% Formal Methods in Computer-Aided Design 2021

Automating System Configuration

Nestan Tsiskaridze(2), Maxwell Strange

Mark Horowitz

, Makai Mann

, Kavya Sreedhar
, Clark Barrett

, Qiaoyi Liu(),

Stanford University, Stanford, CA 94305, USA
E-mail: {nestan, mstrange, makaim, skavya, joeyliu} @stanford.edu, horowitz@ee.stanford.edu, barrett@cs.stanford.edu

Abstract—The increasing complexity of modern configurable
systems makes it critical to improve the level of automation
in the process of system configuration. Such automation can
also improve the agility of the development cycle, allowing
for rapid and automated integration of decoupled workflows.
In this paper, we present a new framework for automated
configuration of systems representable as state machines. The
framework leverages model checking and satisfiability modulo
theories (SMT) and can be applied to any application domain
representable using SMT formulas. Our approach can also be
applied modularly, improving its scalability. Furthermore, we
show how optimization can be used to produce configurations
that are best according to some metric and also more likely to
be understandable to humans. We showcase this framework and
its flexibility by using it to configure a CGRA memory tile for
various image processing applications.

I. INTRODUCTION

In systems engineering, the system configuration problem
arises when systems are parameterized to increase their flexi-
bility or functionality. It refers to the problem of choosing the
appropriate parameter values for the context or application in
which the system will be used. Most hardware and software
systems, including hardware IPs, operating systems, networks,
servers, and data centers, require some degree of configuration.
The need for configuration also often arises when integrating
decoupled parts of a system, including integrating software
and hardware.

The difficulty of the system configuration problem has
been gradually growing as systems increase in scale and
complexity. In particular, in an effort to make designs more
widely applicable and re-usable, there has been an increasing
use of hardware that is configurable, not only at design time
or setup time, but even during normal operation. Manual
configuration of such systems is error-prone and may even
be impossible, depending on how frequently the systems need
to be reconfigured.

Automation of the configuration problem can also be benefi-
cial during the system design process. In particular, it obviates
the need for new hand-coded configuration files every time
some configurable component changes. Increased automation
of such steps supports a move towards more agile design
processes. Agile approaches typically require the ability to
rapidly and (largely) automatically integrate changing parts
of a system while continuously maintaining correct end-
to-end functionality. Having design blocks that are flexibly
configurable aids this effort, as does the ability to automate
the configuration.

d https://doi.org/

A potential disadvantage of automated configuration is that
it could lead to an increase in the opacity of the overall system.
Hand-written configurations can be documented and explained
to allow for easier understandability and maintainability. Thus,
an additional goal when automating configuration should be
to produce results that are comprehensible to humans and that
can be easily reviewed and maintained.

In this paper, we present a general framework for auto-
mated system configuration. It provides a flexible approach
for solving the configuration problem for systems composed
of software, hardware, or both. The systems are modeled
using transition systems, where transition formulas can use
the full expressive power of SMT-LIB [l1]], the language
used by satisfiability modulo theories (SMT) [2] solvers. The
framework provides a systematic approach to facilitate fully
automated or automation-guided system configuration. It is
well-suited for both stand-alone designs and for designs with
multiple configurable parts. For the latter, it is especially useful
during system integration and rapid development.

The main contributions of this paper are:

« We introduce a “programming by example” approach for
formalizing common input-output specifications. In an
exact formulation of the configuration problem, the input-
output specification would need to universally quantify
over the input variables. Our approach avoids the need
for quantifiers.

« We propose a new modular approach for configuration
finding in a general SMT setting that makes use of
abduction.

« We show how to leverage optimization to obtain human-
readable configurations.

« We present a case study—automated configuration of a
memory tile in the context of an agile hardware design
project targeting image processing applications.

The remainder of the paper is organized as follows. Sec-
tion [presents background and notation. Section [[I] formal-
izes the configuration solving problem and introduces our
framework, including some extensions and limitations. In
Section we show how optimization techniques can be
integrated into the approach, both for the purpose of improving
performance as well as for improving human readability, and
we discuss a few additional extensions of the framework.
In Section [V] we present a case study, giving the details of
a specific system design and showing how our framework
can be applied. Experimental results for this case study are

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-4729-9770
https://orcid.org/0000-0001-5945-1349
https://orcid.org/0000-0002-1555-5784
https://orcid.org/0000-0002-8456-6313
https://orcid.org/0000-0003-1083-9953
https://orcid.org/0000-0003-3245-7542
https://orcid.org/0000-0002-9522-3084
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

then reported in Section We survey the related work in
Section [VII and conclude in Section [VIIIl

II. BACKGROUND

We assume the standard many-sorted first-order logic set-
ting with the usual notions of signature, term, formula, and
interpretation. A theory is a pair 7 = (X,I) where ¥ is a
signature and I is a class of YX-interpretations, i.e., the models
of 7. A Y-formula ¢ is satisfiable (resp., unsatisfiable) in T
if it is satisfied by some (resp., no) interpretation in I. We
define =7 over ¥-formulas: if ¢ and v are ¥-formulas, then
¢ 7 9 if all interpretations which satisfy ¢ also satisfy
1. In this case, we also call ¢ an abduct of ¢ under 7. For
generality, we assume an arbitrary but fixed background theory
T (which could be a combination of theories) with signature
> and an infinite set X’ of variables. We will assume that all
terms and formulas are Y-terms and Y-formulas whose free
variables are in X, that entailment is entailment modulo 7,
and that interpretations are 7 -interpretations that assign every
variable in X.

Given an interpretation Z, a variable assignment s over a set
of variables V' is a mapping that assigns each variable v € V' of
sort o to an element of oZ, denoted v*. The assignment over V'
induced by an interpretation Z (i.e., the assignment that maps
each variable in V to its interpretation in Z) is denoted Z".
The assignment s restricted to the domain U C V is denoted
by sY. We write Z[s] for the interpretation that is equivalent to
7 except that each variable v € V' is mapped to v°. We write
f o g for functional composition, i.e., f o g(z) = f(g(x)).

Satisfiability Modulo Theories (SMT). Satisfiability Modulo
Theories [2] is an extension of the Boolean satisfiability
(SAT) problem to satisfiability in first-order theories. SMT
solvers combine the Boolean reasoning of a SAT solver with
specialized theory solvers to check satisfiability of many-
sorted first-order logic formulas. Some examples of commonly
supported theories are: fixed-width bit-vectors, uninterpreted
functions, linear arithmetic, and arrays. In our case study, we
utilize fixed-width bit-vectors for modeling a hardware design.

Symbolic Transition Systems.

A symbolic transition system (STS) S is a tuple § =
(V,I,T), where V is a finite set of state variables (possibly of
different sorts), (V) is a formula denoting the initial states of
the system, and T'(V, V') is a formula expressing a transition
relation, with V' defined as follows. Let prime be a bijection
that maps each variable v € V' to a new variable (not in V')
v’ of the same sort. V' is the codomain of prime.

A state s of S is a variable assignment over V. A sequence
of states is called a path. An execution of S of length k is a pair
(Z,7), where Z is an interpretation and 7 := sg, $1, ..., Sk—1
is a path such that Z[so] = I(V) and Z[s;][s;41 0 prime '] |=
T(V,V')foral 0 <i<k—1.

Unrolling and Bounded Model Checking.
An unrolling of length k of a symbolic transition system is

a formula that captures an execution of length k by creating
copies of the transition relation. This is accomplished by

introducing fresh copies of every state variable for each state
in the execution path. We use V@i to denote the set of
variables obtained by replacing each variable v € V with
a new variable called v@Q:; of the same sort. We refer to
these as timed variables. Given an STS S, let unroll(S, k) =
I(V@O) A N\g<jep, T(V@Qi, VQ(i + 1)).

Bounded model checking (BMC) [3]] is an unrolling-based
symbolic model checking approach. Let P(V') be a formula
representing a desired property of a symbolic transition sys-
tem. BMC creates an unrolled transition system and adds an
additional constraint that the property is violated at time k. The
BMC formula at bound k is thus: unroll(S, k) A—=P(V@Qk). A
typical approach for BMC starts with £ = 0 and incrementally
increases it if no counterexample is found at the current bound.
A satisfiable BMC formula can easily be converted into an
execution that violates the property.

Optimization. An optimization problem OP is a tuple
(t, A, %, ¢, O) where:

e t is an objective term to optimize of sort o;

o A is aset and < is a total order over A.

e ¢ is a formula to satisfy; and

o Oe{min,max} is the optimization objective.
T is a solution to OP if 0 = A, T |= ¢, and for any T,
such that o7 = A and 7' |= ¢:

(O=min— T <) A (O=maz—tF < 7).

A multi-objective optimization problem MQOTP is a finite
sequence of optimization problems {OP1,...,OP,} over the
same formula ¢, where OP; = (t;, A;, <4, ¢, O;) and t; is
of sort o; for i € [1,n]. Z is a solution to MOP if o = A,
T = ¢, and for any 7, such that O'iI/ = A; and 7' | ¢, either:

(i) tZ =¥ forall i € [1,n]; or
(i) for some j€[1,n], tF = t¥ for all i € [1,;), and

(O; = min — tJI- = t]r) A (O; = max — th-/ = t]I-)7
where < is the strict total order associated with <.

III. CONFIGURATION SOLVING FRAMEWORK

In this section, we formalize the configuration problem and
introduce our automated framework for solving it. We also
describe how to improve scalability using a modular approach.

A. Problem Formalization

Suppose we have a configurable system that we want to use
in a particular application context. We assume the application
context can precisely define an input/output relationship that
it expects the system to adhere to. The configuration finding
problem is then: given a system S and an application-supplied
input-output relationship P for S, find a configuration C for
S such that S satisfies P with configuration C. In this paper,
we assume that P specifies behavior for only a finite number
of steps. The rationale is that for many configurable systems,
a segment of a desired execution is sufficient to partially (or
fully) determine what the configuration should be. This is the
case for the systems we target and for the case study we

:: Hardware/Software T
Vin 1| System - Vout
— ¢
R
Veons

Fig. 1: Formal system model.

describe later. More general specifications are
direction for future work.

Formally, a configuration problem CP is a

(S, k, Vin, Vout, Veonf, P) where:

e §:=(V,I,T) is a symbolic transition system represent-
ing a configurable system S, as in Figure [T}

o k is the number of transitions over which the input-output
specification will be defined;

o Vin, Vout, Veonf are three distinguished subsets of the state
variables V' of S; Vi, contains input variables (input
variables do not appear in I(V'), and their primed versions
do not appear in T'); Vo, contains output variables; and
Veont # 0 contains the configuration variables; pairwise
intersections of these sets may either be empty or non-
empty, and V' may contain variables that are not in any
of these sets; and

e P is an input-output property, Or an input-output
specification, a formula capturing an input-output re-
lationship for k transitions: P(V;,@0,...,V;,Q(k —
1), Vourt@O, . .., Vout@K); in this paper, we use a “pro-
gramming by example” property, specifying a set of exact
values on input and output variables at each transition:
No<ick Vin@i = ¢y A No<icp, Vour @i = ¢, This
approach works well on our case study (i.e. the config-
uration found for the given example generalizes to other
inputs), and it avoids the need for universal quantification
on the input variables. Handling other kinds of properties
is an important direction for future work.

an important

tuple

A configuration C is defined as an assignment to the variables
in V::onf .

In this paper, we assume the configuration variables Vonf re-
main unchanged once configured (a reasonable assumption for
many systems, including the one in the case study we present
in Section [V). We enforce this by explicitly adding an ad-
ditional configuration constancy constraint: conf(Veonf, k) =
No<ick Veonf@(i 4 1) = Vionr@i. The configuration finding
problem then reduces to checking the satisfiability of the
configuration formula:

d(CP) = unroll(S, k) A conf (Veons, k) A

P(Vi,Q0, ..., Vi,Q(k — 1), Vo, @O, . . ., Vourt@k) (1)

A configuration C is correct for CP if there exists an inter-
pretation Z such that Z = ¢ and C = TVeorf,

Configuration Solving Framework
Input:

cp Construct | @
Formula —

Output:
A Correct

— Configuration

Yes

SMT
Solver

No

Output:
Not configurable

Fig. 2: Configuration solving framework (basic) scheme. CP
is a configuration problem. ¢ is a configuration formula.

Example 1. (simple ALU)

Let S := ({z : int,a : int,cfg : Bool},xz = 0,2’ =
ite(cfg, x+a,x—a)) be a transition system in a configuration
finding problem, where Vi, = {a}, Vour = {x}, Veont = {cfg},
and ite is the if-then-else operator. There are two ways to
configure S: as a system that always adds the current input
to the current state, or as a system that always subtracts
the current input from the current state. Let us consider two
instances of an input-output relation for k = 2:

1) P1(a@0,0@1,2@0,2Q1,2zQ2) = a¢@Q0 = 1 A a@1 =
1A2@0 =0AzQl = 1A 2Q2 = 2. We are interested
in whether there exists a value of cfg which satisfies
both the configuration constancy constraint (i.e., remains
unchanged) and P. To determine this, we check the sat-
isfiability of unroll(S,2) A conf (c¢fg@0, c¢fg@Q1, cfg@2) A
Py (a@0, a@1, @0, xQ@Q1, 2@2), which expands to:

x@0 =0 A

xQ1 = ite(cfg@0, Q0 + a@0, Q0 — a@0) A
xQ2 = ite(cfgQl, 2@Q1 4+ a@Q1, 2@Q1 — a@1) A
cfg@Ql = cfg@0 A cfg@Q2 = cfg@Q1 A
a@0=1ANaQl=1A2@Q0=0A2Ql=1A2Q2=2

The formula is satisfiable when ¢fg@Q0 = True.

2) P3(a@0,a@1,2@0,2Q1,2@Q2) = a@0 = 1 A a@1 =
1AzQ0 =0AxQl = 1A xz@Q2 = 0. For this case, the
formula to be checked is:

@0 =0 A

x@Q1 = ite(cfg@0, Q0 4+ a@0, zQ0 — a@0) A

@2 = ite(cfg@l,2@1 4+ a@1,2@1 — a@1) A

cfg@Q1 = cfg@Q0 A ¢cfg@2 = cfg@1 A

a@0=1ANa@l =1A2@0=0Az2Q1l =1Az2@Q2=0

This formula is unsatisfiable, and thus there is no value
of cfg that satisfies the desired property.

The framework for the basic scheme just outlined is shown
in Figure 2] The input to the framework is a configuration
problem. The framework constructs formula (I and calls a
solver to determine whether it is satisfiable. The output is
either “not configurable” or the configuration C.

There are two main sources of complexity that limit the
scalability of the approach. The first is the complexity of the

Algorithm 1 Modular configuration finding.

Procedure SOLVEMODULAR
Input: (CP1,CP2) a decomposition of CP.
Output: a pair (r,C) where if 7 = sat, then C is a configuration of S
1: ¢1 := MAKECP(CP1)
2: (r,Z1) := SOLVE(¢1),
3: if r = sat then
4: ¢2 := MAKECP(CP2) A GETABDUCT(¢1,Z1)
5
6
7

(r,Z) := SOLVE(¢2)
: end if
: return (7, ZVeonf)

design itself, and the second is the bound & required by P. To
address design complexity, we propose designing for modular
configuration, discussed in more detail in Section below.
Designing systems that can be configured using only small
values of k is an interesting research challenge that we plan
to investigate in future work.

Another way to improve scalability is by using design
knowledge to strengthen the formula ¢. For example, if a
configuration variable must be within a specific range, then
this can be added as a constraint. Any constraint expressible
in the language supported by the backend SMT solver can be
supported.

B. Modular Configuration

A natural remedy for design complexity is modular decom-
position. Here, we explain a systematic approach for modular
configuration, including conditions under which a full config-
uration can be recovered.

Given CP = (S, k,Vin,Vout, Veont, P) with S = (V, I, T), we
say (CP1,CP2) is a decomposition of CP (where CP; :=

(Si kb, VI VELVE P and S; = (V;, [;, T;) for i = 1,2)
if: (i) Ty(Vi, Vi) AN T2(Va, Vo) = T(V,V'); (i) I1(V1) A
L(Va) = I(V): (i) LA P, = P;and (iv) Veont C
V::%mf U V::%nf'

We now describe a procedure SOLVEMODULAR, presented
in Algorithm [1} which, given a decomposition (CP1,CP3) of
a configuration problem CP, attempts to solve CP by solving
CP; and CP5. The call to MAKECP on line 1 constructs the
configuration formula for CP;. The call to SOLVE on line 2
invokes a solver to check the satisfiability of the configuration
formula. If the formula is satisfiable, SOLVE returns a pair
(sat,T) where Z is a satisfying interpretation found by the
solver. If the formula is unsatisfiable, SOLVE returns a pair
(unsat,Z) where Z is an arbitrary interpretation. Line 4
creates the configuration formula for CPs. The formula is
additionally constrained to ensure that the solution for CP5
still satisfies ¢;. The call to GETABDUCT returns a formula
1 such that ¢ =7 ¢;. The goal is to use the information in
7, to generate a simple formula for v. The approach we take
is to find a set of sub-terms in ¢; such that, if we constrain
them to be equal to their values in Z;, this ensures that ¢, is
satisfied. In the worst case, we could constrain ¢; itself to be
equal to T, which would effectively require solving all of ¢
again at the same time as solving ¢s. However, in practice, we
can do much better. For example, it is often sufficient to let

1l Vlaut = Vzin [,
Vin ‘i:__> S1 S — Vout

N S
booe Ll

Vlconf n Vzconf

[T

L

Vlconf - Vzconf Vzconf - Vlwnf

Fig. 3: Modular decomposition of system S into systems S;
and Sy. Vy,, and V. are the output and the configuration
variables of S;. V;3, and V7 . are the input and the configu-
ration variables of Sy. Veons C Vi1, ; U V2

con
0 conf"*

1) be the formula that assigns the free variables in ¢; to their
model values from LE] If the second call to SOLVE succeeds,
the result is a correct configuration for CP.

Theorem IIL.1. (Soundness)

If (CP1,CP3y) is a decomposition of a configuration prob-
lem CP, and SOLVEMODULAR(CP1,CPs) returns a a pair
(sat,C), then C is a correct configuration of CP.

Proof. Let SOLVEMODULAR return (sat,ZV<). We prove
that ZV=rf is a correct configuration of CP. First, we notice
that SOLVEMODULAR returns r» = sat iff both calls to
SOLVE(¢1) and SOLVE(¢s) return r = sat. Let (sat,Z;)
and (sat,Z) be the results of SOLVE(¢;) and SOLVE(¢2),
respectively. Let ¥ = GETABDUCT(¢1,Z1). From line
Z = ¢2. Thus, T = MAKECP(CP3) and Z |= . Since
Y E7 ¢1, we also have Z = ¢;. Consequently, Z satisfies:
I, Ty(Vi@i, Vi@(i 4 1)) for i € [0,k — 1], conf (VL ;. k).
and P;. Furthermore, Z satisfies: Iz, To(Vo@i, V2@Q(7 + 1))
for i € [0,k — 1], conf(V2 ¢ k), and P». By the definition
of decomposition, then, Z satisfies I(V'), T'(V@Qi, VQ(i + 1))
for i € [0,k — 1], and P. Finally, from Z | conf (V. ¢, k),
T = conf(V2,, k), and condition (iv) of the definition of
decomposition (Veont € VL U V2 1), it follows that 7 =
conf (Veons, k). Thus, T satisfies the configuration formula
of CP. Therefore, C := T" is a correct configuration of

CP. O

If SOLVEMODULAR returns r = wunsat, this does not
(in general) imply that CP is unconfigurable. Rather, it may
be that the particular decomposition fails, or even that the
particular solution found for CP; is at fault (and another
solution would have succeeded).

However, in practice, we have found that the algorithm
works well when the decomposition separates a module into
two largely independent parts. An example is shown in Fig-
ure |3| Here, the two submodules share only a subset of the
configuration variables as well as an interface where outputs
of the first module flow into inputs of the second module.

ISee the appendix of an extended version of this paper for details on
when and why this works [4]]. Investigating other possible implementations
for GETABDUCT is an interesting direction for future work.

Configuration Solving Framework

Input:
cr (]5’

+ ‘ Construct

Mop Formula

+
(Verification
Properties)

SMT
Solver

A Correct
Configuration

Output:

A correct
Optimal
Configuration

Optimization
Routine

Not Optimal

Output:
Not

Configurable

Output:
A correct
configuration

Fig. 4: Optimization-assisted configuration framework. The input is a configuration problem with optional optimization and
verification objectives. The framework can return: (i) a non-optimal but correct configuration, or (ii) an optimal and correct
configuration, or (iii) unsat. ¢’ is a conjunction of the configuration formula ¢ and the optional verification properties.

IV. OPTIMIZATION-ASSISTED CONFIGURATION

A solver can return an unnatural or non-intuitive config-
uration, complicating the ability of users to understand or
maintain the configuration.

We observe that users tend to prefer the simplest configura-
tions, where the notion of simplest corresponds to minimizing
some metric when finding solutions. To this end, we show how
to extend our framework with optimization goals.

Figure [depicts our configuration framework extended with
support for multi-objective optimization. There are various
ways to combine optimization with configuration solving; we
depict one approach using iteration. One instance of this
approach works as follows: first a solution is found and the
value of the objective term is calculated; then the search space
is systematically explored by iteratively constraining the value
to be better than the current best value; when no better value
can be found, the optimal value has been discovered. There
are many different kinds of optimizations that fit this general
framework. We present several useful examples in the context
of the case study in Section [V]

Further extensions. Figure [also includes an extension to
support combining configuration-finding with verification. In
this scheme, any invariants that the system should obey are
conjoined to the configuration formula. This ensures that any
configuration found satisfies the invariant up to bound k. To
check that an invariant holds for all reachable states requires
a separate run of an unbounded model checker.

Finding the configuration itself using unbounded model
checking is an interesting direction for future work. A sig-
nificant challenge is that this requires writing the input-output
property as a single state formula, which may be much harder
than writing it as a bounded set of input, output pairs (in
much the same way that loop invariants are difficult to come
up with in software). If the input-output property can be
written as a state formula P, it may be possible to utilize
invariant synthesis techniques by seeking to synthesize an
invariant of the form: A\,(V% ;= C*) = P, where the

left-hand side of the implication contains all configuration
variables V! ¢ € Vions, and each C* is a constant value to
be synthesized.

V. CASE STUDY

We present a case study with a course-grained reconfig-
urable architecture (CGRA) design developed in the Agile
Hardware Center at Stanford University [S]. Reconfigurable
architectures are appealing because they offer the high perfor-
mance of hardware with software-like flexibility. CGRAs in
particular use sophisticated reconfigurable elements with the
aim of narrowing the performance gap with custom ASICs [6].

However, configuring a CGRA is challenging, typically
requiring manual effort by an experienced engineer who fully
understands the application and the design. To the best of
our knowledge, ours is the first framework that finds correct
CGRA configurations fully automatically.

In this paper, we focus on configuring a memory tile of the
CGRA for image processing applications. In these applications
data is streamed into the memory tile and must be reordered
in various ways before being streamed out. Only the timing
and order of the data are changed; the data itself remains the
same. Below, we first describe the memory tile design, then
present some specific applications, and then explain how we
automate configuration of the design for these applications.

A. CGRA Memory Tile Design

The memory tile is a non-trivial design (34998 FF and
164696 gates). Figure [3] shows its architecture . It contains
three types of units: memories, addressors, and accessors. Ad-
dressors and accessors are reconfigurable units. The accessors
control when to write or read. The addressors control where
to write or read. There are three memory modules: an aggre-
gator module (AGG), a static random-access memory module
(SRAM), and a transpose buffer module (TB). Each module
has an input accessor and an input addressor associated with it
for writes, and an output accessor and an output addressor for
reads. The modules are chained: outputs of AGG are intputs

Memory Tile

64 | SRAM , 64 e

512x64 , 64 , 16

TB

PISO !

7 Vout

| Accessorsl

1
t
1
1

Vcon f

Fig. 5: Memory tile architecture. All accessors and addressors are included in the control box. Red arrows represent data flow.
Blue and purple arrows represent addressor and accessor control signals, respectively. Green boxes are local to a single module.
Orange boxes are shared between modules. Von¢ consists of all accessor and addressor configuration variables.

Procedure AFFINESEQUENCE

Input: dim: a value indicating the number of nested loops,
ranges|dim]: an array of loop bounds, one for each loop,
strides|[dim]: an array of strides, one for each loop,
offset: the offset for the address computation

Output: vals[II;ranges[i]]: a set of output addresses

1: var c[dim]; > Index variables for each loop
2: var i :=0;

3: for c[dim — 1] in [0, ranges[dim — 1]) do

4:

5: for c[0] in [0, ranges[0]) do

6: vals[i] :== H?Z’éflc[ﬂ * strides[j] + offset;

7: =1+ 1;

8: end for

9: end for

Fig. 6: Affine sequence generator using nested loops.

to SRAM, and outputs of SRAM are inputs to TB. Accessors
are shared between each pair of connected memory modules.
Shared accessors act as schedule generators for each memory
connection. They specify when the data should be transferred
and set any required delays between when the data is produced
and consumed. Addressors are unique for each module.

The addressors and accessors in the memory tile make use
of affine sequence generators to generate sequences of values
for reading and writing. Figure [6] shows pseudocode for an
affine sequence generator. It takes as input a number dim of
loops, an array ranges with bounds for each loop, an array
strides with strides for each loop, and offset which is a base
value. It then computes a sequence of outputs, vals, by running
dim nested loops, and computing the sum of the offset and
the product of each stride with its loop index in the innermost
loop. Each of the inputs to the procedure corresponds to a
configuration register in the hardware.

While each addressor and accessor contains an affine se-

quence generator, they differ in how they interpret vals. For an
addressor, vals contains raw addresses sent to a memory (for
either reading or writing). For an accessor, vals contains clock
cycle counts that are compared to a running cycle counter
to determine when to read or write. Note that an (accessor,
addressor) pair should have the same values for their dim
and ranges variables to ensure that they produce the same
number of values. There are 4 accessors (including 2 shared
with SRAM) and 4 addressors for AGG (1 for each memory
port). TB has 4 accessors (including 2 shared with SRAM)
and 4 addressors (1 for each memory port). SRAM has 2
addressors, and shares 2 accessors with AGG and 2 acessors
with TB.

The memory tile processes 16-bit words. However, it uses
a 512x64-bit SRAM which stores four 16-bit words at each
address. The rationale for this design is to emulate a multi-
ported SRAM while minimizing the energy consumption per
memory access [7]. To match the data width at the SRAM
interface, AGG and TB implement width converters. AGG
implements a serial-in to parallel-out (SIPO) converter—serial
data is loaded, one 16-bit word at a time, and these are packed
into 64-bit outputs. TB implements a parallel-in to serial-out
(PISO) converter—parallel data is loaded into the PISO as a
64-bit word and is shifted out of the PISO serially, one 16-bit
word at a time. The memory tile uses a 2-input and 2-output
port architecture to support more throughput. Thus, AGG and
TB contain two SIPOs and two PISOs, respectively.

B. Stencil Applications

We consider a common class of image-processing tech-
niques called stencils. Stencil computations usually consist of a
multi-stage pipeline, where each stage is a dense linear algebra
computation in a local region. So-called push memories are

inserted between computation units, whose job is to orchestrate
the order and the timing of the data explicitly [8]. We explore
configuring memory tiles as push memories for four stencil
applications:

o Identity. The identity stencil simply streams the input
back out in the same order. It is useful as a baseline
test and also can be used to implement a fixed delay on
a stream.

e 3x3 Convolution. This stencil is used in a variety of
image processing applications [9] (e.g., to blur images).
It multiplies a 3x3 sliding image window by a 3x3 kernel
of constant values.

o Cascade. This application implements a pipeline with two
convolution kernels executed in sequence. The Cascade
application requires configuration of two memory tiles,
denoted by conv and hw.

o Harris. Harris is a corner detection algorithm that can be
used to infer image features [[10]. It extracts the gradients
of an image in different orientations and combines this
information using multiple convolutions. This is the most
complex of our applications, requiring the configuration
of five different memory tiles, which we denote as cim,
Ixx, Ixy, lyy, and pad.

C. Automating the Memory Tile Configuration

We decompose the memory tile into three sub-modules
(for scalability), following the approach shown in Figure [3]
The first sub-module includes AGG, its input/output acces-
sor/addressor modules, and the MUX (1372 FF, 19676 gates).
The second sub-module includes SRAM, both AGG read
accessors, and both TB write accessors (33712 FF, 150750
gates). The third sub-module includes TB and its input/output
accessor/addressor modules (1126 FF, 18538 gates). Shared
accessors contain the shared configuration variables, whose
values are propagated to the next module during modular
configuration.

In order to configure each module in the memory tile, we
look at the transition system defined by its memory and its
accessors and addressors. We then use the “programming by
example” approach described above. We specify the input-
output property P as a sequence of distinct input values (e.g.,
1,2,3,...), paired with the corresponding application-specific
desired output sequence based on those values. We then solve
for the configuration variables as described in Section
above.

As mentioned in Section it is important to generate
configurations that can easily be read and understood. Working
together with the designers, we devised a set of optimization
objectives that greatly improve the readability of memory tile
configurations. We explain these next. We apply the framework
of Figure 4| to configure and optimize each module separately.

Objective 1: we first minimize the dim variables in the
module, since this corresponds to using fewer nested loops
and fewer loop counters, resulting in simpler solutions in
general. We prioritize minimizing dim variables controlling
writes over those controlling reads, as lower write complexity

leads to lower read complexity anyway. We formalize this as
the following multi-objective optimization problem:

MOP, = {OP,0PL, ..., 0P% OPL ... LOP%}:
OP; := (%, dim;, Agv,<BV, @, min) for i € [1,d],
OP!, = (dim',, Apy,<pv,d, min) for i € [1,d,]
OP! = (dim’, Agv,<pv, ¢, min) for i € [1,d,]

Here, Apy is the domain of bit-vectors (i.e., unsigned machine
integers), <py is the usual total order on bit-vector values,
d is the number of affine sequence generators in the module,
and dim; for ¢ € [1,d] are all of the dim variables in the
module. These are further partitioned into write dimensionality
variables dim;,, i € [1,d,], and read dimensionality variables,
dimf,, 1 € [1,d,], with dy, + d,. = d. ¢ is the configuration
formula.

Objective 2: we minimize the products of the range configu-
ration variables in each loop-nest structure. The objective term
corresponds to the aggregate number of reads or writes that
occur to a particular memory. By minimizing this number,
we eliminate unnecessary reads and writes to the memory.
Formally, the optimization problem is:

OPy = <E§IQSH?ZS"’_1 ranges;[j], Apv, <Bv, ¢, min)

Objective 3: we minimize stride variables to avoid generat-
ing configurations using unnecessarily large addresses.

Many different sets of values for strides could produce the
same wvals stream in the end, so by choosing the smallest
values, we hope to generate the simplest solution. The op-
timization problem simply minimizes the sum of all stride
variables in the module:

OP3 = <Zl strides;, Apy <Bv, ®, mm)

Objective 4: we also minimize offset configuration variables
in addressor modules. For addressor modules, minimizing
the offset addressor variable prevents unnecessary offsets,
improving the readability of the generated configuration. Note
that values of offset variables in the accessors are fixed by
the application. The corresponding problem is as follows,
minimizing the sum of all addressor offset variables in the
module:

OPy4 := (X; offset;, Apv,<BV, O, min).

Combined objective: the combined optimization query in-
cludes all four objectives and captures the full set of opti-
mization objectives for each module:

MO'PH = {M@Pl, OPQ, O’Pg, O'P4}.

We solve and prioritize MOP; by iteratively increasing
the bound on the sum ¥;dim;, and for each bound, trying all
possible assignments to the variables, in the order specified
by MOP;. Note that this approach does not directly fit
the scheme described in Figure [] since it does not require
finding a first solution that is iteratively improved. Instead, it

iteratively widens the search space until the first solution is
found.

For the other objectives, we use a branch-and-bound algo-
rithm. First, a solution is found, and the value of the term is
calculated; then, the solution space is explored systematically,
by iteratively constraining the value of the objective term to
be better than the current best value. Each optimal solution is
propagated to the next optimiziation objective as a constraint.

VI. EVALUATION

Implementation. We have implemented our framework us-
ing Pono [11], an open-source SMT-based model checker.
Pono is built on Smt-Switch [[12f, a generic C++ API for
interacting with SMT solvers. Pono provides infrastructure
for reading in, unrolling, and otherwise manipulating tran-
sition systems. We use Boolector [13] as the underlying
SMT solver. We convert the memory tile design in our case
study from a SystemVerilog representation to its equivalent
representation in the Btor2 format [13]], which is accepted
by Pono. We use Yosys [14], a Verilog synthesis suite,
to do the translation. The experimental code is available
at https://github.com/Stanford AHA/Configuration/.

Experimental Results. We evaluate our configuration-finding
framework using the memory tile design and the four stencil
applications described in Section [V| For each application, we
generated benchmarks for various input image sizes, from
16x16 to 60x60. For applications that require more than one
memory tile (i.e., cascade and harris), we choose one repre-
sentative configuration problem: conv for Cascade and 1xx for
Harris (more results appear in the appendix of an extended
version of this paper [4]]). The number of transitions required
for each configuration problem is based on the number of clock
cycles it takes to process an image of a given size for a given
application.

For each benchmark, we first run the basic algorithm
described in Section [[TI, which finds the first satisfying config-
uration. We try both with and without the modular approach
described in Section We then run our optimization-
assisted configuration algorithm (using only the modular ap-
proach) as described in Section We run our experiments
on a 2x Intel Xeon E5-2620 v4 @ 2.10GHz 8-core 128GB
computer. Timeout is set to 4000 seconds. Memory limit is
100 GB.

The results are shown in Figure Each chart shows
results for both the basic algorithm (First Configuration) and
the optimization-assisted algorithm (Optimal Configuration).
Within each of these categories, up to five different results
are shown for each image size: fop is the time required
to configure the entire design, monolithically; agg, tb, and
sram refer to the time required to configure each of the sub-
modules independently; and sram_agg_tb is the time required
to configure the SRAM module after first configuring AGG
and TB (this is the most efficient order for these modules)
and then propagating the shared configurations from those
modules as described in Figure (3| Note that in the modular

approach, AGG and TB are configured independently; thus,
the configuration can be performed in parallel, and the total
design configuration time is the sum of sram_agg_tb and the
maximum of agg and 7b. Timeouts are represented by full bars
(up to the timeout limit), and memory outs are represented
by omitting the bar completely. We also omit the bar for
sram_agg_tb if either AGG or TB is not solved within the
given time-memory budget. We make several observations
about the results below.

Modular Approach. As the experiments show, the full
memory tile is too large to solve within the given time-memory
budget—it times out for all image sizes. However, by using
the modular approach, we are able to configure the design
for all applications for reasonably useful image sizes. For the
Identity Stream, we can configure for all image sizes (with
unroll depths up to 3601) relatively easily using the modular
approach. Other applications are more challenging, but we are
still able to scale up to images of size 40x40 (and unroll depth
up to 1939 clock cycles).

We also observe that the AGG and TB modules take com-
parable time for the Identity Stream, but for other applications,
configuration of the TB module is more challenging. This
can be explained as follows. AGG and TB are both two-
port designs, comparable in size and complexity. But for all
applications, AGG can be configured by exploiting only a
single port, while only the Identity Stream allows a single-port
configuration of TB. Thus, we quickly find a simple configu-
ration for TB with the Identity Stream, but no comparatively
simple configuration exists for the other applications.

Optimal Configurations. The right-hand side of each chart
shows the results of running our optimization-assisted config-
uration algorithm for each application. There are several inter-
esting observations. First of all, for the AGG and TB modules,
finding optimal configurations is generally more expensive.
However, once these optimal configurations are found, it is
often easier to find the corresponding SRAM configuration,
suggesting that optimal configurations may help improve later
stages of modular configuration. The total configuration time
with optimization is generally comparable to or only slightly
worse than the time required to configure without optimiza-
tion. Given the value of optimal configurations in terms of
simplicity and readability, these results suggest that modular
configuration with optimization may be the best strategy in
practice.

VII. RELATED WORK

The problem of system configuration has been studied
in various formulations and domains, such as software tool
configuration, hardware configuration, network configuration,
distributed application configuration, and deployment strate-
gies. In one research stream, the configuration problem is to
select and arrange a set of components from a given set of
assets in order to construct an overall system with a desired
specification [15]-[18]]. Other formulations take as input a
configuration database, including configuration variables, and
desired requirements to be met [19], [20]. The task is to find

https://github.com/StanfordAHA/Configuration/

First Configuration Optimal Configuration
4000
3500
3000
2500
2000
1500
1000

500
* o e m |l

16x16 24x24 32x32 40x40 48x48 16x16 24x24 32x32 40x40 48x48

257 577 1025 = 1601 2305 257 577 1025 1601 = 2305

magg mtb msram_agg_tb msram mtop

(a) Identity Stream

First Configuration Optimal Configuration
4000
3500
3000

2500

2000

1500

1000 |

500 I I I
SO | | (| | T

16x16 24x24 32x32 40x40 48x48 16x16 24x24 32x32 40x40 48x48

403 787 1299 | 1939 2707 403 787 1299 = 1939 2707

magg mtb sram_agg_tb sram mtop

(c) Cascade (conv)

First Configuration Optimal Configuration
4000

3500

3000
2500
2000
1500
1000 | ‘
500
o —-ull .Ill_- o ||||

16x16 24x24 32x32 40x40 48x48 16x16 24x24 32x32 40x40 48x48

257 577 1025 1601 2305 257 577 1025 1601 = 2305

magg mtb sram_agg_tb sram Mtop

(b) 3x3 Convolution

First Configuration Optimal Configuration
4000
3500
3000

2500

2000

1500

1000 |

500 I I I
o -=uil JANEN o 1 I | I

16x16 = 24x24 32x32 40x40 48x48 16x16 24x24 32x32 40x40 48x48

403 787 1299 1939 2707 403 787 1299 1939 2707

magg mtb msram_agg_tb msram mtop

(d) Harris (Ixx)

Fig. 7: Horizontal axis shows image sizes and number of clock cycles required for processing. Vertical axis shows time in

seconds.

values for the configuration variables which instantiate the
database so that it meets the requested requirement. The work
whose problem definition is closest to ours is , which also
uses transition systems. The authors define a configuration as
an initial state of a transition system, which is very similar to
our notion of configuration variables.

Constraint solving has been explored in various ways for
automating system configuration. Efforts have been made to
design declarative, constraint-based, object-oriented languages
and policy-based tools to configure systems as well as to
validate configurations [[19], [22]]-[24]. Early approaches were
based on constraint satisfaction and constraint logic program-
ming [18]], [25]], [26]. More recent approaches utilize SAT
and SMT solvers [17]], [19], [27]], and counterexample-guided
inductive synthesis and relational model finding [21]}, [28] for
dynamic configuration. However, the way these approaches
reduce configuration problems to constraint satisfaction prob-
lems is significantly different from our approach using in-
put/output examples and unrolling.

More significantly, our work differs in its use of modularity
and optimization to improve scalability and understandability.
Some automated configuration efforts do employ optimization
(e.g., [29]), but with a different goal, namely to configure a
system in a way that maximizes its performance.

VIII. CONCLUSION

We proposed a new approach for automatically configuring
systems representable as transition systems. Key contributions
of our approach include its ability to leverage modularity
and its use of optimization. Optimal configurations are more
human-understandable, and both modularity and optimization
can improve scalability. We demonstrated these claims with a
case study using a CGRA memory tile.

Future directions for this work include incorporating un-
bounded model checking, applying the framework to a wider
variety of designs, exploring modularity for more sophisticated
theories, and finding provably correct configurations for appli-
cations with repeating input/output patterns.

ACKNOWLEDGMENTS

This work was funded in part by the Stanford Agile Hard-
ware Center and by the Defence Advanced Research Projects
Agency under grant number FA8650-18-2-7854.

REFERENCES

[1] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[2] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers in Arti-
ficial Intelligence and Applications. I0S Press, 2009, vol. 185, pp.
825-885.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in TACAS, ser. Lecture Notes in Computer
Science, vol. 1579. Springer, 1999, pp. 193-207.

N. Tsiskaridze, M. Strange, M. Mann, K. Sreedhar, Q. Liu, M. Horowitz,
and C. Barrett, “Automating system configuration,” 2021. [Online].
Available: https://arxiv.org/abs/2108.05987

“Aha! agile hardware project at stanford university,” https://aha.stanford.
edu/.

L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Comput. Surv., vol. 52,
no. 6, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3357375
A. Vasilyev, “Evaluating spatially programmable architecture for imag-
ing and vision applications,” Ph.D. dissertation, Stanford University,
2019.

M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 137-151.

R. Chandel and G. Gupta, “Image filtering algorithms and techniques:
A review,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 10, 2013.

C. G. Harris, M. Stephens et al., “A combined corner and edge detector.”
in Alvey vision conference, vol. 15, no. 50. Citeseer, 1988, pp. 10-5244.
M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta,
and C. Barrett, “Pono: a Flexible and Extensible SMT-based Model
Checker,” in CAV, ser. Lecture Notes in Computer Science. Springer,
2021.

M. Mann, A. Wilson, Y. Zohar, L. Stuntz, A. Irfan, K. Brown,
C. Donovick, A. Guman, C. Tinelli, and C. W. Barrett, “Smt-Switch: A
Solver-agnostic C++ API for SMT Solving,” in International Conference
on Theory and Applications of Satisfiability Testing, ser. Lecture Notes
in Computer Science. Springer, 2021.

A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , btormc and
boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587-595. [Online]. Available:
https://doi.org/10.1007/978-3-319-96145-3_32

C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.

J. P. McDermott, “R1: A rule-based configurer of computer systems,”
Artif. Intell., vol. 19, no. 1, pp. 39-88, 1982. [Online]. Available:
https://doi.org/10.1016/0004-3702(82)90021-2

M. A. Mansor, M. Kasihmuddin, and S. Sathasivam, “Vlsi circuit con-
figuration using satisfiability logic in hopfield network,” International
Journal of Intelligent Systems and Applications, vol. 8, pp. 22-29, 2016.
R. Michel, A. Hubaux, V. Ganesh, and P. Heymans, “An smt-based
approach to automated configuration,” in 10th International Workshop
on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30
- July 1, 2012, ser. EPiC Series in Computing, P. Fontaine and A. Goel,
Eds., vol. 20. EasyChair, 2012, pp. 109-119. [Online]. Available:
https://easychair.org/publications/paper/bKGs

D. Sabin and E. C. Freuder, “Configuration as composite constraint
satisfaction,” 1996.

S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” J. Netw. Syst. Manag.,
vol. 16, no. 3, pp. 235-258, 2008. [Online]. Available: https:
/ldoi.org/10.1007/s10922-008-9108-y

S. Narain, “Network configuration management via model finding,” in
LISA, 2005.

T. Nelson, N. Danas, T. Giannakopoulos, and S. Krishnamurthi,
“Synthesizing mutable configurations: Setting up systems for success,”
in 34th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE Workshops 2019, San Diego, CA, USA,
November 11-15, 2019. 1EEE, 2019, pp. 81-85. [Online]. Available:
https://doi.org/10.1109/ASEW.2019.00034

J. Hewson, “Constraint-based specifications for system configuration,”
2013.

(23]
[24]

[25]

[26]

[27]

(28]

[29]

L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: A policy-
based design tool,” vol. 2006, 07 2006, pp. 10 pp.—.

J. Hewson, “Constraint-based specifications for system configuration,”
Ph.D. dissertation, 11 2013.

N. Sharma and R. Colomb, “Mechanising shared configuration
and diagnosis theories through constraint logic programming,” The
Journal of Logic Programming, vol. 37, no. 1, pp. 255-283, 1998.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
S0743106698100109

J. Tiihonen, M. Heiskala, A. Anderson, and T. Soininen, “Wecotin—a
practical logic-based sales configurator,” Al Communications, vol. 26,
no. 1, pp. 99-131, 2013.

S. Peter and T. Givargis, “Component-based synthesis of embedded
systems using satisfiability modulo theories,” ACM Trans. Design
Autom. Electr. Syst., vol. 20, no. 4, pp. 49:1-49:27, 2015. [Online].
Available: https://doi.org/10.1145/2746235

A. Wagner, “Where to begin? synthesizing initial configurations for
cellular automata,” 2020.

J. A. Hewson, P. Anderson, and A. D. Gordon, “A declarative approach
to automated configuration,” in Strategies, Tools , and Techniques:
Proceedings of the 26th Large Installation System Administration
Conference, LISA 2012, San Diego, CA, USA, December 9-14, 2012,
C. Rowland, Ed. USENIX Association, 2012, pp. 51-66. [Online].
Available: https://www.usenix.org/conference/lisal2/technical-sessions/
presentation/hewson

https://arxiv.org/abs/2108.05987
https://aha.stanford.edu/
https://aha.stanford.edu/
https://doi.org/10.1145/3357375
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1016/0004-3702(82)90021-2
https://easychair.org/publications/paper/bKGs
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1109/ASEW.2019.00034
https://www.sciencedirect.com/science/article/pii/S0743106698100109
https://www.sciencedirect.com/science/article/pii/S0743106698100109
https://doi.org/10.1145/2746235
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/hewson
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/hewson

	Introduction
	Background
	Configuration Solving Framework
	Problem Formalization
	Modular Configuration

	Optimization-Assisted Configuration
	Case Study
	CGRA Memory Tile Design
	Stencil Applications
	Automating the Memory Tile Configuration

	Evaluation
	Related Work
	Conclusion
	References

