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Abstract—We present a neural network decision system
for determining if spectrum is occupied in a region. Given
a threshold, we wish to determine if power at a given
frequency exceeds the threshold, thus determining if that
frequency is “occupied". The emitting sources are unknown
in number, locations, and powers. The sensors, which mea-
sure the signal power, are random in number and location.
The measurements are aggregated as log-likelihood ratios
into a fixed-resolution image suitable as input to a neural
network. The network is trained to produce an occupancy
map over a wide area, even where there are no sensors, and
achieves excellent accuracy at determining occupancy. The
system is robust to the number of sensors, and occupancy
threshold in a variety of environments.

Index Terms—Spectrum occupancy map, binary deci-
sions, deep learning, robust spatial modeling

I. INTRODUCTION

We present a neural network framework for computing
spectrum decision maps over a region from a limited
number of sensor measurements. The sensors measure
signal power at a frequency and bandwidth of interest,
and are random in number and location. The number,
location, and power of the emitters are entirely unknown.
The decisions to be made are whether the signal power
at any location is above a prescribed power threshold.

Spectrum occupancy maps are enabled by low-cost
sensors such as RadioHound [1] developed at the Univer-
sity of Notre Dame. The sensor is in its third generation,
featuring an 8-bit 48 MSps A/D, on-board GPS, 45 dB
tunable gain, high sensitivity (−120 dBm noise floor),
high linearity (%13� = −20 dBm), and sub-$50 cost.

We show that even in a severely sub-sampled region
with very few such sensors, the performance of the
decision system across the whole region is excellent and
robust to the number of sensors and occupancy threshold
in a variety of environments.

The authors gratefully acknowledge joint funding by Intel and the
National Science Foundation under Grant ECCS-2002921.

Fig. 1. Neural network-based decision maps from sensor measure-
ments. The sensors measure power at a limited number of locations.
The training system (left) supervises the training with a collection of
occupancy maps and corresponding sensor measurements. The decision
system (right) aggregates sensor measurements into fixed-resolution
images that are sent to a neural network. The neural network then
produces a decision map also in the form of an image. The dashed
traces indicate information flow during training.

A. Setup

The block diagram in Fig. 1 illustrates the training
and decision systems for learning occupancy maps over
a region R. The training system (outlined with dashed
lines) stores examples of the field and occupancy maps.

Denote the set of emitters (coordinate) locations by
E = {e;}=E;=1, where =E is the number of emitters; these
quantities are generally unknown during deployment.
Similarly, denote the set of =S sensors locations by
S; S and =S are known during deployment. A sensor
at r ∈ S ⊂ R then measures the power from the
(uncorrelated) emitters as

5 (r) =
=E∑
;=1

?; 5e; (r), (1)
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Fig. 2. Fields, occupancy and decision maps in a two regions with different topographies – Top: Chicago, Bottom: Denver. Left: contours of the
altitude profiles. Color bars indicate altitudes in meters; Middle Left: fields (1) with =E = 26 and =E = 16 for Chicago and Denver respectively.
Color bars indicate power in dBm; Middle Right: occupancy maps C (G) with g = −90 dBm. The color yellow (blue) is shown at locations
where the field is larger (smaller) than g. Right: Decision maps Ĉ (G) . In these figures, =G = 128 × 128, and the regions are 655.36 km2. Note
that occupancy has very complex and irregular shapes in rough and elevated terrain.

where ?; is the (unknown) power of the ;th emitter (in
Watts), and 5e; (r) > 0 is the power measured by a
sensor from a unit-power emitter located at e; ∈ E. The
forward model 5e; (r) from any e; to r is used to train
the neural network about the propagation characteristics
of the region where it is desired to determine occupancy.
The model is used only during training; once trained, the
network can determine the occupancy map for the trained
region using only the sensor measurements, without
further information about the forward model or emitter
number or locations.

We define the sub-regions G = {G: }=G:=1 where G: ⊂
R as a collection of non-overlapping contiguous units
that cover R, where =G is the number of sub-regions.
In this work, =G is chosen such that the variation of
the field within a sub-region G: is less than 1 dB on
average, and we consider an aggressively small number
of sensors, i.e. =S � =G .

We define the occupancy in a sub-region C (G: ) as the
indicator function for whether the field, averaged over
G: , exceeds a predetermined occupancy threshold g, or

C (G: ) = 1{〈 5 〉G: ≥ g}, (2)

where 〈 5 〉G: is the mean field over G: , computed over all
r ∈ G: , and 1{·} is an indicator function that is one if its
argument is true and zero otherwise. Thus, if the average

5 (r) exceeds g in G: , then C (G: ) = 1. Otherwise, it is
zero. Typically, G rasterizes R along a regular grid and
the occupancy maps are images of fixed resolution. The
occupancy map is then defined as C (G) ≡ {C (G: )}=G:=1.

The system is trained by minimizing a loss function
between the decision maps Ĉ (G) and the occupancy
maps C (G). Central to this process is the ability of a
system to accommodate an arbitrary number of sensors.
We assume that sensors measure power over multiple
transmissions such that the effects of fading are averaged
out, and fading is therefore not explicitly modeled. We
also assume that the sensors are all tuned to the same
center frequency and bandwidth of interest.

We utilize Forsk’s Atoll [2] to obtain ground truth
occupancy maps in an outdoor setting. Atoll accounts
for the region topography, antenna patterns, heights, and
tilts, emitter powers and locations, and allows field sim-
ulations over a large region. The process of generating
and storing field and occupancy examples is described
in Section II. Topography, occupancy map examples and
their corresponding decision maps in the vicinity of two
considered cities are shown in Fig. 2.

B. Related Work

ML-based methods make decisions about occupancy
without explicitly solving for emitter locations and pow-
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Ĉ (G)

Fig. 3. Encoder-Decoder architecture. The blocks represent feature maps and their dimensions are indicated. The output of a dense block is
the concatenation of two feature maps: the output of a convolution block (yellow), and the output of an identity map (blue). The output $ (G)
passes through a Sigmoid layer and a threshold detector to produce the decisions Ĉ (G) .

ers. An early example [3] uses energy measurements of
a single sensor from a single emitter, to analyze the ac-
curacy of several machine learning algorithms; similarly
[4] uses multiple sensors and emitters with known =E
in a distance-based pathloss forward model. Both works
conclude that support vector machines (SVMs) can be
useful to provide decisions at the sensor locations.

Recent works have turned toward neural networks
for spectrum occupancy. A measurement campaign for
detecting a single 3.5GHz radar band emitter with a
single sensor [5] concludes that deep learning meth-
ods, in particular convolutional neural networks (CNNs),
show an ROC performance superior to classical methods
such as energy detection and ML-based methods such as
SVMs. Neural networks have also been used to extract
features for compressive sensing methods [6] and SVMs
[7]. The above methods do not provide decision maps,
even when multiple sensors are considered.

More recently, neural networks paired with matrix
factorization have been used in spectrum cartography to
estimate 5e; (s) and ?; for every emitter e; and sensor
location s [8]. An autoencoder is then used to complete
5e (s) over the whole region. The field is then constructed
as in (1), but an estimate of =E is required by the algo-
rithm. Deep completion autoencoders [9] and generative
adversarial networks [10] are also considered to estimate
the field 5 (r), but the experimental data is confined to
a small number of emitters =E ≤ 2, and in some cases,
to idealized forward models. Similar constraints are seen
in Bayesian approaches for estimating the field [11].

Our set-up differs from these prior efforts because,
rather than making a cartographic map from which de-
cisions can be derived, we make a decision map directly.
We allow an unlimited number emitters during training
and testing, and do not attempt to explicitly estimate
the number of emitters or their locations or powers. We
also allow for a variable number of sensors, and do not

assume any idealized forward model.
We use a convolutional neural network (CNN) with

an encoder-decoder structure, and show that it achieves
excellent performance and robustness. The network al-
lows for an arbitrary number of emitters, and sensors,
which can vary between training and testing.

C. Problem Statement and Contributions

Given a set of sensor locations S ⊂ R, and measure-
ments <(s), s ∈ S, we seek occupancy decisions Ĉ (G: )
over all G: ∈ G covering R.

We present a neural network-based decision system
with the following properties: (1) It permits any number
or distribution of sensors and emitters; (2) It produces a
decision map over G, whether or not a sensor occupies
every G: ; (3) It is robust to the number of sensors
and occupancy threshold; (4) It makes no assumptions
on the field parameters, region topography, or emitter
properties. During deployment, all sensors report their
measurements and locations, and the neural network
produces a decision map. A sequence of measurements
produces a sequence of decision maps, but temporal
prediction and modeling are not considered.

II. DECISION SYSTEM AND PERFORMANCE

Occupancy maps over a region are well-represented by
images as shown in Fig. 2. Such images present patterns
that encapsulate information about the propagation envi-
ronment, and various emitter properties such as location,
power and number. In this section, we present a CNN
with an encoder-decoder structure, and show how it is
used as part of a decision system to produce decision
maps. In particular, we describe the aggregation of sensor
measurements as soft decisions into images of fixed size
suitable as inputs to a neural network.
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A. Inputs Aggregation and Neural Network

The sensors measure power <(s) at locations s ∈ S.
Since sensors cannot be everywhere in R, a systematic
way to represent the power level at locations with no
sensors, with respect to an occupancy threshold g, is
required. A measurement made at s ∈ G: can be modeled
locally, within a sub-region G: , as

<(s) − 〈 5 〉G: = I(s) (3)

where I(s) ∼ N (0, Z2) is the error in representing the
mean field 〈 5 〉G: by a single measurement <(s) in a sub-
region G: . The model (3) is only local and the error is
generally smaller the smaller the sub-regions. The vari-
ance Z2 does not need to be known. The measurements
<(s) in (3) allow the sensors at to produce log-likelihood
ratios (LLRs) for the hypotheses H0 : C (G: ) = 0 versus
H1 : C (G: ) = 1. Since 〈 5 〉G: is unknown, this is achieved
using a generalized likelihood-ratio test resulting in

!!'(s) = (<(s) − g) |<(s) − g |
Z2 (4)

Based on (4), the LLR depends on the measurements
only through the difference <(s) − g, and therefore
sensors make the soft decisions according to

8(s) = <(s) − g. (5)

This is an intuitively pleasing metric representing the
difference between the measured sensor value and the
threshold. The larger the metric, the more sure we
are that the measurement exceeds the threshold, and
conversely. Where there are no sensors, we set 8(r) = 0
for r ∈ R\S, representing no information of whether the
field is above or below the threshold.

We then form

� (G: ) = 1
/

1
|G: ∩ S|

∑
r∈G:

8(r), (6)

which pools the measurement of all the sensors in G: ,
where |G: ∩ S| is the number of sensors contained in
G: . Since the values of 8(s) are very small (on the order
of 10−11), we introduce a normalization constant / that
scales the values to be in a range typical for the input
to a neural network. For example, choosing / such that
the image {� (G: )}=G:=1 has unit variance works well in
practice. Thus, for G: with no sensors, � (G: ) = 0.

Because we typically consider a square region, this
aggregation process can be thought of as forming an im-
age of size √=G×√=G . We are interested in constructing
a binary decision map over all the sub-regions, including
those for which � (G: ) = 0. This resembles the problem

of image inpainting [12], where incomplete images are
recovered from available pixels. CNNs commonly used
in these problems employ an encoder-decoder structure,
which allows the translation of one type of (input) image,
to another type of (output) image.

We use a CNN with an encoder-decoder structure to
produce decision maps Ĉ (G) from � (G). The network
structure is shown in Fig. 3. The number of channels
and feature map dimensions are indicated in the figure.
The input convolution layer kernels are 21× 21, and the
output layer kernels are 5× 5. The network incorporates
single layer dense blocks with a growth rate of 16,
which concatenate feature maps from previous layers
[13]. There are seven dense blocks: three for the encoder,
and four for the decoder. Transition layers succeeding
every dense block use 3 × 3 kernels with a stride of 2,
followed by 1×1 kernels to pool the channels. Transition
layers halve the number of channels. Transition layers
perform down-sampling (convolution) in the encoder,
and up-sampling (convolution transpose) in the decoder.
Batch normalization layers are used before convolutions
and ReLUs are chosen as activations. All other kernels
are 3 × 3. The total number of parameters is 29908.

B. Dataset

The emitters number, locations and powers are un-
known, and the training system has to generate examples
that realize many values of these unknowns. To generate
a single occupancy map, the number of emitters =E is
drawn according to a uniform distribution in the interval
[1, 40]. Afterwards, a set of emitters locations E is
sampled randomly over the region R. The emitter powers
are then uniformly sampled from the interval [0, 2]
Watts. The field, over R is then obtained by (1), and the
occupancy map with respect to the occupancy threshold
g is generated according to (2) over G. The datasets are
generated per region R, with fixed occupancy threshold g
and number of sensors =S , with 20480 training examples
and 1024 testing examples. The distribution of the sensor
locations S is uniform over R.

The range on =E used in the dataset is limited due
to diminishing returns of arbitrary large =E on the
occupancy maps. In our simulations, we find that 40
emitters are enough to cover more than more than 92% of
the region in Chicago at g = −90 dBm. Any larger values
of =E would not generate any richness in the occupancy
maps, and therefore during deployment, the larger values
of =E are automatically accounted for. Moreover, the
locations of the emitters used for training are generated
independently from those used for testing. This results in
a decision system that can be used to produce decision
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Fig. 4. Robustness to =S . (◦) Training and testing are matched:
=S CA08= = =S C4BC ; (�) Training and testing are mismatched:
=S CA08= = 100, =S C4BC ∈ [50, 800]. Curves (�) closely track those of
(◦) showing robustness to a wide range of =S .

maps for any =E , located anywhere, not just the values it
was trained for. All emitters use 11dBi omni-directional
0 Tilt antennas at 2100 MHz mounted 20m above ground
level. The bandwidth considered is 10 MHz.

C. Training

The region R, occupancy threshold g, and =S are fixed
during training, and the number of emitters =E is allowed
to vary. In Section III, we show that the robustness to
=E extends to =S and g. The neural network minimizes
the pixel-wise cross-entropy loss defined as

L =
1

"=G

"∑
9=1

=G∑
:=1

(
− C 9 (G: ) log

[
f($ 9 (G: ))

] −
(1 − C 9 (G: )) log

[
1 − f($ 9 (G: ))

] )
. (7)

where " is the number of training or testing examples,
depending on whether the loss is computed during train-
ing or testing, and $ 9 (·) is the neural network output
shown in Fig. 3. The training mini-batch size is set to
32, and the learning rate is 5×10−5; reduced by a factor
of 10 if the loss plateaus over a period of 10 epochs. We
train the neural network for 500 epochs to make sure that
the training is stable. The performance of the decision
system is determined by the accuracy, denoted by ^, of
classifying the sub-regions G: ∈ G averaged over sub-
regions and emitter locations, powers, and numbers, and
sensor locations drawn randomly.

As expected from the region topography, Chicago
occupancy maps are easier to learn resulting in 93.8%

test accuracy. On the other hand, the occupancy maps in
the Denver area are highly irregular, resulting in 85.2%
test accuracy. Training and testing are performed on a
single NVIDIA GeForce GTX Titan X GPU. During
deployment, the time to produce a decision map Ĉ (G)
from an input � (G) is approximately 8 ms. This value
is smaller than typical delays of wireless networks and
thus decisions can be generated in real-time as soon as
the measurements are available.

III. ROBUSTNESS: NUMBER OF SENSORS =S AND
OCCUPANCY THRESHOLD g

The usefulness of any neural network-based decision
system is determined in part by its robustness to param-
eter values for which it has not been trained. Until now,
we have matched the training and test environments as
we averaged over emitter and sensor realizations. In this
section, we examine the test accuracy of the decision
system when (1) the number of sensors =S and (2) the
occupancy threshold g have values that differ during
testing and training. We show that the decision system
is robust to a wide range of =S and g; we can train with
a single =S or g, and still do well when testing with
various =S and g.

A. Number of sensors =S

The decision system may have limited control over
the number of sensors =S and their locations, and the
number of measurements aggregated into � (G) during
training and testing could differ. As described in Section
II, the sensor locations are varied during the training so
that there are no location biases. However, we postulate
that, the test accuracy of a system trained for =S CA08=
will increase with =S C4BC > =S CA08= because more soft
decisions are aggregated per sub-region. Following the
same process described in Sections II, we generate a
test set for values of =S C4BC ∈ [50, 800]. Due to the
aggregation step (6), the size of the input � (G) remains
fixed at 128 × 128, even as =S C4BC is changed.

The test accuracy as =S C4BC varies, with =S CA08= =

=S C4BC are shown in Fig. 4. The monotonic increase in
accuracy is expected as more sensors are aggregated in
a sub-region. To verify the robustness, we plot the test
accuracy as =S C4BC varies, but =S CA08= = 100. One imme-
diately observes that the decision system’s test accuracy
is not maximized for =S C4BC = 100. Quite remarkably, the
test accuracy improves with =S C4BC without retraining,
and robustness is observed by comparing the curves
with � and ◦ markers: the test accuracy of a decision
system with fixed =S CA08= = 100 incurs a maximum
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Fig. 5. Robustness to g. (◦) Training and testing are matched: gCA08= =

gC4BC ∈ [−105, −75] dBm; (�) Training and testing are mismatched:
fixed gCA08=, but gC4BC ∈ [−105, −75] dBm. Curves (�) track those of
(◦) showing robustness to a wide range of gC4BC .

difference of approximately 2% relative to that with
matched =S CA08= = =S C4BC .

B. Occupancy Threshold g

The decision maps Ĉ (G) produced by the decision
system are always referenced to an occupancy threshold
g. We show that a system trained for a threshold gCA08=
can be used effectively for testing with gC4BC ≠ gCA08=. In
this case, the sensor soft decisions are 8(s) = <(s)−gCA08=
during training, and 8(s) = <(s) − gC4BC during testing.

The test accuracy of the decision systems as gC4BC
varies, with gCA08= = gC4BC are shown in Fig. 5 with
(◦) markers, whereas (�) markers show the accuracy as
gC4BC varies, but where gCA08= = −88 dBm in Chicago,
gCA08= = −95 dBm in Denver. The decrease in accuracy
is limited to four percent relative to that of gCA08= = gC4BC ,
showing robustness to the gC4BC .

The robustness to g allows the decision system to
predict occupancy with respect to an arbitrary gC4BC from
a single trained system. Since <(s) − gC4BC = <(s) −
gCA08= + (gCA08= − gC4BC ), the difference gCA08= − gC4BC rep-
resents a positive (negative) offset to the measurement,
adjusting for the mismatch in g. This robustness allows
us to contemplate generating contours of constant 5 (r)
for various g, but this is left as future work.

IV. CONCLUDING REMARKS AND FUTURE WORK

We presented a CNN-based decision system for pro-
ducing accurate decision maps of spectrum occupancy.
Minimal assumptions were made on the number, lo-
cation, or power of the emitters. We demonstrated a

simple LLR-based sensor aggregation step to transform
the variable number of measurements into images of
fixed size. We showed that the system is robust to the
number and locations of emitters and sensors, and the
threshold g. Future work includes studying the effects
of sensor impairments such as noise, and the effects of
fading. Finally, we note that the presented approach is
not limited to spatial occupancy, but can be used as a
general framework to make binary decisions maps on
any field quantity.
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