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ABSTRACT 

Mobile edge computing is a new distributed computing paradigm which brings computation and data storage closer to the
location where it is needed, to improve response time and save bandwidth in dynamic mobile network environment .
Despite the improvements in network technolog , data centers cannot always guarantee acceptable transfer rates
and response time, which could be critical requirement  for many applications. The aim of mobile edge computing is to
move the computation from data centers towards the edge of the network, exploiting smart objects, mobile
phones network gateways to perform tasks and provide services on behalf of the cloud. In this paper, we
design a task offloading scheme in mobile edge network to handle the task distribution, offloading and
management by applying deep reinforcement learning. Specifically, we formulate the task offloading problem as
a multi-agent reinforcement learning problem. The decision-making of each agent is modeled as a Markov
decision process and deep learning approach is applied to deal with the large scale of states and
actions. To evaluate the performance of our proposed scheme, we develop a simulation for the mobile edge
computing scenario . Our preliminary evaluation results indicate that proposed solution can provide lower
latency for the computational intensive tasks in mobile edge network , and outperform task offloading
method .

Keywords: Mobile edge computing, Distributed computing, Task scheduling and offloading, Markov decision process ,
Deep learning

1. INTRODUCTION
Edge computing is a distributed computing paradigm which brings computation and data storage closer to the 
location where it is needed, to improve response times and save bandwidth [1]. Despite the improvements in network
technology, data centers cannot always guarantee acceptable transfer rates and response times, which could be a critical 
requirement for many applications. The aim of Edge Computing is to move the computation away from data centers 
towards the edge of the network, exploiting smart objects, mobile phones or network gateways to perform tasks and 
provide services on behalf of the cloud. By moving services to the edge, it is possible to provide content caching, 
service delivery, storage and device management resulting in better response times and transfer rates. 

Mobile Edge Computing (MEC) is a brand new network paradigm that provides information technology services within the 
mobile access network of Mobile Units (MUs). European Telecommunications Standards Institute (ETSI) pointed out that 
MEC will provide a new ecosystem to migrate intensive computing tasks of MUs [2][3]. MEC is located close to MUs 
and it is deployed within the Radio Access Network (RAN). Therefore, it can provide higher bandwidth with lower latency 
to improve the Quality of Service (QoS). In the current 5G development trend, MEC also plays an important role and helps 
to meet the 5G high standards for delay [4]. 

However, the computation power of the edge devices are also limited due to the fast growing demand of the network 
users and load. When the tasks cannot be completely handled by the edge server, the edge server will offload a portion of 
the simulation task to the cloud data centers [5][6]. In this case, reducing the traffic and processing delay in 
the backhaul network becomes significant. Conventional task offloading algorithms [7][8][9][10][11], which select 
the cloud server according to some static rules (e.g., minimum distance), have two main shortages that can potentially 
cause huge traffic delays. First, the static offloading policy is not able to adapt to the time-varying network conditions. 
When the distribution of the traffic and computation load varies in the network. An offloading decision 
made without utilizing the network condition may keep forwarding heavy traffic to a node that encounters 
congestion, which further aggravates the congestion. It is critical for the offloading algorithm to sense the network 
conditions and actively avoid those congested or busy cloud servers to reduce the cost of offloading. Secondly, 
conventional offloading methods only offload the tasks to a single cloud 



 
 

 
 

server. In this case, it could be extremely difficult to balance the load at cloud servers if some edge servers are trying to 
offload heavy tasks. 

In this paper, we address the task offloading problem of unable to handle the computational intensive tasks in edge by 
proposing a deep reinforcement learning based method to help making the decision of the target of incoming tasks. 
Additionally, we validated and evaluated a simplified model to solve the task offloading problem to prove the feasibility 
of applying deep reinforcement learning to MEC task offloading scenarios. The proposed solution will meet the QoS 
requirements (i.e., latency) with minimal effort. Therefore, our main contributions in this work are: 

1) Propose a deep reinforcement learning based method for task offloading in MEC environment; 

2) Validate our proposed solution via a simplified simulation with using multi-armed bandit model; 

In Section 2, we introduce the system model for the deep reinforcement learning based task offloading method. Section 3 
describes the simplified simulation environment and the experiment detail, along with the validation and evaluation results 
and analysis. Section 4 introduces the conclustion for our work and the future plan. 

2. DEEP REINFORCEMENT LEARNING BASED TASK OFFLOADING 
2.1 System Model 

We consider a MEC system with M MEC servers indexed by  and J cloud servers indexed by , 
which collectively provide task offloading services to K MUs indexed by  at a training site. At each time 
slot, MEC server m has  tasks to be executed indexed by . Let  be the size of input data (in bits) for 
task  at MEC server m (e.g., the size of a video clip taken from the training site) and let  be its complexity, which is 
defined by the number of CPU cycles required to execute one bit of the task. Then, the number of CPU cycles required to 
complete tasks  is , and the number of CPU cycles required to complete all tasks at MEC server m is . 

To mitigate the computational load at the edge servers and guarantee timely processing of the simulation tasks, a proportion 
of the simulation tasks will be offloaded from an MEC server to one of the cloud servers. The associations between MEC 
and cloud servers are specified by the following binary variables. 

 
(1) 

Since we consider the scenario where each MEC server can only select at most one cloud server for task offloading, we 
have . Suppose MEC server m is associated with cloud server j (i.e., ), the task assignment between 
MEC and cloud servers can be denoted by the following binary variables. 

am,i

1, The i th task is offloaded to the selected cloud server
0, The i the task is executed by MEC server m 

m 1,...,M;  i 1,...,Nm. (2) 

Then, the time required for locally executing the tasks at MEC server m is given by 

 (3) 

where  is the computational capability of MEC server m, which is measured in CPU cycles per second. Let  be the 
computational capability of cloud server j that is available for the MEC servers (at current stage, we assume that  is a 
constant for simplicity; for future analysis, we may consider  fluctuates according to a Markov process). We assume 
that  is allocated is a way such that all tasks offloaded from various MEC servers associated with cloud server j are 
completed at the same time. The design rationale behind this allocation is that the computational capability is fully utilized. 
In other words, the following scenario will not happen: when the tasks that require less CPU cycles are competed earlier, 
the released computational capability cannot be used by other tasks that are still being executed. Under the optimal 
computational capability allocation that all tasks are completed at the same time, the computational capability allocated to 

xm, j

1, if MEC server m offloads tasks to cloud server j
0, otherwise

,  m 1,...,M ;  j 1,...,J .



 
 

 
 

a task is proportional to the number of CPU cycles required to execute the task. Note that the total number of CPU cycles 
for all tasks at cloud server j is , the computational capability allocated to the  th task of MEC 
server m by cloud server j is given by 

 (4) 

Then, the execution time of all tasks offloaded to cloud server j is given by 

 (5) 

We then present the communication latency for offloading the tasks from MEC servers to cloud servers. The 
communication latency consists of two parts, one is the access latency and the other is data transmission latency. The 
access latency is the round-trip time for a packet to travel between MEC and cloud servers, which is normally measured 
with “Ping” messages. The data transmission latency is the time spent on transmitting all the packets, which is determined 
by the size of transmitted data and the data rate of backhaul connection. Due to the time-varying network dynamics, both 
the access latency and the data rate of backhaul link fluctuate over time, and such fluctuation is expected to be memoryless. 
Note that, access latency consists of the uplink component (from MEC server to cloud server) and the downlink component 
(from cloud server to MEC server) of the access latency. In the MEC-based simulation system, the two components are 
separated by the computing time at the cloud server, and the network dynamics may be changed during this period. Thus, 
the actual round-trip time could be different from the one measured by “Ping” messages. To obtain accurate round-trip 
time, the “Ping” message can be modified to record the total elapsed time from the beginning of task offloading to the 
completion of downloading outcome from cloud server. Then, the access latency can be calculated by subtracting the data 
transmission time and computing time from the total elapsed time.  Let  and  be the time-varying uplink and 
downlink access latency of the backhaul link between MEC server m and cloud server j, respectively. Based on the 
memoryless property, we consider  and   follow a Markov process with 
finite number of states, each state corresponds to a certain range of . Take  as an example, we divide the 
range of the possible value of  into multiple intervals with equal length of , given by 

, where  and  are the predefined minimum and maximum possible values of 
 , respectively, which can be set according to historical data of  Given the interval length , the total number 

of intervals is ( , which is also the number of states. We define that  is in state  if  falls into 
the  th interval, i.e., . The Markov process for  is defined in the same way 
as . Note that the transition probabilities between different states are unknown to each MEC server. 

Similarly, let  be the data rate of the backhaul link between MEC server m and cloud server j, we assume that   
follows a Markov process with finite number of states, given by 

, where  and  are the predefined minimum and maximum possible values of , respectively, and  is 
the length of each interval. Same as , we define that  is in state  if  falls into the  th interval, i.e., 

.  

With the data rate  and the size of data to be transmitted , the data transmission latency from MEC server 

m to cloud server j is . Considering the fact that the size of the output data of a task is small (e.g., 

a decision indicator), we neglect the latency for sending the outcome of a task back to an MEC server. In case such latency 
is non-negligible, the time for downloading the task outcome can be calculated in the same way as the uploading time.  

Given the access latency, data transmission latency, and the computational latency, the total elapsed time for offloading 
the tasks of MEC server m to cloud server j and completing these tasks is 



 
 

 
 

. Recall that the time for executing the proportion of tasks at MEC server m is .  Let 

 be the latency for completing all the tasks at MEC server m when associated with cloud server j (i.e., ). Given 
that a proportion of the tasks are offloaded to cloud server j and executed there,  is impacted by the dependency of the 
tasks. Specifically, if all the tasks are independent of each other, they can be executed in parallel. Then,  is determined 
by the latest set of tasks completed between MEC server m and cloud server j, which is given by 

 (6) 

If the tasks are inter-dependent, they have to be executed following certain orders, making the calculation of  more 
complicated. For example, the tasks of a training simulation system may include user device localization, map 
downloading and updating, image/video processing, trajectory prediction, and training outcome generation. Obviously, 
the last task must rely on the outcomes of previous tasks. At the current stage, we consider a simple dependency pattern 
in which the tasks need to be executed sequentially. With such a dependency pattern, the output of one task is an input to 
the subsequent task. Based on the required order of execution, the set of tasks to be executed first (with proportion 

) are assigned to be executed by MEC server m, and the remaining tasks (with proportion 
) are assigned to cloud server j. Then, the output of the tasks executed by MEC server m is used as the 

input to start executing the tasks offloaded to cloud server. This way, the computing at MEC server m and the offloading 
from MEC server m to cloud server j can be performed in parallel, resulting in reduced latency. Under this setting, the time 
elapsed before the execution at cloud server j is determined by the slower one between the computing at MEC server m 
and the offloading from MEC server m to cloud server j, which is given by . Finally, 

 is calculated by 

 (7) 

Note that the optimal task partitioning is achieved when  for independent tasks and 
 for sequentially dependent tasks. 

2.2 Problem Formulation 

We formulate the task offloading of MEC servers as a multi-agent reinforcement learning problem. Each MEC server acts 
as an agent who makes a series of decisions on task offloading (specifically, cloud server selection) over time. The 
decision-making process of each agent is modeled as a Markov Decision Process (MDP). For MEC server m, the system 
state is defined by the observed UL and DL access latencies  and , and the backhaul data date  observed 
at the current time slot. The system state observed by MEC server m at time t is specified by a  vector 

, where { , { , and 
 are the states of , , and  at time t, respectively. The action space of MEC server m is specified 

by a combination of two variables , which corresponds to the strategies of cloud server selection and task 
partitioning ratio of MEC server m.  Recall that the association between MEC m and various cloud servers is specified by 
a set of binary variables , where   indicates that MEC server m offloads a proportion of tasks 
to cloud server j and  indicates otherwise. Given the constraint that at most one cloud server will be selected (i.e., 

), the number of possible values of  is J+1 and we index them by 

 
(8) 

The proportion of tasks (measured in total required CPU cycles) to be offloaded to cloud server, given by . 

Considering that MEC server m may receive different kinds of tasks over time,  may take any value between 

Am(t) j if cloud server j is selected
0 if no cloud server is selected

,m 1,...,M ; j 1,...J .



 
 

 
 

0 and 1. Thus, if we directly set the value of  as the variable for task partitioning in the action space (i.e., 

), the dimension of action space would be extremely high. To reduce the complexity of training, 

we set  to take a relatively small number of discrete values between 0 and 1, e.g., {0,0.1,0.2,…,0.9,1}. Once a certain 

value of  is selected, the task assignment is set such that  is the closest to the selected value of , 

i.e., |  is minimized. Obviously, there is a tradeoff between performance and complexity when 

different resolution of  are selected. The reward of MEC server m at each time slot is set to be - . The objective 
is to find the optimal policy that maximizes the expected long-term accumulated discounted reward. 

2.3 Deep Q-Learning Solution 

A reinforcement learning (RL) agent aims to learn from the environment and take action to maximize its long-term 
cumulative reward. The environment is modeled an MDP with state space  and a RL agent can take actions from space 

. The agent interacts with the environment by taking actions, observing the reward and system state transition, and 
updating its knowledge about the environment. The objective of a RL algorithm is to find the optimal policy, which 
determines the strategy of taking actions under certain system states. A policy  is specified by 

. In general, a policy is in a stochastic form to enable exploration over different actions. To find the optimal policy, the 
key component is to determine the value of each state-action function, also known as Q-function, which is defined by 

1
1 1 1( , ) ( , ) max ( , ) ( , )

t
t t t t t t t t ta

Q s a Q s a r Q s a Q s a
 

(9) 

Therefore, in large scale systems with large numbers of states and actions, the traditional Q-learning approach becomes 
infeasible since a table is required to store all the Q-values. In addition, traditional Q-learning needs to visit and evaluate 
every state-action pair, resulting in huge complexity and slow convergence. An effective approach to deal with such a 
challenge is to use a neural network (NN) to approximate the Q-values, given by , where  are the 
weights of the NN. By training a NN with sampled data, the NN can map the inputs of state-action pairs to their 
corresponding Q-values.  

In our problem, each MEC server has a DQN to be trained and the DQN is used to generate task offloading decisions once 
the training is completed. The input layer of the DQN is the current system state, which consists of 2J neurons, each 
corresponds to an element of . The output layer is set to generate the values of Q-functions when taking all the J+1 
actions, given by . 

The direct application of NN in Q-learning may be unstable or even diverge due to the correlations between observations 
and the correlations between Q-values and target values. To deal with this challenge, we apply a mechanism called 
experience replay for the training of the DQN [12]. 

As mentioned in the problem formulation, due to the interaction between MEC servers that share the computational 
resource of the same cloud server, the task offloading strategies of different MEC servers are coupled, resulting in a multi-
agent RL problem. A simple solution to such a problem is independent Q-learning (IQL) [13], where each agent (MEC 
server) regards the activities of other agents as part of the environment and learns the optimal policy based on the received 
rewards over time. In our problem, the MEC servers can learn to optimize their task offloading policies via the history of 
observed latency, hence gradually learn to select the proper cloud server. However, with IQL, all MEC servers are learning 
and adjusting their policies simultaneously, the environment from the perspective of each MEC server is non-stationary 
and there may be Ping-Pong effect. For example, two MEC servers may select the same cloud server at a time slot and 
experience high computational latency. Then, they select another same cloud server at the next time slot and observe high 
computational latency again. Hence, the system may take an extremely long time to converge.  

To break such correlations, experience replay-based deep Q-network (DQN) is considered. The idea is to “frozen” the 
agent’s experience for a certain time and use it to train the DQN later. Specifically, the agent first explores the environment 
by randomly taking actions and stores the experience, , in a target network. With the samples 
randomly drawn from the target network, the weights of the DQN is updated by minimizing the loss function given by 



2
( , , , ) ( )( ) max ( , , ) ( , , )i i s a r s U D i ia

L w r Q s a w Q s a wE (10)

where and are the weights of DQN and target network at iteration , respectively. The loss function is the mean 
square error between DQN and target network, which can be minimized through stochastic gradient descent. To reduce 
the correlation between DQN and target network, the target network is updated less frequently. After the training of DQN, 
the agent then takes action based on the estimated Q-values. The framework of the experience replay based DQN training
is shown in Figure 1.
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Figure 1 Experience replay-based DQN training.

With experience replay-based training that "frozen" each agent's experience, the MEC servers are not interacting with each 
other at the same pace and unable to learn from instantaneous feedback. As a result, the experience replay may be unstable, 
causing the system fail to convergence. To stablize training and accelerate convergence, a key observation is that the 
environment observed by an SU can be made stationary conditioned on the policies of other SUs. However, given that 
samples generated by experience replay are obsolete (i.e., cannot reflect current system dynamics), the MEC servers may 
not be able disambiguate the age of the sampled data from the replay memory. Importance sampling with off-environment 
training is an effective approach to tackle this issue [14][15]. The idea of importance sampling is assigning an importance 
ratio to each sample in a minibatch.

3. PRELIMINARY EVALUATION RESULTS
Due to the time limitation, we conducted a simple evaluation with using a simplified but efficient model instead of the 
deep Q-learning to prove the effectiveness of our proposed system. The model we used for evaluation is called Multi-
armed bandit model [16][17][18], which is a classical but effective algorithm in RL. The objective of the model is to 
maximize the expected total reward over some time period. In a k-armed bandit problem, each of the actions that has an 
expected or mean reward is given; the goal of the agent is to select a proper action form that maximizes the long-term 
expectation of the reward. In our scenario, the objective turns to choose a proper targeted server that minimize the latency 
for each arrived task. To conduct the evaluation experiment, we listed several assumptions:

1) The edge server and cloud server are undistinguishable, i.e., the task offloading controller considers the edge 
sever and cloud servers has the same distribution of the latency;

2) The offloading of a task would not affect the distribution of the latency. i.e., the decision of the task off-loading 
controller would not affect the environment;

3) The latencies of the servers are uniformly distributed, as well as the randomness of latency for each server;



4) As the RL algorithms maximize the reward, the application pursuits the minimum latency. The relation between 
the latency and the reward is , where R is the immediate reward, and T is the latency in second (s).

To simulate the scenario where the distribution of the latency changes, two perturbations are added at t=300 and t=600, 
where, at t=300 we assume that a congestion occurs on the link between the edge server and the cloud server which is the 
best initial off-loading target (or the computational resource in the edge server is exhausting, and the latency increases). 
At t=600, we assume that a small random perturbation in the whole system occurs; the best action may or may not change 
at this time. One example for this process of latency distribution change in a four-sever scenario is shown in Figure 2.

(a) The original distribution of the 
latencies. The best action in 

this case.

(b) , a congestion occurs at 
server 2, the best action changes to 

.

(c) , a small random 
perturbation is injected into the whole 
system, the best action changes to 4.

Figure 2 An example of latency distribution change in a four-server scenario.

Therefore, we conducted a simulation experiment with four servers, and the results are shown in Figure 3. Three algorithms 
are tested in this group of experiments. The blue line represents the constant step-size ε-greedy algorithm, the yellow line 
represents the sample average ε-greedy algorithm, and the green line is a naïve algorithm. The subfigure on the top shows 
the average reward of each algorithm in 2000 runs. The middle subfigure shows the average latency, and the last subfigure 
shows the ratio between the times of the best action chosen by the algorithm to the real best action (2000). 

The strategy of the naïve algorithms is simply testing every action at the beginning of each run and chooses the sever 
which as the shortest latency, then it uses this server forever. This strategy performs good at the beginning of the 
simulations but fails when the distribution of the latency changes because it lacks flexibility. One can see that both sample 
average and constant step-size ε-greedy algorithms are able to seek the suboptimal sever when the best original link 
congested or seek new optimal sever when a small random perturbation occurs in the system. However, the constant step-
size ε-greedy algorithm is more resilience to both perturbations. It consists with the conclusion that the constant step-size 
ε-greedy algorithm is adaptive to the nonstationary environment.

According to the experiments, the constant step-size ε-greedy algorithm shows good performance on adaptively choosing 
the best servers for the arriving tasks even the distribution of the latency in the system changes. We also prove that the RL 
method works for the task offloading in the MEC environment. However, at this stage, we assume the choice of the task 
offloading does not affect the latency of future tasks, which is simplified for this preliminary evaluation specifically. We 
are currently working on replacing the multi-armed bandit model with deep Q-learning to explore whether the assumptions 
can be removed and further performance improvement will be achieved or not.



Figure 3 The simulation results of the four-server scenario.

4. CONCLUSION
In this work, we proposed a deep reinforcement learning based task offloading method for the computational intensive 
tasks within the MEC environment. We provided the detailed design and the model description with mathmetical analysis 
and modeling. We also built a simulation environment to conduct a simplified validation and evaluation experiment to 
explore the feasibility of our proposed solution. Preliminary experiment results showed that our solution outperforms than 
the naïve task offloading strategy. We are currently working on two main tasks. The first one is comparing our simplified 
model with other conventional taks offloading algorithms. The second one is replacing the simplified multi-armed bandit 
model with deep Q-learning model for the task offloading decision making. More comprehensive results will be carried 
out in our next paper.
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