shown in Figure 15 . For example, if one of the four connected atoms is substituted by Al, then462

the node index of the central Si T-atom is two (= 1+1+1-1). If two of the four connected atoms are463
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substituted by two Al, then the NI of the central Si T-atom is zero (= 1+1-1-1), and so on. Therefore,464

the six possible NI values are 4, 2, 0, -2, -4, and -6. The advantage of NI is that we can use it to465

enforce the Loewenstein’s rule. Specifically, a T-atom can be Al-substituted if and only if its NI is466

four.467

Figure 15: The six possible scenarios of Al-substitution and the corresponding node index values for

each T-atom in a zeolite framework.

Using the NI and the Loewenstein’s rule, one can enumerate all possible Al substitutions for a468

connectivity matrix. In a pure silica framework, each element of the matrix can have a value of either469

zero or one. Figure 16a shows such an example for CHA, where the Si atom in T-node #1 is connected470

with Si atoms in T-nodes #3, 4, 9 and 10, thereby giving a NI value of 4. However, in the case of471

Al substitution, we assign -1 to denote that a Si T-atom is connected to Al-substituted T-atom. If472

the T-atom itself is Al, then we assign -2 to the diagonal element. This is illustrated in Figure 16b,473

where the Si atom in T-node #1 is substituted by Al. If we want to substitute another Si atom using474

a second Al atom, then the candidate nodes are #2, 5, 6, 7, 8, 11 and 12. These are the nodes that475

allows a second substitution without violating the Loewenstein’s rule. If we select node #2, then the476

resultant connectivity matrix is given in Figure 16c. Note that if we select a different node than node477

#2, then the connectivity matrix will be different. We also notice that, after the first two substitutions478

in nodes #1 and 2, the candidate nodes for the third substitution are T-nodes #5, 6, 7, and 12.479

Figure 16: CHA connectivity matrix with node index highlighted after additional substitution of Al.

(a) No Al substituted, node index is 4 for all thus allowing the possibility of Al substitution at any

site. (b) Al is substituted at the first node thus impacting all node indices, only node 2, 5, 6, 7, 11,

and 12 are possible to be substituted if node 1 is Al following the Loewenstein rule. (c) Node 2 is

substituted with Al thus reducing the further substitution of Al only to nodes 5, 6, 7, and 12.
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Table 3: Al substitutions in the zeolite framework LTL.

Al substitutions Si/Al ratio Number of possible structures

1 35.00 36

2 17.00 558

3 11.00 4,896

4 8.00 26,925

5 6.20 97,212

6 5.00 235,054

7 4.14 381,888

8 3.50 412,596

9 3.00 288,952

10 2.60 124,944

11 2.27 30,240

12 2.00 3,148

Total 1,606,449

Following the above strategy, we can generate all plausible frameworks with given number of Al480

substitutions. For example, the possible frameworks modifications with Al substitutions for LTL481

framework are presented in Table 3. LTL has an SRU with 36 T-nodes. If three of these 36 Si T-nodes482

are substituted by Al with a Si/Al ratio of 11, then the possible number of frameworks are 4,896.483

In total, there are 1,606,449 cases possible. While this number is high, the SRU-based framework484

generation approach allows us to enumerate all of them in a systematic way. Note that, for a given485

number of Al atoms to be substituted in the framework, we calculate the Si/Al ratio assuming the486

translational symmetry of Al and Si in the zeolite framework hold within the SRU. Interestingly,487

we can have at most 12 substitutions. Beyond this, a violation of the Loewenstein’s rule occurs.488

Since SRUs are the smallest structural units, we can only generate the framework descriptions (i.e,489

connectivity matrices) for Si/Al ratios with uniform distribution of Al. Sato23 computed the number490

of possible Al substitutions along the same way we describe above. However, Sato’s work was based491

on the traditional unit cell, while we use SRUs.492

There are many frameworks which may have the same number of T-nodes. However, the number493

of possible Al substitutions can still be different, if the frameworks are not isomorphic. Given two494

isomorphic networks, the possible number of Al substitutions following the Loewenstein rule are the495

same. To illustrate this, we compute the number of substitutions possible in several frameworks with496

SRU size 12. The results are given in Table 4 . The Si/Al ratio of these zeolites vary between 1 and497

11. We observe that CHA, AHT and ATV can have 150 possible Al substitutions, which suggests498

that these frameworks are isomorphic. One the other hand, EWO and TON can have 182 possible499

substitutions, while CAN and ATS can have 195 possible substitutions. Further investigation on the500

feasibility of these structures may be carried out using molecular simulation towards stability of the501

structures as done in identifying the hypothetical zeolite database.502
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Table 4: Possible number of configurations with specified Al substitutions in zeolite frameworks with

SRU with 12 T-nodes.

Zeolite
Al substitutions

Total
1 2 3 4 5 6

CHA 12 42 52 30 12 2 150

EWO 12 48 76 42 4 0 182

CAN 12 48 76 45 12 2 195

ATS 12 48 76 45 12 2 195

CAS 12 48 72 32 0 0 164

TON 12 48 76 42 4 0 182

JRY 12 42 52 22 4 0 132

EPI 12 42 52 18 0 0 124

ATO 12 48 76 45 12 2 195

MVY 12 48 76 48 12 2 198

UEI 12 42 52 26 4 0 136

LAU 12 42 48 17 0 0 119

DAC 12 42 48 14 0 0 116

AHT 12 42 52 30 12 2 150

ATV 12 42 52 30 12 2 150

5 Conclusion503

In this work, we used Hamiltonian graphs to find the smallest repeating units (SRUs) of zeolite504

frameworks that require fewer T-nodes than the traditional unit cells. We developed two approaches505

to locate SRUs, namely (i) a mathematical programming-based optimization approach motivated by506

the traveling salesman problem formulation, and (ii) an algorithmic approach based on backtracking507

and depth-first search. A hybrid approach combining both of these to improve computational speed508

has also been proposed. To demonstrate the advantages of this novel representation, we analyzed 158509

zeolite frameworks from the IZA-SC database and over 10,000 hypothetical zeolite frameworks. The510

number of T-nodes required to describe these frameworks is reduced by 50-75% in comparison to their511

traditional unit cells for 92 of the 158 zeolite frameworks. The SRUs for all 158 zeolite frameworks512

constructed using structurally independent T-nodes obey the properties of Hamiltonian graphs. Due513

to its Isomorphic nature, multiple SRU configurations are found for the same zeolite framework. Using514

the conditions of Hamiltonian and Isomorphism, one can obtain an upper bound on the number of515

potential frameworks possible and thus guide the search towards new zeolite frameworks. It should be516

noted that the optimization formulation is a large-scale problem with inherent symmetry. As a final517

remark, there exists several more hypothetical zeolite frameworks where this approach can be applied518

and can be utilized in predicting possible Al substituted frameworks.519
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