ELSEVIER

Computer-aided drug design, quantum-mechanical
methods for biological problems

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in
Structural Biology

L))

Check for
Updates

Madushanka Manathunga', Andreas W. Gétz® and

Kenneth M. Merz Jr. '

Abstract

Quantum chemistry enables to study systems with chemical
accuracy (<1 kcal/mol from experiment) but is restricted to a
handful of atoms due to its computational expense. This has
led to ongoing interest to optimize and simplify these methods
while retaining accuracy. Implementing quantum mechanical
(QM) methods on modern hardware such as multiple-GPUs is
one example of how the field is optimizing performance.
Multiscale approaches like the so-called QM/molecular me-
chanical method are gaining popularity in drug discovery
because they focus the application of QM methods on the
region of choice (e.g., the binding site), while using efficient
MM models to represent less relevant areas. The creation of
simplified QM methods is another example, including the use
of machine learning to create ultra-fast and accurate QM
models. Herein, we summarize recent advancements in the
development of optimized QM methods that enhance our
ability to use these methods in computer aided drug discovery.
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Introduction
The use of QM in computer aided drug design [1]

(CADD) has been evolving over the past several de-
cades [2,3]. The early focus in quantum mechanics

(OM) was on small molecules due to the computational
expense, but with a range of algorithmic and computer
hardware innovations the ability to realistically use QM
in CADD has emerged. In what follows we will sum-
marize relevant advances in the past couple of years, but
for those interested in digging deeper into the field they
could do no worse than consulting a recent book on QM
in Drug Discovery, which provides a good overview of
the field with contributed chapters covering QM
methods, protocols, and applications [4]. Here, we will
review recent developments in QM methods, hybrid
quantum mechanical/molecular mechanical (QM/MM)
methods, and newly emerging quantum machine
learning (QML) methods of relevance to CADD
(Scheme 1).

Advances in QM methods for structure-based drug
design

OM methods have had a long tradition in CADD cam-
paigns and continue to have impact in the form of tools/
workflows based on QM methods and novel computa-
tional implementations of traditional quantum chemi-
cal (QC) methods. Among the recent QC method
developments, extended tight binding methods devel-
oped by Grimme et al. [5] are particularly interesting.
Their most recent method, GFN2-xTB, which is based
on a revised version of tight binding and on the D4
dispersion correction, has become popular due to its
applicability across the periodic table in combination
with good accuracy and low-computational cost. Several
workflows centered around GFN2-xTB and GFNFF (a
partially polarizable forcefield) have appeared recently
[6—9]. Meanwhile, traditional semi-empirical methods,
Hartree-Fock (HF), and density functional theory
(DFT) methods with improved exchange correlation
functionals continue to be useful in various branches of
CADD, while approaches using highly accurate corre-
lated wave function methods also start to appear. Useful
benchmark datasets consisting of 547 protein fragment
interaction energies (PLF547) and 15 active site-ligand
models (PLA15) were established and used to assess
the accuracy of several semi-empirical QM methods,
demonstrating that PM6 and DFTB3 can achieve re-
sults nearly on par with dispersion corrected DFT'when
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2 Biophysical Methods
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Diverse use of QM, QM/MM and ML methods in CADD applications, including structure-based drug design (SBDD), X-ray refinement based on differ-
ences between computed and observed structure factors (Fogs), and NMR refinement using differences in chemical shifts of free and bound ligands

(chemical shift perturbations, CSP’s).

combined with noncovalent dispersion and hydrogen
bonding corrections [10]. An example for state-of-the-
art ab initio methods is the linear scaling domain-based
local pair natural orbital coupled cluster method,
DLPNO-CCSD(T), which was recently applied to
quantify ligand—residue interactions in nicotinic
acetylcholine receptor agonist binding through a local
energy decomposition analysis [11]. While computa-
tionally tractable, DLPNO-CCSD(T) is still compu-
tationally demanding, and such highly accurate
calculations thus remain limited to single point energy
calculations of moderately sized cluster models for the
foreseeable future.

In the area of conformer generation, Udvarhely et al.
[12] reported the ReSCoSS workflow for generating
conformers of druglike molecules in solution. In this
semiautomated workflow, the initial conformer genera-
tion is performed using traditional methods, but the
subsequent ranking of conformers based on the relative
free energies uses geometry optimizations using the
DFT-D method with the COSMO-RS solvent model.
Meanwhile, Grimme’s group has reported on the
CREST tool [6], where the sampling in conformational
space is performed using an iterative procedure and the
subsequent energy calculation is performed using the

GFN2-xTB method. This tool has been shown to pro-
vide reasonable conformers with a sufficient accuracy at
a lower computational cost [13]. A related software tool
has been reported that is aimed at generating torsional
conformers of small acyclic molecules [14]. In this
approach, the torsional space is explored based on
chemical knowledge and a random search and geometry
optimizations and Hessian calculations are carried out at
a low (usually HF/3-21G) and high level of theory
(MOSHX/MG3S).

High-throughput docking is one of the most widely used
tools in drug lead discovery, holding the potential for
triaging potential drug candidates much faster and
cheaper than experimentally. In this context, Cavasotto
and Aucar have introduced a PM7 based scoring function
[15]. Using enrichment factors computed for a set of 10
proteins representing different families and binding site
characteristics, the authors reported that their function
outperforms a traditional docking method. More recently,
full DFT calculations were employed to successfully rank
order a scaffold-diverse set of ligands to a SARS-CoV-2
main protease (Mpro) model with nearly 3000 atoms
based on absolute ligand binding energies [16]. DFT
calculations for such large models are significantly more
expensive than semi-empirical scoring functions,
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however, this work demonstrates the practical possibility
to employ more rigorous and large-scale QM approaches
with reasonable turnaround times where required in the
drug discovery pipeline.

In the area of pKa prediction, new QM based workflows
have been reported by Haslak et al. and the Grimme group
[7,17]. The former, which exclusively focuses on carbox-
ylic acids, is based on a linear relationship between
computed atomic charges of the anionic carboxylic frag-
ment and experimental pKa values. In contrast, Grimme’s
is a widely applicable protocol based on a new cubic free
energy relationship equation. In the area of C13 and
proton NMR spectra prediction, MOSS-DFT for organic
molecules in solution, and the MIM2-NMR workflow for
large biomolecules have been reported [18,19]. Das and
co-workers have reported a QM based NMR [20] and
collisional cross section (CCS) workflow [21] for metab-
olites. A new hybrid density functional aimed at C13
chemical shift prediction has also been introduced [22].
"This functional called xOPBE, was constructed by mixing
HF exchange into the previously reported OPBE func-
tional. The authors report that the predicted C13 chem-
ical shifts using this functional are more accurate than its
parent functional. Among other new tools/workflows,
Grimme’s group incorporated collision-induced dissocia-
tion spectra calculations into their QCEIMS software tool
[8]. Another significant development from the same group
is a new workflow to compute the optical rotation of
organic molecules in solution [9].

Among the recent work related to dipole moment
calculation, Zapata and McKemmish studied the accu-
racy and performance of different basis sets using
different quantum chemical methods and documented a
few useful recommendations [23]. The authors used a
dataset consisting of over a hundred small molecules
containing second and third row elements. They re-
ported that DFT calculations with a hybrid functional
such as WB97X—V or SOGGA11-X and augmented
double zeta basis sets from Jensen (aug-pc-1 or
augpcseg-1) and Dunning (aug-cc-pvDZ) families can
provide accurate dipole moments at an affordable
computational cost. Furthermore, the authors concluded
that single zeta quality and Pople style basis sets are
unsuitable for dipole moment calculation.

There has been a number of recent efforts to increase
the performance of traditional quantum chemistry
methods. This mainly includes implementing algo-
rithms to harness the power of new computer architec-
tures, particularly GPUs. Among these, SCF
implementation by Gordon group [24], XC quadrature
scheme reported by NWChemX group [25] and work
related to the QUICK code in the AMBERtools package
are notable [26,27]. Finally, it is important to highlight
that semi-empirical methods, particularly xXTB methods,
are becoming increasingly popular. Given the fast
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evolution of computer hardware and the pace of method
development, it is likely that these methods and QML
potentials will either replace classical force fields (FFs)
in drug development workflows or will be used inter-
operably with @b inito QM calculation, QML potentials
and FFs.

Multiscale QM/MM models

Multiscale simulation methods divide a large molecular
system into different regions that are modeled at appro-
priate levels of theory to focus the computational effort on
regions where it is required. Of particular interest are QM/
MM approaches that embed a QM region into a molecular
mechanics (MM) description of the environment, open-
ing the door for simulations of entire proteins in their
native environment without making gross approximations.
A fairly recent editorial and collection of articles discuss
developments and applications of QM/MM approaches
with a focus on biomolecular systems [28] and a recent
perspective highlights current developments and chal-
lenges in the field [29]. QM/MM approaches are often
employed to investigate enzymatic reaction mechanisms
and the interested reader is pointed to recent reviews
[30,31]. In the context of CADD, an understanding of
enzymatic reaction mechanisms enables the design of
scaffolds based on transition state analogs for the devel-
opment of enzyme inhibitors with improved affinity and
specificity if enzymes are known as therapeutic targets.
QOM/MM methods are also successfully employed in X-ray
crystal structure refinement. Recent work employed a
PM6 semi-empirical Hamiltonian in combination with the
AMBER force field for the protein environment to the set
of structures from the Community Structure Activity
Resource data set and demonstrated improved protein-
ligand geometries in comparison to conventional refine-
ment methods [32].

Due to the computational cost of @b mitio and DFT
methods, QM/MM studies of reaction mechanism are
often restricted to geometry optimizations of reactant,
product, and transition states or reaction paths while
OM/MM molecular dynamics (MD) simulations often
employ semi-empirical QM methods. However, even
full scale DFT based MD simulations of entire small
proteins have become feasible exploiting the latest GPU
accelerators, although these are still limited to small
basis sets and short time scales on the order of 10 ps
[33]. A recent publication on the other hand computed
the potential of mean force (PMF) along pre-
determined reaction paths of enzymatic reactions from
biased QM/MM MD simulations with the dispersion
corrected hybrid exchange-correlation  functional
B3LYP-D3 and a relatively large aug-cc-pVDZ basis set
[34]. The development of widely available and open-
source implementations such as the efficient GPU
accelerated QUICK code in AmberTools [27]
mentioned above hold the promise to make such in-
vestigations routine.
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Current Opinion in Structural Biology 2022, 75:102417


www.sciencedirect.com/science/journal/0959440X

4 Biophysical Methods

A challenge that any practitioner of QM/MM approaches
faces is the appropriate selection of the QM region. A
promising approach that aims to alleviate this burden by
automating the construction of QM/MM models has
recently presented [35]. In this approach the size and
composition of the QM region are evaluated in an
automated manner such that the hybrid model describes
the atomic forces in the center of the QM region
accurately. Furthermore, a good FF potential to describe
the MM region must be chosen. For biomolecular sim-
ulations there are a range of well-established and highly
successful pairwise additive force fields with fixed point
charges that are readily available. In some cases, how-
ever, it may be important to explicitly account for
electronic polarization in the MM region. Progress has
been made in developing QM/MM methods and soft-
ware implementations towards this end using different
methods to represent polarization, for example polariz-
able point dipoles [36—38]. Whether these methods will
become useful for CADD applications will depend on
further improvements of the underlying polarizable FFs
and wider availability in user-friendly software packages.

Another aspect that is of critical importance for QM/
MM simulations in condensed phase under periodic
boundary conditions (PBC), is the treatment of long-
range electrostatic interactions between the QM and
MM regions. It is common practice to truncate elec-
trostatics beyond a cutoff distance in @b nitio and DFT
based QM/MM simulations, thus introducing uncon-
trolled errors into the simulation. A notable method that
properly accounts for long-range electrostatics is the
ambient potential composite Ewald method that per-
forms a direct interaction of the QM charge density both
with the real space and reciprocal space electrostatic
potential, which was shown to remedy numerical in-
stabilities and artifacts in DFT based QM/MM simula-
tions [39]. An alternative approach that was recently
developed projects the long-range electrostatic poten-
tial in form of augmentary charges onto MM atoms
within the cutoff region and is applicable both to large
finite clusters and PBC simulations [40]. With these
approaches rigorous QM/MM simulations with bounded
errors are now possible.

Finally, it is worth to mention recent developments
in QM “bookending” methods, which are commonly
known as reference potential methods which were
originally pioneered 30 years ago [41,42]. These
methods enable highly efficient QM/MM free energy
simulations via an indirect route using free energy
perturbation, thermodynamic integration, or employing
Bennett’s acceptance ratio (BAR). The trick of book-
ending is to invoke a thermodynamic cycle in which the
bulk of the free energy simulation, for instance an
alchemical transformation, is performed using a series
of computationally cheap reference potentials, while

only the end points (bookends so to say) need to be
sampled with the expensive QM/MM potential [43].
This opens the door to compute solvation free energies
and ligand binding free energies with accurate QM/
MM methods that otherwise would be computationally
too demanding. In a similar vein, mapping to reference
potentials has been developed for the targeted free
energy perturbation approach (TFEP) using neural
networks, resulting in an approach that requires only a
small number of single point calculations with the
expensive target potential, thus improving the accuracy
and convergence of absolute and relative free energies
and free energy surfaces [44].

Emergence of quantum machine learning models
The use of MLL and NN models to develop potential
energy functions of relevance to chemistry have been
undergoing rapid development. Reflecting the interest
in this field several reviews have appeared in 2021 for
those interested in further details of the advances of the
last decade [45,46]. An exciting area for CADD is to take
large databases of QM derived information and then
create a QML model that reproduces this data set with
the expectation that the resultant model would be
extensible to molecules not represented by the training
data set [45]. In CADD applications these @4 initio ML
potential energy functions should be superior to MM
potentials, but have a similar computational cost.
However, while many of the potentials described aim at
reproducing ab initio or DF'T data for small molecules the
use of these models in condensed phase simulation are
just emerging. In particular, interoperability or the
ability to mix and match ML force field, @b initio, etc.
potentials is an area ripe for exploitation and validation.
Combined together these models can be used to miti-
gate deficiencies in each other: for example, force fields
aren’t great at conformational energies, but QM based
ML models can improve this situation. Overall, the use
of QML potentials in drug design has the potential to
greatly improve computed binding or relative free en-
ergies using modern free energy methods [47]. Many
advances along these lines will be seen in the coming
years and could speed up free energy calculations while
improving their accuracy.

The evolution of QML potentials is readily described
by a series of generations [48]. In the first generation
rudimentary potentials that can be used to model
simple systems were described [49]. To overcome this
deficiency and to generate models that can be used in
3-dimensional space second generation potentials were
developed. Examples of these so-called second gener-
ation models like ANI [50—55] or AP-net [56] among
many others [45] are based off of high-dimensional
neural network potentials (HDNNPs) described by
Behler and Parrinello [57], which while effective to
study large systems lack long-range electrostatics and
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dispersion interactions thereby reducing their effec-
tiveness to model intermolecular interactions in
particular in inhomogeneous systems [48,56,58]. A
major drawback of many of these models is the lack of
atomic charges and the use of fixed charges in the third
generation addressed these issues [59—61]. Finally,
fourth generation (4G) models have begun to appear
combining many of the earlier generation models with
atomic charges determined on the fly using, for
example, charge equilibration (Ceq) [62] models
[48,60,63]. In these 4G models the intramolecular
degrees of freedom are modeled using accurate 2G-
HDNNP coupled with a charge equilibration model
that updates the charges on the fly allowing the model
to respond to the local environment and effectively
deal with multiple charge states and long-range charge
transfer. Ko et al. [48] reported an initial attempt at a
4G model and showed that it had the proper behavior
on a series of test systems. These 4G models have the
potential to have an impact on CADD because they
have all the required features: an accurate intermo-
lecular potential combined with an accounting for po-
larization and charge transfer. Combining 4G models
with classical force fields incorporating long-range
clectrostatic interactions could usher in a new gener-
ation of accurate relative free energy calculations.
While the field is not quite there yet it is a very exciting
avenue to pursue that will challenge standard para-
digms where many potentials can be layered on top of
one another to create hybrid models to solve problems
in CADD.

Applications of QML potentials, in the context of
chemical reactivity, have been reported in the past year
and we highlight just a few here. Boselt et al. [64], Zeng
et al. [65], Gastegger et al. [66] and Pan and coworkers
[67], building on earlier work of the Yang lab [68—70],
have reported the use of QML potentials in combination
with QM/MM methods. The studies of Boselt et al. and
Pan and co-workers use A-machine learning (A-ML)
approaches [71] where the differences between a lower
level of QM theory versus that of a higher level of theory
is learned for a specific reaction and then applied to
correct the cheaper QM models to achieve high quality
results. The work of Zeng et al. [65] introduces range-
corrections to the ML potentials to also improve short-
range QM/MM interactions affecting the MM atoms
within a relevant cutoff of the QM region. These
application studies are interesting and point to the need
for improvements in the treatment of long-range in-
teractions and in building standalone 4G potentials that
can deliver high-quality results without resorting to A-
ML approaches. That said these latter models may ul-
timately prove to be the best way forward. While these
studies are of interest in studying chemical reactivity
how these methods can be applied to drug discovery
applications will need to be more fully fleshed out in the
coming years.
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Conclusions and outlook

OM has been a key field in theoretical and computa-
tional chemistry for decades and will continue to be of
importance going forward since it is the only method
available in the computational armamentarium that
guarantees to asymptotically reach the correct answer
via the variational principle. That said, improvement in
the performance of traditional QM methods by
exploiting modern hardware and novel algorithms con-
tinues to be an area worth pursuing. The development
of new QOM/MM methods that take advantage of the
advancements has already begun to appear in CADD
applications. The MIL/AI field is advancing rapidly to
provide the CADD field with fast and accurate poten-
tials that directly mimic QM models that can be applied
to a myriad of problems in CADD. The most exciting
aspect of the use of QM in CADD has been the emer-
gence of many new directions that all promise to deliver
chemical accuracy to several aspects of CADD in the
coming years.
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