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Abstract — 3D sensors such as LiDAR, stereo cameras,
and radar have been used in many applications, for
instance, virtual or augmented reality, real-time immersive
communications, and autonomous driving systems. The
output of 3D sensors is often represented in the form of
point clouds. However, the massive amount of point cloud
data generated from 3D sensors poses big challenges in data
storage and transmission. Therefore, effective compression
schemes are needed for reducing the bandwidth of wireless
networks or storage space of 3D point cloud data. Several
point cloud compression (PCC) algorithms have been
proposed using signal processing or neural network
techniques. In this study, we investigate four state-of-the-
art PCC methods using two different datasets with various
configurations. The objective of this study is to provide a
comprehensive understanding of various approaches in
PCC. The results of this paper will be helpful in developing
an adaptive 3D point cloud stream compression benchmark
that is efficient and benefited from different PCC
techniques.

Keywords — point cloud, data compression, performance
assessment, evaluation metrics.

I. INTRODUCTION

A point cloud (PC) is a collection of an enormous number of
measurements that can be used in 3D modeling. PCs can carry
both geometry information and associate attributes (e.g., color,
reflectance, and intensity, etc.), plus temporal changes [1]. PCs
are widely used in various applications including virtual reality,
augmented reality, real-time immersive communications,
biomedical imagery, and autonomous driving systems [2-5].
PCs are commonly generated using stereo cameras, Light
Detection and Ranging (LiDAR) sensors, or 3D laser scanners.
Latest advancements in 3D data acquisition technology offer
point cloud representations to be effective, high precision,
reliable, and real-time. However, the volume of point cloud data
generated by 3D sensors is massive. For example, a 64-line
Velodyne LiDAR sensor continuously scanning a given scene
generates over 1 billion points in twenty minutes; or a point
cloud with 0.7 million points per 3D frame at 30 frames per
second (fps) needs a bandwidth around 500 Megabyte per
second (MB/s) to transmit [6, 7]. The huge amount of data poses
big challenges in both data storage and transmission. For
example, it required more space to store the point cloud data
locally on a device and is more difficult to share the data with
other network nodes (i.e., transmit the data in wireless
networks), or to manipulate and analyze the data. In recent years,
several point cloud compression (PCC) schemes have been
developed [8-15]. Efforts have also been made in evaluating the
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performance of existing PCC algorithms, but most of them focus
on a smaller set of compression techniques with a dataset and
specific setting [16-21]. In this paper, four state-of-the-art PCC
methods will be investigated using two different public domain
datasets and with various configurations (e.g., lossless vs lossy).
The result of this paper is essential in developing an adaptive 3D
point cloud stream compression benchmark that can take
advantages from different 3D PCC techniques under different
scenarios, requirements, limitations, and constraints to
intelligently address the bandwidth bottleneck of wireless
networks.

II. 3D PCC METHODS

In this section, we provide brief descriptions of the PCC
methods that were selected and evaluated in this study.

G-PCC [8] is a geometry-based technique proposed by Apple
Inc. G-PCC encodes the geometry positions directly in 3D space
using the coordinated retrieved from octree representation.
Geometry positions can be encoded using two approaches and
the attributes of point cloud can be encoded using three different
methods. The final bitstream can be produced from both
geometry bitstream and color bitstream.

V-PCC [8] adopts a projection-based coding principle and is
also proposed by Apple Inc. V-PCC decomposes the point cloud
data into a set of patches. The 3D patches are generated from
several orthographic directions and projected onto a 2D plane.
These 2D patches are then processed using 2D video encoder
technique. Both depth and attribute information can be retained
in the resulting projection images.

Draco [9] is an open-source library developed by Google for
compressing and decompressing 3D geometry meshes and point
clouds. The main idea behind Draco is using KD tree. After KD
tree formation, Draco encodes the data by entropy encoding
tools. There is a trade-off between the compressed file size and
the visual quality of point cloud depending on users’ needs.

GeoCNNvV2 [13] is an improved architecture from GeoCNNv1
[12]. GeoCNNv1 architecture is a 3D convolutional auto-
encoder (CNN-AE) composed of 3 layers of analysis transform,
followed by a uniform quantizer module and 3 layers of
synthesis transform. GeoCNNv2 uses GeoCNNv1 as a baseline
model and then added several new implementations including
entropy modeling, deeper transform, changing the balancing
weight in the focal loss, optimal thresholding in decoding, and
sequential training.

We summary the differences among these four PCC methods in
Table 1. Note that VPCC does not support a compression setting
with geometric information only and GeoCNNv2 does not
support point cloud data with color and lossless compression.
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TABLE I. SUMMARY OF POINT CLOUD COMPRESSION METHODOLOGIES

Compression Scheme Support  Support Support
Methods Color Lossless Lossy
GPCC [8] Octree v v v
VPCC [8] Video v v v
Draco [9] KD-tree v v v
GeoCNNv2 [13] CNN-AE x x v

III. EVALUATION METHODOLOGY
A. Datasets

Two public domain datasets, 8iVFB [22] and MVUB [23], were
used for compression performance evaluation. Both datasets
contain color information but can be excluded in testing.

8i Voxelized Full Bodies (8iVFB) Dataset is provided by 8i
Labs and can be retrieved from the public JPEG Pleno
Database. The dataset has four PC sequences known as
longdress, redandblack, loot, and soldier with depth 10. This
dataset contains a total of 1200 frames and the average size per
frame is 23.1 MB.

Microsoft Voxelized Upper Bodies (MVUB) Dataset is
provided by Microsoft and can be also retrieved from the public
JPEG Pleno Database. The dataset has five PC sequences
known as Andrew, David, Phil, Ricardo, and Sarah with 2
spatial resolutions, depth 9 and 10. This dataset contains a total
of 1202 frames and the average size per frame is 35.7 MB.

B. Evaluation Metrics

Six quality assessment metrics were used to compare the
performance of different compression methods.

Encoding and Decoding Times are the time (in seconds)
needed to encode an original PC to binary bitstream and the
time needed to decode the binary bitstream to reconstruct to PC
data respectively.

Compression Ratio (CR) is the relative reduction of file size
after compression. CR is computed as the ratio of the original
file size divided by the compressed file size. The higher the
compression ratio is, the more effective the PCC is.

Bits per point (bpp) or bitrate is the number of bits needed to
store an individual point in a single input PC. Bpp is computed
as the ratio of total number of bits divided by total number of
input points.

Peak Signal-to-Noise Ratio (PSNR) [24] can be used to
compare the data quality between the original PC and the
reconstructed PC. PSNR is defined as in equation (1):

2
PSNR = 10 logloep— (1)
AB

, where A and B are the two sets of input and output points (i.e.,
original PC and reconstructed PC), p is signal peak of original
point cloud, and e, p is the error between all points in A and B.
Here we use two different types of PSNR (i.e., MSE-PSNR and
HD-PSNR).

Mean Squared Error Peak Signal-to-Noise Ratio (MSE-
PSNR) can be computed by replacing the error term in (1) using
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the mean squared error eysg 4 p that is defined as in equation

2):
2point 1
ehsian = - Svasealla =Dl ().

Hausdorff Distance Peak Signal-to-Noise Ratio (HD-PSNR)
can be computed by replacing the error term in (1) using the
Hausdorff distance error ey 4  defined as in equation (3):

(max(min“a - b||§)) (3).

p2point _ max
HDAB —
a€EADbEB

Equations (2) and (3) compute the point-to-point (p2point)
distance between points in the original PC and reconstructed
PC. The point-to-plane (p2plane) distance can be computed by
replacing ||a — b||5 with ((a — b) - N;), , where the normal
vector N; on point g; is in the original point cloud A.

For each dataset, we randomly select 100 frames for testing.
Each evaluation metric was computed by averaging the result
from 100 frames. Various configurations were assessed:
lossless vs lossy compression and with or without color
attribute. Voxelization was first applied to all point clouds into
10-bit depth and normalization was also performed as a pre-
processing step. All experiments were carried out on a
computer with a 2.8 GHz Intel Core 17-7700HQ Quad-Core,
NVIDIA GeForce GTX 1060 (6GB GDDRS5) with 16GB
DDR4 RAM.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Table II shows the decoding and encoding times and bits per
point (bpp) for the three compression methods that support
lossless compression. Draco outperforms G-PCC and V-PCC
for both encoding and decoding times but has a much higher
bpp. V-PCC requires a relatively high encoding time and GPP
has a reasonable encoding time. It also has a much lower bpp
than Draco.

TABLE II. THE COMPARISON OF ENCODING/DECODING TIME
AND BITS PER POINT FOR LOSSLESS COMPRESSION METHODS

Lossless Condition G-PCC  V-PCC Draco
Encoding Time (s)

8i with color 5.38 134.53 0.31
MVUB with color 8.73 216.10 1.03

8i w/o color 2.00 - 0.32
MVUB w/o color 3.97 - 0.28
Decoding Time (s)

8i with color 2.83 1.70 0.10
MVUB with color 4.57 2.48 0.15

8i w/o color 0.49 - 0.08
MVUB w/o color 0.91 - 0.08
Bits per point (bpp)

8i with color 15.63 13.13 108.72
MVUBC with color 14.75 13.86 107.04
8i w/o color 2.28 - 96.00
MVUB w/o color 2.49 - 96.00

Fig 1 shows the MSE-PSNR curves versus bitrate for lossy PCC
methods with and without color attribute using 8iVFB dataset.
V-PCC outperforms G-PCC and Draco when the PC contains
color information while GeoCNNv2 outperforms when the PC
contains geometric information only. Similar results were
obtained when using MVUB dataset (data not shown).
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Fig 1. Comparison of MSE-PSNR for lossy compression methods
with or without color information using 8iVFB dataset.

Fig 2 shows the HD-PSNR curves versus bitrate for lossy PCC
methods with and without color attribute using MVUB dataset.
G-PCC outperforms V-PCC and Draco disregarding the PCC
contains color information or not when HD error was used to
compute PSNR. GeoCNNv?2 has the lowest HD-PSNR for both
p2point and p2plane when using MVUB dataset without color
information. Surprisingly, this is inconsistent with the results in

Fig. 1.

Further investment is needed to get a deeper

understanding on using the neural network approach for point
cloud compression under different scenarios.
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Fig 2. Comparison of HD-PSNR for lossy compression methods
with or without color information using MVUB dataset.

V. CONCLUSION

In this paper, four state-of-the-art 3D PCC methods were
investigated using two different datasets with various settings
to provide a comprehensive understanding of these existing
compression techniques. We developed a framework to
objectively compare the efficiency of these PCC algorithms and
observed some of their advantages and limitations. For
instance, Draco has a limitation to achieve results in low
bitrates; GPCC outperforms other two PCC algorithms at all
bitrates in terms of HD-PSNR metric; GeoCNNv2 outperforms
others when PC with geometric information only and in terms
of MSE-PSNR metric. We conclude that despite great
achievements of 3D PCC have been made in recent years, there
are still a large space for further improvement especially on
how to select or combine different 3D PCC techniques under
constraints in various applications such as to intelligently
resolve the bandwidth bottleneck of wireless networks for

massive point cloud data.
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