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Abstract

We present a new data-driven approach for both accurate and computationally efficient

approximation of vapor liquid equilbria (VLE) models. Our method is able to provide

guaranteed enclosure to limit the approximation errors over the entire domain of

interest, all just by sampling only at select points. The approximation relies on a

mixed-integer linear programming (MILP) formulation that exploits vertex polyhedral

properties of theoretically guaranteed lower and upper bounds to enclose nonlinear

and nonconvex equations of state (EOS) and empirical models. Another advantage

is that, unlike traditional full simulation-based data-driven approaches, we do not

solve nonlinear system of equations (f(x) = 0) for sampling. Instead of looking for

only feasible samples, we evaluate f(x) over x-domain. This functional evaluation

eliminates the need for computationally-demanding full-scale simulations and the

associated convergence issues. We demonstrate excellent performance of the proposed

MILP formulation in predicting the solubility of hydrofluorocarbon (HFC) refrigerants

in ionic liquids (IL).
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Introduction

Various models are used to describe thermodynamic phase equilibria that relate a system’s

temperature and pressure with the volume, phase and composition of different chemical

species that constitute the system at equilibrium conditions. A cubic equation of state

(EOS) is an example of a thermodynamic model that describes the distribution of a

chemical species under vapor liquid equilibria (VLE). Many processing operations, such

as distillation, absorption, adsorption, phase separation and phase transition, that occur

in chemical, petrochemical, pharmaceutical, energy-generating, gas processing, food and

cosmetics industry are governed by phase equilibria.1 Accurate estimation of physical

properties and phase equilibrium data are important to ensure the safety, operability and

economic margin of these chemical process systems.

Thermodynamic models are frequently used in computer-aided systematic process design,

simulation, optimization and intensification activities. Therefore, it is imperative to

develop accurate and, at the same time, computationally efficient models to represent the

thermodynamic relations. With the advent of computing power and numerical algorithms,

many commercial process simulators are now available that are routinely used in the chemical

process industry. A key to the recent success of process models and computer codes as

“virtual twins” can be attributed to the use of detailed property estimation packages,

experimentally validated or fitted equation of states (e.g., Peng Robinson, Redlich–Kwong,

etc.), and activity coefficient models (UNIFAC or NRTL in Gamma-Phi approach) to reliably

estimate the process conditions and performance. While useful, these models come in various

forms and often involve large systems of highly nonlinear equations, thereby requiring the

use of sophisticated numerical simulation and/or global optimization techniques2,3. Since

the primary goal of these models is to mimic the physical reality, modelers tend to adhere to

first-principles based rigorous mathematical descriptions that increase the model complexity.

Incorporating them in decision-making often pose significant algorithmic and computational

challenges. For example, a process simulator may not converge when simulating a large

process flowsheet with one or more recycle loops. Similarly, a steady-state process design

and global optimization problem may not converge to a globally optimal solution within

a reasonable time limit. Dealing with dynamic problems is even more challenging as the

full discretization4 in both temporal and spatial domains typically leads to large system of

algebraic equations and degeneracy.

At least two major data-driven approaches have been found to be useful to tackle some of

these challenges. The first is the model-free approach where a complex thermodynamic and

property estimation model is treated as a blackbox to generate input-output sampling data
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over the domains of interest. The selection of thermodynamic models, property estimation

packages, numerical convergence criteria, etc., are all kept in the blackbox simulation

environment, thereby maintaining the high-fidelity nature of the models. Based on the data

provided by these models, an optimizer then performs design of computer experiments5, and

derivative-free optimization based on direct search6,7, blackbox optimization8,9, trust region

modeling10,11, or logic-based hybrid optimization12. Considerable advances have been made

in finding feasible solutions (due to the adherence to the original models) for constrained

problems13,14. However, the convergence to optimal solutions is only guaranteed for dense

sampling, thereby making the global optimization even a harder proposition. In many

cases, solutions are obtained only after a long time if the simulations are computationally

demanding and the overall strategy does not support parallel computing.

The second is the model-based approach that involves model reduction15 or surrogate

modeling techniques16–23 that replace the original models. Although different surrogate

models have different functional forms, they are fitted with sample/simulated data to mimic

the original trends. This way, surrogate models are used to strike a balance between

prediction accuracy and computational efficiency. The surrogate modeling approaches

that exist in the literature can be divided into two main categories: Non-interpolating

and interpolating. Examples of non-interpolating models include single/piecewise linear

approximation, quadratic response surfaces, polynomial or generalized regression functions,

and artificial neural networks (ANN). These methods may not reliably predict the response

surface24,25 or sufficiently capture multi-dimensional and highly nonlinear correlations24 due

to entrapment to local regions or over fitting in the case of small data set. Interpolating

methods such as Kriging26 and radial basis functions (RBF)23,27,28 incorporate different

basis functions to exactly predict the training points29. Key advantages of interpolating

methods include better handling of highly nonlinear functions26 with global convergence30

given that the surrogate model is probabilistically fully linear. Since surrogate models are

often composed of simpler basis functions and expressions, generalized algorithms, methods

and codes (e.g., ALAMO31, ARGONAUT22, NOMAD7, UNIPOPT32) have been developed

and used for different purposes.

Considerable work has been done on developing surrogate models for predicting phase

and chemical equilibria. For example, Nentwich and Engell33 applied adaptive sampling

to develop surrogate models for simplifying phase equilibrium calculations. Zhu and

Müller34 combined ANN and Gaussian processes to approximate equation of states and

predict thermodynamic properties. Carranza-Abaid et al.35 deployed a hybrid approach

that combines machine learning (ML) with thermodynamically consistent additional

constraints to improve the prediction accuracy. Eason et al.36 developed and applied
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surrogate EOS for process optimization. These approaches have their own advantages and

disadvantages. While surrogate models often improve the computational efficacy, there are

cases where sampling-based surrogate models are shown to diverge from the original model

predictions, as more data are included in the building phase of these surrogate models.

Furthermore, surrogates may be good approximators but cannot always guarantee the type

of approximation (true underestimation or overestimation). It is important to identify the

type of approximation, for instance, for conservative (under)estimation of safety ratings

for critical process operations. Any overestimation may lead to safety concerns. Similarly,

overestimation of purity of pharmaceutical molecules may lead to health concerns. On the

other hand, underestimation of costs and utilities may disrupt the development of a process

technology. Therefore, it is important to provide both lower and upper bounds on the

prediction errors when approximating critical properties.

The choice of surrogate models is often made based on the type of problems we

seek to solve. Replacing rigorous thermodynamic models with a purely data-driven

surrogate may not guarantee good prediction over the entire domain of interest. To avoid

computationally expensive exploration of the entire domain, many approaches use expected

values for the less explored regions. However, such statistical approach cannot provide

guaranteed/deterministic bounds on the prediction error. Significant uncertainty (and hence,

lack of confidence) in using surrogate or metamodels may originate from the model form and

fitted parameters.37 For the case of thermodynamics, both noninterpolating and interpolating

surrogate models may lead to infeasible solutions due to inaccurate approximations. For

example, nonideal liquid phase behavior deviates significantly from the linear solubility

prediction based on Henry’s law. To circumvent this issue, one possible way is to train ANN

based surrogate thermodynamic models on a large dataset. However, availability of the large

dataset itself relies upon computationally expensive simulations. Additionally, ANN based

models are not able to identify whether the prediction overestimates or underestimates the

true values, which may potentially hinder its application to conservative cases (e.g., safety

ratings). To that end, guaranteed underestimators and overestimators of thermodynamic

models are highly desired so that the improved relaxation achieved from tighter lower

and upper bounds leads to faster convergence in global optimization of process synthesis

problems.

Deterministic global optimization techniques are appropriate for providing theoretically

guaranteed bounds on prediction errors. Among the few notable works related

to thermodynamic models, McDonald and Floudas2 developed GLOPEQ which is a

computational tool to locate global minima of the Gibbs free energy for finding solutions

of thermodynamic phase and chemical equilibria. Schweidtmann et al.38 developed an
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approach that learns the thermodynamic equilibria of mixtures using ANNs with a guarantee

on the worst-case performance of the surrogate, provided that the algebraic formulation

of the underlying model is available. Keßler et al.39 developed an approach for the

global optimization of problems with multiple input-output multiplicities using explicit and

implicit surrogate models. Jones et al.40 proposed an efficient global optimization (EGO)

algorithm for blackbox optimization. Schweidtmann et al.41 and Schweidtmann and Mitsos42

considered the deterministic global optimization of problems that have embedded ANN

models in them. Boukouvala et al.43 developed a global optimization method for general

constrained grey-box problems that contain a combination of black-box constraints and

constraints with known functional forms. These global optimization approaches require

gradient information over the entire domain, which may not always be available. Because of

this reason, majority of the global optimization works focus on already developed surrogate

models without paying much attention to approximation errors.

Purely data-driven under- and overestimation of blackbox models is challenging.

Rebennack and Kallrath44 proposed a mixed-integer linear programming (MILP) formulation

to obtain data-driven piecewise linear under- and overestimators for univariate and bivariate

functions. However, these estimators are guaranteed only at the simulated points, but not

over the entire domain. Recent works, such as by Bajaj and Hasan45 and Song et al46,

indicate that theoretically guaranteed affine underestimators and lower bounds of certain

classes of models can be tractably obtained just by black-box sampling. Specifically, Bajaj

and Hasan45 developed a new method to deterministically find global solutions to problems

where only available information includes the global upper bound on the diagonal Hessian

elements. An edge-concave underestimator47 can be constructed with vertex polyhedral

solution, thereby leading to affine underestimators of the original black-box problem solely

based on simulation at the bound vertices.When the full model is known, one can estimate

theoretically guaranteed upper bounds on the diagonal Hessian elements using analytical

methods or using automatic differentiation in conjunction with interval analysis (in this

case, one can also learn an ANN model with worst-case error bounds38). However, for

black-box models where only the input-output data are available, one can estimate near-exact

(albeit somewhat loose) upper bound from physical intuition and interpretation based

on domain knowledge (e.g., bounds on flowrates, mass fractions, reaction rates, etc.).

Since it is possible to derive the bounds on the diagonal Hessian elements for known

thermodynamic models, the edge concave relaxation provides an attractive way towards

developing surrogate/approximate thermodynamic models with theoretically guaranteed

bounds on the prediction errors. As elaborated in the subsequent sections, this is, in fact,

one of the key ideas of the current work.
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In this work, we present a new data-driven approach for both accurate and

computationally favorable (cheap to evaluate) approximation of VLE models. Based

on functional evaluation or data-sampling of EOS models, we construct edge-concave

underestimators and edge-convex overestimators that get tighter as the number of evaluation

points increases. These estimators provide an enclosure to the original model from both

below and top over the entire domain of interest. Both the under- and overestimators

require minimal information. The requirement includes the existence of continuity and

twice differentiability of the thermodynamic model with bounded Hessian. Our method

is able to provide guaranteed bounds and improve the maximum approximation errors, all

just by sampling only at select points. The approximation relies on a MILP formulation

that exploits vertex polyhedral properties of theoretically guaranteed lower and upper

bounds on the thermodynamic models. Another advantage is that, unlike traditional full

simulation-based data-driven approaches, we do not solve nonlinear system of equations (f(x)

= 0) for sampling. Instead of sampling the feasible solutions for (f(x) = 0), we sample the

function f(x) itself and estimate x that would satisfy f(x) = 0. This eliminates the need for

computationally-demanding full-scale simulations and avoids associated convergence issues.

This paper is organized as follows: First, we introduce the overall method with theoretical

details and a description of the MILP model formulation. Then, we present a case study

on predicting the solubility of Hydrofluorocarbon (HFC) in ionic liquid (IL) systems. We

illustrate excellent solubility prediction capability of our MILP based approximation model

as compared to the original Gamma-Phi approach based thermodynamic model. Finally, we

provide some concluding remarks.

Data-driven Bounded Approximation

Consider a true simulation model:

f(x) = 0 (1)

where, x ∈ S = {xl ≤ x ≤ xu} ⊆ Rn, and f (x) : S → R is a continuous and twice

differentiable deterministic function representing physical system behavior (examples include

thermodynamic VLE model, property estimation model, conservation laws, etc). We do not

need to know the exact form of f(x) but information needs to be available about the upper

bounds on the diagonal elements of the Hessian of f(x). Our goal is to find an approximate

solution, x∗, such that f(x∗) → 0. We do this only using functional evaluations of f(x)

at different points over the domain. We postulate that x∗ can be obtained by solving the

following optimization problem:
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min
x∈S

(
U(x)− L(x)

)
(2)

s.t.

L(x) ≤ 0 (3)

U(x) ≥ 0 (4)

where, L(x) and U(x) are guaranteed the underestimator and overestimator of f(x)

respectively. For good approximation, the key is to obtain tight L(x) and U(x). As we

increase the tightness of both estimators, L(x) → f(x) and U(x) → f(x), thereby increasing

the quality of approximation as x∗ → x. In the subsequent subsections, we present the forms

of these estimators and their linear facets leading to tractable formulation and solution of

the above optimization problem.

Model Enclosure via Underestimation and Overestimation

There are several candidate estimators that have been developed in the literature. However,

most of them require gradient information over the entire domain. To that end, we adopt

the edge-concave underestimator45,47 because of its special vertex polyhedral property48 that

allows us to construct linear facets of the convex envelope solely based on evaluation of f(x)

at the domain bounds and interior points.

The mathematical form of the edge-concave underestimator, L(x), for a

twice-differentiable non-convex function f(x) is given by

L(x) = f(x)−
n∑

i=1

θLi (xi − xInt
i )2, (5)

where xInt
i is a fixed point and the parameter θLi is defined as

θLi = max

{
0,

1

2

[
∂2f

∂x2
i

]U}
(6)

Similar to the edge-concave underestimator, we propose an edge-convex overestimator,

U(x), as follows:

U(x) = f(x) +
n∑

i=1

θUi (xi − xInt
i )2 (7)
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θUi = max

{
0,

1

2

[
−∂2f

∂x2
i

]U}
(8)

Since θLi ≥ 0 and θUi ≥ 0, L(x) is a guaranteed underestimator and U(x) is a guaranteed

overestimator of f(x) as the summation term will always be non-negative.

L(x) is edge-concave where all nonedge-concavities are overpowered by the summation

term in Eq. 5. Similarly, U(x) is edge-convex where all nonedge-convexities are overpowered

by the summation term in Eq. 7.

L(xInt) = f(xInt) at the sample points xInt, irrespective of the convexity/edge-concavity

of f(x). Similarly, U(xInt) = f(xInt) at the sample points xInt.

L(x) and U(x) themselves are nonlinear and care must be taken to use the estimators in

their current form. Since we know the value of L(x) and U(x) at the domain bounds and

the simulated points only, it is possible to generate linear facets (affine relaxations of the

estimators themselves). Consider the following one-dimensional function

g(x) = x3 − 4x2 − 5x+ 16, x ∈ [−4, 6] (9)

The upper bound on the Hessian for this function over the given domain is 28. Therefore,

θL = 14. The original function and its edge-concave underestimator generated at xInt = 1

along with its linear facets that underestimate L(x) are shown in Figure 1a. Similarly, one

can generate an edge-convex overestimator at xInt = 1. It is possible to generate a unique

underestimator for each and every sample point. Multiple underestimators generated at

sample points xInt ={-2,1,4} and their linear facets are shown in Figure 1b.

Let J be the set of interior sampling points. For an n-dimensional problem, for each

point j ∈ J , one can obtain an underestimator, the linear facets of which result in |J |
number of n+1 dimensional simplices (polytopes) each having 2n + 1 vertices (2n vertices

at the domain bounds and one interior vertex at the sample point).

[Figure 1 about here]

Piecewise Linear Bounding

Let Aj be the set of vertices at domain bounds of polytope j ∈ J where each set Aj

contains 2n vertices. For example, given a 2-D problem with variables x1 and x2, for

every polytope j, we will have 22 = 4 vertices at the domain bounds, one each at
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L(xL
1 , x

L
2 ), L(x

L
1 , x

U
2 ), L(x

U
1 , x

L
2 ), L(x

U
1 , x

U
2 ). Since the number of polytopes generated is

equal to the number of interior points, we define another singleton set Bj for every j which

contains the interior (sampled) point, that is, the interior vertex of polytope j given by

L(xInt
1 , xInt

2 ) = f(xInt
1 , xInt

2 ). Therefore, the set of vertices of polytope j is the union of both

sets (Vj = Aj ∪ Bj) whose final element corresponds to the interior point.

One can obtain a data-driven underestimation by finding the polytope with the closest

underestimating linear facet to the original function. This can be achieved by solving the

following MILP problem (P-L):

P − L : max
∑
j∈J

lj (10)

s.t. ∑
j∈J

zj = 1 (11)

xi =
∑
v∈Vj

λv,jx̂j,i,v i ∈ n, j ∈ J (12)

∑
v∈Vj

λvj ,j = 1 j ∈ J (13)

0 ≤ λv,j ≤ 1 v ∈ Vj, j ∈ J (14)

lfj =
∑
v∈Vj

λv,jL(x̂v,j) j ∈ J (15)

lj ≥ lfL
j zj j ∈ J (16)

lj ≥ lfU
j zj + lfj − lfU

j j ∈ J (17)

lj ≤ lfL
j zj + lfj − lfL

j j ∈ J (18)

lj ≤ lfU
j zj j ∈ J (19)∑

v∈Vj

rv,j = |n|+ 1 j ∈ J (20)
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λv,j ≤ rv,j v ∈ Vj, j ∈ J (21)

rv,j = 1 v ∈ Bj, j ∈ J (22)∑
v∈LDVj

rv,j ≤ |n| j ∈ J (23)

where,

zj =


1 if polytope j is selected that contains the closest linear facet with the

tightest underestimation of f(x),

0 otherwise

and

rv,j =

{
1 if vertex v is selected for convex combination in polytope j,

0 otherwise.

Here, lj = lfjzj. This bilinear expression is exactly linearized as shown in Eqs. 16, 17, 18,

19. lfL
j = min

v∈Vj

[
L(x̂v,j)

]
and lfU

j = max
v∈Vj

[
L(x̂v,j)

]
and L(x̂v,j) is the value of the edge-concave

underestimator at vertex v of polytope j. Eq. 11 means that the closest linear facet should

lie on only one of the polytopes. In this formulation, all xi values are known, that is they are

the input parameters where we wish to evaluate the tightest underestimated value of f(x).

Also, x̂j,i,v is the value of variable i at vertex v of polytope j. The key variable is λv,j which

is known as the convex combination variables that refers to the ”weight” given to vertex

v of polytope j. To ensure that the convex combination results in a point that lies in the

interior of the vertex, we bound λv,j to be between 0 and 1. Eqs. 12, 13, 14, refer to the

convex combination formulation where any point in the domain can be expressed as a linear

combination of the vertices of polytope j. lfj is the value of the linear facet of polytope j

at the point of interest given by Eq. 15.

For an n-dimensional problem, the simplex generated is (n + 1) dimensional. Hence,

n + 1 linearly independent points are sufficient to determine a unique value in (n + 1)

dimensional space given by Eqs. 20, 21. It is important to include the interior vertex for

convex combination as there may exist facets not including the interior point which have

a higher value than those facets including the interior point itself resulting in unwanted

solutions. Eq. 22 is included in the model for this purpose. To that effect, we add cuts

to the model where LDVj is the set of linearly dependent vertices in polytope j and such

vertices must not be chosen at the same time for convex combination given by Eq. 23. The

closest linear facets of the function given by Eq. 9 generated using five interior (simulation)
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points at x ={-4, -2, 1, 4, 6} are shown in Figure 2. The maximum separation distance of the

closest linear underestimating facets from the original function reduces with an increasing

number of sample points as shown in Table 1.

[Figure 2 about here]

[Figure 3 about here]

[Table 1 about here]

Similarly, one can obtain a data-driven overestimation by finding the polytope with the

closest overestimating linear facet to the original function. This can be achieved by solving

the following MILP problem (P-U):

P − U : min
∑
j∈J

uj (24)

s.t. Eqs. 11 - 14

ufj =
∑
v∈Vj

λv,jU(x̂v,j) j ∈ J (25)

uj ≥ ufL
j zj j ∈ J (26)

uj ≥ ufU
j zj + ufj − ufU

j j ∈ J (27)

uj ≤ ufL
j zj + ufj − ufL

j j ∈ J (28)

uj ≤ ufU
j zj j ∈ J (29)

Eqs. 20 - 23

where,

zj =


1 if polytope j is selected that contains the closest linear facet with the

tightest overestimation of f(x),

0 otherwise

and

rv,j =

{
1 if vertex v is selected for convex combination in polytope j,

0 otherwise.
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Here, uj = ufjzj. This bilinear expression is exactly linearized as shown in Eqs. 26,

27, 28, 29. ufL
j = min

v∈Vj

[
U(x̂v,j)

]
and ufU

j = max
v∈Vj

[
U(x̂v,j)

]
and U(x̂v,j) is the value of the

edge-convex overestimator at vertex v of polytope j.

The closest underestimating and overestimating facets of Eq. 9 are shown in Figure 3.

Remark 1: In the context of global optimization, in general, if one is interested in

relaxation problems to find a lower bound and upper bound on f(x) over xL ≤ x ≤ xU ,it is

possible to do so using the MILP formulations P −L and P −U respectively. The quality of

the lower bound and upper bounds increases with increasing number of simulation (interior)

points as more interior points result in tighter facets.

MILP-based Approximate Solution to f(x) = 0

Now that we can generate linear facets for guaranteed underestimators and overestimators,

given some sampled points of a function f(x), it is possible to find an approximate solution

to the problem f(x)=0. For this purpose, we do not require gradient-based information over

the entire domain, but rather the simulated data points and θi values are sufficient.

In formulations P−L and P−U , our objective was to find the closest linear facet of L(x)

and U(x) given any point in the domain, i.e., all xi in Eq. 12 were treated as parameters,

since we decided their values. In this section, since we plan to approximate the values of

those free xi at which f(x) = 0, xi are now free variables. With this, we present an MILP

formulation (P-S) to find approximate solution of f(x) = 0 as follows:

P − S : min
J∑

j=1

(uj − lj) (30)

s.t. Eqs. 11 - 23

Eqs. 25 - 29

lfj ≤ 0 j ∈ J (31)

ufj ≥ 0 j ∈ J (32)

According to Property , since (uj−lj) = 0 at the simulated points, the formulation results

in the value of xi where the value of (uj − lj) attains a minimum subject to the constraints

Eqs. 31 and 32. That is, we get a value of xi at one of the simulated points which is closest

to the real value of xi where f(x) = 0. The feasible regions pertaining to these equations are

shown in Figure 4. It can be seen that the minimum indeed occurs an interior point closest

to the real root.
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[Figure 4 about here]

Remark 2.3.1: If one is interested only in the approximation of f , then it is a simpler

problem than what we presented in this section as we are fixing all xi. For the fixed xi,

this results in a range of values, where the real value of f(x) could be. This range decreases

with increasing number of interior points as the linear facets of both the underestimator and

overestimator converge to the real function itself.

This completes the theoretical background and the development of MILP-based

approximation with guaranteed enclosure.

Prediction of HFC Solubility in Ionic Liquids

Hydrofluorocarbons (HFCs) are commonly used as refrigerants in domestic and commercial

cooling systems. These compounds account for 2–3% of the global greenhouse gas (GHG)

emissions49 which prompted the Kigali Amendment to the Montreal Protocol to recommend

cutting the global HFC emissions by 80–85% by 2047.50 Therefore, it is desirable for these

HFCs to be recycled so that the amount of newly manufactured HFC molecules can be

minimized. However, recycling through separation of HFCs pose a significant challenge as

these are azeotropic or close-boiling mixtures that often behave as single fluids. Consequently,

conventional separation techniques, such as cryogenic distillation, when used for HFC

separation are not a viable option as they are very energy and cost-intensive and pose

significant operational challenges.50 To that end, ILs have garnered significant attention as

potential solvents for extractive distillation based separation of these azeotropic mixtures.

ILs can significantly improve the efficiency of absorption refrigeration processes. In addition,

negligible vapor pressure of ILs prevent contamination of the refrigerant gas with solvent. 51

To predict the amount of refrigerant absorbed in IL at a given temperature and pressure,

an accurate solubility model is required. Significant amount of work has been done to model

the solubility of HFC in IL, ranging from simple Henry’s law to more rigorous/empirical

Gamma-Phi and Equation of state (EOS) models.52–54 Henry’s law is computationally

inexpensive and provides a linear surrogate to solubility prediction at dilute conditions.

However, it is not applicable to systems that operate at high pressures and/or concentrated

solutions. To facilitate this, Gamma-Phi or EOS models can be used for more accurate

solubility prediction. However, the exponential terms and different form of mixing rules

make the model nonconvex and highly nonlinear. Employing these models to an optimization

framework for process synthesis purpose make it computationally expensive. Therefore,

simpler surrogate models that are able to reliably predict the solubility, and at the same
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time can be employed in superstructure based optimization of process synthesis problems,

are of paramount importance in order to provide guaranteed optimal process flowsheet for

the separation of HFC using ILs within tractable solution time.

[Figure 5 about here]

Recently, we have proposed a process synthesis, optimization, and intensification

framework named SPICE55 based on building block-based process representation.56,57

Detailed description on buildings block-based representation method can be found

elsewhere58–60. Here, we briefly describe on how the VLE separation is represented and

modeled in building block. Figure 5a, depicts a conventional two phase/flash separator,

where the inlet stream is in liquid phase. After entering the separator, vapor and liquid

phases separate depending on the phase equilibrium. The vapor phase leaves the separator

from the top and the liquid phase leaves from the bottom. For representing two phases in

building block, two blocks are required, one for each phase. The phase boundary or the

contact between two phases is represented by a common semi-restricted boundary. The

material flow between the phases takes place through this boundary and the rate of mass

transfer is determined by the VLE. Figure 5b represents such kind of VLE separation in

building block. Here, the block is right hand side is in liquid phase and the block in left

hand side is in vapor phase. The phase contact is represented by the dotted blue vertical

line. The inlet feed stream enters the VLE separator in the liquid block (right hand side

block). After separation, the vapor products leaves the separator from the left hand side

block and the liquid product leaves from the right hand side block. In similar fashion, any

two phase separation can be represented. For instance, by using two blocks we can represent

a single tray of a distillation column. To represent the whole distillation column, we need

two rows of blocks arranged is series (refer to Demirel et al.58 for details).

Calculating θ

Here, we first derive the diagonal elements of the Hessian of the HFC/IL thermodynamic

model (see Appendix A). We then use a nonlinear program (NLP) to find the upper bounds

of these Hessian elements.

The Hessian, Hf of the function f(P, T, x̃1) described in Eq. 43 is as follows:

Hf =


∂2f
∂P 2

∂2f
∂P∂T

∂2f
∂P∂x̃1

∂2f
∂T∂P

∂2f
∂T 2

∂2f
∂T∂x̃1

∂2f
∂x̃1∂P

∂2f
∂x̃1∂T

∂2f

∂x̃1
2

 (33)
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The principal diagonal elements of Hf comprise the vector, hf as follows:

hf =
[
∂2f
∂P 2

∂2f
∂T 2

∂2f

∂x̃1
2

]T
(34)

where,

∂2f

∂P 2
= − 1

P 2
(35)

∂2f

∂x̃1
2 =

1

x̃1
2 −

[
1

γ1

∂2γ1

∂x̃1
2 +

∂γ1

∂x̃1

(
− 1

γ2
1

∂γ1

∂x̃1

)]
(36)

∂2f

∂T 2
=
1

R

(∂B1

∂T
− ∂Ṽ1

∂T

)T
(
−∂P s

1

∂T

)
− (P − P s

1 )

T 2


 (37)

+
1
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1
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)
+

(
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)
T

(
−∂2P s

1
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1
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1
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(
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− 2

(
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− 1
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1
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1
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1
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(
− 1
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1
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1
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)
− 1

γ1

∂2γ1

∂T 2
− ∂γ1

∂T

(
− 1

γ2
1

∂γ1

∂T

)
Now that we have the diagonal elements of the Hessian, we use Eqs. 6 and 8 to find the

θL and θU values over the entire domain PL ≤ P ≤ PU , TL ≤ T ≤ TU , and x̃1
L ≤ x̃1 ≤ x̃1

U .

For the case of HFC/IL system we set PL = 0.01 MPa, PU = 1 MPa, TL = 280

K, TU = 375 K, x̃1
L = 0.01, x̃1

U = 1. The obtained θ values are listed in Table 2.

Interestingly, θP values are zero for both NRTL and Margules-based activity coefficient

models considered in this work. Although all θT values are not zero, most of them take

near-zero values. These indicate that the function f (Eq. 43) is already edge-concave

and near-edge-concave in terms of pressure (P ) and temperature (T ), respectively. That

is, the functions are pointwise concave and a linear surrogate model is not a good choice

but rather, we obtain the tightest linear facets of their edge-concave underestimators by

exploiting the vertex polyhedral properties of edge-concavity. This justifies the use of the

edge-concave underestimator (and edge-convex overestimator) for thermodynamic models,

since these estimators nearly match with the original function over the entire domain of P

and T for fixed x̃1, thereby minimizing the approximation error.

[Table 2 about here]
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Results

We demonstrate the benefit of the developed surrogate modeling technique in a process

synthesis platform by implementing it in SPICE. To predict the solubility of HFC in IL

([bmim][PF6]), a single tray of an extractive distillation column is simulated. First, the

solubility is determined using the Gamma-Phi approach. Afterwards, the MILP based

surrogate model is used to predict the solubility. For each of the simulation, it is considered

that the inlet flow rate of HFC is 1 mol/s and the inlet flow rate of IL is 0.1 mol/s. While

using the Gamma-Phi method based thermodynamic model, a dummy objective function is

used for solubility prediction, because all the variables are pre-defined beforehand. On the

other hand, when the MILP surrogate model is used, Eq. 30 is considered as the objective

function. We solve each of the reported simulation with ANTIGONE v1.161 in GAMS v35.1.0

environment to global optimality.

Solubility of R-134a in [bmim][PF6]

The solubility of R-134a is estimated at four different (P, T ) conditions. The solubility

prediction by the Margules model is presented in Table 3. For the prediction of solubility

using the MILP based surrogate model, four sets of interior points, i.e., 11, 21, 51, and

101 are considered. With the increasing number of interior points, the number of variables

also increase. For instance, when there are 11 interior points, the model has 166 continuous

variables, 99 binary variables and 311 equations. On the other hand, when 101 interior points

are considered, the model has 1516 continuous variables, 909 binary variables, and 2741

equations. However, with the increasing number of interior points, the solubility prediction

becomes more accurate. For instance, at 298.1 K and 0.35 MPa, the R-134a liquid phase

mol% prediction with 11 interior points has a prediction error of 9.7%. When the interior

points are increased to 101, the prediction error is reduced to only -1.1%. Similar trend

is observed at other (P, T ) conditions as well. For most cases, the prediction accuracy of

the surrogate model irrespective of the number of interior points is within acceptable range

(< 5%).

[Table 3 about here]

The solubility prediction with the NRTL model is presented in Table 4. As the NRTL

based activity coefficient model is more rigorous (hence, more complex) compared to the

Margules model, the solubility prediction with the Gamma-Phi approach is very close to the

experimental solubility data.52 However, even with the detailed nature of the NRTL based

model, the solubility prediction with our MILP based surrogate model is accurate. For some
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cases with 11 interior points, the prediction error is large, which reduces when more interior

points are used. For instance, at 323.2 K and 0.349 MPa, the prediction error with 11 interior

points is 35.5%, which reduces to only 0.7% with 101 interior points.

[Table 4 about here]

When generating isotherms at four different temperatures (283.1 K, 298.1 K, 323.2 K,

348.2 K), 101 interior points are used since the solubility prediction with 101 interior points

provides higher prediction accuracy. Figure 6a and Figure 6b show the solubility isotherms

of R-134a determined with the Margules and NRTL activity coefficient models, respectively.

For comparison purposes, in the same plot, the prediction with the MILP based surrogate

model (circle symbols) are also shown. It is observed that the prediction using MILP based

surrogate is very close to the solubility determined with the Gamma-Phi approach (solid

lines) under both activity coefficient models.

[Figure 6 about here]

Solubility of R-32 in [bmim][PF6]

Table 5 reports the solubility prediction of R-32 in [bmim][PF6] with Margules activity

coefficient model. To the best of our knowledge, the Margules binary interaction parameters

for R-32/[bmim][PF6] are not reported in the literature. Therefore, the parameters

are estimated from the experimental solubility data.52 With these estimated parameters,

the solubility prediction with the Gamma-Phi approach is found to be very close to

the experimental solubility data as shown in Table 5. Similar to R-134a/[bmim][PF6],

the solubility prediction using the MILP-based surrogate model also improves for

R-32/[bmim][PF6] system with the increasing number of interior points. For example, at

323.1 k and 0.6996 MPa, the prediction error reduces from -8.5% to -1.4% as the number

of interior points is increased from 11 to 101. It is interesting to note that, at lower

temperatures, using only 11 interior points results in less than 1% prediction error.

[Table 5 about here]

The predicted solubility of R-32 in [bmim][PF6] with NRTL activity coefficient model is

presented in Table 6. Similar to the analysis presented above for the Margules activity

coefficient model, the prediction becomes more accurate with the increasing number of

interior points. Figure 7a and Figure 7b presents the solubility isotherms of R-32 in

[bmim][PF6] at four different temperatures with Margules and NRTL activity coefficient
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model respectively. The solubility prediction with the MILP based surrogate model with

101 interior points (circle symbols) shows excellent agreement with the solubility estimated

with the Gamma-Phi based model (solid lines). The accuracy of the P-S model depends

on the number of data points used. However, increasing the number of data points would

increase the size and complexity of the P-S model, thereby requiring more time to solve it.

To study this, we further solve the P-S model for a varying number of sample points and

record the CPU times. As shown in Figure 8., the computational time grows exponentially

with number of samples. The P − S formulation was implemented in GAMS 28.2.0 in an

Intel ® Core i7-4790 CPU at 3.60 GHz running Linux. This points to the fact that one needs

to strike a balance between the accuracy and the computational burden when selecting the

number of samples.

[Table 6 about here]

[Figure 7 about here]

[Figure 8 about here]

Conclusions

The data-driven approach presented in this work is not only applicable for the approximation

of vapor liquid equilbria (VLE) models, but it also shows a promising pathway for

solving general data-driven global optimization problems. We observed that the quality

of approximation depends on several factors including the number and selection of interior

points. Future work may include the optimal choice of these interior points in conjunction

with other under- and overestimation types, such as α-BB62 and general McCormick

relaxation63, among others. The MILP formulation depends on the evaluation at the bound

vertices, which may potentially limit the applicability of the current formulation to problems

with large number of variables. Further work is needed to be able to reduce the number of

needed evaluation points. However, as noted in this work, thermodynamic problems typically

involve fewer variables which make the proposed method an attractive option for efficient

approximation of thermodynamic properties. This is highlighted by the quality performance

of the current MILP formulation in predicting the solubility of HFC refrigerants in ionic

liquids. To that end, one might also consider replacing our MILP-based P − S formulation

using other MILP- or NLP-based ANN models38. However, in the context of process

synthesis, both would result in MINLP formulations due to the presence of systems-level

discrete decisions related to the selection of unit operations and processing pathways.
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Even when there are no discrete decisions involved, it is difficult to have a generalized

conclusion on which of the approaches (the current MILP-based P − S formulation or the

ANN-based approximation) would always perform better. We anticipate that our approach

will enable a new paradigm of derivative-free optimization-based process simulation and

process optimization based on global optimization concepts. Lastly, it could be an efficient

way for accelerating computationally demanding process simulations employing complex

thermodynamic models, and further provides a means for confirming the global convergence

of simulation data-driven process optimization problems.
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Appendix A: VLE Modeling using the Gamma-Phi

Approach

VLE expression for component k in anN component system can be expressed by the following

equation64:

ykPΦk = x̃kγkP
s
k (i = 1, ..., N) (38)

where, yk is the vapor phase composition of component k, P is the total pressure of the

system, Φk is the vapor phase fugacity coefficient of component k, x̃k is the equilibrium liquid

phase composition of component k, γk is the liquid phase activity coefficient of component

k and P s
k is the saturated vapor pressure of component k at the system temperature T .

The saturated vapor pressure can be expressed by an Antoine type equation as follows:

lnP s
k = As

k −
Bs

k

T + Cs
k

(39)

where, As
k, B

s
k, and Cs

k are Antoine parameters of component k.

The vapor phase nonideality can be approximated64 by the following fugacity coefficient

expression:

Φk = exp
(Bk − Ṽk)(P − P S

k )

RT
(40)

where, Bk is the second virial coefficient of component k at system temperature T , Ṽk

is the saturated molar liquid volume of component k at system temperature T , and R is

universal gas constant.

Margules and Non Random Two Liquid (NRTL) are well known two-parameter activity

coefficient models65 to analyze experimental solubility data. For a binary mixture, these

models can be used to calculate the activity coefficient of each of the components by the

following equations:

ln γ1 =

{
[A+ 2(B − A)x̃1]x̃2

2, Margules

x̃2
2[τ21(

G21

x̃1+x̃2G21
)2 + τ12G12

(x̃2+x̃1G12)2
], NRTL

}
(41)

ln γ2 =

{
[B + 2(A− B)x̃2]x̃1

2, Margules

x̃1
2[τ12(

G12

x̃2+x̃1G12
)2 + τ21G21

(x̃1+x̃2G21)2
], NRTL

}
(42)

where, A,B, τ12, τ21 are binary interaction parameters, G12 = exp(−ατ12), G21 =

exp(−ατ21), and α is binary system specific NRTL constant.52
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To this end, we use the above described Gamma-Phi approach to predict the amount of

HFC absorbed in IL. It is assumed that, for HFC(1)/IL(2) binary system, the vapor phase

is pure HFC (y1 = 1, no IL is present,P S
2 = 0).52 Under this assumption, the Gamma-Phi

thermodynamic model simplifies to the following form52:

f(P, T, x̃1) = lnP +
(P − P s

1 )(B1 − Ṽ1)

RT
− lnP s

1 − ln x̃1 − ln γ1 (43)

Here we consider two HFC/IL binary systems, namely R-134a/[bmim][PF6] and

R-32/[bmim][PF6]. The experimental data for the second virial coefficient, B1[
cm3

mol
] of the

HFCs are obtained from Yokozeki et al.66 and the following quadratic fitted (R2 > 0.99)

expressions are used for modeling purpose:

B1(T ) =

{
−0.02T 2 + 19.33T − 4046.9, R-134a/[bmim][PF6]

−0.01T 2 + 11.51T − 2432.2, R-32/[bmim][PF6]

}
(44)

The expressions for Ṽ1[
cm3

mol
] and saturated vapor pressure, P s

1 [MPa] are obtained from

Shiflett and Yokozeki.52
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(a) Single underestimator (b) Multiple underestimators

Figure 1: (a) g(x) along with L(x) generated at xInt=1 (the interior sample point). The
linear facets underestimating L(x) are shown in solid lines. (b) Multiple interior simulated
points result in multiple underestimators. The blue crosses denote the points where the
value of the underestimators are known. Note: The underestimators generated at the bound
simulation points are not shown here.
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Figure 2: g(x) along with its closest underestimating linear facets (shown in purple). The
underestimators generated for the 5 interior points are shown in dotted grey lines.
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Figure 3: g(x) along with its closest underestimating linear facets (shown in purple) and
overestimating linear facets (shown in orange). Five simulation points are used.
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Figure 4: The MILP formulation results in the objective value attaining a minimum at the
brown square. The approximate solution to the problem f(x)=0 is the x value where this
minimum occurs.
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Figure 5: Two phase/flash separator representation; (a) conventional representation and
(b) building block-based representation.
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Figure 6: Solubility isotherms of R-134a with (a) Margules activity coefficient model and
(b) NRTL activity coefficient model. The lines represent the solubility isotherms by the
Gamma-Phi based method and the symbols (o) represents the solubility predicted by our
MILP-based surrogate approximation with 101 interior points.
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Figure 7: Solubility isotherms of R-32 with (a) Margules activity coefficient model and
(b) NRTL activity coefficient model. The lines represents the solubility isotherms by the
Gamma-Phi based method and the symbols (o) represents the solubility predicted by the
developed surrogate model with 101 interior points.
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Figure 8: CPU times with varying number of interior points.
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Table 1: Maximum separation distance of closest linear underestimating facets from g(x)
for different number of samples.

Number of interior points Maximum separation distance

5 125.19
10 50.02
20 22.47
50 8.53
100 4.16
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Table 2: Obtained θ values for the HFC(1)/IL(2) system.

Binary systems (1)/(2) Activity coefficient model θP θT θx̃1

R-134a/[bmim][PF6] Margules 0 0.00029 4999.39
R-134a/[bmim][PF6] NRTL 0 0 5000.71
R-32/[bmim][PF6] Margules 0 0.00005 5000.29
R-32/[bmim][PF6] NRTL 0 0.00009 5000.52
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Table 3: Solubility prediction of R-134a with Margules activity coefficient model.

Temperature
(K)

Pressure
(MPa)

Liquid mol% based
on Gamma-Phi

approach*

Number of
interior points

Liquid mol% based
on MILP

approximation

Objective
function

Prediction
error (%)

283.1 0.349
77.5
(72.4)

11 80.0 0 -3.3
21 75.0 0 3.2
51 78.0 0 -0.7
101 77.2 0 0.4

298.1 0.35
33.3
(32.6)

11 30.1 0.1 9.7
21 35.1 0.1 -5.3
51 34.1 0 -2.3
101 33.7 0 -1.1

323.2 0.349
15.4
(15.4)

11 20.1 0.4 -30.3
21 15.1 0.1 2.1
51 16.1 0.1 -4.4
101 15.8 0.1 -2.9

348.2 0.349
8.4
(8.5)

11 10.1 0.3 -19.2
21 10.1 0.3 -19.2
51 8.1 0.1 4.0
101 8.9 0.1 -5.6

*Bracketed values are from experimental results.52
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Table 4: Solubility prediction of R-134a with NRTL activity coefficient model.

Temperature
(K)

Pressure
(MPa)

Liquid mol% based
on Gamma-Phi

approach*

Number of
interior points

Liquid mol% based
on MILP

approximation

Objective
function

Prediction
error (%)

283.1 0.349
71.6
(72.4)

11 70.0 0 2.2
21 70.0 0 2.2
51 72.0 0 -0.6
101 71.3 0 0.4

298.1 0.35
33.6
(32.6)

11 30.1 0.2 10.5
21 35.1 0 -4.4
51 34.1 0 -1.4
101 34.0 0 -1.2

323.2 0.349
15.2
(15.4)

11 20.1 0.5 -32.2
21 15.1 0 0.7
51 16.1 0 -5.9
101 15.1 0 0.7

348.2 0.349
8.5
(8.5)

11 10.1 0.3 -18.2
21 10.1 0.3 -18.2
51 8.1 0.1 4.7
101 8.1 0.1 4.7

*Bracketed values are from experimental results.52
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Table 5: Solubility prediction of R-32 with Margules activity coefficient model.

Temperature
(K)

Pressure
(MPa)

Liquid mol% based
on Gamma-Phi

approach*

Number of
interior points

Liquid mol% based
on MILP

approximation

Objective
function

Prediction
error (%)

283.2 0.8495
79.8
(81.5)

11 80.2 0.1 -0.5
21 80.2 0.1 -0.5
51 80.2 0 -0.5
101 80.2 0 -0.5

298.1 0.9999
64.4
(62.8)

11 60.4 0.1 6.4
21 65.3 0 -1.2
51 64.4 0 0.2
101 64.4 0 0.2

323.1 0.6996
28.3
(28.5)

11 30.7 0.1 -8.5
21 30.7 0.2 -8.5
51 28.7 0 -1.4
101 28.7 0 -1.4

348.1 0.5498
14.7
(14.6)

11 10.9 0.6 25.8
21 15.8 0.1 -7.5
51 14.9 0 -1.4
101 14.9 0 -1.4

*Bracketed values are from experimental results.52
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Table 6: Solubility prediction of R-32 with NRTL activity coefficient model.

Temperature
(K)

Pressure
(MPa)

Liquid mol% based
on Gamma-Phi

approach*

Number of
interior points

Liquid mol% based
on MILP

approximation

Objective
function

Prediction
error (%)

283.2 0.8495
80.7
(81.5)

11 80.2 0 0.6
21 80.2 0 0.6
51 80.2 0 0.6
101 79.2 0 1.9

298.1 0.9999
67.1
(62.8)

11 60.4 0.1 10
21 65.4 0 2.5
51 64.4 0 4.0
101 64.4 0 4.0

323.1 0.6996
28.5
(28.5)

11 30.7 0.2 -7.7
21 30.7 0.2 -7.7
51 28.7 0 -0.7
101 28.7 0 -0.7

348.1 0.5498
14.7
(14.6)

11 10.9 0.6 25.8
21 15.8 0.1 -7.5
51 14.9 0 -1.4
101 14.9 0 -1.4

*Bracketed values are from experimental results.52
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