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Abstract

Many modern programming languages are shifting toward
a functional style for collection interfaces such as sets, maps,
and sequences. Functional interfaces offer many advantages,
including being safe for parallelism and providing simple and
lightweight snapshots. However, existing high-performance
functional interfaces such as PAM, which are based on bal-
anced purely-functional trees, incur large space overheads
for large-scale data analysis due to storing every element in
a separate node in a tree.

This paper presents PaC-trees, a purely-functional data
structure supporting functional interfaces for sets, maps, and
sequences that provides a significant reduction in space over
existing approaches. A PaC-tree is a balanced binary search
tree which blocks the leaves and compresses the blocks us-
ing arrays. We provide novel techniques for compressing
and uncompressing the blocks which yield practical parallel
functional algorithms for a broad set of operations on PaC-
trees such as union, intersection, filter, reduction, and range
queries which are both theoretically and practically efficient.

Using PaC-trees we designed CPAM, a C++ library that im-
plements the full functionality of PAM, while offering signifi-
cant extra functionality for compression. CPAM consistently
matches or outperforms PAM on a set of microbenchmarks
on sets, maps, and sequences while using about a quarter
of the space. On applications including inverted indices, 2D
range queries, and 1D interval queries, CPAM is competitive
with or faster than PAM, while using 2.1-7.8x less space.
For static and streaming graph processing, CPAM offers 1.6x
faster batch updates while using 1.3-2.6x less space than the
state-of-the-art graph processing system Aspen.
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1 Introduction

Almost all modern programming languages include exten-
sive support for collections, such as sets, maps, and sequences
either as libraries or built-in data types. Support for such col-
lections has become the cornerstone of large-scale data pro-
cessing, as exemplified by systems such as Apache Spark [47].
Among the interfaces for collections, there has been a trend
towards a functional style, shying away from mutation (e.g.,
Spark is functional). Functional interfaces have several ad-
vantages over mutating ones, including being safe for paral-
lelism, allowing safe composition, permitting flexible imple-
mentations (e.g., using copies when helpful), and supporting
snapshots. Supporting snapshots is particularly useful in sce-
narios in which a stream of updates is being made to a col-
lection which is concurrently being analyzed [19, 21, 32, 35].

Recent work [45] has developed a purely functional library,
PAM, for representing sequences, ordered sets, ordered maps,
and augmented maps (defined in [45]) using balanced trees,
called P-trees. P-trees use path copying to perform updates,
supporting functional updates at a reasonably low cost (e.g.,
O(log n) per point update). However they come at a cost of
high space usage—every element requires a node in the tree.
This is particularly problematic for large-scale data analysis,
since in large-systems memory is often the dominating cost.

In this paper we present Parallel Compressed trees (PaC-
trees): a purely-functional data structure for supporting a
similar functionality as P-trees but with significant reduc-
tion in space—up to an order of magnitude (see Fig. 1). Our
approach is based on blocking the leaves and compressing
the blocks using arrays (see Fig. 4). We present innovative
techniques for compressing and uncompressing the blocks
without needing to re-implement the full functionality of
P-trees. Importantly, in the paper we analyze the cost of all
the operations as a function of the block size B as well as the
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Figure 1. Relative sizes of the interval tree, range tree, inverted in-
dex (Wikipedia corpus), and graph representations (Twitter, Friend-
ster) studied in this paper using PaC-trees from CPAM (using
B = 128) and other systems. Lower is better. The numbers shown
on top of the bars are the sizes of each representation in GiB. PaC-
tree-diff compresses integer keys using difference encoding. The
C-trees from Aspen [21] also support difference encoding. GBBS is
the static compressed graph representation from the Graph Based
Benchmark Suite [22] which uses difference encoding, and serves
as a baseline for the tree-based graph representations.

collection size. This is analyzed both in terms of the work
(runtime sequentially) and span (longest dependent path in
parallel). The costs for a sample of the supported functions
are given in Table 1. These costs can help the user decide
on a block size for their particular application—a parameter
that can be specified when creating a collection.

Using PaC-trees we have implemented CPAM: a C++ li-
brary which implements the full functionality of PAM, along
with significant extra functionality involving compression.
By default CPAM supports difference (or delta) encoding [36]
within the blocked leaves. In such an encoding, each element
is encoded based on the value of the previous element in
the collection. This can greatly reduce space when elements
that are close in the ordering of the collection are related.
For example, if a graph is numbered so that neighboring ver-
tices have similar indices, then the neighbors in a neighbor
list will have small differences. These small numbers can
then be encoded in a handful of bits each [42]. Similarly in
an inverted index where each word points to a sequence of
documents it appears in, if the documents are sorted, the dif-
ferences between adjacent document identifiers can be small.
This is especially true for common words, which take up
the bulk of the space. In the paper we bound the extra space
needed (due to the index using the tree structure) for PaC-
trees compared to a static representation of the data (i.e., an
array) directly using difference encoding (see Theorem 4.2).

In our default blocked representation, the first element
of a block is represented uncompressed, and the rest of the
elements are compressed relative to the previous element. In
addition to delta-encoding, CPAM also supplies an interface
for the user to define their own form of compression for
each block. For example, they can quantize values, or use
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Table 1. Primitives from the Sequence, Set, and Map interfaces in
CPAM, including the work and span bounds. Note that primitives
marked with T are specific to Sequences, and Set and Map primitives
cannot be applied to Sequences. m, n are defined to be the size of
the smaller and larger sets, respectively. B is the block size (the
size of a blocked leaf in a PaC-tree). We assume a parallelizable
encoding for the span bounds.

Primitive Work Span
Build O(n) O(logn)
Map O(n) O(logn)

o Filter O(n) O(logn)

8 Reduce O(n) O(logn)

2 Take O(logn + B) O(logn)

g n-th O(logn + B) O(logn)
FindFirst O(k) O(logn)
Append’ O(logn + B) O(logn)
Reverse’ O(n) O(logn)
Build O(nlogn) O(logn)

o Next/Previous O(logn + B) O(logn)

®  Rank O(logn + B) O(logn)

E Range O(logn + B) O(logn)

g Insert O(logn + B) O(logn)

;}8 Union O(mlog 2% +min(mB,n)) O(lognlogm)
Intersect O(mlog ;> + min(mB,n))  O(lognlogm)
Difference O(mlog 2% +min(mB,n)) O(lognlogm)

other variable length codes when keys are known to be small.
CPAM uses a reference counting garbage collector to manage
the memory for both the internal nodes and the compressed
leaf nodes, which can be of variable size due to compression.

CPAM supports augmentation in which each tree node
maintains an aggregate of the values of its subtree (see more
details in Section 3). The aggregation function is declared as
part of the type of the tree. Augmentation is useful in many
applications, and indeed we use it in all of the applications
we describe later. PaC-trees store an augmented value per
internal node, and one for each block at the leaves. Storing
one value per block significantly reduces space relative to
P-trees in PAM, which store a value for every element.

To demonstrate the effectiveness of PaC-trees, and their
implementation in CPAM, we measure performance and
space usage on (1) a collection of microbenchmarks that
directly use some of the functions supported by the library,
and (2) a handful of real-world applications.

For the microbenchmarks, we compare the performance of
CPAM to PAM, and for sequences to the Intel implementation
of the C++17 parallel STL library [29] (ParallelSTL). Parallel-
STL is a highly optimized library supporting only sequences
based on arrays. A summary of the results for sequences is
given Fig. 2, and details including performance of ordered
maps, and augmented maps are given in Section 9. Compared
to PAM, CPAM achieves significantly better performance due
to the reduced memory footprint, and hence reduced number
of cache misses, while only requiring about 1/4-th as much
space even without compression. Compared to ParallelSTL,
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Figure 2. Relative performance of sequence primitives in CPAM
(using B = 128), PAM, and ParallelSTL [29] on a 72-core machine
with 2-way hyper-threading enabled. The numbers shown on top of
the bars are the parallel (144-thread) running times in milliseconds.
Lower is better. All benchmarks are run on sequences of length
108 containing 8-byte elements. For append, ParallelSTL takes
17.7 milliseconds on average (1594x larger than append in CPAM).
CPAM and PAM represent sequences using purely-functional trees,
whereas ParallelSTL uses arrays (hence static).

CPAM has similar performance on operations that visit the

whole sequence, like reduce, but is significantly slower on

nth since it requires O(log n + B) work as opposed to O(1)

for a random array access for ParallelSTL. On append CPAM

is significantly faster since it requires O(logn + B) work to
join two trees instead of O(n) required by ParallelSTL to
copy the input arrays into the output array.

We consider four applications: graphs, inverted indices,
2D range queries and 1D interval queries. For inverted in-
dices, 2D range query and 1D interval query, CPAM achieves
competitive performance to PAM while using 2.1x-7.8x less
space. For graph processing, we compare to an existing sys-
tem Aspen [21] that represents graphs using trees. CPAM
uses 1.3-2.6x less space compared to Aspen, and is almost
always faster than Aspen in all tested graph algorithms.

The main contributions of this paper are:

e A new functional data structure, PaC-trees, and associ-
ated parallel algorithms that support compression for se-
quences, sets, maps and augmented maps.

o Theoretical bounds on the costs (work and span) and the
space of the data structure and associated algorithms.

e An implementation of PaC-trees as a library, CPAM, sup-
porting the full functionality of PAM in addition to sup-
porting default and user defined compression schemes.!

¢ An experimental evaluation of the ideas and implementa-
tion on microbenchmarks and non-trivial applications.

2 Related Work

Our work extends P-trees and their C++ implementation in
PAM [45]. Our key contribution is the ability to compress
the trees achieving up to an order-of-magnitude reduction
in space. This is achieved while being able to present cost
bounds both in terms of time and space. These bounds are a
function of a block size the user can select.

1We have made CPAM publicly available: https://github.com/ParAlg/CPAM.
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B-trees [6] and their variants block not just the leaves but
all nodes of a tree, such that internal nodes can have a high
fan-out. They are widely used in practice, especially for disk
based data structures since nodes are on the scale of a page
on disk and can be retrieved efficiently. However they are
less relevant in the context of purely functional in-memory
trees. In particular, path copying requires that an update
copy all nodes on the path from the root to the leaf. If the
nodes are large (e.g. 128+ elements each, as in our leaves)
this copying would be very expensive both in terms of space
and time. Various work has suggested blocking the leaves
of a binary tree to represent sequences [1, 8, 15, 26, 33]. The
idea is to reduce the cost of operations such as append or
subsequence relative to array representations. As far as we
know, these ideas have never been applied to ordered sets
or ordered maps.> We also do not know of work that then
compresses within the blocks.

Aspen [21] is a system for graph processing, based on
purely functional trees and uses compression for the neigh-
bor lists. At a high-level, our goals are shared with Aspen
(e.g., non-mutating updates), but Aspen has several limita-
tions. Importantly it is only designed for graphs, supporting
only a small part of the functionality of CPAM. The tree
representation in Aspen is also very different. It randomly
selects elements from the collection to be heads. It then at-
taches a block of nodes to each head corresponding to the
keys between the head and the next head, and puts the heads
into a binary tree. PaC-trees do not require randomization,
and have stronger theoretical bounds for primitive opera-
tions such as union than the bounds provided by C-trees in
Aspen. We use CPAM to implement the full functionality of
Aspen and compare to Aspen in Section 9.4.

Fig. 3 compares P-trees from PAM, functional B-trees, C-
trees from Aspen, and PaC-trees. The comparison illustrates
how they differ when inserting a new key.

Like CPAM, the Apache Spark [47] system supports a
functional interface for collections. However it has several
significant differences. First, it only supports unordered sets.
Second, although it has a shared-memory parallel implemen-
tation, it is primarily designed for a distributed setting. This
means its shared-memory implementation is not ideal.?

There is extensive research on concurrent tree data struc-
tures [3, 4, 16, 18, 24, 34, 37]. This work is mostly orthogonal
to our work. Such trees support a fraction of the functional-
ity of CPAM, typically just supporting linearizable inserts,
deletes, updates and finds. Some recent works support range
queries [5, 25], or arbitrary queries on a snapshot [46]. On

2We note that the design of the chunked sequence datatype [1] could in
principle be extended to support sets, maps, and augmented maps, although
the implementation is specialized for ephemeral sequences.

3Their shared-memory implementation is between 3.2-4.9x slower than
CPAM for a map, reduce, and group-by style example taken from their user
guide. For primitives such as map and reduce, their implementation per-
forms up to 2 orders of magnitude worse than CPAM (see the full version).
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Figure 3. An illustration of (a) P-tree in PAM [11, 45] (regular
BST), (b) B-tree (multi-way search tree), (c) C-tree [21] in Aspen
(compressing all nodes in a BST) and (d) our PaC-tree (compressing
all leaves in a BST) in CPAM. The orange nodes show a tree with
keys 0-7 and 9. We then consider inserting a key 8. Blue nodes are
what we need to create (copy or new) due to path-copying. Round
nodes are tree nodes each storing a single key, and square nodes
are organized in blocks of size O(B) (expected for C-trees). Letting
n be the tree size, an insertion needs to copy O(logn) nodes in
P-tree, O(Blogg n) in B-tree, and O(B + log(n/B)) in C-tree (in
expectation) on a PaC-tree.

the other hand concurrent trees support asynchronous up-
dates, which PaC-trees do not—such updates are inherently
non-functional. To support multiple concurrent updates,
PaC-trees would require batching the update and applying
them as a batch in parallel (fairly comparing concurrent and
batched structures like PaC-tree seems challenging for this
reason). We expect the use cases would be quite different.

Blandford and Blelloch developed tree structures for or-
dered sets that support compression [9]. They present space
bounds that are similar to ours, in terms of relating the space
of a difference encoded sequence to the space of the data
structure. However they support a small fraction of the func-
tionality described in our work.

Functional trees using path-copying date back to at least
the early 1990s [2], and in the sequential setting have been
studied by Kaplan and Tarjan [31] and Okasaki [40].

3 Preliminaries

Binary search trees. A binary search tree (BST) is either an
empty node, denoted as nil, or a node consisting of a left BST
T, a key k (or with an associated value), and a right BST Tg,
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denoted node(Ty, k, Tr), where k is larger than all keys in Ty
and smaller than all keys in Tg. We use Ic(T) and re(T) to
extract the left and right subtrees of T, respectively, and use
k(T) to denote the key stored at T’s root. The size of a BST
T, or |T|, is the number of nodes in T. The weight of a BST T,
or w(T),is 1+|T|. The height of a BST T, or h(T), is 0 for nil,
and max(h(lc(T)), h(re(T))) + 1 otherwise. A tree node is a
leaf if it has no children, and a regular node otherwise. The
left (right) spine of a binary tree is the path of nodes from
the root to a nil node, always following the left (right) tree.

A weight-balanced tree, or BB[ ] trees [39] is a BST where
1;((%) < 1- a. We omit
the parameter o with clear context. A weight-balanced tree
T has height at most logﬁ w(T).

for every T = node(Ty,0,Tg), @ <

Parallelism. Our implementation of PaC-trees is based on
nested fork-join parallelism [20, 27, 30]. We analyze our al-
gorithms use work-span model based on binary-forking [12].
The work W of a parallel algorithm is the total number of
operations, while the span is the critical path length of its
computational DAG. We use s; || sz to indicate that state-
ments s; and s, can run in parallel. Almost all algorithms use
divide-and-conquer to enable parallelism. Any computation
with W work and S span will run in time T < % +SonP
processors assuming shared memory and a greedy scheduler
[14, 17]. We use log n to denote log, (n+1) in the cost bounds.

Encoding schemes. We use Difference Encoding (DE) to
encode integer keys. Given a sorted set of keys, K, the differ-
ence encoding scheme stores the differences between con-
secutive keys using an integer code, such as byte or y codes.
We only consider byte codes in this paper since they are
cheap to encode and decode and do not waste much space
compared to using y codes [42].

Functional data structures. PaC-trees are purely func-
tional data structures. In functional data structures values
are immutable, so updates must be made by copying parts
of the structure. For search trees, only the path to the up-
date location needs to be copied. Hence for balanced trees
of size n, single point updates such as inserts and deletes
involve copying O(log n) nodes (Fig. 3(a)). This also applies
to multi-point updates. For example, if a filter ends up
removing a single element, only O(log n) nodes need to be
copied. Functional trees can also easily support multiversion-
ing with low time and space overhead [7, 44]. Because the
data are immutable, any operation accesses the tree in an
isolated version. Updates can be applied in batches in parallel
and yield a new version. This enables all read-only queries to
be performed at the same time without being affected by on-
going (concurrent) updates. In addition to multiversioning,
functional data structures also allow for multiple histories.

Join-based algorithms. PaC-trees are implemented using
the join-based approach [11, 13, 28, 43-45] first implemented
in PAM [45]. In the framework, a variety of tree algorithms
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are implemented based on two primitives, join and expose.
Given a balancing scheme S, the join(Ty, e, Tr) function re-
turns a balanced tree T satisfying S which has the same
in-order values as node (T}, e, Tg). In other words, it concate-
nates T;, and T by an entry e in the middle while preserving
the balancing invariants (see Fig. 7 as an example of joining
two PaC-trees). The expose(Ty) function returns a triple
(Tp, e, Tr), where e € T is an entry, Ty and Ty are two bi-
nary trees such that both T; and Ty satisfy S, are balanced
with each other under S, and T} (Tg) contains all keys in
T that go before (after) e in T’s in-order value. It has been
shown that on weight-balance trees with @ < 1 -1/ V2, a
join operation can be done in O(log 2) work [11], where
n = max(|T.|, |Tr|) and m = min(|T.|, |Tgl).

Based on join and expose, many parallel tree algorithms
can be expressed in a simple and elegant recursive style (see
Fig. 5 and Fig. 6 for examples). We adopt the join-based ap-
proach in our implementation, and in particular carefully de-
signed join and expose functions for PaC-trees. This greatly
simplifies the implementation and correctness arguments of
our algorithms. We give more details in Sections 5 and 6.

Augmentation. An augmented tree is a search tree where
each node maintains an aggregated value (called augmented
values) of all entries in its subtree. Typical examples would
be a weighted sum, minimum or maximum of values, where
we can obtain the augmented value in a node by combining
augmented values of the children and itself. This generalizes
to all associative operations. PaC-trees support generic user-
defined augmentation for any associative operations. An
example of PaC-tree with augmentation is shown in Fig. 4.

4 PaC-Trees

In this paper, we propose PaC-trees to support purely func-
tional collections, which support parallelism, determinism,
compression, augmentation, strong theoretical bounds, and
multi-versioning. PaC-trees are purely functional. The base
data structure of a PaC-tree is a weight-balanced BST. The
internal nodes remain binary so they are cheap to copy. The
leaves in a PaC-tree are organized in blocks of size B to 2B
for some parameter B. An illustration is shown in Fig. 3. If
the blocks grow too large, they are split, and if they become
too small they are merged with a neighboring node.

Definition 4.1 (PaC-tree). A PaC-tree PaC(a, B, C), param-
eterized by the balancing factor «, block size B, and encoding

scheme C satisfies the following invariants:
w(o)

w(o)
1—a, wherea < 1- \/% is a constant, and v, is either lc(v)

<

¢ (Weight Balance) For any treenodev € T, a <

or rc(v). Unless mentioned otherwise, we use a = 0.29.
e (Blocked Leaves) If |T| > B, each leaf u € T maintains B
to 2B entries in an array (called a block) using the encoding

4PAM did not explicitly use expose as a primitive, but only conceptually
treated it as a primitive.
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aug=9

aug =15

Expanded version of T

Figure 4. (a). An illustration of a PaC-tree with keys {0, 1, ..., 15},
and augmentation as sum of keys. All nodes are weight-balanced.
All leaves are blocked as arrays of size B to 2B. (b) The expanded
version of the PaC-tree in (a).

scheme C. Unless mentioned otherwise, we assume C
is empty, which means the entries are blocked without
additional compression of the entries.

When the context is clear, we omit «, B and C in the
definition and simply call it a PaC-tree. We call a leaf node
containing multiple entries in a PaC-tree a flat node, and
a node containing a single entry a regular node. We say a
PaC-tree (or a subtree) T is a simplex tree if |T| < B, and
thus T only contains regular nodes. We say a PaC-tree (or
a subtree) T is a complex tree if T contains both regular
nodes and flat nodes. We define the expanded version of
a PaC-tree T (or a flat node v) to be a regular binary tree
(without flat nodes), where all flat nodes in T (or v itself) are
fully expanded as perfectly-balanced binary trees. In Fig. 4,
we show an example of an expanded tree.

We now present the space bound of a PaC-tree. For integer
keys, we can use difference encoding to bound the space.

Theorem 4.2. The total space of a PaC-tree PaC(«a, B, Cpg)
maintaining a set E of integer keys is s(E) + O(|E|/B + B),
where Cp is difference encoding, and s(E) is the size needed
for E using difference encoding.

Proof. The space needed for a PaC-tree includes the regular
nodes and the leaf nodes. First of all, when |E| < B, all entries
are maintained in a simplex tree, taking O(B) space. When
|E| = B, there are O(|E|/B) regular nodes, each taking O(1)
space for meta-data (pointers, size, etc.). The total space
used by regular nodes is O(|E|/B). All the leaf nodes are
organized in blocks. Let A be an array that stores all keys in E
using difference encoding. Comparing the total size of all the
blocks and A, the only extra space is the first element of each
block (which cannot be compressed). There are O(|E|/B)
such blocks, and thus the extra space used is O(|E|/B). O

We note that this bound is deterministic, as opposed to
the bound for C-trees (which only holds in expectation).
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Furthermore, using known facts about difference encoding
yields the following result, showing that PaC-trees yield a
compact parallel representation of ordered sets [9].

Corollary 4.3. Given any set fromU = {0,...,m — 1} with
|S| = n, the total space of a PaC-tree PaC(a, B, Cpg) maintain-
ing S is O(nlog ™M) bits for B = Q(logn).

5 Algorithms

We now describe join-based algorithms on PaC-trees. To
enable a general ordered map interface, we implement PaC-
trees based on the PAM interface. PAM supports dozens of
operations on sequences, sets, maps, and augmented maps,
and it would require significant work to re-implement them
all. Instead, we carefully redesigned join and expose such
that all the other algorithms can remain the same as in PAM.
In particular, none of the other algorithms have to deal with
the blocked leaves or compression, which greatly simplifies
the algorithm design and correctness arguments. We found
that the overhead of this approach is not large, but for many
frequently-used operations, we design special base cases
for dealing with compressed nodes. These base cases can
improve the performance by up to 6x (see Section 7). Some
of the theoretical results also require special base cases (see
the full version).

At a high-level, when exposing a flat node, the node is
automatically expanded (using unfold), and similarly when
join obtains a complex tree of size B to 2B, it is flattened
(fold). An illustration of unfold and fold is shown in Fig. 7.
We start with the join and expose algorithms. We then
present the union algorithm as an example to illustrate join-
based algorithms, and give the code for other functions in
Fig. 6 and the full version of this paper. We focus on union
as it is the core sub-routine used in applications such as
inserting or deleting batches of vertices and edges in graphs,
combining inner trees when constructing range trees, and
updating documents in an inverted index, among others.
Expose. This function returns the left subtree, root data and
the right subtree of a node T. For a regular node, this function
just reads the child pointers and the root. For a flat node, this
function first unfolds the tree into a perfectly balanced tree
and then reads the corresponding data.

Join. Recall that the join function takes two trees Ty and Tg,
and a key k (or a key-value) as input, and returns a balanced
tree concatenating entries in Ty, k and Ty in order (see Fig. 7).
In other words, when trees are used for ordered sets or maps,
k should be larger than all keys in Ty and smaller than all
keys in Tg. Pseudocode for join is shown in Fig. 5.

The algorithm first compares the weights of T; and Ty.
When balanced, they are directly connected by k. The other
two cases are symmetric so WLOG we assume |T;| > |Tg|.
In this case, the algorithm must attach Ty in the right spine
of Tp, which will be handled by join_right(Ty, k, Tr). This
algorithm first checks if Ty and Ty are balanced and connects
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them if so. Otherwise, it recursively calls join_right on
re(Ty) and Ty, getting T'. If we re-attach T’ as T}, ’s right child,
we will get a “correct” output tree (modulo balance). We then
use a single or double rotation to rebalance if necessary. It is
known that either a single or double rotation can rebalance a
weight-balanced tree in this situation [11]. This guarantees
the weight balance invariant of PaC-trees.

To also guarantee the blocked leaves invariant, we add two
conditions when calling node to create a new node with its
left and right subtrees. Whenever a node with size B to 2B is
created, we fold the tree into a flat node. Whenever a node
with size 2B to 4B is created, we extract the median of the
tree as the root to re-distribute its two subtrees, such that
both subtrees are flat nodes with (almost) the same size.

Lemma 5.1. The join function maintains the invariants of
PaC-trees.

Split. For a PaC-tree T and key k, split(T,k) returns a
triple (1p, b, Tr), where T, (TR) is a tree containing all keys
in T that are less (greater) than k, and b the entry of key k
if k € T (see Fig. 7). We first use expose(T) to get its left
(right) subtrees Ic(T) (re(T)) and root key k(T), and compare
k with k(T). If k = k(T), we simply return (lc(T), k, rc(T)).
Otherwise WLOG we assume k is smaller. In that case, the
entire right subtree rc(T) and the root k(T) belong to Tx.
We then split Ic(T) by k, getting (Ly, b, Lg). By definition, all
keys smaller than k should be in L;, and all keys larger than
k can be obtained by join(Lg, k(T), re(T)).

Union. Using join and split, we can implement set algo-
rithms on two PaC-trees, such as union, intersection and
difference. We describe union as an example (the other
two are similar). This algorithm uses divide-and-conquer. At
each level of recursion, Tj is split by the root of T, breaking
T; into two subsets with all keys smaller (larger) than k(T3),
denoted as L; (R;). Then two recursive calls to union are
made in parallel. One unions L(T;) with L; (all keys smaller
than k(T;)), returning T;, and the other one unions R(T3)
with Ry (all keys larger than k(T)), returning Tg. Finally the
algorithm combines the results with join(Ty, k(T3), Tg).
Other algorithms. We show the pseudocode of other par-
allel algorithms in Fig. 6 and more in the full version of the
paper. We omit the details as they are self-explanatory and
all of them are exactly the same as in PAM, just by plugging
in the new version of join and expose functions for PaC-
tree. Almost all of them use divide-and-conquer to enable
parallelism. We refer the reader to [45] for more details.

Importantly, all of our PaC-tree algorithms are theoreti-
cally efficient. We present the work-span bound in Table 1
and give a proof for union as an example in Section 6. Note
that Lemma 5.1 ensures the correctness of the other algo-
rithms, as their return values are always obtained by a join.

Theorem 5.2. All join-based algorithms on PaC-tree main-
tains the invariants of PaC-trees.
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1 fold(T) { 19/« join_left is symmetric +/ 37 node(Lk,r) {
2 flatten T into array A 20 join_right(Tr, k, Tg) { 38 /+ create node x with left subtree I,
3 (encoding if needed) 21 (L k', c)=expose(TL); 39  root key k and right subtree r +/
4 return A; } 22 if (balance(|Ti|, |Tr|) 40 if (|x| > 4B) return x;
5 unfold(A) { 23 return node(T, k, Tr)); 41  if (B < |x| < 2B) return fold(x);
6 /s return a perfectly balanced tree 24 T’ = join_right(c, k,Tg); 42 else { /2B < |x| < 4B
7 from sorted array A +/ } 25 (I1,k1,r1) = expose(T’); 43 /+ redistribute x's both subtrees to
26 if (balance(|I|,|T’])) 44 be flat nodes with |x|/2 entries +/
g ex!Jf(‘)se.(Y;)l {t - 27 return node(l,k’,T’); 45 return x;3}}
o i T(/lsz uan;OI)j(T{>; 28 if ((balbanlced(|lcl,|llll))land 46 split(T.k) {
11 return (lC(T'),k(T,), rc(T’)); 3} (balance (| |+| 1|,7‘1)))/ . 47 if (|T| =0) return (nil,nil,nil);
return rotateleft(node(l,k’,T)); _ .
12 else return (le(T),k(T),re(T));} 4, , 48 (L, m,R) = expose(T);
else return rotateleft(node(lk’, 49 if (k== k(m)) return (L,m,R);
13 join(Tr,k Tr) { 32 rotateright(77))); 3} 50 if (k< k(m) {
14 if (heavy(T1, 7)) 33 join2(Ty,Tg) { 51 (Ly.b.Lg) = split(L.k);
15 . return join_right(T., k, Tg); 34 if (Ty = nil) return Tg; 52 return (Lp,b, join(Lg,m,R));
16 if (heavy(Tk, Ti)) 35 (T/,m,_) = split(Ty,last(Ty)); 53 3} else {
17 return join_left(TL, k. Tg); 36 return join(T/,m,Tg); } 54 (Rr,b,RR) = split(Rk);
18 return node(Tr. k., Tr); } 55 return (join(L,m,Ry),b,RR);3}}

Figure 5. Primitives on PaC-trees. All codes are functional (e.g. rotates copy nodes).

1 from_sorted(A,n) { 10 union(Ty,Ty) { 18 // keep a key in T only when it satisfies [

2 if (n=0) return nil; 11 if (T} == nil) return Ty; 19 filter(T,f) {

3 if (n=1) return node(nil,A[0],nil); 12 if (I, == nil) return Tj; 20 if (T == nil) return nil;

4 L = from_sorted(A,n/2) || 13 (L2,k2,R2) = expose(Tz); 21 (L,k,R) = expose(T);

5 R = from_sorted(A+n/2,n-n/2); 14 (L1,b,Ry) = split(Ty,k2); 22 T = filter(L,f) ||

6 return node(L,A[n/2]1,R); } 15 T, = union(Ly,L2) || 23 Tp = filter(R,f);

7 build(A,n) { 16 Tg = union(Ri,Ry); 24 if (f(k))

8 parallel_sort(A,n); 17 return join(Ty,k2,TR); 3 25 return join(Tp,k,TR);

9 return from_sorted(A,n); } 26 else return join2(T;,TR); }
Figure 6. Examples of parallel algorithms on PaC-trees. “| |” indicates calls that are made in parallel.

expose o @ (d) 6, foId )
, [S]a0fii[z2 nln PN Ohnd prd GV EIEIE)
EII (a3 [6]

node unfold Y,

@ @ join
1617] [is]2g 2 o]

split(15) [4]5]|[7]8][10]11] [13]14] [16]17] |19|20L

[o]1]2]3]
U node

join
;‘;
[o]1]2] [4]s]e] split(15)

Figure 7. Illustration of primitives on PaC-trees. For Figures (a)-(d), B = 3. For Figures (e)—(f), B = 2. Fig. (a): the expose function on a
regular node and the node function to obtain a regular node when the output tree size is larger than 4B. Fig. (b): the expose function on a
flat node and the node function to obtain a flat node when the output tree weight is between B and 2B. Fig. (c): the node function to obtain a
flat node when the output size is between 2B and 4B. Fig. (d): fold and unfold functions. Fig. (e): join function on two regular nodes and
its corresponding split function. Fig. (f): join function on a regular node and a flat node and its corresponding split function.

6 Theoretical Guarantees size n costs O(n) work and O(log n) span. If the encoding
In the following section we show work and span bounds for scheme is not parallelizable (e.g., for difference encoding),
operations on PaC-trees. We assume the encoding scheme the span bound of the algorithms will be affected. We present
is empty, which means that to flatten or expand a block of more details in the full version of the paper.
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We start with the cost of the join and split algorithms.

Theorem 6.1. Consider join on two PaC-trees Ty, Tg and an
keyk. Let n = max(|T¢|, | Tr|) and m = min(|T|, |Tr|). If both
Ty and Tg are complex trees, the algorithm takes O(log Z)
work and span. If both Tj, and T are simplex trees, the al-
gorithm takes O(B) work and O(log B) span. Otherwise, the
algorithm takes O(B + n/B) work and O(logn) span.

Theorem 6.2. Consider a split algorithm on a PaC-tree
T. If T is a complex tree, the work and span of split are
O(log % + B) and O(log |T|), respectively. If T is an simplex
tree, the work and span of split is O(log |T]).

Due to page limit, we provide the proofs of Theorems 6.1
and 6.2 in the full version of this paper. Based on these results,
we now analyze the cost of the set operations.

Theorem 6.3. Consider the union algorithm (and the closely
related intersection and difference algorithms described
in the full version) in Fig. 5 on two PaC-trees of sizesm andn >
m. The work and span for these algorithms are O (mlog Z + mB)
and O(log nlog m) respectively.

To prove the theorem, we first present some definitions
and lemmas. First, note that all the work can be asymptoti-
cally bounded by the three categories below:

(1). split work: all work done by split (Line 14),

(2). join work: all work done by join (Line 17) or join2

in intersection and difference,

(3). expose work: all work done by expose (Line 13).

One observation is that the split work is identical among
the three set algorithms. This is because the three algorithms
behave the same on the way down the recursion when doing
splits, and only differ in what they do at the base case
and on the way up the recursion when building the output
tree (see the other two set algorithms described in the full
version).

We use op to denote the set operation (one of union,
intersection or difference). In these algorithms, the tree
T; is split by the keys in T;. We call T; the decomposed tree
and T, the pivot tree, denoted as T; and T, respectively. Let
m = min(|T,|, [T4]) and n = max(|T,|, |Ty]).

Lemma 6.4. For each function call to op on trees P C T, and
D C Ty, the work done by join (or join2) is asymptotically
bounded by the work done by split.

We present the proof in the full version of this paper.
Next, we prove the bounds for split work and expose work,
respectively.

Lemma 6.5. The expose work is O(min(mB, n)).

Proof. expose costs ©(B) when the subtree is a flat node,
and O(1) otherwise. At most O(m) nodes in T, will split
Ty, so the total cost is O(mB). The cost is also no more than
O(n) since each node is involved in at most one expose, after
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which the flat node will be fulled expanded. In summary the
cost is O(min(mB, n)). O

Lemma 6.6. The total split work is O(mlog 2 + mB).

Proof. The total split work can be viewed as two parts: the
total work to done by split functions to traverse and split
non-flat nodes, and the work to expose and split the flat
nodes. Note that here “non-flat nodes” include both regular
nodes in complex trees, and all the nodes in expanded trees.

First of all, the total work to traverse and split all non-flat
nodes can be asymptotically bounded by the split work when
both T,, and T are considered to be fully expanded. This cost
is O(mlog %) from the result for P-trees [11].

We then consider all work done by split functions on flat
nodes. The only extra cost is the cost of unfold. Every node
in T, will be used at most once to split Ty, which involves
at most one unfold function with cost O(B). There can be at
most O(m) nodes in T}, used to split T;. Thus the total unfold
work in split is O(mB).

Therefore in total the split work is O(mlog £ + mB). O

We can now prove Theorem 6.3.

Proof. (Theorem 6.3) Combining Lemmas 6.4 to 6.6 proves the
work bound in Theorem 6.3. For the span, note that the algo-
rithms need O(log |T,|/B) rounds to reach a flat node, where
the flat node will be expanded, taking O(log B) span. Then
the algorithm keeps recursing until a nil node is reached,
which takes O(log B) rounds. In each of the recursive calls,
we need O(log |Ty|) span to deal with split and join. In
total the span is O(log mlogn). O

Note that the O(mB) term can be expensive when m is
large. In fact, we can show a tighter bound using a more
efficient (but more complicated) base case. We show the
bound in Theorem 6.7, and defer the algorithm and proof to
the full version. In our implementation, we use the version
in Fig. 5, which has good performance in practice.

Theorem 6.7. There are algorithms for union, intersection
and difference on two PaC-trees of sizesm andn (n > m)

with workO(m log L min(n, mB)) and span O(log nlog m).
m

7 Implementation

In this section, we describe CPAM, our implementation of
PaC-trees. CPAM is built in C++, based on the PAM frame-
work [45]. Our implementation of sequence and map primi-
tives are mostly unchanged. Most of the changes are to intro-
duce flat nodes, to handle folding and unfolding in join, to
express the recursive functions using the expose primitive,
and in some cases to add optimized base cases.

Optimized Base Cases. We first implemented union as in
Fig. 5, which recursively calls expose to access the left and
right subtrees. Although simple and theoretically efficient, in
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practice unfolding flat nodes into expanded trees and recurs-
ing on these trees requires additional memory allocations,
and potentially more cache-misses. We therefore designed
a new sequential base-case for union when |T;| + |T3| < x,
where « is a configurable base-case granularity. Our base-case
works by writing both T; and T into a pre-allocated array A
of size k¥ and merging them in-place to perform the union. It
then constructs a PaC-tree from the result in A. Compared to
the original version of union that only uses expose, using
the special base-case with k = 4B is 4.4x faster, and using
k = 8B is 6.7x faster (B = 128). We observed similar im-
provements for some other commonly-used primitives such
as filter,map_reduce,multi_insert, multi_delete,and
intersection. We use k = 8B in our experiments. We use a
parallel granularity of 4B, which is the threshold for forking
parallel tasks in algorithms such as filter and union.

Persistence and Memory Management. CPAM uses a ref-
erence counting garbage collector for memory management.
CPAM provides functional ordered maps, and thus by de-
fault does not modify the input trees. However, in certain
cases an application may wish to modify a tree in-place to
save memory, e.g., when updates and queries are separated.
Although one could deal with in-place and functional up-
dates separately, this is not attractive. Instead, we designed
a simple approach to handle both cases using the same code,
which we describe in the full version of the paper.

Compression on Blocks. CPAM makes it easy to apply
user-specified encoding schemes. Our data structure is tem-
plated over a type representing a block encoding scheme
(no encoding by default). To add a new encoding scheme,
users provide a structure with methods that calculate the
encoded size for a block, encode the elements into a buffer,
and decode elements from an encoded buffer. This design
allows users to specify encoding schemes based on the un-
derlying data type or application, such as text compression.
For example, it is easy to add new types of difference coding,
e.g., using y-coding, which would obtain better space usage
at the expense of worse running time [42].

8 Applications

In this section we describe four applications that we im-
plement using CPAM. Our inverted index, and range and
interval tree applications are based on the implementations
from PAM [45]. Our graph processing application is based on
Aspen [21]. We focus on the key features of the applications
in the context of PaC-trees here.

Inverted Index. We implement a weighted inverted index,
similar to those used in search engines. The inverted index
maintains a top-level map from words to document lists
(B = 128). Each document list is a map from document id
to an importance score (B = 128). The document lists are
augmented to maintain the highest importance score. The in-
verted index supports standard AND/OR queries over words,
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returning results by rank, and top-k (based on importance)
queries. The document ids are compressed using difference
encoding, requiring less than two bytes per document.

2D Range Tree. The two-dimensional range tree is a top-
level map from x-coordinate to y-coordinate (B = 128). The
tree is augmented so that every internal node stores all y-
coordinates in its subtree (this is itself a set represented
as a PaC-tree with B = 16). Updates can add and delete
points, and queries can list of or count the points in a given
rectangular range. The range tree supports count queries in
O(log® n) time, which can be batched to run in parallel.

Interval Tree. The interval tree maintains intervals over
the number line, for example, representing the time of a TCP
connection, or the time a user is logged into some service.
A stabbing query can report all or any intervals that cross a
given point. The intervals are represented as an augmented
tree from left-coordinate to right-coordinate with B = 32.
The augmentation maintains the maximum right-coordinate
in the subtree. This allows stabbing queries in time O (k log n)
where k is the number of intervals requested or returned
(whichever is less). Intervals can be inserted or deleted in
O(log n) time and can be batched to run in parallel.

Graph Processing. Graphs are represented as a two-level
structure similar to the inverted index, with a top-level aug-
mented tree (the vertex tree) from vertices to edge lists (B =
64). Each edge list is a map from neighbor-id to an edge-
weight (or empty when unweighted) called an edge tree
(B = 64). The augmentation on the vertex tree maintains the
total number of edges in the graph. We focus on unweighted
graphs in this paper but note that our implementation also
supports weights. As with inverted indices, using difference
encoding allows us to store an edge using just 2-3 bytes on
average including the bytes used for regular nodes.

On top of this representation, we implement graph al-
gorithms using the Ligra interface [41], including breadth-
first search, maximal independent set, and single-source be-
tweenness centrality. Our implementations are based on
the ones in Aspen and GBBS [22, 23]. We design parallel
batch-updates for our representation, which are applicable
in graph-streaming and batch-dynamic graph algorithms.

9 Experiments

Experimental Setup. We run experiments on a 72-core
Dell PowerEdge R930 (with two-way hyper-threading) with
4 % 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with
a 4800MHz bus and 45MB L3 cache) and 1TB of main mem-
ory. Our programs use a work-stealing scheduler for paral-
lelism [10]. We use numactl -i all to balance the memory
allocations across the sockets for parallel executions. Unless
otherwise mentioned, all of the reported numbers are run
on 72 cores with hyper-threading.
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Table 2. Microbenchmark results. We fix B = 128 for PaC-trees. n is the
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tree size. For set functions and multi-insert, m < n is the size of the other 10 g E;,BE fre(eDi(fI;)ifF) S ;
set (batch). For other functions, m is the number of queries tested. Tj is the o ¥ PaCetree
sequential running time. Tj44 is parallel running time using 72 cores (144 é: 1g [ Aspen =
hyperthreads). Diff means difference encoding. We highlight the best parallel 5 " = Prree (P/iM) =
running time (or size) per experiment in green and underlined. § £ E
> =3
nom PaC-tree PaC-tree (Diff) P-tree (PAM) § * 5
Ty Ty Spd T T Spd Ty  Ts Spd 0“:’
No augmentation o
Size (GB) 10% — .61 — — 0.926 — — 400 - =
Build 108 — 5.55 0.186 29.8 5.71 0.180 31.7 594 0.221 26.8 YT RU L OK FS W
Union 108108 533 0.088 60.5 629 0.089 70.6 897 0.168 53.3
Union 108 10° 1.09 0.021 51.9 1.28 0.022 581 0.206 0.0038 54.2 Figure 8. Relative space usage of different graph repre-
Intersect  10° 10° 435 0.065 66.9 568 0081 70.1 950 0.139 683 sentations. GBBS (Diff) is our static baseline compressed
Difference 10°10°  3.00 0.055 544  3.55 0.056 633 817 0.123 664 graph representation. PaC-tree uses PaC-trees for vertex
Map 10°10° 0859 0037 229 114 0023 495 132 0.091 145 and edge trees, and PaC-tree (Diff) difference encodes
Reduce 108 — 0.306 0.018 17.0 0.308 0.0092 33.4 1.60 0.034 47.0 both t A P-t for th tex t d
Filter 108 — 0.997 0.028 35.6 1.24 0.018 68.8 1.90 0.0524 36.2 N rees. SPen uses ree§ or the vertex tree an
Find 108 108 103 117 88.0 125 123 10.6 1055 1.05 1004 C-trees with difference encoding for edge trees. P-tree
Insert 10510° 0829 — — 142 — — o773 —  _ (PAM) uses P-trees for the vertex and edge trees. The
Multi-Insert 108 105 18.8 0332 56.6 199 0.323 616 9.67 0338 28.6 values on top of each bar are the memory usage in GiB.
Range 108 10° 11.5 0.318 36.1 13.1 0.226 57.9 3.77 0.0738 45.6
With augmentation
Size (GB) 108 — .63 — — 0.936 - — 480 - -
Build 108 — 5.66 0.197 28.7 5.84 0.186 31.3 6.48 0.246 26.3
Union 108108 552 0.098 56.3 652 0.090 72.4 10.13 0.196 51.6
AugRange 108107 123 0331 37.1  13.9 0234 594 480 0.082 585
AugFilter 108 — 12.2 0.333 36.6 13.6 0.234 58.1 495 0.081 61.1

Overview of Results We show the following experimental

results in this section.

e PaC-trees are competitive with PAM for microbenchmarks
(Section 9.1) and applications including inverted indices
(Section 9.2) and 2D range queries and 1D interval queries
(Section 9.3) while using 2.1x-7.8x less space.

e Varying the block size B for an PaC-tree trades off off
performance for space efficiency (Section 9.1). For even
a modest value of B = 128, PaC-trees use only 1% more
space than a (static) compressed array.

e For graph processing and streaming, CPAM uses 1.3-2.6x
less space compared to Aspen, and is almost always faster
than Aspen in all tested graph algorithms (Section 9.4).

9.1 PaC-Tree Performance

We begin by studying the performance and space of PaC-
trees on a set of microbenchmarks and compare with P-trees
from PAM. All experiments in this section use maps and
augmented maps where the keys and values are both 64-bit
integers. Unless otherwise mentioned PaC-trees use B = 128.

Microbenchmark Performance. Table 2 shows the results
on PaC-trees, PaC-trees with difference-encoding (DE), and
P-trees for a representative subset of the map and sequence
primitives. The speedups for both types of PaC-trees range
from 28.7-101x and are largest for the version using DE
due to additional work for difference encoding. In absolute

running time, PaC-trees with DE are usually slower than
PaC-trees due to compression and decompression costs, but
the overhead is mostly within 10%.

In most of the primitives tested, PaC-trees are faster than
P-trees while also using 2.5x less space. For example, PaC-
trees are 1.68x faster than P-trees in union on two trees of
sizes 108. We note that in this case, the union processes the
entirety of both input trees, and so the more cache-friendly
processing of blocks in PaC-trees results in lower time. How-
ever, if sizes of the two trees are different, the work for union
only depends on the smaller size. In this case, since the cost
of union using PaC-trees has an additional O(mB) term com-
pared with P-trees, PaC-trees are 5.5x slower than P-trees.
However, we expect better performance for smaller block
sizes (B < 128), which we discuss next.

Effect of Varying B on Performance. Fig. 9 shows the
results of varying the block size B, on the performance of
various operations. Most operations obtain speedups as B is
increased up until B = 16. For the sequential operations, such
as find and range, we see a steady increase in the running
time for B > 16 and see a similar trend for Union-Imbal,
which takes the union of trees with 10® and 10° elements.
This slowdown with increasing B is due to the extra O(mB)
term in the work of union. For the smallest block size (B = 1),
our running time matches that of P-trees on this operation.
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Table 3. Build and query times and space usage in GiB for inverted
index, interval tree, and range tree applications. Tj is the single-
thread time, Tj44 is the 72-core time using hyper-threading, and
Spd. is the parallel speedup. The best parallel running time (or size)
is highlighted in green and underlined per experiment.

Library Space Method n m T Ti44  Spd.
" Build 108 — 746 973 766
PaC-t 8.29
g e Query 108 10% 341 446 764
g
° Build 108 — 754 981 768
2  PaC-tree(D) 4.07
5 ree (D) Query 10 10° 367 532 689
»
= : 38
= Build 108 — 575 886 649
P-tree (PAM) 31.9 .
ree (PAM) Query 108 108 313 448  69.8
Build 108 — 109 0179 608
®  PaC-tree 0.812 s 8 Pasen
< —  Query 10 10 60.8 0.525 115.8
‘E Build 108 — 116 0271 428
= P-tree (PAM) 3.54 : : ’
ree (PAM) Query 10° 108 543 0628 864
Build 108 — 164 271 607
PaC-tree 403  Q-Sum 10® 10° 542 0.629  86.1
é;n Q-All  10® 10° 720 0266 27.0
<
~ Build 108 — 169 284 596
P-tree (PAM) 89.6 Q-Sum 108 10° 607 0735 825
Q-All  10% 10° 216 0552 391

Space Usage. For B = 128, PaC-trees obtain a 2.48x reduc-
tion in space usage compared to using P-trees, and a further
1.73x reduction in space usage by using difference encoding.
The 10® pairs stored in the experiments require 1.6GB of
memory to represent as a single flat array, which is also a
lower bound for the space usage of a search tree structure. To
understand how close PaC-trees come to this lower bound,
we study the space usage of unaugmented maps using PaC-
trees as a function of the block size B (Fig. 10). Using B = 32,
PaC-trees are only 1.05x larger than the lower bound and
using B = 128, it is just 1.01x larger than the lower bound.
For B = 128, just 1.1% of the allocated memory is used for
regular nodes and metadata in the flat nodes. These savings
are obtained without using any additional encoding. Apply-
ing difference encoding improves the space by 1.77x over
the unencoded trees and the array lower bound, and is only
1.03x larger than the space used to difference encode all of
the keys in a single array, leaving the values uncompressed,
which is a lower bound for a search tree structure using
difference encoding for such input.

Using PaC-trees requires much lower space overhead for
augmentation compared to P-trees (Fig. 10). For P-trees,
adding 8 byte augmented values increases the size of the
maps by 20%, whereas PaC-trees (both with and without
difference encoding) using B = 128 incurs only a 1% increase
in space for the augmented values. The savings comes from
only storing a single augmented value per flat node, which
only uses extra space proportional to n/B augmented values.
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9.2 Inverted Index

Next, we study our performance on the inverted index appli-
cation. We run the application on documents derived from a
large Wikipedia dataset also used by PAM for a fair compar-
ison. The dataset is processed by removing all markup, con-
verting characters that are not alphanumeric to whitespace
and making all words case insensitive [45]. The processed
dataset contains 1.94 billion words over 8.13 million docu-
ments. Like PAM, our evaluation measures the performance
of (1) building an index over (words, doc_id, weight) triples
and (2) running queries that fetch the posting lists for two
words, compute the intersection of the lists, and select the
top 10 documents by weight.

Table 3 shows the results of the experiment. For building
the index, our implementation achieves 76x speedup and
our parallel running times are comparable with those of
PAM (at most 1.1x slower). For the queries, we observe that
the unencoded trees achieve essentially the same parallel
time as PAM, whereas the difference encoded trees are 1.18x
slower due to the higher cost of intersection operations in
our difference encoded implementation. The space usage
using PaC-trees is much smaller than that of PAM, being
3.84x smaller without encoding and 7.81x smaller using a
custom encoder that combines difference encoding for the
keys with byte-encoding for the integer values (weights).

9.3 Interval and Two-Dimensional Range Trees

We benchmark our interval and two-dimensional range trees
as in PAM [43]. We build our interval tree on 10 inter-
vals, and for queries run stabbing queries over 10® points
in parallel. We observe that both building and querying the
trees achieves good parallel speedup (60-115x). PaC-trees
are 1.51x faster than PAM in construction, and is 1.19x faster
for queries. Overall we find that PaC-trees enable better
performance than PAM while using 4.37x less space.

We build our range trees on 10® uniformly random points
in the plane between (0, 0) and (1e8, 1e8). We run two types
of queries: the first count the number of points in the range
(Q-Sum), and the second returns all points in the range. We
tuned the window sizes used in our queries to match the
settings evaluated by PAM (around 10° points returned per
query). Both PaC-trees and P-trees build the data structure
in a similar amount of time. PaC-trees achieve better per-
formance than P-trees for both queries, being 1.16x faster
for Q-Sum and 1.96x faster for Q-All queries, likely due to
requiring fewer cache-misses when processing the tree to
output the points within a given range. The range tree appli-
cation using PAM has previously been compared with range
trees in CGAL [38] and was shown to outperform it [43].

For space usage, PaC-trees result in 2.18x less space com-
pared to PAM. We note that 95% of the space used in PAM
is for the P-trees stored as augmented values in each node
(representing the union of the y-coordinates in the subtree).
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Table 4. Statistics about tested graphs and memory usage of PaC-
tree and Aspen in GiB.

Graph Vertices Edges Ours Aspen Aosﬁf:]
DBLP (DB) 425,957 2,099,732 0.0130 0.03409 2.62x
YouTube (YT) 1,138,499 5,980,886 0.0412  0.0934 2.26x
USA-Road (RU) 23,947,348 57,708,624  0.683 1.843  2.69x
LiveJournal (LJ) 4,847,571 85,702,474  0.346 0.527 1.52x
com-Orkut (CO) 3,072,627 234,370,166  0.727 0.893 1.22x
Twitter (TW) 41,652,231  2,405,026,092 7.59 9.42 1.23x

Friendster (FS) 65,608,366 3,612,134,270 14.6 19.1 1.30x

The majority of our savings come from compressing the aug-
mented trees using PaC-trees which results in a 2.53x less
space for the inner trees, and 2.18x less space overall.

9.4 Graph Processing and Graph Streaming

Our last set of experiments study the performance of PaC-
trees for a set of standard benchmarks from the graph pro-
cessing and graph streaming literature. Our evaluation roughly
follows Aspen’s and we compare our performance and space
usage with that of Aspen and its C-tree implementation.

Graph Data and Space Usage. Most of the graphs we study
are Web graphs and social networks which are low-diameter
graphs that are frequently used in practice. To also test on
high-diameter graphs, we ran our implementations on a road
network. Complete details about our inputs are in the full
version of the paper. Table 4 shows information about our
graph inputs, including the number of vertices, edges, and
space used.

We evaluate five graph representations including using
PAM, Aspen, PaC-tree with or without difference encoding,
and GBBS. Aspen uses C-trees as edge trees and leaves vertex
trees uncompressed using P-trees. GBBS is a state-of-the-art
static graph processing library which represents graphs as
static arrays using difference encoding, which serves as our
baseline of graph representation. Fig. 8 shows the relative
size of each graph format. We see that the smallest format
in all cases is PaC-tree (Diff), which applies PaC-trees with
difference encoding for both vertex and edge trees. Using this
format yields a space improvement of between 4-9.7x over
just using P-trees. For the graphs with high average-degree,
most of the savings come from using PaC-trees for the edge
trees. Adding difference encoding to both trees yields be-
tween 1.05-1.32x space improvement. PaC-trees are also
1.3-2.6x more space-efficient than Aspen. Note that C-trees
in Aspen are also difference encoded, so the main difference
between the two representations is that PaC-tree (Diff) also
uses PaC-trees to chunk the vertex tree, and that PaC-trees
employ a deterministic strategy for chunking. PaC-trees with
difference encoding achieves consistently lower space com-
pared with Aspen, ranging between 1.3x for Friendster, our
largest graph, to a maximum space improvement for 2.62x on
USA-Road, our sparsest graph. The space savings come from
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Table 5. Parallel running times (in milliseconds) for Aspen and
our implementation. We show the algorithm performance without
flat snapshots (No-FS), with flat snapshots (FS), and the time to
computing the flat snapshot (FS Time).

Aspen Ours

Graph FS FSTime No-FS FS g3 FSTime 420

LiveJournal 21.7  3.82 19.8 175 1.13x  1.38 1.24x
com-Orkut 153  2.35 145 124 1.16x 1.12 1.23x
Twitter 138 37.8 125 112 1.11x 12.5 1.23x

BFS

LiveJournal 55.3  3.82 72.0 457 157x 1.38 1.21x
com-Orkut 70.2 235 96.9 69.2 140x 1.12 1.01x
Twitter 1022 37.8 1190 971 1.22x 125 1.05x

MIS

LiveJournal 74.6  3.82 82.1 723 1.13x 138 1.03x
com-Orkut 763  2.35 88.6 782 1.13x 112 0.975x
Twitter 1150 37.8 2735 1030 2.65x  12.5 1.11x

BC

chunking the vertex trees, which is not possible in Aspen,
since the C-tree implementation is specialized for edge trees.

Graph Algorithm Performance. We study the performance
of three fundamental graph kernels: breadth-first search
(BFS), single-source betweenness centrality (BC), and maxi-
mal independent set (MIS). Our implementations are based
on those in Aspen. We study performance using our most
space-efficient version (PaC-tree (Diff)). Following Aspen,
our implementation also supports the flat snapshot object,
which is an array storing all vertices in the current graph. The
idea is that instead of accessing edges for a vertex through the
vertex tree (performing tree traversal), algorithms directly
access edge trees through the flat snapshot.

Table 5 shows performance results for three of our graph
datasets. Across all three kernels our implementations are
1.12x faster than Aspen’s implementations on average. We
observe that flat snapshots can be generated 2.09-3.02x faster
in CPAM due to PaC-trees requiring fewer cache-misses to
traverse than P-trees when creating flat snapshot array. We
note that the implementation of edgeMap and other primi-
tives from Ligra (including constants and other tuning pa-
rameters) are exactly the same in both CPAM and Aspen.
Aspen also difference encodes in its edge trees (represented
using C-trees). The performance improvements that we ob-
serve are therefore a result of PaC-trees providing faster flat
snapshots, and having better balance in chunk sizes com-
pared to the randomized approach used in C-trees.

Concurrent Updates and Queries. Our last experiment
concurrent updates and queries on graphs. The experiment
performs n undirected edge insertions drawn from the rMAT
generator (details provided in the full version). We use a
batch size of 5 in the updates (10 directed edges are inserted
per batch). We then spawn two parallel jobs, one performing
the updates one batch after the other, and the other per-
forming BFS queries, one after the other. Both the updates
and queries are parallel (i.e., they internally make use of
parallelism).
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Figure 9. Primitive running times for
PaC-trees vs. block size B. We use 102
key-value pairs (8 bytes each). Union,
Intersection and Difference all work on
two trees with 10% elements. Union-
Imbal takes the union of trees with 108
and 10° elements.

Figure 10. Size of PaC-trees (with or without
DE) as a function of block size B. We use 108 key-
value pairs (8 bytes each). For augmented maps
(-Aug), augmented values are 8 bytes each. The
grey line shows the number of bytes to store the
108 elements in an array and the purple line shows
the bytes used to store the difference encoded keys
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Figure 11. Performance of concurrent up-
dates and queries. The time series plot il-
lustrates running times when running BFS
queries with batch-insertions of edges con-
currently (Concurrent), and when queries
and updates are run individually (Solo) on
the LiveJournal graph.

in a single array using byte encoding.

Fig. 11 shows the result of the experiment. We find that
the concurrent queries are 1.85x slower on average than
the queries in isolation, and that the concurrent updates are
1.07x slower on average than updates in isolation. In the
concurrent setting, the average latency to make one of the
update batches visible is 100 microseconds, and the updates
achieve a throughput of 94,000 undirected edge updates per
second. We leave further optimizations and a more in depth
study of the graph setting for future work with our system.

10 Conclusion

We have presented PaC-trees, a deterministic compressed
ordered map data structure and an implementation of the
structure in a library CPAM. The important features of PaC-
trees and its implementation in CPAM include the following.
e It is purely functional allowing for persistent snapshots
while updates are being made, and safe for parallelism.
o It supports sequences, ordered sets, ordered maps, and
augmented maps, with a wide variety of functions on them.
e It provides theoretical bounds on work, span, and space.
o Itachieves fast sequential time and gets up to 100x speedup
on 72 cores with 144 hyperthreads.
o It achieves memory usage that is close to a compressed
array and up to an order of magnitude smaller than PAM.
e It is internally memory manged using reference counting.
o It is backward compatible with PAM.
e It has been used to implement the full functionality of
Aspen while improving runtime and/or space.
For future work, we are interested in extending PaC-trees
to support higher-fanout internal nodes, similar to B-trees,
which would allow users to improve query latency at the
expense of increased work when performing updates. Other
future work includes applying PaC-trees to improve space

120

utilization in databases, and to improve the performance of
collection-based applications using non-volatile memory.
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