
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Kernelized Deep Learning for Matrix Factorization
Recommendation System Using Explicit

and Implicit Information
Xiaoyao Zheng , Member, IEEE, Zhen Ni , Senior Member, IEEE,

Xiangnan Zhong , Member, IEEE, and Yonglong Luo

Abstract— In the current matrix factorization recommendation
approaches, the item and the user latent factor vectors are with
the same dimension. Thus, the linear dot product is used as the
interactive function between the user and the item to predict
the ratings. However, the relationship between real users and
items is not entirely linear and the existing recommendation
model of matrix factorization faces the challenge of data sparsity.
To this end, we propose a kernelized deep neural network
recommendation model in this article. First, we encode the
explicit user—item rating matrix in the form of column vectors
and project them to higher dimensions to facilitate the simulation
of nonlinear user—item interaction for enhancing the connection
between users and items. Second, the algorithm of association
rules is used to mine the implicit relation between users and
items, rather than simple feature extraction of users or items, for
improving the recommendation performance when the datasets
are sparse. Third, through the autoencoder and kernelized
network processing, the implicit data are connected with the
explicit data by the multilayer perceptron network for iterative
training instead of doing simple linear weighted summation.
Finally, the predicted rating is output through the hidden layer.
Extensive experiments were conducted on four public datasets
in comparison with several existing well-known methods. The
experimental results indicated that our proposed method has
obtained improved performance in data sparsity and prediction
accuracy.

Index Terms— Deep learning, kernelized network, matrix fac-
torization and data sparsity, recommender system.

I. INTRODUCTION

W ITH the continuous acceleration of the digital process
of the physical world, the online world contains a

huge amount of information resources. Due to the explosive
growth of information, users cannot effectively obtain the
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information they are interested in, which leads to the problem
of information overload [1]. The recommender system can
recommend potential items of interest to users and realize the
goal of maximizing the utility of information utilization by
establishing the binary relationship between users and items.
It has become one of the crucial intelligent technologies for
understanding users. The binary relationship between users
and items is constructed by using explicit information and
implicit information. Explicit information mainly includes
rating, text reviewers, and so on. Implicit information includes
potential neighbor relationship, social trust, and so on. [2].
Therefore, recommender systems have been widely used in e-
commerce [3], smart tourism [4], social network [5], market
decision [6], microblog [7], app recommendation [8], and
so on.

Traditional recommendation methods generally can be
divided into three categories: content-based recommendation
[9], [10], collaborative filtering recommendation [11], [12],
and hybrid recommendation [13], [14]. Matrix factorization
recommendation is one of the successful collaborative filtering
methods, and it has a high recommendation accuracy in exper-
imental datasets [15]–[17]. By projecting the rating matrix of
users and items into the latent space of the same dimension, the
latent feature vectors of users and items are obtained by matrix
factorization. Then, the ratings between users and target items
are calculated in the form of inner product, so as to predict
the relationship between users and target items. In order to
further enhance the performance of the matrix factorization
algorithm, other works have been proposed to improve the
matrix factorization technologies by integrating trust [18], time
[19], context [20], and other information [21], [22]. It has
been proven to be a great help in improving the quality of
recommendations by incorporating auxiliary data in matrix
factorization recommendation approaches.

However, in practical applications, the recommender system
using the matrix factorization technique still needs improve-
ment. The first reason is that the data can be sparse and the
number of online users and items is huge in the recommender
system. Compared with the number of users and items in the
whole network system, the number of items that each user
concerned and the number of items consumed by users are
extremely small, respectively. Therefore, data sparsity leads
to the low accuracy of the recommender system [23], [24].
The second reason is the matrix factorization that employs the
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linear dot product requiring the same dimension of the user and
the item [25]. These strict conditions lead to some deficiencies
of matrix factorization method. For example, it is difficult to
adapt to the semantic interpretation of different types of items
and users in real recommendation environments.

In recent years, deep learning has been used in nat-
ural language processing, computer vision, and autonomous
driving [26]–[30]. The common deep learning methods used
in the recommendation system include autoencoder-based
collaborative filtering recommendation [31]–[33], multilayer
perceptron (MLP)-based recommendation [34], [35], convo-
lutional neural network (CNN)-based recommendation [36],
[37], recurrent neural network (RNN)-based recommenda-
tion [38], [39], restricted Boltzmann machine (RBM)-based
recommendation [40], [41], graph neural networks for rec-
ommendation [42], [43], deep reinforcement learning (DRL)
for recommendation [44], [45], and other forms of deep
learning recommendation [25], [46], [47]. However, when the
deep learning recommendation method is used to model the
key factor in predicting ratings between the user and item,
it applies an inner product on the latent features of users and
items. In addition, the size and sparsity of the large dataset
will lead to poor learning efficiency of deep learning method
and ultimately result in low recommendation accuracy.

Motivated by the above challenges, this article proposes
a kernelized deep neural network for matrix factorization
(K-DNNMF) method to bring the advantages of deep learn-
ing, kernel function, and matrix factorization. This method
maps users and items to latent spaces of different dimen-
sions through a kernelized network. It employs association
rules to mine the potential relationship between users and
items as implicit data and connects with the explicit data
of user—item rating matrix. Then, a multilayer perceptual
network is designed for training implicit and explicit data to
predict the corresponding ratings. The contributions of this
article are summarized as follows.

1) A kernelized network named KernelNet proposed in
this article projects the latent factor vectors of users
and items to a space with higher dimensions. The
nonlinear interaction between user and item is simu-
lated by KernelNet in high-dimensional space. It can
solve the problem of low prediction accuracy caused
by using the dot product linear method in the matrix
factorization recommendation. Thus, the performance of
the recommender systems can be effectively improved
by the nonlinear method using KernelNet.

2) Compared with existing methods, we use association
rules to mine the potential relationship between users
and items. We then fuse it as implicit data with explicit
data through the MLP, rather than using simple user
or item feature data directly as implicit data as in the
literature [12], [16], [25], [32]. Thus, the problem of
data sparsity can be effectively alleviated by mining and
integrating the implicit data of user—item relationship
in this article.

3) We conduct extensive experiments on four public
datasets. The experimental results show that our method
has the promising performance compared with several

well-known matrix factorization and deep learning rec-
ommendation methods.

The remainder of this article is organized as follows.
We describe several typical matrix factorization methods and
deep learning recommendation model in Section II. We pro-
pose a novel kernelized deep neural network recommendation
model in Section III. Moreover, we present the details of the
kernelized network principle and recommendation framework
in this section. We present a performance comparison of
our model with several well-known methods and provide the
evaluation results in Section IV. In Section V, this article is
summarized, and the future research directions are prospected.

II. RELATED WORK

Since this article focuses on deep neural network matrix
factorization recommendation method, this section mainly
reviews some significant works on matrix factorization rec-
ommendation methods and deep learning recommendation
models.

A. Matrix Factorization Recommendation Method

One of the most successful collaborating filtering methods
for recommender systems is the matrix factorization recom-
mendation [48]. It is generally known that the matrix factor-
ization method focuses on using low-rank approximations to
fit the user—item ratings matrix and projects items and users
to the same latent factor space. The latent space tries to explain
ratings by characterizing both items and users on factors
inferred from user feedback automatically, such as ratings and
text reviews. The latent factor vectors of user and item can
be obtained by minimizing the sum-squared errors objective
function. The predicted ratings are then obtained by the inner
product of the latent factor vectors of the users and the items,
which is a linear form of computation. To start with, we briefly
review the basic low-rank matrix factorization approach called
probabilistic matrix factorization model (PMF) [49], which
does not take any social factors into consideration. A user
latent factor vector pu ∈ R f associated with user u and an
item latent factor vector q i ∈ R f associated with item i can
be obtained by using a stochastic gradient descent algorithm.
Then, the prediction is made by taking the inner product:
r̂ui = pu · q T

i . The specific objective function is shown in
the following equation:

! = 1
2

∑

u

∑

i∈Iu

(
rui − puq T

i

)2 + λ

2

(
∑

u

∥pu∥2
F +

∑

u

∥q i∥2
F

)

(1)

where λ is a regularized parameter to avoid overfitting and
∥ · ∥2

F denotes the Frobenius norm. Known that rating values
can be calculated easily according to the equation r̂ui = pu ·q T

i
for any user—item combination (u, i). It can be seen from
(a) that PMF constructs the interaction of user and item latent
factors. Assume that each dimension of the latent space is
independent of each other and linearly combining them with
the same weight. Thus, matrix factorization can be regarded
as a linear model of latent factors.
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In addition, there are a variety of variants based on the basic
matrix factorization model [50]–[54]. However, the simple
linear prediction of inner product limits the adaptability and
performance improvement of matrix factorization method.
Therefore, changing the prediction method of linear dot prod-
uct will play a key role in improving the recommendation
performance.

B. Deep Learning Recommendation Model

The impact of deep learning is pervasive, and its
effectiveness has recently been demonstrated in research
on information retrieval and recommender systems. This
article mainly introduces the recommender system based
on deep learning technology. One of the most success-
ful applications of deep learning recommendation meth-
ods is the use of autoencoders for collaborative filtering
recommendations. Sedhain et al. [31] proposed autoencoder-
based recommendation method, named AutoRec. This model
employed user-based ratings or item-based ratings as the input,
and the collaborative filtering recommendation was realized
by constructing the minimum error between the encoded
input and the decoded output as the optimization objective
function. Strub et al. [32] proposed item-based collaborative
filtering neural network (I-CFN) and user-based collaborative
filtering neural networks (U-CFN) recommendation methods
by extending AutoRec, which incorporated such as user pro-
files and item descriptions to alleviate the sparsity and cold
start influence. However, the autoencoder-based collaborative
filtering recommendation method has two shortcomings: one
is that the rating should be an integer and the other is that
the decomposition of the rating aggravates the data sparsity.
MLP is an accurate and efficient network that approximates
any measurable function. Therefore, it can be used to replace
the linear inner product calculation in matrix factorization.
He et al. [34] presented a general framework named neural
collaborative filtering (NCF) method by replacing the inner
product with a multilayer perceptron that can learn an arbi-
trary function from data. Xue et al. [35] proposed a deep
matrix factorization model by using MLP architecture, which
constructed a user—item matrix with explicit ratings and
nonpreference implicit feedback. By constructing a multilayer,
nonlinear, layer-to-layer interconnection network structure,
MLP can use the network structure to approach a complex
multivariate function as a training target and to learn the
original features of the dataset from many unlabeled training
datasets. A graph neural network can be well applied to
represent user and item features and social relationship, which
is helpful to improve the performance of recommender system.
Guo and Wang [42] proposed a deep graph neural network-
based social recommendation (GNN-SoR) framework, which
used two graph neural networks to abstract user and item
features and fused the encoded the user and item space into
a matrix factorization method to complete missing rating val-
ues. Other recommendation method-based deep learning has
different advantages and disadvantages in different application
fields. This article mainly focuses on the accuracy of rating
prediction based on user—item rating’s matrix. We propose a

Fig. 1. Proposed K-DNNMF structure.

novel kernelized deep neural network recommendation model
combined autoencoder and MLP. To overcome the linear inner
product, we make use of kernel function to project the user
and item latent factor to high-dimensional space. Moreover,
we employ MLP to integrate explicit and implicit data, instead
of simple weighted sum to achieve rating prediction, so as to
improve the performance of the recommender system.

III. PROPOSED DEEP NEURAL NETWORK MATRIX

FACTORIZATION RECOMMENDATION METHOD

We first propose a K-DNNMF recommendation model
based on KernelNet. It takes user—item ratings and implicit
information mined by association rules from user and item
features as input. Latent factor vectors based on users and
items are generated through autoencoders and mapped into
another high space by kernelized networks, which are used
as inputs to MLP networks. Then, user and item interaction
functions are learned through MLP, and thus, the ratings of
users to items are obtained through output layers.

A. Deep Learning Structure With KernelNet

In this article, a recommendation structure for deep learning
based on kernelized network is constructed by combining
autoencoder, kernelized network, and multilayer perceptron,
as shown in Fig. 1, in order to provide an alternative solution
direction for improving recommendation performance under
the framework of deep learning. The structure is mainly
composed of four parts.

1) Autoencoder Layer: It is responsible for decomposing
the user—item rating matrix into vectors based on the
user or item (i.e., rows or columns). Because the rating
vector is reconstructed by autoencoder according to the
rating range, thus the sparsity is multiplied.

2) Kernelized Layer: It projects the coding of the autoen-
coder layer to a high-dimensional space, so as to
improve the accuracy of feature expression of users and
items and reduce the impact of data sparsity.

3) Neural Layers: The rating vector after encoding and ker-
nelization is then passed through the MLP to transform
the linear model decomposed by matrix factorization
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into a nonlinear model, which improves the plasticity
and robustness of the whole model.

4) Output Layer: It outputs the interaction value between
the hidden layer’s user and the item’s latent factor vector
through the activation function, namely, the predicted
rating.

This structure is a general framework, which can be used in
different combinations according to different recommendation
tasks. Based on this structure, the entire recommendation
process can be divided into four steps, as shown in Fig. 2.

1) Data Processing: The first step is to decompose the
rating matrix into row or column vectors according to the
original dataset, that is, explicit data. In addition, based
on the user and item features’ data, the relationships
between the items and users are mined to generate
implicit data.

2) Encoding and Kernelized Processing: The second step
is to encode the explicit data and implicit data through
the autoencoder. Then, we project the two pieces of
information to a high-dimensional vector space with the
kernel function to complete the feature representation of
user and item data.

3) Concatenation and Training: The third step is to train
the interaction function of the latent factor vector
between the user and the item by means of the nonlinear
model through the MLP. It avoids the simple linear
weighted sum of the explicit and implicit data, which
can simulate the user and item interactions effectively.

4) Prediction and Evaluation: The fourth step is to predict
the target user’s rating of the item based on the trained
user—item interaction function and to realize the item
recommendation.

B. Deep Learning Matrix Factorization Recommendation
Method by Using Explicit Information

Autoencoder is generally composed of a three-layer net-
work, in which the number of neurons in the input layer
and output layer is the same. The number of neurons in the
middle layer is smaller than that in the input layer and output
layer. In the process of network training, for each training
sample, the autoencoder tries to make the output signal and
the input signal similar and uses a reconstruction error to
express. Moreover, autoencoder can form a deep structure
through layers and layers of training.

Assume that the user set and item set in the recommendation
system are U = {u1, u2, . . . , um} and I = {i1, i2, . . . , in},
respectively. The rating matrix is denoted as R = {ri j}m×n , and
each item can be regarded as a column vector, namely, ri =
{r1i , r2i , . . . rmi , }. Then, the rating matrix can be expressed as
n 1-D vectors with m dimensions, i.e., R = {r1, r2, . . . , rn}.
Similarly, each user can be expressed as a row vector. This
article takes item vector as an example to describe it. There-
fore, the objective function of the autencoder can be expressed
in the following equation:

L = argmin
θ

∑

ri ∈R

∥ri − h(ri ; θ)∥2
O + λ

2
·
(∥W∥2

F + ∥V ∥2
F

)

(2)

Fig. 2. Recommendation process based on the proposed structure.

where h(ri ; θ) = f (W ·g(Vri +µ)+b), θ = {W, V , µ, b}, and
f (·) and g(·) are identity and sigmoid activation functions for
autoencoder layer, respectively. As the autoencoder increases
the data sparsity, it reduces the correlation between the data.
In this article, we attempt to project the output information
of the autoencoder to the high-dimensional space by the
kernel function to enhance the expressiveness of the data.
The effect of kernel function can also be seen as enhancing
the connection between users or items. Next, W and V
in the autoencoder can be reparameterized by the kernel
function. Then, we get Vi j = α(l) K (v(l)

i , v(l)
j ) and Wi j =

β(l)K (w(l)
i , w(l)

j ), where K (·, ·) is a kernel function. It can
project a d-dimensional space vector to d̂ dimension by inner
product, i.e., K (u, v) =< ψ(u),ψ(v) >=< û, v̂ >. ψ is an
embedded function that projects d dimensions onto d̂. Through
the above reparameterization, we redefine a kernelized neural
network named KernelNet, as shown in Fig. 3. The specific
mathematical form is defined as follows:
h
(

r (l)
i ; θ

)

= f

⎛

⎝ β(l)
∑

i, j

K
(
w(l)

i , w(l)
j
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· g

⎛

⎝
∑

i, j

α(l) K
(
v(l)

i , v(l)
j

)
r (l−1)

i + µ(l)
i

⎞

⎠ + b(l)
i

⎞

⎠ .

(3)
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Fig. 3. Schematic of kernelized neural network.

The kernelized vector dimension d̂ in KernelNet is deter-
mined by the embedded kernel function K (., .) or ψ . There-
fore, the kernel function has a important influence on the per-
formance of KernelNet. According to the optimal kernel func-
tion search method proposed in the literature [55], we choose
four radial basis function (RBF) as the candidate Kernel,
including Gaussian kernel, Laplacian kernel, log kernel, and
generalized T-student kernel. The specific definition of the four
kernel functions is K (u, v) = exp(− γ ∥u − v∥2), K (u, v) =
exp(− (∥u − v∥/σ )), K (u, v) = − log(∥u − v∥d + 1), and
K (u, v) = (1/1 + ∥u − v∥d). Because the RBF kernel can
map the sample data to a higher dimensional space, it can
deal with the nonlinear feature’s expression of the sample data.
Moreover, we select the optimal kernel function as KernelNet’s
kernel function through experiments, which are detailed in
Section IV.

The kernel functions can be abstracted into the mathematical
description of RBF kernel function K (u, v) = αΨ (D(u, v)),
where D(·, ·) is a distance function and α ∈ R. Its essence
is to map the d-dimensional space of u and v vectors to the
d̂-dimensional space of ! function. This is to realize the non-
linear expression of high-dimensional space. After determining
the kernel function, according to (3), we get the parame-
ters θ = {K (w(l)

i , w(l)
j ), K (v(l)

i , v(l)
j ),α(l),β(l), µ(l), b(l)} after

reparametrization. Therefore, according to the embedded Ker-
nelNet definition, the objective function becomes (4), which
is specifically updated as follows:

L = argmin
θ

∑
r (i)∈R

∥ri − h(ri ; θ)∥2
O

+ λ1
(∥α∥2

F + ∥β∥2
F

)

+ λ2

(∥∥K
(
wi , w j

)∥∥2
F +

∥∥K
(
vi , v j

)∥∥2
F

)
. (4)

The objective function can be realized by the limited-
memory Broyden–Fletcher-Goldfarb–Shanno (L-BFGS)
optimizer.

C. Mining Implicit Information to Enhance Recommendation

In this section, we first introduce the details of association
rules algorithm to mine the hidden relation between users and

items, namely, implicit data. Then, we propose to fuse the
implicit data with the explicit data as a new input to train the
deep learning model as introduced as above.

1) Building Implicit Data Using Association Rules: Data
sparsity is one of the toughest challenges of a recommender
system. Recommendation performance can be improved by
increasing implicit information of users and items. In this
article, we mainly use an association rule algorithm to mine
the rules between user features and item features and build an
implicit user—item relationship matrix based on the above
rules. Then, we combine the implicit data obtained from
mining with the explicit rating data to further improve the
recommendation accuracy.

Suppose that the user’s feature attribute set is denoted as FU ,
and the item’s feature attribute set is denoted as FI . We first
add a user and an item feature values to the dataset D =
{FU , FI } if the user and the item exist rating in the rating
matrix R and the rating level is greater than the median. For
example, if user ui gives item i j a rating of 4 on a scale of
1–5 so that the median is 3 and the rating 4 is greater than
the median. Then, we add a feature record of user ui and item
i j to D. For dataset D to be mined, feature rules of items
of potential interest to users are given, which are specifically
defined as follows:

Support(FU , FI ) = P(FU FI ) = Freq(FU FI )

Freq(all(samples))
. (5)

Accordingly, we give the confidence definition of the feature
rules of the items that users are potentially interested in as
follows:

Confidence(FI ⇒ FU ) = P(FU |FI ) = P(FU FI )

P(FI )
. (6)

After the feature rules of items of potential interest to users
are obtained by mining D, we set si j = 1 if the features of
user ui and item i j meet the feature rules. Then, we get the
implicit relation matrix S = {si j}m×n of the item and user
by traversing the dataset of the user and item. Furthermore,
we use an autoencoder and KernelNet to get h(si ; θs) = f (Ws ·
g(Vssi + µs) + bs) for implicit dataset S in the same way as
for explicit data, where θs = {Ws , Vs, µs, bs}.

The implicit data mined in this article are different from
the traditional implicit data that directly take user and item
features data as implicit data. We focus on generating implicit
data through feature data mining and discover the potential
relationship between user and item. Therefore, the implicit
data obtained in this article have stronger internal relations
and plasticity.

2) Fusing Explicit and Implicit Data Through MLP: Many
existing recommendation models are essentially linear meth-
ods. MLP can change the existing recommendation methods
and transform it into a more reasonable nonlinear method,
which can be interpreted as neural extension. This section
focuses on the integration of rating data and implicit auxiliary
data through MLP to achieve the rating prediction of the
item. However, a simple vector concatenation cannot explain
any interaction between the explicit data and the implicit
data. To solve this problem, we add a hidden layer over
the concatenated vectors using a standard MLP to learn the
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interaction between the explicit data and the implicit data,
as shown in the following equation:

z1 = φ1(h(ri , θ), h(si , θs)) =
[

h(ri , θ)
h(si , θs)

]

z2 = φ2(z1) = φ2(Q2z1 + c2)

· · · · · ·
zn = φ2(zn−1) = φ2(Qn zn−1 + cn−1)

r̂i j = σ (Hφn(zn−1)) (7)

where Qi denotes the weight matrix of MLP layer i , with
i = {2, 3, . . . , n}, ci denotes the bias vector of layer i , and
φi denotes the activation function of layer i . For activation
functions φi , sigmoid, tanh, ReLU, or other activation func-
tions can be selected depending on the recommendation task.
H represents the edge weight of the output layer and σ is
the sigmoid activation function of the output layer. ReLU is
a nonlinear function, and it can fit nonlinear mapping and
reduce overfitting. Therefore, the ReLU function is selected
as the activation function in this article.

Since initialization plays an important role in the conver-
gence and performance of the deep learning model, the K-
DNNMF model proposed in this article consists of the explicit
data and implicit data through three kinds of networks, namely,
the autoencoder, KernelNet, and MLP. We propose a two-stage
training to realize the initialization of the K-DNNMF. First,
we train the autoencoder and KernelNet until it converges.
Then, the parameters of autoencoder and KernelNet are used
as the initialization parameters of K-DNNMF model, and the
MLP network is trained on this basis. We use the Adam
(adaptive moment estimation) optimizer because it is a method
to calculate the adaptive learning rate of each parameter and
has a fast convergence speed. In addition, it is generally
recommended that users select items to focus on a limited
number of features, so the data are considered to be interpreted
in a low-dimensional model, which is the ideal for KernelNets
setup and also for K-DNNMF model training. In general, the
user will not pay too much attention to the number of features
when selecting an item, so the data are considered to be able
to be interpreted in a lower dimensional model, so this is very
suitable for the KernelNets setup and also beneficial for the
K-DNNMF model training.

IV. EXPERIMENT OF STUDIES

In this section, we will report the extensive experiments
that we have conducted to evaluate the performance of our
proposed method. We will start with a discussion on the
experimental setup of our evaluation, which will cover the
information about four public datasets, two performance met-
rics, six benchmark models to be used for comparative study,
and the parameter settings. The detailed experimental results
are reported in the second half of this section.

A. Experimental Setup

1) Experimental Datasets: In order to test the model per-
formance and comparative experiments thoroughly, four public
datasets with different ratings and sparseness were selected for

verification, including Yahoo Music,1 Douban,2 Flixster,3 and
MoiveLens.4 The details of the datasets are shown in Table I.
First, the sparsity of these four datasets is different. Among
them, Movielens has the highest data density, while Yahoo
Musci has the lowest. In addition, these four datasets have
different ratings and sizes, such as Yahoo Music, which is on a
100-point scale. All these problems challenge the universality
of the comparative methods.

2) Performance Metrics: In our work, we randomly des-
ignate 10% of the given ratings as validation data and the
remaining 90% as the training data in the above dataset. The
performance measures we use in our experiments are root
mean square error (RMSE) and mean absolute error (MAE)
that are the most popular accuracy measures. RMSE and MAE
are defined as follows:

RMSE =

√∑
(u,i)∈T

(
Rui − R̂ui

)2

|T | (8)

MAE =
∑

(u,i)∈T

∣∣Rui − R̂ui
∣∣

|T | (9)

where T is the training dataset and |T | is the number of
samples. The smaller the errors, the better the performance.

3) Benchmark Models: The following recommendation
models are involved in our experimental evaluation for per-
formance comparative study. We benchmark K-DNNMF with
six recent matrix factorization models and deep learning
recommendation approaches, which are listed as follows.

1) PMF [49]: This model uses basic matrix factorization
techniques without considering any social factors, which
is a well-known probabilistic linear model with Gaussian
observation noise. PMF model is one of the most
commonly used recommendation methods of matrix
factorization.

2) Singular Value Decomposition Model Integrated With
Explicit and Implicit Feedback (SVD++) [51]: This
model takes both the explicit and implicit influence of
user—item ratings into account, based on the singular
value decomposition model, to generate predictions,
which yields greater prediction accuracy. However, its
essence is still a linear prediction model.

3) Inductive Graph-Based Matrix Completion (IGMC)
Model [29]: This model is an IGMC model, which
trains a deep graph neural network based on one-hop
subgraphs around (user and item) pairs generated from
the rating matrix and maps these subgraphs to their
corresponding ratings.

4) U-CFN [32]: This method is deep learning method
based on an extension autoencoders. The U-CFN model
performs a factorization of the matrix of ratings by
using user-oriented vectors. It deploys the denoising
techniques, which makes the U-CFN more robust and
incorporates the side information such as user profiles

1https://webscope.sandbox.yahoo.com/
2https://www.douban.com/note/415374609/
3https://figshare.com/articles/Flixster-dataset_zip/
4https://grouplens.org/datasets/movielens/
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TABLE I

STATISTICS OF ORIGINAL DATASETS

TABLE II

COMPARISON OF RECOMMENDATION ACCURACY ON YAHOO MUSIC

TABLE III

COMPARISON OF RECOMMENDATION ACCURACY ON DOUBAN

and item descriptions to mitigate the sparsity and cold
start influence.

5) I-CFN [32]: This model is consistent with the U-CFN
model, except that the input is an item-oriented rating
vector.

6) Deep Graph Neural Network-Based Social Recommen-
dation Model [42]: The GNN-SoR model uses two deep
graph neural networks to represent the user and item
features and fuse the encoded the user and item space
into a matrix factorization method to complete missing
rating values.

7) Kernelized Deep Neural Network for Matrix Factoriza-
tion Method: This is the model proposed in this article,
which sets up a kernelized network named KernelNet
based on an autoencoder and then constructs an MLP
network to realize rating prediction. The input data
in this article are divided into two forms. If only the
explicit data such as the rating matrix are used as the
input, we call it K-DNNMF(EX). If implicit information
between the item and the user is mined through associ-
ation rules algorithms and is used as input along with
the explicit data, we call it K-DNNMF(EI).

4) Experimental Setting: We implemented our proposed
methods based on TensorFlow2.1 and Python 3.7. To deter-
mine hyperparameters of K-DNNMF model, we randomly
sampled 10% data from datasets as the validation data and
tuned hyperparameters on it. The two-stage optimization is
adopted. In the first stage, the hyperparameter θ and θs learning
of autoencoder and KernelNet is trained according to (4).
In the second stage, for MLP networks that are trained from
scratch, we initialized model parameters with a Gaussian
distribution and optimize the model with Adam optimizer.
We set the batch size at 512 and the learning rate at 0.001 as
the default settings in MLP. Meanwhile, we set the architecture
MLP layers number to 3. Since the last hidden layer of MLP
determines the model capability, we term it as predictive
factors and evaluated the factors of 32. For the KernelNet,
we use latent factors vector dimension to 32 and all hidden
layers have a size of 512. Parameters in the kernel function
are set by default, i.e., γ = 1, σ = 1, and d = 2. As for the

optimization of kernel functions, the experiment in this article
focuses on the influence of different types of kernel functions
on the recommendation performance. The setting of kernel
function parameters is not within the scope of this article due
to space limitations.

B. Experimental Results

This section is mainly carried out from three aspects:
sensitivity of model parameters, a recommendation perfor-
mance comparison between different models, and performance
comparison in the case of sparse data.

1) Performance Comparison:
a) Recommendation accuracy: In this section, we mainly

analyze the recommendation accuracy of the model proposed
in this article and the other six models on the four datasets.
It can be seen from Tables II to V that the KDNNMF(EI)
model with integrated explicit and implicit data has the best
performance on both RMSE and MAE metrics. In the
recommendation models compared with this article, the inputs
of U-CFN, I-CFN, GNN-SoR, and the K-DNNMF(EI) model
employ rating data and auxiliary information. PMF, SVD++,
IGMC, and K-DNNMF(EX) proposed in this article only use
the rating matrix as input data. From the above compari-
son experimental results, it can be concluded that from the
perspective of input data, the K-DNNMF(EX) proposed in
this article basically improves the recommendation accuracy
by more than 5% compared with other models that only
use the rating matrix, and it has the optimal recommenda-
tion performance. Similarly, in the approaches using both
explicit data and auxiliary data, the K-DNNMF(EI) model
proposed in this article shows more superior recommendation
accuracy, with its accuracy basically increased by more than
3%. Especially in the case of sparse datasets, the method
proposed in this article has more obvious advantages. In gen-
eral, the following conclusions can be drawn from the above
experimental results. First, the recommendation model using
deep learning is more competitive than traditional PMF and
SVD++. Second, adding auxiliary information or implicit
data can improve the recommendation performance. Compared
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TABLE IV

COMPARISON OF RECOMMENDATION ACCURACY ON FLIXSTER

TABLE V

COMPARISON OF RECOMMENDATION ACCURACY ON MOIVELENS

Fig. 4. Comparative analysis of the convergence speed of each model. (a) Convergence speed on MovieLens. (b) Convergence speed on Douban.
(c) Convergence speed on Flixster. (d) Convergence speed on Yahoo Music.

with the K-DNNMF(EX) without auxiliary information, our
proposed K-DNNMF(EI) further improved the recommen-
dation performance after adding implicit data. Finally, both
from the perspective of input data and the recommendation
theoretical method, the kernelized method proposed in this
article has better recommendation performance. In addition,
the two models proposed in this article, K-DNNMF(EX)
and K-DNNMF(EI), are not isolated. If the recommender
system can provide auxiliary information, the model can be
automatically changed into K-DNNMF(EI). If not, the system
can still be trained as K-DNNMF(EX) without the need for
manual adjustment. Therefore, the method proposed in this
article has good adaptability.

b) Speed of convergence: In this section, we investi-
gate both the convergence speed of different models on the
four datasets. Since the recommendation method-based deep
learning is different from the traditional matrix factorization
method, we only compare the convergence speed on the four
deep learning methods with our K-DNNMF(EI) model.

The experimental results in Fig. 4(a) show that when the
number of iterations reaches 200, our method is close to
the optimal value. I-CFN and U-CFN can reach the opti-
mal value only after about 600 iterations, and IGMC and
GNN-SoR methods using the graph neural network are about
300 iterations. The experiments of convergence on Douban,
Flixster, and Yahoo Music in Fig. 4(b)–(d) show that the
K-DNNMF(EI) method proposed in this article also has the
fastest convergence speed. When the data are sparse, the con-
vergence rate increases rapidly. However, these methods also
produce fluctuation in the process of convergence. Because the
kernelized network proposed in this article can map the input
column vectors to a higher dimensional space, the nonlinear
problem can be transformed into a higher dimensional to
solve a linear problem, and the efficiency is higher. I-CFN
and U-CFN methods add side information (item or user
feature) in each layer of the network to increase the training
time. In addition, IGMC and GNN-SoR methods use the
graph neural network method to build subgraphs of users or
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Fig. 5. Comparison experiments under different data sparsities. (a) Sparsity comparison experiment on MAE under MovieLens. (b) Sparsity comparison
experiment on RMSE under MovieLens. (c) Sparsity comparison experiment on MAE under Douban. (d) Sparsity comparison experiment on RMSE under
Douban.

Fig. 6. Influence of kernel function on recommendation accuracy. (a) Testing different kernel functions on MovieLens. (b) Testing different kernel functions
on Douban. (c) Testing different kernel functions on Flixster. (d) Testing different kernel functions on Yahoo Music.

items, so the network scale increases exponentially with the
scale of users and items, and the optimization efficiency is
low. In general, compared with the other four deep learning

recommended models, the K-DNNMF(EI) method proposed
in this article has faster convergence speed and relatively less
fluctuation phenomenon.
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Fig. 7. Influence of hyperparameters on recommendation accuracy. (a) Influence of regularized parameter on recommendation accuracy. (b) Influence of
KernelNet layers on recommendation accuracy. (c) Influence of MLP layers on recommendation accuracy.

c) Performance comparison under data sparsity: Data
sparsity is a serious challenge to the recommender system.
Therefore, the performance test of the recommendation models
in different sparse data environments can effectively distin-
guish the competitiveness of various methods. In this section,
we adopt random data extraction to simulate the adaptability
of various comparison models under various sparse conditions.
We first randomly selected a certain proportion of rating data
from the dataset and then deleted it. Then, we select 10% of
the data from the dataset as the test data and the rest as training
data. Because Flixster and Yahoo Music data are already
sparse, many users do not have ratings after data random
extraction, so data sparse experiments cannot be carried out.
Therefore, we only simulated on MovieLens and Douban
datasets. The experimental results in Fig. 5 show the variation
trend of MAE and RMSE randomly extracted from the Movie-
Lens and Douban datasets by 1%–80%. From the experimental
results, it can be concluded that the K-DNNMF(EI) model
proposed in this article has the optimal recommendation accu-
racy under different data sparseness conditions. As the data
in the dataset become sparse, the recommendation accuracy
gradually decreases. Especially after 50% data are extracted
from the dataset, the performance of each comparative model
decreases rapidly. In addition, the experimental results show
that implicit information helps mitigate the impact of data
sparsity on recommendation performance. The reasons are
mainly as follows. First, the IGMC model searches for the
nearest neighbor relationship by building subgraphs of users
or items. When the data sparseness is enhanced, the data cor-
relation is weakened rapidly, resulting in the rapid decline of
IGMC recommendation performance. Second, I-CFN, U-CFN,
and GNN-SoR methods integrate item feature or user pro-
file to their models directly to alleviate the data sparsity.
On the contrary, our K-DNNMF(EI) model uses an association
rules algorithm to deeply mine the internal relations between
users and items, so as to generate implicit information. This
strengthens the connection between the user and the item and
improves the recommendation performance. Moreover, we add
an MLP network on top of the KernelNet, which can well fuse
the explicit data and implicit data and enhance the robustness
of the recommended method based on deep learning.

2) Sensitive Analysis for Hyperparameters:
a) Impact of kernel functions on recommendation per-

formance: This section focuses on the effect of different

types of kernel functions on the recommendation performance
of our proposed model. We tested the influence of four
different kernel functions on recommendation accuracy on
four datasets, as shown in Fig. 6. The experimental results
show that if the Laplacian kernel function is selected, the
overall recommendation model has more stable and optimal
recommendation accuracy. The log, Gauss, and T-student
kernel functions fluctuate greatly. The experimental results
demonstrate that the kernel function has a great influence
on the model recommendation accuracy, so in practical
applications, the recommender system can select the optimal
kernel function in advance through training.

b) Optimization of network layers and regularized para-
meters: We mainly analyze the effect of the regularized
parameter λ on the recommendation performance, as well as
sets the number of layers in KernelNet and MLP networks
in this section. Since these four datasets obtain the same
conclusion, we only present the results of the MovieLens
dataset. To simplify parameter setting, λ1 and λ2 in (4) are
set to the same value, so in this experiment, λ is used for
unified representation. The specific experimental results of
normalized parameter λ are shown in Fig. 7(a). The result
in Fig. 7(a) shows the influence of nine different values of
regularization parameters from 0.01 to 500 on our proposed
model. The experimental results show that too large or too
small regularization parameters have a great influence on
recommendation accuracy, and when λ is 10, it has the optimal
recommendation accuracy. It can also be drawn from Fig. 7(a)
that overfitting exists, but the overfitting phenomenon is good
when λ is 100. Fig. 7(b) shows that different KernelNet layers
have no obvious influence on the recommendation accuracy.
Therefore, if the recommender system needs to improve train-
ing efficiency, we can use fewer network layers. Fig. 7(c)
shows that the number of MLP network layers also has a
certain impact on the recommendation performance. When the
number of MLP network layers increases, the recommendation
model has a small improvement, but it is not significant.

V. CONCLUSION

In this article, we presented a deep neural network matrix
factorization recommendation model, namely, K-DNNMF.
First, the rating matrix and implicit information mined by asso-
ciation rules are processed by KernelNet. Second, we propose
to fuse the explicit data and implicit data through the MLP
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network instead of simple linear weighted sum. Finally, the
rating prediction is completed by a hidden layer. Extensive
experiments on four public datasets show that the K-DNNMF
model proposed in this article is very promising compared
with several well-known recommendation methods for deep
learning. From the experimental results, it can be concluded
that the latent factor vectors of users and items can be
projected to higher dimensions through kernelized networks
so that the nonlinear interaction between users and items can
be well simulated in higher dimensions. Moreover, adding
implicit information can effectively improve the recommen-
dation accuracy, especially in the case of sparse data. The
MLP network is a promising way to combine explicit data
with implicit information.

We intend to explore several directions in future work,
including employing the ResNet to deal with the overfitting
problem in deep learning networks. Furthermore, since the
interaction between the user and the item is temporal, we are
going to try some DRL approaches to solve the temporal
recommendation problem.
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