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Abstract

The widescale consumer adoption of hydrogen fuel cell electric vehicles (HFCEVs)

is currently hindered by the high cost of small-scale hydrogen generation and

the lack of extensive hydrogen fueling infrastructure. Natural gas-based hy-

drogen is cheaper when produced in large volumes but is also associated with

high CO2 emissions. To counter these challenges, we propose a hybrid approach

where both natural gas and renewables are integrated in a synergistic manner

using a dynamic process intensification technology that can be deployed on-

site for meeting local demands of refueling stations. The technology is based on

sorption enhanced steam methane reforming (SE-SMR) that utilizes a combina-

tion of reaction with in-situ CO2 adsorption for enhancing process modularity,

productivity and efficiency thereby outperforming conventional SMR at small

scale. We develop a mixed integer linear programming (MILP)-based optimiza-

tion framework for simultaneous design and scheduling of the SE-SMR process.

The simultaneous optimization provides a synergistic combination whereby the

renewables allow sustainable hydrogen manufacturing and the dynamic SE-SMR

allows optimal use of the intermittency of the renewables. The U.S. nationwide

analysis indicates that for futuristic renewable prices and a hydrogen produc-

tion capacity of 2 ton/day, hydrogen can be produced at 50% less cost compared

to the current cost of small-scale hydrogen generation. The city-wise analysis

with varying hydrogen demand shows that even with just 5% HFCEV market
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penetration level, hydrogen production cost less than $3/kg can be obtained

at small scales across the United States with even cheaper hydrogen for large

cities.

Keywords: Sustainable hydrogen, renewables, carbon capture, process

simulation, process optimization

1. Introduction

The transportation sector contributes significantly to the overall anthro-

pogenic carbon emissions. This sector needs to reduce its carbon emissions to

achieve the goals set in the Paris agreement for climate change. More funda-

mental technological advancements are required to develop a more sustainable

transportation sector [1]. In theory, reducing the energy intensity of vehicles by

50% and using alternate sustainable fuels such as hydrogen, fuel cells or electric

batteries, can cut down the transport carbon emissions by 90-95% [1]. However,

the transportation sector is currently the least diversified sector when compared

to other energy end-use sectors, wherein more than 90% of the energy needs are

powered by petroleum-based fuels [2]. To reduce transportation-related carbon

emissions, there are active ongoing efforts to develop sustainable technologies

and fuels [3, 4, 5]. Major efforts are focused on developing alternate fuels with

lower carbon content or developing low-carbon transportation vehicles based on

electric batteries or fuel cells [6, 7, 8].

Hydrogen is an energy carrier and a versatile feedstock with a wide range of

applications in refining and petrochemicals, automotive and aerospace, power

generation and transportation sectors. It has the highest energy content by

weight among all existing fuels [9]. Hydrogen is crucial for transition to a

low-carbon energy economy. In the transportation sector, there are several ad-

vantages of leveraging hydrogen as a fuel because of high octane number, wide

flammability range, low ignition energy, low temperature, and short refueling

time [10, 11]. A study by Colella et al [12] indicates that replacing fossil-fuel-

on-road vehicles (FFOV) with hydrogen fuel cell electic vehicles (HFCEVs) sig-
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nificantly reduces emissions. Even when compared to hybrid vehicles, HFCEVs

achieve 14-23% reduction in emission based on whether the hydrogen is pro-

duced using natural gas or wind energy. Compared to electric cars with batter-

ies, HFCEVs have much shorter refueling time, longer driving range and higher

energy density [13].

By 2030, it is expected under ambitious hydrogen fuel deployment scenario,

there will be up to 4300 large hydrogen refueling stations and 1500 material-

handling refueling stations in the United States [14]. Furthermore, by 2050, the

transportation sector is estimated to have the highest demand for hydrogen.

There are several hydrogen-based transit fleet programs to increase consumer

exposure to hydrogen-fueled vehicles and infrastructure[15]. Langford et al.

[16] identified key requirements for transitioning to an entire hydrogen-based

bus infrastructure with the help of Knoxville Area Transit system that predom-

inantly relies on diesel bus fleets. In California, several large automakers such

as Hyundai, Toyota and Honda commercially lease HFCEVs. The Government

also invests to support the development of hydrogen infrastructure to aid in

achieving California’s air quality and carbon emission targets [17].

However, the major reasons preventing the widescale adoption of HFCEVs

include the lack of extensive hydrogen refueling infrastructure, high hydrogen

refueling costs, and low consumer awareness [18]. It is estimated that the price

of hydrogen as a fuel will significantly impact the adoption of HFCEVs as it

directly impacts the mileage costs [19]. Currently, hydrogen is predominantly

produced in large-scale and centralized facilities using a combination of fossil,

renewable and nuclear energy sources. Among the existing hydrogen production

technologies, steam methane reforming (SMR) is the most economical thereby

leading to its widespread prevalence for hydrogen generation [20]. Even though

SMR-based hydrogen production from natural gas costs $2-$3/kg H2, consumers

have to pay as much as $13-$15/kg H2 at refueling stations [21, 22]. This is

due to the high hydrogen transportation and refueling station costs, which can

approximately cost $6-$8/kg H2 and $7/kg H2, respectively [19]. The cost of

small-scale hydrogen generation alone currently ranges from $5-6/kg H2, which
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is not economically viable. These costs are higher than the U.S. Department of

Energy’s cost target that includes the production and delivery costs [23].

The high hydrogen transportation cost can be effectively countered using

small-scale and on-site hydrogen production plants that can cater to the hy-

drogen requirement of a single or multiple refueling stations. Small-scale on-

site hydrogen generation has several economic and environmental advantages:

lower cost and lower carbon emissions due to transportation avoidance, smaller

capital investment, and decentralized nature of supply chains which prevents

disruptions [16]. However, compared to large-scale SMR, small-scale hydrogen

production technologies still suffer from diseconomies of scale. For instance, re-

ducing the hydrogen production from 100 ton/day to 0.5 ton/day can increase

the per-unit production cost by as much as 70% [24].

To counter the diseconomies of scaling prevalent in small-scale hydrogen

manufacturing, we utilize a small-scale, modular and compact hydrogen pro-

duction technology based on the concepts of Process Intensification (PI). PI

aims at significantly reducing the energy intensity and cost, and improving the

productivity and efficiency of chemical processes by exploring synergy between

multiple phenomena at different time and spatial scales [25, 26, 27]. The spe-

cific PI technology leveraged here is called sorption enhanced reaction process

(SERP), which combines an admixture of solid adsorbent and catalyst in an in-

tensified column to simultaneously perform chemical conversion and byproduct

removal [28, 29, 30, 31]. Fundamentally, the SERP technology is based on the

Le Chatelier’s principle which states that selective removal of reaction byprod-

uct(s) can shift reaction towards the forward direction thereby leading to higher

overall conversion. For hydrogen manufacturing, the specific SERP process we

consider is called sorption enhanced steam methane reforming (SE-SMR). In

SE-SMR, the reforming reactions are promoted through Ni-based catalyst and

the carbon dioxide byproduct is selectively removed from the reaction gas mix-

ture using hydrotalcite (HTC) chemisorbent. The resulting intensified process

has higher single-pass conversion, product purity, lower operating temperature

and enhanced heat integration compared to the traditional non-intensified SMR
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process [32].

There already exists several literature studies on modeling and simulation

of SE-SMR systems. Waldron et al [33] experimentally demonstrated a 4-step

Skarstrom-type SE-SMR process for producing hydrogen with more than 90%

purity at a much lower reaction temperature range of 450-550 ◦C compared to

conventional SMR. Xiu et al [34] studied non-isothermal, non-isobaric and non-

adiabatic nature of SE-SMR processes using a mathematical model. Their anal-

ysis indicated that hydrogen with 88% purity and traces of carbon dioxide and

carbon monoxide could be produced. Johnsen et al [35] experimentally investi-

gated a fluidized bed reactor for SE-SMR with dolomite as the carbon dioxide-

acceptor. On a dry basis, more than 98% pure hydrogen could be manufactured.

Li et al [36] developed an SE-SMR process with a calcium-based sorbent for re-

moving carbon dioxide, and performed several carbonation/calcination cycles

for investigating the longevity of the sorbent. There exist several additional

works on SE-SMR the details for which can be found in comprehensive review

papers elsewhere [37, 38, 39, 40].

Although there exists a significant amount of literature on hydrogen pro-

duction via SE-SMR, a majority of the works focuses on either improving the

materials used for removing carbon dioxide from SMR reaction gas mixture, or

optimizing the cyclic operation of SE-SMR process. Moreover, most existing

works are focused predominantly on improving single-pass methane conversion

but do not consider the carbon capture and sequestration aspect for driving

process sustainability. The objective of the current work is to develop a sus-

tainable, low-carbon and efficient hydrogen production process and pathway

while simultaneously capturing byproduct carbon dioxide to lower direct emis-

sions. For lowering indirect carbon emissions due to electricity consumption, we

incorporate renewable energy in the form of solar PV and wind turbine.

To investigate such a complex process scheme with dynamic interactions

of renewable availability, electricity market, hydrogen demand and process dy-

namics, we develop a novel multi-scale computational framework that efficiently

integrates and simultaneously solve for process design and scheduling decisions.
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Through our analysis, we answer several important questions:

� What are the hydrogen cost benchmarks achievable through the proposed

renewable-integrated SE-SMR process?

� Which renewable technology is more suitable for hydrogen manufacturing

given spatiotemporal variation in consumer hydrogen demand, renewable

availability and SE-SMR process dynamics?

� What is the effect of regional hydrogen demand on hydrogen production

cost?

� What are the effects of varying renewable, natural gas and electricity prices

on hydrogen production cost?

� What are the estimated hydrogen production costs under different HFCEV

market penetration scenarios?

The computational framework is based on a large-scale mixed integer linear

programming (MILP) model that minimizes hydrogen production cost while in-

corporating SE-SMR process design and operation constraints, power flow from

grid and renewables to process equipment and process economics. For per-

forming high-fidelity simulations of SE-SMR processes, a generalized reaction-

adsorption modeling and simulation (GRAMS) platform is utilized [30]. To

maintain the MILP nature of the problem, the complex non-linearities in SE-

SMR process dynamics and cost correlations are adequately represented by ar-

tificial neural network (ANN)-based regression models. The MILP model is

then utilized for performing several nationwide case studies to minimize hydro-

gen production cost with varying hydrogen demand and market maturity levels,

renewable availability, and electricity prices.

The article is structured as follows. Section 2 describes the sustainable

and intensified SE-SMR process, and its integration with renewable sources of

energy. The section also highlights the key advantages offered by the renewable-

integrated SE-SMR process compared to the conventional SMR process for hy-
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drogen production. Section 3 presents the overall model developed for high-

fidelity simulation and optimization of SE-SMR processes. Specifically, the sec-

tion describes the first-principles simulation model, process performance met-

rics, and the MILP model that is utilized for simultaneous design and scheduling

of the renewable-integrated SE-SMR process. Section 4 depicts the regional and

nationwide case studies to answer the questions regarding the effect of hydro-

gen production capacity scale, HFCEV market maturity, renewable availability,

electricity and natural gas prices on hydrogen production costs. The analysis

presented is vital for evaluating the cost-effectiveness of the proposed hydrogen

production pathway for meeting hydrogen fuel cost targets.

2. Renewable-Integrated Hydrogen Production Process

To ensure the sustainability of the SE-SMR process, we utilize renewable-

generated electricity for powering the energy requirement of reforming reactions,

and sequester the byproduct carbon dioxide after utilizing a sequence of com-

pression and cooling stages. As the hydrogen is derived from natural gas with

carbon sequestration, the resulting hydrogen produced is termed as blue hy-

drogen [41]. The electrification of the SE-SMR process is especially possible

due to the integration of PI to the conventional SMR process. This results in

lower temperature requirement for facilitating reforming reactions, which can be

more readily achieved through electric heating. In addition, replacing a furnace

typically employed in SMR process with electric heating significantly reduces

process scale, carbon emissions and waste streams.

Wismann et al [42] recently utilized a similar concept for developing a sus-

tainable and efficient SMR process with the use of direct resistive/ohmic heating

powered by renewable electricity. In their reactor design, renewable electricity

was utilized for directly heating the catalytic structure thereby establishing an

intimate contact between the heat source (i.e., catalyst structure) and the re-

action gas mixture. This drove the reaction closer to equilibrium as there were

no significant temperature gradients within the reactor column. There also ex-
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ists literature studies that directly or indirectly utilize renewables for fueling

the energy requirements of other endothermic reforming reactions that require

high temperature. Rieks et al [43] experimentally demonstrated an electrically

heated reformer for dry reforming of methane to produce synthesis gas from car-

bon dioxide feed. Dahl et al [44] used concentrated solar power for methane dry

reforming wherein they directly utilized solar energy in the reactor to achieve

high reaction temperatures. Several other studies also investigate storing renew-

able power through renewable-driven reforming reactors that differ in reactor

or process designs and performance characteristics [45, 46, 47, 48].

Figure 1: Proposed renewable-integrated and intensified production pathway for sustainable

manufacturing of blue hydrogen with in-situ carbon capture for meeting localized hydrogen

refueling station demands. The proposed technology utilizes steam and methane as the feed-

stock to manufacture hydrogen via intensified steam methane reforming.

The proposed renewable-integrated distributed and intensified production

pathway for manufacturing blue hydrogen from methane is shown in Figure

1. The raw material/feedstock consists of a mixture of methane and steam,

which reacts in the SE-SMR reactor module to produce hydrogen product. The

hydrogen manufactured is utilized for fulfilling the demand of refueling stations.

The SE-SMR process is especially suited for sustainable hydrogen production

due to higher single-pass reaction conversion, lower operating temperature, and
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production of high purity hydrogen thereby eliminating the need of additional

purification stages. As a byproduct of the reforming reactions, carbon dioxide

is also formed that is compressed to a high pressure for sequestration purposes.

The SE-SMR reactor is electrified and the heating requirements are met through

the electricity produced from renewables and grid. In addition, renewable energy

is utilized for steam generation via electric boiler, compression and heating

purposes. Due to intermittent nature of renewable availability, a combination

of electricity from co-located renewable farm and grid is required to satisfy

process energy requirements throughout a day.

Figure 2: SE-SMR process including auxiliary equipment for producing hydrogen from steam

and methane feed mixture.

Figure 2 depicts the overall SE-SMR process in more detail. Here, the in-

coming steam and methane gas mixture is firstly compressed and heated. Once

their temperature and pressure reach the desired reactor operating conditions,

the mixture is sent to the SE-SMR reactor which is packed with an admixture of

Ni-Al catalyst and carbon dioxide-selective HTC adsorbent. The Ni-Al catalyst

facilitates the following reforming reactions, whereas the HTC adsorbent selec-

tively removes carbon dioxide from the reaction gas mixture to push reaction
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equilibrium in the forward direction.

CH4(g) + H2O(g) −−⇀↽−− CO(g) + 3 H2(g),∆Hr,I = 206.1 kJ/mol (I)

CH4(g) + 2 H2O(g) −−⇀↽−− CO2(g) + 4 H2(g),∆Hr,II = 164.9 kJ/mol (II)

CO(g) + H2O(g) −−⇀↽−− CO2(g) + H2(g),∆Hr,III = −41.2 kJ/mol (III)

Due to limited adsorption capacity of HTC adsorbent, the SE-SMR reac-

tor undergoes a Skarstrom-type cyclic operation with periodic switching be-

tween hydrogen production and adsorbent regeneration steps. Specifically, the

SE-SMR cycle considered consists of a sequence of 4 steps which are repeated

periodically. The cycle includes (i) sorption-reaction (SR), (ii) reverse depres-

surization (rDP), (iii) reverse purge (rPurge) and (iv) pressurization (P) steps.

During the SR step, the methane and steam mixture is sent to the SE-SMR

reactor at high pressure for hydrogen production. The high purity hydrogen

product is then sent to the multi-stage compression train for storage purposes.

Once the adsorption saturation capacity of HTC is reached, the inlet methane

and steam flow is cut off, and the SE-SMR column pressure is decreased to

atmospheric pressure during rDP step. For purging out the adsorbed carbon

dioxide during the rPurge step, a mixture of 95% steam and 5% hydrogen is

utilized [49]. The carbon dioxide purged during the rPurge step is separated

and sent through the multi-stage compression train for storage and utilization

purposes. Finally, pure steam is used during the P step for pressurizing the

column back to the required pressure during SR step.

Due to the dynamic and multi-step nature of the SE-SMR cycle, the average

stepwise energy requirement of different equipment varies. For most of the

cycle duration, the SE-SMR column is either in the SR step or in the rPurge

step since the rDP and P transition steps are much shorter than the SR and

rPurge steps. Due to high steam flow rate requirement for column purging, the

overall energy requirement during the rPurge step is higher compared to the SR

step. This results in an alternating sequence between the low and high power

demand phases during a multi-cycle operation. For achieving a close to steady-

state power requirement, we consider the design and scheduling of two SE-SMR
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modules that are operated simultaneously. We further assume that the SR and

rPurge steps have equal durations, rDP and P steps are 20 s long, and one of the

modules is operated with an offset of half cycle time. Consequently, when one

module is undergoing the SR step for hydrogen production, the other module

is regenerated during rPurge step due to the offset of half cycle time. Using

this synchronous operation of two modules, we ensure that there is minimum

fluctuation of power requirement along the scheduling horizon. The effects of

using this strategy on stabilizing power requirement can be observed later in

the results section.

Figure 3: Power flow from primary and secondary energy sources to energy sinks that include

SE-SMR and auxiliary process equipment. Specifically, the primary energy sources are solar

PV and wind turbine that generate renewable electricity which, when combined with electricity

sourced from grid, is used to power the energy demands of several unit operations which include

intensified reactors, heaters, electric boilers and compressors.

The power flow from energy sources to sinks are shown in Figure 3. Since

the SE-SMR process is electrified, the major utility that powers the entire pro-

cess is electricity along with cooling water that is utilized for cooling hydrogen

and carbon dioxide outlet streams. Solar PV and wind turbine constitute the

primary sources of energy that are utilized for generating renewable electricity,

which when combined with electricity sourced from grid is used to power the

energy demands of process unit operations. Specifically, electricity is utilized to

satisfy energy requirements of SE-SMR reactors, heaters, coolers, and electric
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boilers. The major decision is, therefore, to have an optimal mix of electricity

coming from renewable sources and grid to reduce the hydrogen production cost

while maintaining the sustainability of the process.

3. Model Development

Figure 4: Overall computational framework for simultaneous design and operation of SE-SMR

process with minimum hydrogen production cost.

The overall computational framework developed for minimizing hydrogen

production cost is shown in Figure 4. There are several steps that are followed

to ensure the computational tractability of the large-scale SE-SMR design and

scheduling problem. The core of the framework is based on a MILP model

that minimizes hydrogen production cost while satisfying several sets of con-

straints on hydrogen production specifications, equipment design, and power

flow from energy sources to sinks, among others. Daily average input data

representing the dynamic variations in solar/wind availability and electricity

prices are also considered. These are typically obtained from annually reported

data [50]. To capture the nonlinear dynamics of SE-SMR processes, we develop
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an ANN-based input-output model that maps the output process performance

metrics and equipment capital costs to input design and operational decisions.

The ANN model utilizes a first-principles high-fidelity simulation model that

represents the integrated reaction and adsorption phenomena occurring inside

SE-SMR column. This section presents these constituting elements of the overall

framework in more detail.

3.1. Renewable Availability Model

As the renewable sources are available intermittently, the power generated

is less than the maximum design capacity. Therefore, to consider the renewable

intermittency, the capacity factors for solar PV and wind turbines are calculated

as follows. The capacity factors denote the utilization of renewable sources

as, for a given renewable technology, the actual power output is obtained by

multiplying capacity factor with corresponding design capacity.

The following equation is used for obtaining the capacity factor for solar PV

(cfsolart ) at time t:

cfsolart =
Ht

Href
ηarrηdc/acηwir, (1a)

where, Ht is the solar irradiance at time t, and Href = 1000 W/m2 is the

reference solar irradiance. ηarr, ηdc/ac and ηwir are respectively the efficiencies

for solar PV array, DC to AC conversion and wiring, and the product of these

efficiencies equals 93.75% [50].

For computing time-varying wind capacity factor cfwind
t , the following power

law curve is used [51]:

cfwind
t =



0, vwind
t ≤ vci,w

vwind
t

3 − vci,w3

vr,w3 − vci,w3 , vci,w ≤ vwind
t ≤ vr,w,

1, vr,w ≤ vwind
t ≤ vco,w,

0, vwind
t ≥ vco,w,

(1b)

where, vci,w = 1.5 m/s is the cut-in wind speed, vr,w = 12 m/s is the rated

wind speed, and vco,w = 25 m/s is the cut-off wind speed [50]. Below the cut-in
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wind speed and above the cut-off wind speed, the wind turbine does not produce

any power. At high wind speeds above cut-off speed, the rotor is stopped to

prevent any damage to the wind turbine. Between the cut-in and rated speed,

output power is a cubic function of wind speed. When the wind speed is between

rated and cut-off speeds, the output power is maximum and is equal to the rated

power. vwind
t is the adjusted wind speed at time t at a typical wind turbine hub

height of 80 m [52]. It is computed using the following 1/7 power law expression:

vwind
t = vwind,i

t

(
80

10

)1

7
, (1c)

where, wind speed vwind,i
t is obtained from the NREL’s database measured

at a height of 10 m [53].

3.2. High-fidelity Process Model

The model utilized for performing high-fidelity simulations of the SE-SMR

process is based on a one-dimensional, pseudo-homogeneous, non-adiabatic,

non-isothermal and non-isobaric model [30, 31, 54]. The first-principles model

consists of a set of nonlinear and algebraic partial differential equations (NAPDEs)

which represent the conservation of mass, momentum and energy. By solving

the NAPDE model, the spatiotemporal variations in chemical species concen-

tration, temperature and pressure are obtained.

The first-principles conservation equations utilized in the model are reported

in Section S1 in the Supplementary Data. Specifically, the equations consist of

component and total mass balance, heat balance, steady-state momentum bal-

ance and gas-to-solid transfer of adsorbate species. These equations are solved

simultaneously to compute several process performance metrics that include

produced hydrogen purity and productivity. The details of these metrics are

reported in Section S1 in the Supplementary Data. These constitute the overall

NAPDE model that represents the hybrid reaction-adsorption phenomena oc-

curring within SE-SMR column. The dimensional equations are appropriately

scaled to result in a dimensionless NAPDE model. Subsequently, the finite
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volume method is utilized with the upwind difference scheme to discretize the

partial differential equations in the spatial dimension. To solve the resulting set

of ordinary differential equations, we leverage the ode15s solver in MATLAB.

More information regarding the dimensionless equations, system boundary con-

ditions, discretization scheme and solution strategy can be found in Arora et al

[30].

In addition to the first-principles equations, we utilize several additional

expressions to compute the energy consumption for different equipment in the

SE-SMR process. These include the expressions for computing compressor work,

heater and cooler duty, and amount of heat provided to SE-SMR reactor. These

equations are reported in Section S2 in the Supplementary Data. Moreover, the

capital cost of the overall process consists of total installed costs of SE-SMR

process equipment, and costs of solar PV, wind turbine, electric boiler and

hydrogen storage tank. The capital cost expressions for these equipment are

reported in Section S3 in the Supplementary Data.

3.3. ANN-based Discretely Linear Surrogate Model

The high-fidelity process model consists of a complex NAPDE model which

prevents its direct application for optimization studies. In addition, the equip-

ment cost expressions have inherent non-linearities and non-convexities. To

simplify their incorporation in the overall optimization model, we develop and

train SE-SMR process and cost ANN models. Using them, a set of equivalent

MILP constraints are then incorporated in the overall optimization problem

that represent the calculations occurring within cost and process ANN models.

Both ANN models have the same form and are utilized for computing equip-

ment costs and process dynamics in the two SE-SMR modules. Within the ANN

architecture, we leverage feedforward neural networks with rectified linear unit

(ReLU)-based activation function, which are eventually converted to equivalent

low-complexity MILP models [55, 56, 57]. This is especially advantageous in

retaining the MILP nature of the broader hydrogen cost minimization problem,

and in efficiently solving the large-scale integrated process design and scheduling
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model. There are other activation functions (e.g., sigmoid, tanh, logistic) which

result in equivalent nonlinear programming (NLP) formulations. However, we

select the ReLU activation function due to its MILP nature, faster convergence,

and better generalization capabilities [58, 59]. The equivalent MILP constraints

that represent the computations occurring within ANN are reported in Section

S5 in the Supplementary Data.

During ANN model development for SE-SMR process representation, the in-

put data consists of process design and operational decisions whereas the output

data consists of hydrogen product specifications, equipment energy consump-

tion and carbon dioxide capture rate. In case of approximating nonlinear cost

expressions via MILP-based ANN surrogate models, the input data consists

of equipment design and operational variables, and the output data consists

of equipment cost values. Using the input data vector, the MILP-based ANN

equations compute the output data values. As a result of replacing SE-SMR

process and cost expressions, we can formulate the overall optimization problem

as an MILP problem. If the MILP-based ANN models are not incorporated,

we would need to utilize original expressions (e.g., nonlinear cost expressions in

Section S3) which would thereby require solving a more complex MINLP class

of problems. Therefore, converting the non-linearities in SE-SMR process and

cost correlations to equivalent MILP expressions are crucial in maintaining the

computational tractability of the resulting optimization problem.

For both SE-SMR process and cost ANN models, the input and output

variables and the respective lower and upper bounds are reported in Tables

S4-S5 in the Supplementary Data. For generating input-output data for model

training, the Latin Hypercube sampling method is utilized for generating 10000

input data points, and simulations are then performed to obtain the corre-

sponding output data. For model training, the Adam algorithm is utilized

through the Keras deep learning in python environment, and the objective dur-

ing model training is to minimize the mean square loss [60, 61]. Separate input-

output datasets with 5000 samples are generated for cross-validating the trained

ANN models. For hyperparameter optimization, the model training and cross-
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validation steps are performed for different ANN model size. Specifically, we fix

the number of hidden layers to be one and vary the number of nodes within the

hidden layer. For each of the ANN models, the training and cross-validation

accuracies are reported in Table S6 in the Supplementary Data. The ANN

models with 50 nodes in the hidden layer are selected for representing the SE-

SMR process dynamics and process equipment costs as they have the highest

cross-validation accuracy.

3.4. MILP Optimization Model

The overall optimization problem is stated as follows. Given the spatiotem-

poral variability in data for renewable availability, electricity price and con-

sumer hydrogen demand, design and schedule the overall SE-SMR process with

two synchronized modules such that the overall hydrogen production cost is

minimized while meeting the constraints on hydrogen product specifications,

equipment design, source-to-sink power flow and hydrogen storage tank. While

solving this problem, the major design and process operation decisions include

optimally sizing the reactor modules (i.e., number of tubes, bed length), de-

termining the optimal process operating conditions (i.e., reactor pressure, feed

velocity, steps duration), computing the optimal size of auxiliary equipment such

as compressors, coolers, heaters and electric boilers, and sizing the renewable

sources. In addition, the major scheduling decisions that need to be optimized

include obtaining the optimal power flow schedule from energy sources to energy

sinks, and the hydrogen production and storage schedule.

Let us consider that the set T represents the scheduling time horizon where

t ∈ T = {1, 2, ..., NT}, and NT is the number of discrete time intervals.

The SE-SMR cyclic steps are included in the set S and the index s ∈ S =

{SR, rDP, rPurge, P} represents each of the periodic cycle steps. The set M

consists of the two SE-SMR modules, and m ∈ M = {1, 2}. For defining pro-

cess design and operating variables, a master set D is defined which consists of

SE-SMR reactor design and operating variables, as well as other auxiliary equip-

ment. Therefore, d ∈ D = {P f , vf , vpurge, αad/cat, L, ntubes, fc, fh, oc, reac, cc1,
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cl1, cc2, cl2, cc3, cl3, hc1, hl1, hc2, hl2, hc3, hl3}.

Here, P f and vf are respectively the steam and methane feed pressure

and superficial velocity, vpurge is the purge feed superficial velocity, αad/cat

is the adsorbent to catalyst ratio in the SE-SMR column, L is the column

length, and ntubes is the number of tubes in an SE-SMR module. fc, fh and

oc are respectively feed compressor, feed heater and outlet cooler, reac de-

notes the SE-SMR reactor, cc1, cc2 and cc3 are the three compressors in CO2

multistage compression train, cl1, cl2 and cl3 are the three interstage coolers,

and H2 multistage compressors and coolers are denoted by hc1, hc2, hc3 and

hl1, hl2, hl3, respectively. Moreover, a set R consisting of energy sources is

defined where r ∈ R = {solar, wind, grid}. The sets N in
1 and N in

2 contain

the inputs to the two ANN models for representing SE-SMR process dynam-

ics and cost expressions, respectively, such that nin1 ∈ N in
1 = {1, 2, ..., 8} and

nin2 ∈ N in
2 = {1, 2, ..., 20}. Additionally, the sets N out

1 and N out
2 consist of

the outputs of the two ANN models, and nout1 ∈ N out
1 = {1, 2, ..., 30} and

nout2 ∈ N out
2 = {1, 2, ..., 15}.

The following three subsets are defined over D: e ∈ Ed = {fc, fh, oc, reac, cc1,

cl1, cc2, cl2, cc3, cl3, hc1, hl1, hc2, hl2, hc3, hl3} is the subset containing SE-SMR

process equipment, e ∈ EPd = {fc, fh, reac, cc1, cc2, cc3, hc1, hc2, hc3} consists

of the equipment that require electricity for meeting energy demands, and e ∈ Cd

= {oc, cl1, cl2, cl3, hl1, hl2, hl3} comprises of equipment that require cooling wa-

ter utility. In addition, a subset Renr = {solar, wind} consisting of renewable

energy sources is defined.

Using the aforementioned set definitions, the following set mappings are

defined: mapp
e,s,nout

1
denotes whether process equipment e requires energy during

step s and the process ANN output nout1 that provides the corresponding amount

of energy required, mappc
nin
1 ,nin

2
connects some of the inputs of the process and

cost ANN models, mapc1
d,nin

2
links the design d to the input of cost ANN model

nin2 , and mapc2e,nout
2

is utilized for mapping equipment e to its corresponding cost

ANN output nout2 . The elements defined in these set mappings are reported in

Table S1 in the Supplementary Data.

18



Additionally, we define several model parameters and decision variables. Ta-

ble S2 in the Supplementary Data reports all of the parameters required in

the optimization model, which majorly consist of time-varying solar and wind

capacity factors, hydrogen product demand, cost parameters for different SE-

SMR equipment and raw material feedstock, equipment efficiency, and chemical

species’ properties. A majority of the parameters have fixed values, whereas

other parameter values are dependent on geographical location, hydrogen pro-

duction capacity, or the specific optimization scenario that is performed. In

addition to these input parameters, the comprehensive list of decision variables

that need to be optimized are reported in Table S3 in the Supplementary Data.

The MILP model developed for minimizing hydrogen production cost is as

follows. The objective of the MILP model is to simultaneously optimize nu-

merous design, operational and scheduling decisions while considering the time
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horizon of one representative day with 4320 discrete time periods.

min CH2 =
φcap,d · TICT +OCT

PDmin
, (2a)

s.t. PurH2
m ≥ PH2,min, ∀m ∈M, (2b)

PDH2,total ≥ PDmin, (2c)

PDH2,total =

(∑
m∈M PDH2

m

)
NT

tcycle
, (2d)

PDH2,tp
m,t =

PDH2
m · zm,t,SR

tstepSR

, ∀m ∈M, t ∈ T , (2e)

TICT =
∑

m∈M

∑
e∈Ed

TICPE
m,e + TICR + TICB + TICH2 , (2f)

OCT = OCCH4 +OCC +OCE −RevCO2 , (2g)

TICPE
m,e = ya2m,nout

2
, ∀m ∈M, ∀(e, nout

2 ) ∈ mapc2e,nout
2
, (2h)

TICPE
m,fh = Dm,fh · cfh, ∀m ∈M, (2i)

TICR = csolar ·DR
solar + cwind ·DR

wind, (2j)

TICB =
∑

m∈M
DB

m · cB , (2k)

TICH2 = DH2 · cH2,store, (2l)

OCCH4 =

( ∑
m∈M

∑
t∈T

RCH4
m,t

)
∆t ·MWCH4 · PCH4 , (2m)

OCC =

( ∑
m∈M

∑
e∈Cd

∑
t∈T

Edem
m,e,t

)
∆t · PH2O

CpH2O ·∆TH2O
, (2n)
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OCE =

( ∑
m∈M

∑
e∈EPd

∑
t∈T

P flow
grid,m,e,t · EPt+

∑
m∈M

∑
t∈T

PBflow
grid,m,t · EPt

)
∆t

3.6× 106
, (2o)

RevCO2 =

( ∑
m∈M

∑
t∈T

ECO2
m,t

)
∆t ·MWCO2 · (PCO2 − TSCO2), (2p)

∑
r∈R

P flow
r,m,e,t · ηssr,e = Edem

m,e,t, ∀m ∈M, ∀e ∈ EPd, ∀t ∈ T , (2q)

∑
m∈M

∑
e∈EPd

P flow
solar,m,e,t +

∑
m∈M

PBflow
solar,m,t ≤ cf

solar
t ·DR

solar, ∀t ∈ T , (2r)

∑
m∈M

∑
e∈EPd

P flow
wind,m,e,t +

∑
m∈M

PBflow
wind,m,t ≤ cf

wind
t ·DR

wind, ∀t ∈ T , (2s)

∑
r∈R

PBflow
r,m,t · ηB = EBdem

m,t , ∀m ∈M, ∀t ∈ T , (2t)

EBdem
m,t = RH2O

m,t ·∆HH2O, ∀m ∈M, ∀t ∈ T , (2u)

Dm,e ≥ Edem
m,e,t, ∀m ∈M, ∀e ∈ Ed \ {reac}, ∀t ∈ T , (2v)

DB
m ≥ EBdem

m,t , ∀m ∈M, ∀t ∈ T , (2w)

SH2
1 = SH2,i, (2x)

SH2
t+1 = SH2

t +
∑

m∈M
PDH2,tp

m,t − Sup
H2
t , ∀t ∈ T \ {NT}, (2y)

SupH2
t = DemH2

t + ExH2
t , ∀t ∈ T \ {NT}, (2z)

DH2 ≥ SH2
t , ∀t ∈ T , (2aa)

− εtol · PDmin ≤ SH2
1 − S

H2

NT ≤ ε
tol · PDmin, (2ab)

PurH2
m = ya1m,1, ∀m ∈M, (2ac)

PDH2
m = ya1m,2, ∀m ∈M, (2ad)

RCH4
m,t = zm,t,SR · ya1m,3, ∀m ∈M, ∀t ∈ T , (2ae)

RH2O
m,t = zm,t,SR · ya1m,4 + zm,t,purge · ya1m,5 + zm,t,P · ya1m,6, ∀m ∈M, ∀t ∈ T ,

(2af)
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Edem
m,e,t =

∑
s∈S

∑
nout
1 ∈N out

1

zm,t,s · ya1m,nout
1
·mapp

e,s,nout
1
,

∀m ∈M, ∀e ∈ Ed, ∀t ∈ T , (2ag)

ECO2
m,t = zm,t,purge · ya1m,30, ∀m ∈M, ∀t ∈ T , (2ah)

Dm,d = xa2m,nin
2
, ∀m ∈M, ∀(d, nin

2 ) ∈ mapc1d,nin
2
, (2ai)

xa1m,nin
1

= xa2m,nin
2
, ∀m ∈M, ∀(nin1 , nin

2 ) ∈ mappc
nin
1 ,nin

2
. (2aj)

Here, Eq. 2a denotes the objective function that consists of minimizing hy-

drogen production cost CH2 . Eq. 2a utilizes a normalized daily capital recovery

factor φcap,d for computing the equivalent capital cost incurred in a day. It

should be noted that the denominator consists of minimum production capac-

ity PDmin, instead of actual production capacity PDH2,total, to maintain the

MILP nature of the problem. Eqs. 2b and 2c represent the hydrogen product

specifications in terms of minimum hydrogen product purity and production

capacity, respectively. As the objective function expression Eq. 2a has PDmin

in the denominator, the optimization model is incentivized to ensure PDH2,total

approximately equals PDmin to reduce overall costs. The overall amount of

hydrogen produced during the scheduling horizon is calculated using Eq. 2d,

whereas Eq. 2e computes the amount of hydrogen produced by module m at

time t.

Eq. 2f computes the total installed cost TICT , which includes the costs

of SE-SMR process equipment, co-located renewable farm, electric boiler and

hydrogen storage tank. The total operating cost OCT is calculated using Eq.

2g while considering the daily incurred costs of methane raw material, cooling

utility, electricity and the revenue generated by carbon capture and utilization

tax credit. The total installed costs for each individual equipment are calculated

using Eqs. 2h-2l. Specifically, Eq. 2h computes the cost of SE-SMR process

equipment by utilizing cost ANN model output ya2m,nout
2

. The electric feed heater

cost is calculated using Eq. 2i. The costs of co-located renewable farm and elec-

tric boiler are obtained using Eqs. 2j and 2k, respectively. Eq. 2l computes the

total installed cost of hydrogen storage tank. The individual cost components
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for calculating daily operating costs and revenues are shown in Eqs. 2m-2p.

Eqs. 2m and 2n denote the price of raw material methane and cooling water

utility, respectively. The electricity price incurred during scheduling horizon is

computed using Eq. 2o. Eq. 2p represents the revenue generated in terms of

carbon capture and utilization tax credit minus the carbon transportation and

storage costs.

The constraints Eq. 2q-2t denote the electricity power flow from energy

sources to sinks. Particularly, Eq. 2q ensures that the energy demand for each

equipment e in module m is met by energy sources throughout the scheduling

horizon. Eqs. 2r and 2s constrain the maximum amount of power that can be

withdrawn from solar and wind sources, respectively, by utlizing time-varying

capacity factor values. The energy demand for electric boiler is met using Eq.

2t, and Eq. 2u computes the amount of energy required by electric boiler for

stream generation. The design variables for equipment powered by electricity

are obtained using Eqs. 2v-2w wherein their design capacity equals maximum

power demand.

The design and operation of hydrogen storage tank is modeled using Eqs.

2x-2ab. Eq. 2x denotes the initial level of hydrogen in the storage tank. The

hydrogen mass balance equation for the storage tank is represented by Eq.

2y. The amount of hydrogen produced by both modules is sent to the storage

tank, and the incoming hydrogen is either accumulated in the tank or utilized

for meeting consumer demand. An additional positive term, ExH2
t , is defined

as a slack variable for balancing the hydrogen supply and demand mismatch

(Eq. 2z). In physical terms, ExH2
t denotes the excess hydrogen supply that

is discarded due to lack of enough demand. Eq. 2aa computes the design

capacity of storage tank, which is the maximum level of hydrogen stored. As

the scheduling horizon consists of one representative day, the cyclic constraint

Eq. 2ab is enforced such that the initial and final hydrogen levels are within

a small tolerance. This ensures the validity of the overall process schedule for

consecutive days of operation.

The input and output variables of process and cost ANN models are embed-
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ded in the optimization problem through Eqs. 2ac-2aj. The hydrogen product

purity and production rate are assigned using Eqs. 2ac and 2ad, respectively.

The respective amounts of methane and steam consumed are calculated via Eqs.

2ae and 2af. The time-varying energy demand for SE-SMR process equipment

is obtained using Eq. 2ag. In addition, Eq. 2ah computes the amount of carbon

dioxide emitted during process purge steps. The equipment design variables and

input variables to the cost ANN model are connected through Eq. 2ai. Finally,

Eq. 2aj connects the input variables that are shared among the process and

cost ANN models.

4. Case Studies

In this section, we demonstrate the proposed renewable-integrated hydrogen

production process and the MILP-based optimization framework using regional

and nationwide case studies for satisfying local hydrogen refueling demands.

The analysis is firstly presented for Oakland, CA and later extended to a na-

tionwide case study to investigate the impact of renewable availability, hydrogen

demand and electricity price on hydrogen production costs.

4.1. Single Location Analysis: Oakland, CA

To demonstrate the design and scheduling framework, we utilize the renew-

able availability data for the Oakland city in California. We select this particular

location as it has high availability of both solar and wind energy, with an av-

erage solar irradiance of 193.1 W/m2 and an average wind speed of 4 m/s. In

addition, the Oakland city also has localized hydrogen demand for transporta-

tion which is currently met through a retail hydrogen refueling station. The

existing Oakland hydrogen refueling station is one of the ten stations that serve

the San Francisco Bay Area.

To minimize the hydrogen production cost, we solve the MILP-based op-

timization model reported in Eqs. 2a-2aj, along with process and cost ANN

model expressions reported in the Supplementary Data. The MILP problem
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is programmed in GAMS 31.1 environment, and is solved using CPLEX 12.10

solver. All the computations are performed on a 2.5 GHz Intel Xeon CPU E5-

2670 v2 processor. The overall model consists of 455,077 continuous decision

variables, 200 binary decision variables, and 429,100 constraints. With a maxi-

mum running time of 1800 s, the CPLEX solver can obtain the globally optimal

solution with an optimality gap of less than 0.1%.

The formulated optimization model assumes a 4-step SE-SMR cycle with

fixed durations for each of the processing steps. To optimize the SE-SMR cycle

step durations for SR and rPurge steps, we perform several optimization runs

wherein the duration of these steps are varied in the range of 60 to 260 s in

increments of 20 s. However, the duration of rDP and P steps are fixed to 20

s. Overall, this results in a set of 13 optimization runs as the step durations

for SR and rPurge are assumed to be the same. In addition, the scaled in-

puts to the trained ANN models are varied between -0.9 and 0.9 such that the

ends of the input space are removed. The revised bounds help in retaining the

cross-validation accuracy as the models tend to predict poorly near input space

boundaries.

To model the variation of demand during a representative day of the hydro-

gen fueling station, we refer to the recent study of Mansoor et al. [62] wherein

they report a typical hourly hydrogen demand profile for a weekday to satisfy

the fuel demands of an entire hydrogen fuel cell-powered fleet. Their analysis

indicates that there is a high hydrogen demand during the day with 3 demand

peaks in between 7 am and 1 pm. Conversely, there is a low hydrogen demand

during the late evening and night hours. Using their study, we qualitatively

utilize the temporal variation profile in the hydrogen demand and normalize it

appropriately for producing 2 ton/day of hydrogen. Such a production capacity

value is in accordance with the reported results for a realistic hydrogen refueling

station operation [63]. Additionally, we obtain the daily variation profile of solar

and wind energy availability by respectively computing the hourly average of

solar irradiance and wind speed for each of the 24 hours using the yearly data

from the NREL’s National Solar Radiation Database (NSRDB). The database
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Figure 5: Daily input time series data for Oakland, CA denoting (a) solar PV capacity factor,

(b) wind turbine capacity factor, (c) normalized hydrogen demand and (d) electricity price

for each time period in the scheduling horizon.

includes the typical hourly-discretized weather conditions for 1020 weather sta-

tions, which has been computed using the historical observations for the last 30

years. Here, we specifically utilize the available weather data for Oakland, CA.

To obtain the variation of electricity price during the day, we obtain the hourly

average electricity price for each of the 24 hours using the yearly electricity

data [50]. The resulting time series input data for solar and wind availability,

hydrogen demand and electricity price for Oakland are shown in Figure 5.
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Figure 6: Hydrogen production cost breakdown for Oakland, CA with a production capacity

of 0.5 ton/day and renewable price of $300/kW.

Using these input data profiles for a representative day, we solve the opti-

mization problem for a futuristic scenario wherein renewables price has reduced

to $300/kW. Such an analysis is useful in identifying the utilization of renewables

under the best case scenario with the lowest renewables cost. The minimum hy-

drogen production cost obtained is $2.73/kg, and the breakdown of this cost

is shown in Figure 6. It can be observed that the major cost components in-

clude the capital costs of SE-SMR process equipment and renewable farm with

an overall cost contribution of 60.2%. The price of raw material methane also

contributes significantly to the overall cost, with its share being 17.2%. The

installation of renewable farm reduces the operating cost of purchasing electric-

ity from the grid, which contributes 19.7% to the overall cost. As the design

capacity of the hydrogen storage tank is optimized, it only has 2.8% share in

the total cost.

The optimal results show that installing a co-located renewable farm, con-

sisting of both wind and solar, is economical with a respective design capacity

of 3622 and 8979 kW. The power flow schedule from renewables and grid to

satisfy SE-SMR process energy demands is shown in Figure 7 for some specific

hours in the day. On the y axis, the figure shows the total power requirement
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Figure 7: Optimal power flow schedule from electricity grid and renewables to meet SE-SMR

process energy requirements for the representative day in Oakland, CA. The figure depicts

the contribution of different energy sources during 4 representative hours in the day: (a) 6:00

- 7:00 am, (b) 12:00 - 1:00 pm, (c) 6:00 - 7:00 pm and (d) 12:00 - 1:00 am.
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during each time period, and the contribution of energy sources to meet power

demands. The total power requirement varies along the scheduling horizon due

to multi-step operation of the SE-SMR process, and difference in the sizes of the

two SE-SMR modules that are synchronously operated. As a fixed SE-SMR cy-

cle is operated periodically, process power demands also showcase a periodically

repeating pattern. During morning, late-evening and night hours, a majority of

power demand is satisfied by electricity (sourced from grid) and wind sources

as there is little solar energy available. However, during afternoon hours, the

SE-SMR process runs almost entirely on renewable energy sources with grid

satisfying only a small fraction of power demand. Overall, the grid, wind and

solar sources meet 50.7%, 35% and 14.3% of the daily power demands of the

SE-SMR process, respectively.

The optimal equipment design and operating variables for the 2 SE-SMR

modules are reported in Table 1. Additionally, the analysis shows that the op-

timal SE-SMR cycle time is 280 seconds with SR and rPurge steps being 120

seconds long. The hydrogen production capacity for the two modules are ap-

proximately 4.2 and 2.3 kg H2/cycle, which collectively result in a combined

production capacity of 2 ton/day. The two modules are operated at a mod-

erately high step 1 pressure of 177.8 and 154 kPa to balance the reaction and

adsorption phenomena. This is because high pressure favors the adsorption of

carbon dioxide on HTC adsorbent whereas reforming reactions are favored at

low pressure. For both the modules, the optimizer selects the lowest possible

purge velocity of 0.06 m/s, which leads to a lower energy consumption by the

electric boiler for steam generation. A high adsorbent to catalyst ratio of 4.52

and 4.8 is selected in both the modules for increasing the in-situ capture of

carbon dioxide to drive the reforming reactions towards hydrogen production.

It can also be observed that for many of the compressors and coolers, the lowest

possible design duty of 50 kW is obtained. Even though it leads to equipment

overdesign, we do not reduce the lower bound on compressor and cooler duties

to retain the accuracy of ANN models.
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Table 1: Optimal equipment design and operating variables for the two SE-SMR modules.

Decision variable Unit Module 1 Module 2

Electric boiler design duty kW 1559.6 932.2

Step 1 feed pressure Pa 177848.9 154013.7

Step 1 feed superficial velocity m/s 0.034 0.026

Step 3 feed superficial velocity m/s 0.06 0.06

Adsorbent to catalyst ratio - 4.52 4.8

Bed length m 1.16 0.81

Number of tubes - 3522 2161

Feed compressor design capacity kW 106.1 50

Feed heater design capacity kW 503.2 290.4

Outlet cooler design duty kW 1936.5 1250

CO2 compressor 1 design capacity kW 50 50

CO2 cooler 1 design duty kW 739.1 389.2

CO2 compressor 2 design capacity kW 50 50

CO2 cooler 2 design duty kW 50 50

CO2 compressor 3 design capacity kW 50 50

CO2 cooler 3 design duty kW 50 50

H2 compressor 1 design capacity kW 129 62.8

H2 cooler 1 design duty kW 306.7 300.8

H2 compressor 2 design capacity kW 110.8 50

H2 cooler 2 design duty kW 107.3 50

H2 compressor 3 design capacity kW 110.8 50

H2 cooler 3 design duty kW 320.4 328.7

To meet the time-varying hydrogen demand, Figure 8 shows the hydrogen

supply schedule along with the level of hydrogen in the storage tank. The

hydrogen supply is equal to the sum of hydrogen demand met and the amount

of hydrogen discarded. The discarded hydrogen variable is introduced to act as

a slack variable, which makes it relatively easier to satisfy the cyclic constraint
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Figure 8: Optimal schedule of hydrogen supply and hydrogen storage tank level during the

representative day in Oakland, CA.

on hydrogen tank level. In the beginning of the day, the hydrogen tank level

is at 671.1 kg, and the cyclic constraint ensures that the tank level is the same

at the end of the day. The SE-SMR modules are operated continuously during

the entire scheduling horizon, thereby leading to a continuous production of

hydrogen. During the evening and late-night hours, there is little hydrogen

demand and a majority of the hydrogen manufactured is stored in the tank. The

spike in hydrogen demand during the day hours is met through a combination of

stored hydrogen along with the hydrogen produced in real time. The maximum

hydrogen tank level of 1051.3 kg is obtained during the morning hours, which

is also the hydrogen storage tank size. This is approximately half the amount

of daily hydrogen demand thereby resulting in lower hydrogen storage costs.

A small amount of hydrogen of 0.6 kg is discarded during the overall schedule.

This possibly results in meeting the cyclic constraint condition, and/or reducing

the size of the hydrogen storage tank.

The amount of carbon dioxide produced and captured depends on several

factors including the amount of hydrogen produced by the SE-SMR reactor

module, process operating conditions and reactor design. For this case study,
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there is approximately 11.4 ton/day of carbon dioxide captured. This translates

to 5.7 ton of carbon dioxide captured for every ton of hydrogen manufactured.

There could be a variety of uses of the captured carbon dioxide as a raw material

feedstock for manufacturing value-added fuels and chemicals, as an enhanced

oil recovery agent and in the food and beverage industry [64, 65, 66, 67].

To ensure the validity of the optimization results obtained, we perform

cross-validation by comparing the ANN model predictions with those of the

high-fidelity model. In our experience, it is especially important to perform

the validation at the optimal solution obtained as it often tends to have large

cross-validation error. Figure S1 in the Supplementary Data shows the cross-

validation plots for both SE-SMR process and cost ANN models. In case of SE-

SMR model validation, a wide range of output values are obtained with different

units. Therefore, the output magnitude has been reported in Figure S1a. For

validating cost predictions, Figure S1b compares the output cost levels. There is

an excellent agreement between the predictions of ANN and high-fidelity mod-

els, thereby validating the ANN models employed in the broader optimization

problem.

4.2. Nationwide Analysis

There is a large variation is spatiotemporal availability of renewables across

the United States. This can lead to significant variations in hydrogen production

costs while utilizing renewable-integrated sustainable technologies. Figure 9

shows the variation in average solar irradiance and wind speed across the nation.

The average weather data are obtained using the hourly-discretized weather

conditions for 1020 weather stations from the NREL’s NSRDB database. We can

observe a large spatial variation in the availability of solar and wind resources.

Particularly, there is abundant solar energy available in the southwestern states

of California, Arizona, New Mexico, and Nevada. However, the northeastern

region suffers from low solar energy availability. Similarly, wind energy also

has a large variation with midwestern states of North Dakota, South Dakota,

Nebraska, Kansas, and Oklahoma having the highest wind availability.
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Figure 9: Spatial variation of average (a) solar irradiance and (b) wind speed across the United

States. For obtaining these figures, we specifically refer to the solar and wind availability in

the NREL’s National Solar Radiation Database (NSRDB) for 1020 weather stations. We

compute the average of hourly solar irradiance and wind speed to depict the spatial variation

in availability of these resources.

In addition to the spatial variations shown in weather data in Figure 9, there

exists large temporal variations in their availability as well. For instance, there

is no solar availability during night whereas wind speed is also significantly

affected by time of day. The solar and wind availability also show variable

seasonal patterns. Consequently, it necessitates the need for an optimization-

based analysis that considers the spatiotemporal availability of wind and solar

energy and determines the optimal renewable farm size for sustainable hydrogen

manufacturing.

4.2.1. Effect of process scale

To this end, we perform an extensive nationwide analysis to determine the

minimum hydrogen production cost at several different locations while meeting

the hydrogen purity and production capacity constraints. Specifically, the op-

timization runs are performed for the 1020 sites in the United States for two

different production capacity levels of 0.5 and 2 ton/day. For each location,

the daily average for solar and wind availability is calculated using the yearly

weather data which are obtained from the NREL’s database. The daily hydro-
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gen demand profile follows the same pattern as reported in Mansoor et al [62]

with high demand during the day hours, and low demand during the evening

and night hours. Even though the hydrogen demand pattern utilized is the

same, the demand data are accordingly normalized to result in the overall daily

production capacities of 0.5 and 2 ton/day. In addition, 13 individual optimiza-

tion runs are performed with varying SR and rPurge step durations between 60

and 260 seconds such that the optimal step and cycle durations can be obtained.

The future estimated renewable price of $300/kW is utilized to obtain the lowest

possible hydrogen production cost. Later, we also perform a sensitivity study to

determine the effects of varying renewables price on hydrogen production cost.

The minimum hydrogen production cost obtained for the two different daily

production capacity scenarios are shown in Figure 10. Additionally, Figure 10a-

b show the optimal solar and wind farm design capacity with minimum daily

production capacity of 0.5 ton/day, whereas Figure 10c-d denote the results

for the 2 ton/day production capacity scenario. Due to the limitations of the

software used (geopandas in python environment), the states of Alaska and

Hawaii are excluded from the visualizations. It is also acceptable due to their

remoteness and low demand which prevents large-scale utilization of renewable

resources despite their abundant availability.

Due to the economies of scaling, the production scale of the process has a

significant impact on the hydrogen production cost. Increasing the production

scale from 0.5 ton/day to 2 ton/day leads to a decrease in the range of hydrogen

production cost from $3.6-$4.2/kg H2 to $2-$2.9/kg H2, respectively, with the

average production cost decreasing from $4.1 kg/H2 to $2.7 kg/H2. Additionally,

for each of the two scenarios, we observe a variation in the hydrogen production

cost across the United States due to variability in the availability of wind and

solar energy. For instance, in the case of 2 ton/day production capacity, the

average hydrogen production cost in the state of Kansas is $2.5/kg H2, whereas

it increases to $2.9/kg H2 for the state of Maine.

There also exists a significant variation in the co-located renewable farm size

depending on the geographical location and production scale of the process. For
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Figure 10: Minimum hydrogen production cost obtained for daily production capacity of (a-b)

0.5 ton/day and (c-d) 2 ton/day. The subfigures a and c show the optimal solar PV design

capacity, and the subfigures b and d depict the optimal wind turbine size.

the 0.5 ton/day case, out of 1020 locations, solar PV is selected for 582 locations

where the installed capacity varies in the range of 7.3-1666 kW and the average

solar farm size is 1231.4 kW. On the other hand, wind turbines are selected

for 447 locations. Typically, wind turbines size is bigger compared to solar PV

with an average size of 2129 kW and range of 104.6-3463.9 kW. Both solar PV

and wind turbine are selected for 45 locations. Compared to the results for the

0.5 ton/day case, the installed capacities of solar PV and wind turbine for 2

ton/day scenario are larger with an average capacity of 1931.4 kW and 3050.9
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kW, respectively. The wind turbines are typically selected in midwestern and

northeastern regions whereas solar PV dominates in the eastern, southeastern,

and western regions (Figure 10).
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Figure 11: Correlation of (a) solar PV and (b) wind turbine installed capacities with their

respective average capacity factors for the 0.5 ton/day production capacity scenario.

For the 1020 locations, the correlation between the optimal installed capac-

ities of renewables with their average capacity factors is shown in Figure 11 for

the 0.5 ton/day production capacity scenario. It can be observed that there

is an inverse relation between the two values such that increasing the average

capacity factor reduces the installed capacity of solar PV and wind turbine.

This is because the total power generated by a renewable source is obtained

by multiplying capacity factor with installed capacity. Therefore, to obtain a

specific amount of power, a lower installed capacity could be compensated by a

higher capacity factor. The observations obtained here are in accordance with

other studies reported in the literature that utilize renewables for hydrogen pro-

duction [68]. For a few of the locations, we see some of the points in Figure

11 are significantly lower than the downward trending linear line. For instance,

there are several locations where the solar PV installed capacity is lower than

900 kW whereas most of the locations have installed capacity in the range of

1000-1500 kW. This occurs due to the simultaneous selection of solar PV and

wind turbine. Therefore, for the locations with lower than 900 kW solar PV
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size, wind turbine is selected that also adds to the overall renewable generation

capacity. A similar trend is observed for the locations with lower wind turbine

capacities (<750 kW), wherein solar PV is also selected to compensate and add

to the renewable-generated power.

To further investigate, we perform another set of optimization runs where

only solar or wind can be selected. This avoids the simultaneous selection of solar

and wind, and therefore helps us to better understand the absolute correlation

between optimal installed capacities and average capacity factors if only one

renewable technology is available. The correlations obtained are shown in Figure

S2 in the Supplementary Data. For most of the locations, it is observed that the

points approximately lie on the inversely-correlated linear line. This is because

only one of the two renewable technologies can be selected for power generation

which results in a higher installed capacity of individual renewable farms. This

also explains the results obtained in Figure 11 where simultaneous selection

of solar and wind technologies reduced their individual installed capacities for

some locations. Conversely, in Figure S2, higher installed capacities of solar PV

and wind turbine are obtained. On the other hand, there are a few locations

with relatively lower renewable installed capacities. For instance, in case of

solar PV, there are 4 locations with installed capacity less than 1150 kW and

capacity factor less than 13%. In such cases, the selection of solar (or wind)

does not significantly reduce the hydrogen production cost.

4.2.2. Effect of price of renewables

The previous analysis assumes the lowest price of renewables ($300/kW)

that some studies estimate could be achieved in 2050s [50]. However, in the near

future, the price of renewables will be higher. To investigate these scenarios, we

perform a sensitivity analysis to obtain the effect of renewable price on hydrogen

production cost and renewable farm size. The analysis is performed for three

different solar PV and wind turbine prices of $300, $600 and $900/kW. For

higher prices, it is observed that no renewables are selected and the SE-SMR

process is powered entirely by electricity grid. Therefore, we select $900/kW
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as the maximum renewable price. For each of the three cases, the optimization

studies are performed for the 1020 locations while meeting a target production

capacity of 1 ton/day.
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Figure 12: Hydrogen production cost and wind farm design capacities for varying renewable

price of (a) $300, (b) $600 and (c) $900 per kW. This figure specifically shows the wind farm

design capacities as it is predominantly selected with larger design capacities compared to

solar PV.

The resulting hydrogen production cost levels obtained are shown in Figure

12. Increasing renewable prices reduces the number of selected wind farms and

the wind turbine design capacities and increases the hydrogen production cost.

To illustrate, in the case of $300/kW renewable price, wind turbines are selected

for 445 locations with an average design capacity of 6024 kW. However, when

the renewable price is increased to $600/kW, the number of locations where
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wind turbines are selected reduces to 109 with an average design capacity of

3335 kW. Further decreasing the renewable price to $900/kW leads to only

3 locations with selected wind turbines. Figure 12 does not show the solar

farm design capacities as solar is not selected for the $600/kW and $900/kW

renewable price cases. However, for the $300/kW case, solar PV size in the

range of 25.3-4821.3 kW is selected for 610 locations. As smaller renewable

farms are selected for higher renewable prices, the hydrogen production cost

does not vary much. For the three renewable price levels of $300, $600 and $900

per kW investigated here, the respective average hydrogen production cost is

$3.03, $3.22 and $3.23 per kg H2. It should be particularly noted that the results

obtained here are contingent upon the input electricity price profile. If the price

of electricity provided by grid has higher cost, the installation capacity of solar

PV and wind turbine will increase as it will be cheaper to produce power via

co-located renewable farm.

4.2.3. Sensitivity analysis with varying prices of renewables, electricity and methane

Considering the existing and future variation in prices of solar PV and wind

turbine, electricity, and methane, we perform a sensitivity analysis to investigate

the effect of these varying input prices on hydrogen production cost. In the

previous analysis, we imposed a time-varying electricity price profile. However,

in the sensitivity analysis performed here, constant electricity price is assumed

throughout the scheduling horizon. The case study on Oakland, CA is extended

with a combination of the following input data values: (i) csolar = cwind = $300,

$450, $600, ..., $1500 per kW, (ii) EPt = $10, $50, $100, ..., $500 per MWh

electricity for all t ∈ T and (iii) PCH4 = $0.1, $0.3 and $0.5 per kg methane.

The bounds on these input data ranges are selected based on several literature

studies [69, 70, 71, 72, 73, 74, 50]. To minimize the number of optimization runs,

the cycle step durations are fixed to the previously-obtained optimal values of

120 s for SR and rPurge steps and 20 s for rDP and P steps. Overall, this results

in a total of 297 optimization runs.

For a methane price of $0.3/kg and a daily hydrogen production capacity of
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Figure 13: Sensitivity analysis results depicting the effect of varying renewable and electric-

ity prices on (a) hydrogen production cost and (b) renewable technology selected for power

generation with PCH4 = $0.3/kg and a production capacity of 0.5 ton/day for Oakland, CA.

500 kg/day, a production cost in the range $4.1-12.2/kg H2 is observed. The

variation of hydrogen production cost with varying electricity and renewables

prices is shown through a heatmap in Figure 13a. In addition, Figure 13b

shows the renewable technology/technologies selected during the analysis. The

optimizer does not select either solar or wind energy in the entire renewables

price range for an electricity price of $10/MWh. However, when electricity and

renewables price vary between $50-100/MWh and $600-1350/kW, respectively,

there exists an intersection of 3 different regions where only solar, only wind or

both solar and wind technologies are selected. For an electricity price higher

than $100/MWh, only the wind turbine technology is selected regardless of the

price of renewables. Furthermore, the sensitivity results presented in Figure 13

do not change qualitatively with varying methane feedstock price. However,

increasing methane price results in higher hydrogen production cost. To illus-

trate, increasing the methane price from $0.1 to $0.5 per kg results in increasing

the range of hydrogen production cost from $3.6-11.7 to $4.6-12.7 per kg H2. It

should be further noted that these results are only obtained for Oakland, CA.

A similar analysis for another location with different solar and wind availability

may lead to different results from what is shown here.
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4.3. Effect of City-wise Hydrogen Demand on Cost

The previous analysis assumed a fixed daily hydrogen production capacity

and demand across the United States. However, there will exist a significant

variation in the amount of hydrogen required in different cities and at different

refueling stations. The major factors that can impact the hydrogen demand

include city population, daily average commute distances and number of vehicles

owned per person. In addition, another factor that needs to be analyzed more

extensively is the penetration of hydrogen vehicles. Depending on the maturity

of HFCEV markets, the hydrogen demand can vary significantly. Therefore,

it becomes imperative to consider the city-wise variation in hydrogen demand

in the overall nationwide analysis under different HFCEV market penetration

scenarios.

To perform this analysis, we refer to the hydrogen delivery scenario analysis

model (HDSAM) developed and maintained by the Argonne National Labora-

tory [75]. Although the HDSAM tool is developed to estimate and compare the

hydrogen refueling cost under different transportation and market scenarios,

we leverage it for estimating the daily hydrogen demand at different locations

across the United States. HDSAM takes several inputs for estimating hydrogen

fuel demand including city population, average commute distance and number

of vehicles owned per person. Therefore, HDSAM considers both the popula-

tion and economic prosperity of a region to estimate hydrogen demand. For

our study, we obtain the daily hydrogen demand data for 448 urban cities un-

der 4 different HFCEV market penetration levels of 1%, 5%, 10% and 20%

(Figure 14). To simplify the analysis, for a single city, it is assumed that a

large renewable-integrated SE-SMR plant serves multiple refueling stations in

the city and the maximum production capacity of the individual SE-SMR plant

is 8 ton/day. If the city-wide hydrogen demand exceeds 8 ton/day, multiple

SE-SMR plants are developed to satisfy the hydrogen demand for the refueling

stations in the city. The number of SE-SMR plants is obtained by dividing the

city-wide daily hydrogen demand by 8 ton/day and applying the ceiling function

on the resulting number. The production capacity for each of those SE-SMR
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Figure 14: City-wise variation in daily hydrogen demand for different penetration levels of

hydrogen vehicles: (a) 1%, (b) 5%, (c) 10% and (d) 20%. The data visualized here is obtained

using the hydrogen delivery scenario analysis model (HDSAM) developed by the Argonne

National Laboratory [75].

plants is then obtained by dividing the total hydrogen demand by the number

of SE-SMR plants. In addition, minimum price of renewables is taken during

the analysis, i.e., $300/kW.

The minimum hydrogen production cost results are presented in Figure 15

for the 4 market penetration levels of HFCEV. The corresponding solar and wind

farm design capacities are shown in Figures S3-S4 in the Supplementary Data.

The hydrogen cost depends significantly on the market demand, and therefore,

varying levels of HFCEV penetration result in drastically different hydrogen

production costs. For example, the hydrogen production cost averaged over all

448 cities decreases from $4/kg to $2.5/kg when the HFCEV penetration level
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Table 2: Top 20 cities with minimum hydrogen production cost for 1% hydrogen vehicle

penetration scenario.

City State H2 demand

(ton/day)

H2 cost

($/kg)

Wind design

capacity (kW)

Solar design

capacity (kW)

Bridgeport CT 4.46 2.19 27866 0

Richmond VA 4.2 2.19 26108.76 0

Buffalo NY 3.98 2.24 22405.02 0

McAllen TX 3.11 2.25 19509.68 0

Sarasota FL 2.87 2.26 17903.53 0

Jacksonville FL 4.76 2.27 30229.06 0

New Or-

leans

LA 3.64 2.27 23413.36 0

Grand

Rapids

MI 2.85 2.28 15560.92 0

Springfield MA 2.83 2.28 15474.46 0

San Anto-

nio

TX 5.91 2.29 38403.3 0

New Haven CT 2.66 2.29 16448.81 0

Albany NY 2.74 2.29 15102.48 0

Tampa FL 12.83 2.3 42000.82 0

Detroit MI 19.13 2.3 36536.36 0

Minneapolis MN 12.31 2.3 34971.23 0

Austin TX 5.3 2.31 35152.53 0

Milwaukee WI 6.4 2.31 36697.87 0

Seattle WA 12.97 2.31 37326.53 0

Boston MA 16.96 2.32 32271.51 0

Providence RI 5.39 2.33 30626.54 0

increases from 1% to 20%. Similarly, with this increase in hydrogen penetration

level, the maximum hydrogen production cost observed across all the cities
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Figure 15: Regional variation of hydrogen production cost with different HFCEV penetration

levels: (a) 1%, (b) 5%, (c) 10% and (d) 20% and renewable price of $300/kW.

reduces significantly from $7.1/kg to $2.8/kg. These results denote a large

dependence of hydrogen production cost on hydrogen demand. This is further

illustrated by the hydrogen production costs obtained for different cities. The

large urban cities with high hydrogen demand, such as California, Texas, Florida

and northeast region, have lower hydrogen costs. Conversely, for cities with less

dense population in the states such as Arkansas, Tennessee and Arizona, lower

hydrogen demand results in higher production costs.

Through the analysis, the top 20 cities obtained with minimum hydrogen

production cost for the 1% HFCEV penetration case are reported in Table

2. The major reasons behind the low hydrogen production cost include high

hydrogen demand, and high wind capacity factors. Wind turbine is selected as
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the choice of renewable technology for all the cities. For the locations reported in

Table 2, the installed capacity of wind turbine is in the range of 15-42 MW, and

the highly ranked cities have lower wind installed capacities. This is possibly

due to higher wind capacity factors, which do not lead to selection of larger wind

design capacities. This observation is in accordance with the installed capacity-

capacity factor correlations described earlier (Figure 11) wherein higher average

capacity factors resulted in lower renewable installed capacities.

Beyond a hydrogen market penetration level, the production cost does not

depend as much on the hydrogen demand amount which can be observed in

Figure 15. For instance, there is little change in city-wise hydrogen production

cost results when the hydrogen vehicle penetration level increases from 10% to

20%. This is due to the maximum production capacity threshold of an individual

SE-SMR plant. For increasing hydrogen demand levels, the production capacity

of each SE-SMR plant gets closer to its maximum capacity limit. Therefore,

the cost reduction benefits offered by the economies of scaling reduces with

increasing process scale. Consequently, we do not observe significant variation

in hydrogen production cost results among higher HFCEV penetration level

scenarios.
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Figure 16: Correlation between hydrogen production cost and daily hydrogen demand for the

city-wise analysis with 1% HFCEV penetration level.

Additionally, we observe that hydrogen production cost has a much stronger
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dependence on hydrogen demand, and not the availability of solar or wind re-

sources. To demonstrate this, we plot the hydrogen production cost vs hydrogen

demand for the 448 cities and 1% HFCEV penetration scenario in Figure 16.

Here, it can be clearly observed that with an increase in hydrogen demand, the

hydrogen production cost falls rapidly. However, the advantages of increased

hydrogen production scale decreases beyond the production capacity level of 2

ton/day. As wind is the dominant renewable technology selected, the figure also

shows the installed capacities of wind turbine. It can be seen that the selection

of wind technology reduces the hydrogen production cost, but the reduction

is not as significant as is observed during process scale-up. Consequently, the

hydrogen cost curve follows an exponentially decreasing trend with an increase

in hydrogen demand without any significant dispersion due to the selection of

wind turbines. However, this trend is not observed for higher HFCEV mar-

ket penetration levels as the economic opportunities achievable through process

scale-up diminish with increasing hydrogen demand amounts.

5. Conclusions

The major reasons preventing the widescale deployment of Hydrogen Fuel

Cell Electric Vehicles (HFCEVs) are the high hydrogen fuel cost and the lack of

extensive hydrogen refueling infrastructure. The high hydrogen transportation

costs and the existing centralized nature of hydrogen production result in high

hydrogen fuel prices to consumers. For small-scale and cost-effective hydro-

gen production, we proposed an intensified, small-scale and renewable-powered

hydrogen production technology that can be deployed on-site to fulfill local hy-

drogen demand of refueling stations. The intensified SE-SMR technology has

higher reaction conversion and product purity, lower temperature requirements

and more efficient heat integration compared to SMR. In addition, the incorpo-

ration of process intensification principles in the SE-SMR process enables full

electrification of the process. The required process energy demands are met

through a combination of solar, wind and electricity grid sources.
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We performed extensive regional and nationwide case studies to investigate

whether a small-scale SE-SMR process is capable of meeting local hydrogen fuel

cost targets. For the analysis, we developed a detailed computational frame-

work based on a large-scale mixed integer linear programming (MILP) model

for simultaneous design and scheduling of SE-SMR process while handling the

spatiotemporal variability in renewable availability, and electricity price and hy-

drogen demand markets. To efficiently handle the computational complexities

involved, an artificial neural network (ANN) model was developed and incor-

porated in the overall MILP model to accurately describe the SE-SMR process

dynamics and nonlinear capital cost expressions.

The hydrogen cost minimization analysis indicates that the SE-SMR process

can indeed result in low hydrogen production costs even at small process scales.

Specifically, with futuristic renewable prices and a daily production capacity of

2 ton/day, a hydrogen production cost in the range $2-$2.9/kg H2 is achiev-

able across the United States. Decreasing the production scale of the process

to 0.5 ton/day results in an increase in the hydrogen production cost range to

$3.6-$4.2/kg H2. The variation in hydrogen production cost is observed across

the United States due to spatiotemporal variation in wind and solar availability.

Typically, compared to solar PV, wind turbine is selected with higher average

design capacity and more cost savings. We also observe an inverse correlation

between the optimal design capacities of solar and wind farm, and their respec-

tive average capacity factors.

For small-scale and localized hydrogen manufacturing, the production cost

also depends strongly on the local hydrogen demand level. Therefore, we per-

formed a city-wise analysis wherein we estimate the hydrogen demand for 448

urban cities in the United States using the hydrogen delivery scenario analy-

sis model (HDSAM) under different HFCEV market penetration scenarios [75].

The results demonstrate that hydrogen production cost has a much stronger

dependence on hydrogen demand compared to other less significant factors such

as price of renewables. Consequently, increasing the HFCEV market penetra-

tion level from 1% to 20% decreases the average hydrogen production cost from
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$4 to $2.5 per kg H2. Additionally, we observe that just 5% HFCEV market

penetration level is sufficient to bring down the hydrogen production cost to less

than $3/kg H2 across all the urban cities in the United States.

Despite the advantages of deploying renewable-powered SE-SMR process

showcased here for small-scale and sustainable hydrogen manufacturing, there

are several challenges that need to be resolved before deployment of this technol-

ogy commercially. Specifically, the dynamic SE-SMR process is more difficult to

operate compared to the conventional steady-state SMR process due to multi-

step and multi-cycle operation. Moreover, there could be challenges in retaining

the effectiveness of the catalyst/adsorbent material mixture for facilitating SE-

SMR reactions and capturing carbon dioxide, respectively, over long duration of

operation. From a process control perspective, it is more challenging to develop

a closed-loop controller to guarantee hydrogen product specifications are met

due to the complexities and dynamics of underlying hybrid adsorption-reaction

process.

Therefore, additional research endeavors are required for design of sorbent-

catalyst hybrid materials for SE-SMR, devising optimal adsorbent regeneration

scheme, and integrated design, scheduling, and control of dynamic SE-SMR

systems. Furthermore, sustainable SE-SMR processes that are fully powered by

wind and solar and are disconnected from grid, can also be developed as such

processes would be vital to satisfy hydrogen demands in remote locations or

where grid connectivity is not possible. Such a process scheme warrants further

research for developing sophisticated algorithms and solution strategies due to

more complicated on-off dynamic operation of the methane reforming modules.
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