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Abstract — 3D sensors such as LiDAR, stereo cameras, 
and radar have been used in many applications, for 
instance, virtual or augmented reality, real-time immersive 
communications, and autonomous driving systems. The 
output of 3D sensors is often represented in the form of 
point clouds. However, the massive amount of point cloud 
data generated from 3D sensors poses big challenges in data 
storage and transmission. Therefore, effective compression 
schemes are needed for reducing the bandwidth of wireless 
networks or storage space of 3D point cloud data. Several 
point cloud compression (PCC) algorithms have been 
proposed using signal processing or neural network 
techniques. In this study, we investigate four state-of-the-
art PCC methods using two different datasets with various 
configurations. The objective of this study is to provide a 
comprehensive understanding of various approaches in 
PCC. The results of this paper will be helpful in developing 
an adaptive 3D point cloud stream compression benchmark 
that is efficient and benefited from different PCC 
techniques. 

Keywords — point cloud, data compression, performance 
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I. INTRODUCTION 
A point cloud (PC) is a collection of an enormous number of 
measurements that can be used in 3D modeling. PCs can carry 
both geometry information and associate attributes (e.g., color,  
reflectance, and intensity, etc.), plus temporal changes [1]. PCs 
are widely used in various applications including virtual reality, 
augmented reality, real-time immersive communications, 
biomedical imagery, and autonomous driving systems [2-5]. 
PCs are commonly generated using stereo cameras, Light 
Detection and Ranging (LiDAR) sensors, or 3D laser scanners. 
Latest advancements in 3D data acquisition technology offer 
point cloud representations to be effective, high precision, 
reliable, and real-time. However, the volume of point cloud data 
generated by 3D sensors is massive. For example, a 64-line 
Velodyne LiDAR sensor continuously scanning a given scene 
generates over 1 billion points in twenty minutes; or a point 
cloud with 0.7 million points per 3D frame at 30 frames per 
second (fps) needs a bandwidth around 500 Megabyte per 
second (MB/s) to transmit [6, 7].  The huge amount of data poses 
big challenges in both data storage and transmission. For 
example, it required more space to store the point cloud data 
locally on a device and is more difficult to share the data with 
other network nodes (i.e., transmit the data in wireless 
networks), or to manipulate and analyze the data. In recent years, 
several point cloud compression (PCC) schemes have been 
developed [8-15]. Efforts have also been made in evaluating the 

performance of existing PCC algorithms, but most of them focus 
on a smaller set of compression techniques with a dataset and 
specific setting [16-21]. In this paper, four state-of-the-art PCC 
methods will be investigated using two different public domain 
datasets and with various configurations (e.g., lossless vs lossy). 
The result of this paper is essential in developing an adaptive 3D 
point cloud stream compression benchmark that can take 
advantages from different 3D PCC techniques under different 
scenarios, requirements, limitations, and constraints to 
intelligently address the bandwidth bottleneck of wireless 
networks.  

II. 3D PCC METHODS 

In this section, we provide brief descriptions of the PCC 
methods that were selected and evaluated in this study.  
G-PCC [8] is a geometry-based technique proposed by Apple 
Inc. G-PCC encodes the geometry positions directly in 3D space 
using the coordinated retrieved from octree representation. 
Geometry positions can be encoded using two approaches and 
the attributes of point cloud can be encoded using three different 
methods. The final bitstream can be produced from both 
geometry bitstream and color bitstream. 
V-PCC [8] adopts a projection-based coding principle and is 
also proposed by Apple Inc. V-PCC decomposes the point cloud 
data into a set of patches.  The 3D patches are generated from 
several orthographic directions and projected onto a 2D plane. 
These 2D patches are then processed using 2D video encoder 
technique. Both depth and attribute information can be retained 
in the resulting projection images. 
Draco [9] is an open-source library developed by Google for 
compressing and decompressing 3D geometry meshes and point 
clouds. The main idea behind Draco is using KD tree. After KD 
tree formation, Draco encodes the data by entropy encoding 
tools. There is a trade-off between the compressed file size and 
the visual quality of point cloud depending on users’ needs. 
GeoCNNv2 [13] is an improved architecture from GeoCNNv1 
[12]. GeoCNNv1 architecture is a 3D convolutional auto-
encoder (CNN-AE) composed of 3 layers of analysis transform, 
followed by a uniform quantizer module and 3 layers of 
synthesis transform. GeoCNNv2 uses GeoCNNv1 as a baseline 
model and then added several new implementations including 
entropy modeling, deeper transform, changing the balancing 
weight in the focal loss, optimal thresholding in decoding, and 
sequential training.  
We summary the differences among these four PCC methods in 
Table 1. Note that VPCC does not support a compression setting 
with geometric information only and GeoCNNv2 does not 
support point cloud data with color and lossless compression. 
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TABLE I.  SUMMARY OF POINT CLOUD COMPRESSION METHODOLOGIES 

Compression 
Methods Scheme Support 

Color 
Support 
Lossless 

Support 
Lossy 

GPCC [8] 
VPCC [8] 
Draco [9] 
GeoCNNv2 [13] 

Octree 
Video 
KD-tree 
CNN-AE 

ü 
ü 
ü 
û 

ü 
ü 
ü 
û 

ü 
ü 
ü 
ü 

III. EVALUATION METHODOLOGY 
A. Datasets 

Two public domain datasets, 8iVFB [22] and MVUB [23], were 
used for compression performance evaluation. Both datasets 
contain color information but can be excluded in testing.  

8i Voxelized Full Bodies (8iVFB) Dataset is provided by 8i 
Labs and can be retrieved from the public JPEG Pleno 
Database. The dataset has four PC sequences known as  
longdress, redandblack, loot, and soldier with depth 10. This 
dataset contains a total of 1200 frames and the average size per 
frame is 23.1 MB.  

Microsoft Voxelized Upper Bodies (MVUB) Dataset is 
provided by Microsoft and can be also retrieved from the public 
JPEG Pleno Database. The dataset has five PC sequences    
known as Andrew, David, Phil, Ricardo, and Sarah with 2 
spatial resolutions, depth 9 and 10. This dataset contains a total 
of 1202 frames and the average size per frame is 35.7 MB.  
B. Evaluation Metrics 

Six quality assessment metrics were used to compare the 
performance of different compression methods.  
Encoding and Decoding Times are the time (in seconds) 
needed to encode an original PC to binary bitstream and the 
time needed to decode the binary bitstream to reconstruct to PC 
data respectively. 
Compression Ratio (CR) is the relative reduction of file size 
after compression. CR is computed as the ratio of the original 
file size divided by the compressed file size. The higher the 
compression ratio is, the more effective the PCC is. 
Bits per point (bpp) or bitrate is the number of bits needed to 
store an individual point in a single input PC. Bpp is computed 
as the ratio of total number of bits divided by total number of 
input points. 
Peak Signal-to-Noise Ratio (PSNR) [24] can be used to 
compare the data quality between the original PC and the 
reconstructed PC. PSNR is defined as in equation (1): 

𝑃𝑆𝑁𝑅 = 	10 𝑙𝑜𝑔!"
#!

$",$
 (1) 

, where A and B are the two sets of input and output points (i.e., 
original PC and reconstructed PC), 𝑝 is signal peak of original 
point cloud, and 𝑒%,' is the error between all points in A and B. 
Here we use two different types of PSNR (i.e., MSE-PSNR and 
HD-PSNR).    

Mean Squared Error Peak Signal-to-Noise Ratio (MSE-
PSNR) can be computed by replacing the error term in (1) using 

the mean squared error 𝑒()*	%,' that is defined as in equation 
(2): 

𝑒()*	%,'
#,#-./0 =	 !

1"
∑ ||𝑎 − 𝑏||,,∀3%∈%      (2). 

Hausdorff Distance Peak Signal-to-Noise Ratio (HD-PSNR) 
can be computed by replacing the error term in (1) using the 
Hausdorff distance error 𝑒56	%,' defined as in equation (3): 

𝑒!"	$,&
'(')*+, =

	
𝐦𝐚𝐱

a ∈ A, b ∈ B
-𝐦𝐚𝐱 -𝐦𝐢 𝐧0|𝑎 − 𝑏|0

(
(55   (3). 

Equations (2) and (3) compute the point-to-point (p2point) 
distance between points in the original PC and reconstructed 
PC. The point-to-plane (p2plane) distance can be computed by 
replacing ||𝑎 − 𝑏||,,  with ((𝑎 − 𝑏) ∙ 𝑁7), , where the normal 
vector 𝑁7 on point 𝑎7 is in the original point cloud 𝐴. 

For each dataset, we randomly select 100 frames for testing. 
Each evaluation metric was computed by averaging the result 
from 100 frames. Various configurations were assessed: 
lossless vs lossy compression and with or without color 
attribute. Voxelization was first applied to all point clouds into 
10-bit depth and normalization was also performed as a pre-
processing step. All experiments were carried out on a 
computer with a 2.8 GHz Intel Core i7-7700HQ Quad-Core, 
NVIDIA GeForce GTX 1060 (6GB GDDR5) with 16GB 
DDR4 RAM. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Table II shows the decoding and encoding times and bits per 
point (bpp) for the three compression methods that support 
lossless compression. Draco outperforms G-PCC and V-PCC 
for both encoding and decoding times but has a much higher 
bpp. V-PCC requires a relatively high encoding time and GPP 
has a reasonable encoding time. It also has a much lower bpp 
than Draco.  

TABLE II.  THE COMPARISON OF ENCODING/DECODING TIME 
AND BITS PER POINT FOR LOSSLESS COMPRESSION METHODS 

Lossless Condition G-PCC V-PCC Draco 
Encoding Time (s) 
8i with color 
MVUB with color 
8i w/o color 
MVUB w/o color 
Decoding Time (s) 
8i with color 
MVUB with color 
8i w/o color 
MVUB w/o color 
Bits per point (bpp) 
8i with color 
MVUBC with color 
8i w/o color 
MVUB w/o color 

 
5.38 
8.73 
2.00 
3.97 
 
2.83 
4.57 
0.49 
0.91 
 
15.63 
14.75 
2.28 
2.49 

 
134.53 
216.10 
- 
- 
 
1.70 
2.48 
- 
- 
 
13.13 
13.86 
- 
- 

 
0.31 
1.03 
0.32 
0.28 
 
0.10 
0.15 
0.08 
0.08 
 
108.72 
107.04 
96.00 
96.00 

 
Fig 1 shows the MSE-PSNR curves versus bitrate for lossy PCC 
methods with and without color attribute using 8iVFB dataset. 
V-PCC outperforms G-PCC and Draco when the PC contains 
color information while GeoCNNv2 outperforms when the PC 
contains geometric information only. Similar results were 
obtained when using MVUB dataset (data not shown). 
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Fig 1. Comparison of MSE-PSNR for lossy compression methods  

with or without color information using 8iVFB dataset. 

Fig 2 shows the HD-PSNR curves versus bitrate for lossy PCC 
methods with and without color attribute using MVUB dataset. 
G-PCC outperforms V-PCC and Draco disregarding the PCC 
contains color information or not when HD error was used to 
compute PSNR. GeoCNNv2 has the lowest HD-PSNR for both 
p2point and p2plane when using MVUB dataset without color 
information. Surprisingly, this is inconsistent with the results in 
Fig. 1. Further investment is needed to get a deeper 
understanding on using the neural network approach for point 
cloud compression under different scenarios.  

    
Fig 2. Comparison of HD-PSNR for lossy compression methods  

with or without color information using MVUB dataset.  

V. CONCLUSION 
In this paper, four state-of-the-art 3D PCC methods were 
investigated using two different datasets with various settings 
to provide a comprehensive understanding of these existing 
compression techniques. We developed a framework to 
objectively compare the efficiency of these PCC algorithms and 
observed some of their advantages and limitations. For 
instance, Draco has a limitation to achieve results in low 
bitrates; GPCC outperforms other two PCC algorithms at all 
bitrates in terms of HD-PSNR metric; GeoCNNv2 outperforms 
others when PC with geometric information only and in terms 
of MSE-PSNR metric. We conclude that despite great 
achievements of 3D PCC have been made in recent years, there 
are still a large space for further improvement especially on 
how to select or combine different 3D PCC techniques under 
constraints in various applications such as to intelligently 
resolve the bandwidth bottleneck of wireless networks for 
massive point cloud data.    
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