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SCALABLE LOCAL TIMESTEPPING ON OCTREE GRIDS*

MILINDA FERNANDOT AND HARI SUNDAR?

Abstract. Numerical solutions of hyperbolic partial differential equations (PDEs) are ubiquitous
in science and engineering. Method of lines is a popular approach to discretize PDEs defined in
spacetime, where space and time are discretized independently. When using explicit timesteppers
on adaptive grids, the use of a global timestep size dictated by the finest grid-spacing leads to
inefficiencies in the coarser regions. Even though adaptive space discretizations are widely used in
computational sciences, temporal adaptivity is less common due to its sophisticated nature. This
paper presents highly scalable algorithms to enable local timestepping (LTS) for explicit timestepping
schemes on octrees. We demonstrate the accuracy of our methods and the scalability of our framework
across 16K cores on TACC’s Frontera supercomputer (https://frontera-portal.tacc.utexas.edu/). We
also present a speedup estimation model for LTS that predicts the distributed speedup compared to
global timestepping with an average of 0.1 relative error.
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1. Introduction. The numerical solution of hyperbolic partial differential equa-
tions (PDEs) plays an important role in science in engineering, with a wide range of ap-
plications from modeling earthquakes [8] to simulating gravitational waves [26, 24, 35].
These show up commonly as initial value problems that are typically solved using the
method of lines by first discretizing in space and then solving the resulting set of
ordinary differential equations (ODEs).

The above is commonly done using timestepping schemes, with explicit timestep-
ping methods such as the Runge-Kutta (RK) methods [32] being more common for
evolving hyperbolic systems. Additionally, these systems are characterized by the
need for high levels of spatial adaptivity [47, 24, 26]. High levels of adaptivity impose
severe stability restrictions for the explicit timestepping schemes popular for solving
such systems. Therefore, it is common—especially for large-scale distributed memory
codes—to0 use a global (everywhere in space) timestep, that is dictated by the smallest
grid resolution in space [22]. The above is highly inefficient for large systems with
several orders of magnitude difference between the finest and coarsest grid resolution,
as the coarser regions are forced to take extremely small timesteps compared to what
would be needed for stability [31, 42]. Local timestepping schemes (LTSs) can greatly
speed up such codes by ensuring that the adaptivity in space is matched by a cor-
responding adaptivity in time. In this work, we develop an efficient, scalable LTS
for explicit single-stage and multistage timestepping algorithms on octree-adaptive
spatial grids. The developed LTS methodology uses the spatial adaptivity to enable
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temporal adaptivity, but it is agnostic to how the spatial adaptivity is determined.
We demonstrate our scheme’s efficacy using linear and nonlinear wave equations on
up to 16K processes on the Frontera supercomputer at the Texas Advanced Comput-
ing Center (TACC). We also present a model to estimate the expected speedup from
using our scheme with an average of 10% relative error in the estimation of speedup.
This derived speedup model provides a reliable way to determine in which cases the
use of local timestepping can be beneficial.

Our framework allows space adaptivity via the use of octrees (quadtrees in two
dimensions) and uses high-order finite difference (FD) methods for space discretiza-
tion. Octree-based adaptive space discretizations [19, 33, 29, 43, 54] are popular in
large-scale simulations because of their quasi-structured nature, allowing for efficient
and scalable data structures and algorithms. Our framework targets applications in
computational relativity [26] and uses a 3+1 decomposition of spacetime operators
to compute a space slice where time is constant and uses standard time integration
methods (explicit) to evolve the space slice forward in time. The time integration
method of choice has been the RK method because of the larger stability region and
the availability of low-storage versions. For the specific problem of simulating binary
black hole mergers to estimate gravitational waves, the spatial grid is characterized
by 12 to 22 levels of adaptivity and requires 10% to 10° global timesteps to attain the
final solution. This results in simulations that need to run for months on thousands
of processes. The use of LTS for these simulations can significantly speed them up,
which can greatly reduce the time and cost of obtaining gravitational waveforms.

While the theoretical aspects of LTS have been an area of active research in recent
years [40, 41, 34, 46, 5], performing LTS in a distributed computing environment
comes with additional challenges. A central bottleneck to scalability with LTS is
the variability in computational loads for different regions of space based on their
spatial adaptivity, as finely refined regions take exponentially more timesteps than
coarser regions. The above requires partitioning approaches that can account for such
variable workloads to ensure that the parallel constraints of LTS do not negate the
overall speedup. Additionally, since in our target applications the meshes are dynamic,
frequent repartitioning is required, requiring fast partitioning algorithms that are able
to adapt to the variable computational loads. While the use of graph partitioning
approaches [46] is likely to produce superior partitions, the cost of partitioning our
meshes in parallel makes the approach infeasible. The key contributions presented in
the paper can be summarized as follows.

e Scalable LTS on octrees: We present a scalable LTS framework for multi-
stage explicit methods on 2:1 balanced octree grids. To the best of our knowl-
edge, existing octree frameworks [17, 58, 7, 56] are limited to space adaptivity.

¢ Load balancing in LTS: The number of local timesteps needed to reach the
coarsest time on the grid depends on the spatial adaptivity. This leads to load
balancing issues in LTS. To resolve this, we propose a weighted partitioning
scheme based on a space filling curve (SFC). Compared to traditional SFC-
based partitioning, we compute the weighted length of the curve to achieve a
balanced load for LTS partitions.

e Low overhead of LTS compared to GTS: We present both strong and
weak scaling results for LTS and GTS approaches on octrees. These results
demonstrate that local block synchronization in LTS followed by time inter-
polations has a lower cost than global block synchronization present in the
GTS approach.

e Accuracy of LTS: We conduct numerical experiments to demonstrate the
correctness of the implemented LTS framework. The presented numerical
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results demonstrate the accuracy of the LTS framework for both linear and
nonlinear problems.

e LTS performance model: We present an analytical performance model to
estimate the speedup of LTS over the GTS scheme. The analytical model is
extended to compute a theoretical upper bound for the speedup that can be
achieved for a given spatial adaptivity structure.

Organization of the paper. The rest of the paper is organized as follows. In
section 2, we give a brief motivation on the importance of LTS and a quick overview
of the existing state-of-the-art approaches in the field. In section 3, we present the
algorithms and methods developed in detail to compare its efficiency to GTS. In
section 4, we discuss the experimental setup, demonstrate strong and weak scalability
of our approach, and demonstrate the accuracy of our scheme. In section 5, we
conclude with directions for future work.

2. Background. In comparison to spatial adaptivity, local time adaptivity is
less frequently used by large-scale applications. Local timestepping requires addi-
tional corrections in mismatching regions in time using interpolations or extrapola-
tions. Depending on the differential operator properties, these operations can lead to
problems in stability [30] of the numerical scheme. Recent LTS methods have been
influenced by the split RK methods [45], where two ODE systems are integrated using
different step sizes (one called active with the smaller timestep and the other called
latent with the larger timestep size) on the grid. Corrections using interpolations
are performed for the interface between the two grid regions. A complete numerical
analysis of spacetime adaptive timestepping methods is complicated, but early work
by Berger provided the first mathematical analysis for adaptive schemes for the wave
equation [12, 13]. Algorithms presented in these papers discuss two main approaches,
interpolation-based and coarse mesh approximations. In the interpolation methods,
the coarse mesh solution is used to interpolate the values needed for the finer mesh.
In the coarse mesh approximation, the coarse mesh is used to take a pseudotimestep
used by the finer mesh. In [21], the authors present methods for energy-conserving
corrections in time for Maxwell’s equations. There is a rich literature of LTS for dis-
continuous Galerkin methods, focusing on energy-conserving time correction operators
[49, 38, 42, 39] which are important for complicated nonlinear spacetime differential
operators. As mentioned previously, to enable LTS in a distributed parallel setting
requires specialized partitioning methods to ensure load balance. Dynamic load bal-
ancing for adaptive mesh refinement (AMR) is an active research area [9, 25, 20, 28|.
Sophisticated hypergraph partitioning techniques have been used for LTS for the wave
equation [46]. However, the cost of partitioning makes it prohibitively expensive for
AMR applications requiring frequent remeshing and, therefore, repartitioning.

AMR in space and spacetime is an active research area. Here we present a brief
overview of AMR packages that focus on both space and spacetime. Block-structured
or patch-based AMR is widely used in astrophysics and computational fluid dynam-
ics communities. In block-structured AMR, the adaptivity structure is predetermined
and evolved during the simulation appropriately. Some codes support LTS with block
AMR [16, 24, 6], primarily based on the Berger—Oliger AMR criteria [14]. Berger—
Oliger AMR criteria support adaptivity in space and time but requires strong con-
straints on the structure of the adaptivity, such as all grids at level [ + 1 (child grids)
should be entirely contained within the grids at level [ (parent grids) while grids at the
same level may overlap. There exist other block-AMR codes [2], which only support
space adaptivity and no adaptivity in time.
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Another commonly used approach for large-scale AMR, is octree-based AMR
[17, 58, 7, 56, 50, 51]. In octree-based AMR, the adaptive grid is represented using
quadtrees and octrees. Unlike block-based AMR, octree-based AMR has relaxed con-
straints on refinement, providing highly adaptive quasi-structured (point-structured)
grids in space. Currently available octree-AMR codes are limited only to space adap-
tivity with no support to enable adaptivity in time to the best of our knowledge. This
paper mainly focuses on developing scalable parallel algorithms and data structures
to enable LTS on octree grids. We choose the simple time interpolation methods
presented in the papers [40, 41] which form the mathematical basis for the methods
presented in this work. Additional details and analysis can be found in [40, 41].

3. Methodology. This section presents parallel algorithms and data structures
used to enable LTS on adaptive octree grids. This paper mainly focuses on numer-
ical solutions of hyperbolic PDEs using the method of lines approach, where time
discretization is performed using explicit timestepping methods.

3.1. 3+1 decomposition of PDEs. In this paper, we focus on differential
operators defined on the traditional Euclidean spacetime (R?) that is (3 space + 1
time dimension). Let £ be a differential operator, £ : X — Y C X where X,Y
are Banach spaces with appropriate smoothness conditions which £ acts upon. For
example, when £ = 9, — 02,, we get the heat operator, or when £ = 02 — 92, one
attains the traditional wave operator. Throughout this paper, we focus only on the
operators £, which can be transformed into an evolution equation of the form (3.1),

which we refer to as 3 + 1 decomposition of operator L,
(3.1) Oru = F(t,u(t))

where, for T € RT, F : [0,T] x W — X, and W C X. For a given s € [0,7) and
¢ € W, the solution w is the integral curve of F, that satisfies (3.1) on [s,T] with the
initial condition u(s) = ¢. Analysis of the well-posed nature of these integral curves is
out of the scope of this paper, hence we assume these integral curves are well-posed,
and can be computed with numerical timestepping, with the appropriate necessary
stability constraints.

3.2. Spatial adaptivity. While this paper is centered on adaptivity in time,
it is closely related to our realization of adaptivity in space using octrees. We give
a brief overview of our spatial adaptivity framework (DENDRO-5.01) in this section.
The DENDRO-5.01 framework is freely available via an MIT license [27] and additional
details on our algorithms can be found in [25, 26, 55]. Octrees are widely used [48,
17, 58, 10] in computational sciences for their simplicity, efficient data structures, ease
of partitioning, and parallel scalability. We use axis-aligned octrees to represent the
underlying spatial discretization (see Figure 1). Only the leaf nodes are stored, and
all the nonleaf nodes are discarded to reduce the overall octree memory footprint.
The above is mainly because nonleaf nodes are redundant and can be computed
with a single bottom-up traversal on the tree structure. For a given spatial domain
Q) = [~a,a]®, where a € RT, and let F(x,y,2) be a field (i.e., scalars, vectors, and
tensors) defined on Q. Then the field F' can be adaptively discretized using an octree
data structure. To enable efficient hierarchical splits using bitwise operations, we map
the domain € to integer domain Q; = [0, 2%], where L is the maximum refinement level
allowed in the octree. Therefore leaf nodes are stored as a four-integer tuple, (z,y, z,1),
where (z,y, z) denotes the leftmost corner of a leaf node octant, and ! denotes the leaf
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Fic. 1. An dllustration of azis-aligned hierarchical splitting of a two-dimensional (2D) domain
with the underlying quadtree. For an adaptive discretization, the leaf nodes (i.e., {a,b,c,...,l,m})
will be at different levels. Note that when storing the quadtree, nonleaf nodes are discarded since
they can be computed using bottom-up traversal on the tree structure. The above generalizes for 3D
domains where the underlying data structure becomes an octree.

node level (i.e., a leaf node at level [ has the size 22~!). The presented LTS approach is
agnostic to the adaptivity criteria where it can be application-specific. The adaptivity
criteria can be represented as a function,

(3.2) A : {octree node set} — {refine, coarse, no_change},

where the specific definition of A is application-specific. For example, A can be defined
based on gradient jump between neighboring octants, interpolation error reduction
from the parent node to the child nodes refinement, and any other criteria specific to
the governing PDEs.

3.3. Distributed octrees. The partitioning of the spatial domain is required
to achieve parallelism in space. In a sequential octree, all the leaf nodes are stored in
a single processor. In contrast, in a distributed octree, the leaf nodes are partitioned
across the specified p number of processors. When computing the octree partitions,
it is crucial to consider work and communication balanced partitions to achieve effi-
cient parallel scalability. In AMR applications, the adaptivity structure should evolve
with the underlying fields (i.e., capturing a propagating wave). The change in the
refinement structure can make the previously computed partitions load imbalanced.
In AMR applications, frequent repartitions are required to achieve proper load bal-
ancing. Therefore these partitioning methods should be fast and efficient yet produce
partitions with higher quality (i.e., work and communication balanced). SFCs are
commonly used by the HPC community for partitioning data [18, 23, 57] and for
resource allocations [11, 52]. By mapping high-dimensional spatial coordinates (i.e.,
octants) onto a 1D curve, the task of partitioning is made trivial (see Figure 2). In
this work, we use the SFC-based partitioning scheme OPTIPART [25] to partition the
octree data.

3.3.1. Octree construction. This section presents a brief overview of the dis-
tributed octree construction with application-specific refinement criteria A (see (3.2)).
The tree construction is a distributed process where all processors start with zero re-
finement level (i.e., the root node). The specified refinement criteria A is called on the
root node, where if A indicates to refine, children of the root node are added. Once
the new nodes (i.e., children) are added, partitioning algorithm OPTIPART is executed
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Fic. 2. A simple 2D example of how SFCs can induce an ordering operator on 2D quadtree

nodes. The 2D spatial coordinates can be ordered based on the traversal order induced by the SFC.
SFCs can be used to reduce the partitioning problem from high-dimensional space to 1D space.
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F1G. 3. The leftmost figure shows a scalar field f defined on T' C R2. The middle figure shows
the constructed 2:1 balanced distributed quadtree to capture the field f with respect to the specified
refinement criteria A. Note that the quadtree partitions are color coded. The rightmost figure shows
a ghost/halo element layer for the selected single partition.

to repartition the current tree to ensure load balance. The above process is continued
until the refinement structure does not change (see Algorithm 3.1). Following the
octree construction, we enforce a 2:1 refinement constraint (i.e., 2:1 balancing). The
2:1 balancing condition ensures that for any given leaf node in the octree, its neigh-
boring leaf nodes at most differ by a single level (i.e., an octant can have a neighbor
that is either the same level, one level coarser, or one level finer). The key motiva-
tion behind enforcing the 2:1 balancing constraint is to ease the subsequent numerical
operations on octree grids simpler (see Figure 3). There exist different 2:1 balancing
algorithms [36, 53, 15, 56] in the field, and our balancing algorithm is similar to ex-
isting approaches for balancing octrees [56] with minor changes in the choice of data
structures and process-local balancing.

3.4. Data structures. Up until now, we have discussed adaptive octree-based
spatial discretizations. This section discusses distributed data structures required to
enable numerical computations on octrees. In this paper, the terms “meshing” and
“mesh generation” refer to constructing the data structures required to enable numeri-
cal computations on adaptive octree grids. The notion of neighbors and neighborhood
connectivity is crucial to enable numerical computations on AMR grids. The neigh-
borhood information that is needed depends on the nature of the numerical computa-
tion. For example, the FD and finite volume (FV) methods will require neighborhood
information proportional to the used stencils’ width. In contrast, finite element meth-
ods will require nodal information corresponding to each element. In adaptive dis-
cretizations, finding this neighborhood information becomes nontrivial and requires
additional search operations on the octree. We use an efficient TREESEARCH [26]
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Algorithm 3.1 Initial distributed octree construction (TREECONSTRUCTION)

Require: A refinement criteria, L maximum refinement level, p number of ranks
Ensure: T distributed tree
1: T+~ RoOoTNODE
2: C«+ 0
3: while T' # C do
C+0
for node € T' do
if nodel.level < L and A(node) == refine then
C «+ C U Children_O f(node)
else
C + C' Unode
C <+ OpTIPART(C, p) > Partition C across p ranks
swap(T, C)
return

AR v IR

— =

algorithm to build these data structures. To make the constructed neighborhood in-
formation process-local, we compute a layer of ghost/halo octants for each partition.
For a given distributed octree T = {t1,%o,...,t,} where t; denotes the kth parti-
tion out of p ranks (i.e., k& < p), the ghost octant layer consists of octants that are
neighboring to t; but belong to another partition ¢; where i # k (see Figure 3). Fol-
lowing distributed octree construction, the ghost layer for each partition is computed
using parallel sort and search operations [25, 26]. The computed ghost octant layer
ensures the constructed subsequent data structures are process-local. To perform
LTS on octree grids requires elemental and nodal level neighborhood information. At
first we compute an octant to octants (020) map where for a given octant e € t,
020(e) = {e1,ea,...,e5} where {e1,ea,...,eg} are the face neighboring octants to e.
The map 020 is computed by generating search keys on each face direction followed
by search operations on the octree.

Embedding nodal information. The constructed 020 map is used to embed
nodal information on the octree. To enable dth-order spatial interpolations, for each
octant (d+ 1) x (d+ 1) x (d+ 1) nodes are uniformly spaced. The above is referred
to as octant local nodes (i.e., the ownership of the nodes is local to the octant). Note
that, between the shared octant boundaries, there will be duplicate nodes. The shared
octant nodes representation is computed to eliminate nodal duplications. The nodal
ownership is determined by the globally consistent criteria (i.e., SFC ordering of the
octants). In the case of finer and coarser octant boundary, the finer nodal points
(also called “hanging nodes”) are discarded [26, 37], since they can be computed
with interpolation from the coarser grid points assuming that the AMR criterion A
determines appropriate adaptivity structure (see Figure 4). The octant to nodal (02N)
map maps a given octant e € t; to its shared octant nodes indices. The computation
of 02N is process-local where it initially starts with octant local nodes and removes
duplicate and hanging nodes with proper nodal indices updates (see Figure 5).

3.5. Time adaptivity identification. For a given octree 7, we compute a
compressed octree of T, denoted as B (blocks) where each leaf node in B is a node
in 7 with uniformly refined suboctree (see Figure 6). The above is referred to as
octree to block decomposition, where the blocks are computed by performing top-down
traversal with additional octant level constraint. The block decomposition transforms
the adaptivity on the octree to a sequence of uniform grid patches. The above (1)
identifies the time adaptivity (the refinement level on the block determines timestep
size) and (2) enables numerical computations such as FD and FV methods on adaptive
grids (i.e., to evaluate the right-hand side (RHS) in (3.1)).
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Fi1G. 4. A 2D ezample of octant local nodes (in the center) and shared octant nodes (the
rightmost figure) nodal representation (for octant order of 2) of the adaptive quadtree shown in
the leftmost figure. Note that in octant local nodes, representation nodes are local to each octant
and contain duplicate nodes. By removing all the duplicate and hanging nodes by the rule of nodal
ownership, we get the shared octant nodes representation. Note that the nodes are color coded based
on the octant level.

[] — octant local modes

HEEEEEEEEEENENEENEEE .
[0] 1 2 3 4\ 6 8 9 — Elemental indices
L] (]

D m&lﬂt nodes

Fic. 5. An illustration of the underlying representation of the elemental and nodal vectors. The
elemental vectors are used to store local time for each octant, while octant local nodes representation
is used to store solution vectors that are not synchronized in time. Note that the duplicate nodal
information allows two meighboring octants to be at different evolved times. The shared octant
nodes representation is used to represent solutions that are synchronized in time. The figure also
illustrates how elemental and nodal indices are connected through the constructed element to nodal
indices maps.

octree to blocks (bas 1) (bs,0)

N
4

(b1,0) (b2,1)

FiGc. 6. A simplistic example of octree (T ) to block decomposition. The left figure shows the
considering adaptive octree, and its block decomposition is shown on the right. Each block (bg,l) is
associated with uniform grid level parameter 1, where I denotes the level of refinement of the subtree
rooted at by, node in T .

3.6. Numerical computations on octree grids. This section presents a brief
overview of how the constructed data structures are used to perform numerical com-
putations on octree grids. To evaluate the RHS during the time integration of (3.1)
requires the ability to perform numerical computations such as finite element (FE),
FD, and FV type computations on octree grids. Performing FD and FV type compu-
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Fic. 7. A simplistic example of octree to block decomposition and unzip operation. The leftmost
figure shows the considering adaptive octree with shared octant nodes, and its block decomposition is
shown in the middle. Note that the given octree is decomposed into four regular blocks of different
sizes. The rightmost figure shows the decomposed blocks padded with values coming from neighboring
octants with interpolation if needed. In order to perform the unzip operation, both 020 and 02N
mappings are used.

tations requires neighboring nodal information, while FE type computations require
element local neighborhood information. The work presented mainly focuses on FD
computations to approximate spatial derivatives while the proposed LTS method-
ology is extensible for FE and FV type operator approximations. To perform FD
stencil computations requires spatial grid points that are at the same resolution. The
above is achieved by performing octree to block decomposition where for each block,
we compute a padding region of a specific width corresponding to the FD stencil
width. In order to compute the padded blocks, we use the computed 020 and 02N
information with the corresponding space interpolations. For example, between finer
and coarser grid blocks, we use coarser to finer interpolation (i.e., parent octant to
child octants) to compute the padding region for the finer block while using finer to
coarser injections for the padding region of the coarser block. Note that in the paper,
the octant shared node representation is also referred to as zipped representation (see
Figure 4) and block with padding computed is referred to as the unzipped representa-
tion. All the FD stencils are applied at the unzipped representation, while just prior
to the communication, we perform a zip operation, so the interprocess communication
happens in the efficient, more compact form (see Figure 7).

3.7. Explicit timestepping schemes. Explicit timestepping is a class of nu-
merical schemes that compute the solution curve for (3.1). In explicit methods, the
solution at time t, 1, u" ™t = u"T1(t,,1,-) is computed directly from the solution at
the previous timestep u” and does not require a linear solve. In order to numerically
evolve (3.1), we discretize F, i.e., discretization in space first. The resulting set of
ODE:s are discretized using explicit time integration. Depending on the properties on
L, there can be additional constraints on At, Az. For most hyperbolic operators, the
Courant-Friedrichs-Lewy (CFL) condition [22] is a necessary condition for stability
for numerical time evolution. The CFL condition % < C, where C is a constant that
specifies a necessary condition for stability. Intuitively, it imposes the constraint that
we cannot propagate spatial information in time, faster than the speed of information
propagation defined by operator £. RK [44, pp. 350, 379] schemes are widely used
explicit timesteppers (see (3.3)) that will be our main focus for spatially adaptive
local timestepping.
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kl = F(u"),
]i}2 = F(Un + aglkl),

kp = F(Un + aplkl + -+ app—lkp—l)a

P
umtl =+ At Z w;k;
i=1

3.8. GTS: Global timestepping. This section presents the global timestep-
ping (GTS) approach on octrees assuming FD approximations for spatial derivatives.
The octree to block decomposition is computed to enable FD computations on adap-
tive grids. In GTS, all the blocks are evolved using the same timestep size (i.e., no
temporal adaptivity) where the stability constraints dictate the timestep size. For
example, for hyperbolic PDEs, with explicit GTS, the timestep size is determined by
the grid’s finest spatial resolution. Let u™ = wu(t,,-) be the solution at time ¢,. In
GTS, first we compute the unzipped representation for u™. The above allows evalu-
ation of the RHS using FD approximations. Once the RHS is evaluated, we perform
the zip operation followed by intermediate timestepping stage computation. After
the intermediate stage computation, a global block synchronization (i.e., get updated
values for the block padding region) is performed using the unzip operation (see Fig-
ure 8). The above process is performed to evaluate the required timestepping stages,

LTS t loop
GTS t loop block level I loop
RK stages RK stages By C B={ k > ljpas to 1}

/\

unzip

“oE = | OE

global blk_sync local blk_sync

Fic. 8. This figure illustrates the overview of time evolution using GTS and LTS for multi-
stage explicit timestepping on octree grids. In order to perform FD computations, the adaptive
grid is decomposed into uniform block patches with appropriate padding, and spatial derivatives
are evaluated on equispaced block representation (unzipped) computed using previous timestep solu-
tion un. The unzip operation results in a sequence of that which are used to compute the solution
on the internal block (©), using the padding values at the block boundary (). After time evolu-
tion, the nmext timestep un+y1 1S projected back to sparse grid (zip) representation. In GTS, for
each explicit stage, we evolve all the blocks using Atfinest, followed by a global block synchro-
nization operation. This global synchronization operation consists of the projection of block local
solution for zipped representation (shared octant nodes), followed by interprocess communication
and project back to unzipped representation. Note that shared octant nodes are used for interpro-
cess communication since it is compact and does mot contain duplicate nodal values. For LTS,
we have a block level loop that selects a subset of blocks B; which are eligible to evolve, followed
by the explicit stage loop. Once B; is evolved, we perform block synchronization for B;. Hence
the above is a local block synchronization. For this local block synchronization, for interprocess
communication, we use octant local nodes representation (unzipped) without padding region). Un-
like GTS we cannot use shared octant nodes representation since blocks evolved are at different
times.
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Algorithm 3.2 Global timestepping

Require: U™ previous timestep, At, B sequence of blocks
Ensure: Ut = U(t"At,-)
u_unzip < unzip(U™)
: for s=1:kdo
for b € B do
k[b, s] < compute_stage(u-unzip,k[1,...,s —1])
k[s] < blk_sync(k[s])
: UL« compute_step(U™, k)

SANRANE Il

and once all the stages are computed the solution ™ is updated to the next timestep
u™t = wu(t, + At,-). The GTS approach is presented in Algorithm 3.2.

3.9. LTS: Local timestepping. This section presents the methodology to per-
form LTS on spatially adaptive octree grids. In LTS, the timestep size is adapted to
the spatial resolution on the grid. The above is achieved using the block represen-
tation of the octree (i.e., octree to block decomposition), where for each block, the
timestep size is determined by the resolution of the block. For example, a block with
the finest resolution L uses the timestep size At, and a block at the resolution I < L
uses a timestep size of 207'At. Assuming that the use of the same CFL constant ¢
on the grid where At = cAx, and the 2:1 balance property on the octree grid ensures
that for any coarser and finer grid boundary, the timestep size ratio between coarser
(At.) and finer (Aty) is equal to two (i.e., At, = 2At; ). In LTS, the blocks are
evolved using different timestep sizes. Hence the block padding region synchroniza-
tion requires a notion of synchronization in time in addition to space synchronization.
The above can be achieved mainly in two ways: (1) coarse grid approximation (i.e.,
full-step-half-step method) or (2) perform interpolations in time.

3.10. LTS for single-stage explicit schemes. For single-stage explicit
schemes such as forward Euler, we can enable the correction between coarser (b.)
and finer (by) blocks by making b. take a pseudotimestep for block by. The key ad-
vantage of the above is that the time synchronization between the coarser and the
finer grid boundary does not require time interpolations. Temporal synchronization
between coarser and finer refinement boundaries is computed by the coarser grid us-
ing the appropriate timestep size for the finer block. The above is referred to as
the full-step-half-step method (see Figure 9). For single-stage timesteppers, the full-
step-half-step approach is ideal since the half-step approximation is only needed by a
single layer of coarser blocks surrounding a finer block. The implementation of the
full-step half-step approach for multistage schemes is challenging due to complicated
block synchronization patterns. Also, in multistage methods, the number of coarser
block layers that have to take a half-step is proportional to the number of intermedi-
ate stages (N;) in the scheme. The application of the full-step-half-step method will
cause a significant loss in the temporal adaptivity for multistage schemes.

3.11. LTS for multistage explicit schemes. In multistage explicit methods,
the time evolution of (3.1) is given in (3.3). For 2:1 balanced grids, the resolution
difference between block boundaries is bounded by a factor of two. Therefore, for any
given two neighboring blocks in the octree, their refinement level difference can be
either zero (i.e., same refinement level) or one (i.e., coarser finer refinement boundary).
In LTS, the timestep size used by a block depends on its refinement level. Hence,
for multistage methods, computed intermediate stages (k;) need to be synchronized
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Fic. 9. Simple illustration of local timestepping for single-stage schemes on 2:1 balanced adap-
tive grids. Here we have a refined block by with neighbor ba that can be at most twice as large. We
also consider block b3 that doesn’t have any neighbors smaller than itself. Note that 2:1 balancing
ensures that these are the only cases that can exist for any adaptive mesh. Blocks by and bz take
timesteps corresponding to the size of the blocks. Block bz, however, takes 2x as many timesteps
compared to bs, first a half-step to help its neighbor by take its second timestep, and then a full size
timestep to reach tyy1.

i1 = tn + Ate , At = 2At;

Ll e B m,[(f'j,)}

tn+1/2 =ty + Atf

F1G. 10. A simple illustration of how neighboring coarser (bc) and finer (by) blocks perform
synchronization in LTS for multistage timesteppers. The solution at coarser and finer regions is
synchronized at time t,. The be block reaches the time tn,y1 = tn + Atc using a single timestep
while block by reaches the same time using two timesteps with the intermediate step at the time
tnt1/2 = tn + Aty. During the first timestep block by computes the coarser grid correction using

M. and block b. computes the finer grid correction using Mc(l)f. At the end of the first timestep,
block be waits till block by performs the second step. During the second timestep block be computes

the finer grid correction using the M§2)f operator.

between refinement boundaries to accommodate spatially adaptive timestep sizes.
Let by, b, be two neighboring blocks where b, is one level coarser than by (see Figure
10). Let Aty, At. = 2At; denote the timestep sizes for blocks by, b. respectively.
Assume at time ¢,, the solution u™ at by, b. are synchronized, and the solution needs
to be evolved to time t,,41 = t,At.. The b. solution will reach time ¢, in a single
timestep while the by solution needs to perform two timesteps to reach ¢,,;. Let
tnt1/2 = tn + Aty denote the solution at the intermediate timestep taken by the
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block by. The solution in the coarser block is evolved using At., and as per formula
(3.3) we can write time integration given in (3.4).

kc,l = F(u")7

c

ke = F(uy + azike1),

kep = F(ug +apike + -+ + app—1kep-1),

p
u2+1 = u? + At, (Z wik:c,l) .
=1

For the finer block by we need to perform two timesteps to reach time ¢,4,. The by
solution initially reaches the intermediate time ¢, /o as specified in (3.5).

(3.5)

1 n
KN = Fup),

Ky = F(u} +ankf)),

n 1
kglzz = F(ug +aprkey + -+ appflkgf,;))_1)7

P
n+1/2 n 1
Uy / :uf+Atf<E w,kgp)l))

i=1

Similarly, for the second timestep for block by we can write time integration equations
as specified in (3.6).

(3.6)

2 n+1/2
kP = P,

K = P + a2,

kS'Z) = F(UZ+1/2 -+ aplkql 4+ 4 app—lk(2) )7

fip—1
1/2 a )
n+1 n+
uf+ = uy + Aty (Zw,kfl> .
i=1

The following operations are needed to synchronize the LTS solution between the
finer and the coarser grid boundaries.

e Finer to coarser (My.): The stages vector {ky}}_ should be approximated

from the available finer block (by) stages {k;lz) }¥_ to synchronize timestepping
stages in the coarse block b. to enable timestep from ¢, to ;1.

Coarser to finer 1 (M, é;)): The stages vector {];((:12) P_ should be approxi-
mated from the available coarser block stages vector {k.;}?_ to synchronize
the stages in the finer block by to enable the first timestep (i.e., from ¢, to
thy1/2)-

Coarser to finer 2 (Mc(?) The stages vector {
mated from the available coarser block stages vector {k.;}'_ to synchronize
the stages in the finer block by to enable the second timestep (i.e., from ¢, 119
to tp).

ACAY:

c,t Ji=

should be approxi-
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The derivation of the above operators can be motivated by various numerical
constraints. In this paper, we derive these operators based on the linear approximation
of the F(u) for a given timestep interval At¢. Using (3.3) and the piecewise linear
approximation of the RHS F'(u), we get

kl ﬁtu
k2 6t2u

(37) K= . :CXPAtx . )
kp Orul,_,

where C and Pa; are given by

1 0 - 0 1 0 - 0
0 At -~ 0 1 ¢ -+ 0

(3.8) Pre=1|. . . ) ,C= 1. . )
0 0 - Al 1 o+ Cpp

The coefficients of C' are related to the explicit timestepper coefficients given in (3.9).
C22 = Q21,
C32 = Q31 + 32, C33 = 432021,
C42 = (41 + Q42 + A43, C43 = 443032 + 043031 + A42021,

(3.9) C44 = (43032021,

Cp2 = Qp1 + -+ + App—1, Cp3 = App—1Qp—1p—2 + *** + Ap2a21,
Cpp = Qpp—1Ap—1p—2-.-021-

For example, the C coefficient matrix for RK3 and RK4 is given in (3.10). The P
matrix is computed at the runtime with the appropriate timestep size.

1 0 0 0

1 0 0
(3.10) Crrz = |1 1 0 |,Crixa = 1 1/2 0 0
1 o1/2 1/4 1 1/2 1/4 0
1 1 1/2 1/4

Equation (3.7) can be used to compute {ky;}}_ from {k‘}ll) _ (i.e., My, operator) as
given in (3.11), where My, can be written as My, = C'PAtCPA_tlfC_l.

_ 1 1
kra K Ky
kfo A k)
(3.11) | =CPa PRl O =My |
k (1) (1)
fp kf,p kfm

Similarly we can derive the coarser to finer grid correction for the first timestep of the
finer block (i.e., Mc(})) as specified in (3.12).

7.(1

k((' 1) kc 1 k'c 1

];I(i) kc,2 k(:2
(3.12) | =CPa, PO = MY

/2913 kep kep
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Since the correction matrices are lower triangular, a synchronization procedure can
be carried out by the blocks by, b. simultaneously for each timestepping stage compu-

tation. Also note that the M c(}) =M fc_l as expected. To derive the synchronization
operator for the second timestep of by, the Taylor expansion is used at the time
tnt1/2 = tn + Aty for the vector {0ju}?_,. Specifically we can write the timestepping
stages computed from time ¢, /o as an approximation given in (3.13).

kl 8,511
kQ Bfu
(313) : ~ CPAthAtf
»
kp t=t,+Ats Oru t=t,

The matrix Baty is an upper triangular matrix form that consists of the Taylor series
expansion coefficients. The above can be written as

1 bipAtp bisAtd - blpAt§—;
0 1 bysAtp - byAth
-3
(3.14) Bai, =0 0 1 by AR
0 0 0 - 1

where b;; = ﬁ Using (3.7) and (3.13) we can compute the timestepping stages

vector {EE? _ from the known coarser block stages vector {k.;}?_ that will be used

1=

to enable the second timestep for the finer block bs. Therefore the correction operator
MC(J%) can be written as

]_gé?l) kc,l kc,l

]5222) kc,2 9 kc,2
(3.15) | = CPay,Bai, Pr.C7 =MP |

% SO

For linear problems, the derived synchronization operators have the same order of
accuracy as the specified, explicit timestepper. However, for nonlinear problems,
the derivation uses the piecewise linear approximation of the F(u) computation and
hence have an overall accuracy of O(At?). More details on these operators’ error and
stability analysis can be found in [41, 40].

Synchronization between blocks. The above coarser and finer grid correction
operators are computed once and stored during the L'TS. In the GTS approach all
the blocks in the octree are evolved at every timestep using a fixed timestep size.
In contrast to GTS, the LTS approach has a block level loop that evolves only a
subset of blocks. Let B; be the subset of the total blocks B that are being evolved
at block level iteration [. For example, blocks at the coarsest level L will get evolved
only once, blocks at the next coarsest level (i.e., L — 1) get evolved two times, and
blocks at level | < L get evolved 2F~! times (see Figure 11). During these block
evolutions appropriate grid correction operators (i.e., My., M. 0(]10) and M C(?) are applied
to synchronize the solution between refinement boundaries (see Algorithm 3.3). Notice
that during block level loop iterations, the evolved solution « is not synchronized in
time. Therefore, for the same spatial grid point, p can have solution w defined at two
different times. To facilitate the above LTS uses octant local nodes representation
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time
4At

3At

2A¢t

1At =0
=0

bn, bap, bap,

Fic. 11. A simple illustration of block set B = {bp, bap,ban} that is evolving at each level | of
the time level loop. Assume in the beginning that all the blocks are synchronized in time. At level
1 =0, Bo = {bp,ban,ban}, perform timestep of its corresponding timestep size {At,2At,4At}. Note
now that block byy, has already reached the coarsest time over B. Similarly, for | =1, B1 = {bp},
for 1l =2, By = {bp,bap}, and for l = 3, Bs = {b,} are evolved with corresponding timestep sizes.
After B3, all the blocks have reached the next coarsest timestep size over B. Note that appropriate
time interpolation and corrections are applied across different refinement regions (see Figure 10).

to store the solution vectors that are asynchronous in time. As mentioned, for block
level iteration [, block set B; C B is considered in the evolution. The above can be
used in the distributed memory case to perform partial communication between the
grid partitions.

Algorithm 3.3 Local timestepping

Require: U™ previous timestep, At, B sequence of blocks
Ensure: Ut = U(t"At,-)
1: V«U"
2: u_unzip < unzip(U™)
3: for | = lymaz tO lymin do
By < compute_blk_subset(B,1)
for b € B; do
for s=1:kdo
k[b, s] < compute_stage(u-unzip,k[1,...,s —1])
k[s] < blk_sync_local(k[s], By)
9: V < compute_step_partial(V, k, B)
10: U™ + Atcoarsest, ) < V.

Weighted partitioning. We use the SFC based partitioning scheme to dis-
tribute work among the processors. For each local partition 74, the amount of work
that each block has to perform to reach the global coarsest timestep depends on the
block refinement level. For example, a block of level [ has to perform 2x timesteps
compared to its adjacent coarser block at level [ — 1. A partitioning scheme with
equal weights assigned to each octant will result in load imbalanced partitions for
LTS timestepping. To overcome the above, we perform weighted partitioning, where
the relative weight of the block increases with the refinement level (see Figure 12).
We modified our SFC-based partitioning scheme to account for the specified weights
of the blocks. A 3D SFC curve can be considered an injective mapping between the
1D domain and the 3D octree domain. Using SFC ordering, we can sort the octants,
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Fia. 12. A simple illustration of our weighted SFC-based partitioning scheme for an adaptive
octree partitioned across 32 processors. The bar plot shows the number of octants each partition has,
and the line plot represents the total weight of each partition. Note that partitions with low octant
counts have highly refined regions; hence they need to perform a larger number of timesteps to reach
the coarser level timestep and vice versa, but the total weight of each partition is roughly equal, i.e.,
all partitions perform roughly the same amount of work.

resulting in a linear ordering of the octants while ensuring spatial locality. Once
ordered according to the SFC, partitioning the domain reduces to partitioning a 1D
curve. In weighted SFC-partitioning, we use weighted length of the curve, i.e., we aim
for equal ZCEW we, where w, denotes the weight of the octant, 7, a given partition.
Note that for GT'S, we use w, = 1 Ve € 7.

3.12. GTS versus LTS: Approximating the speedup. This section presents
theoretical bounds for the work performed by the GTS and LTS timestepping ap-
proaches, on 2:1 balanced octrees. Let L = (Lnaz — lmin) be the difference between the
maximum and minimum refinement levels for a given octree. Let W = {ap,...,ar}
be the corresponding work for a block level loop, where B; denotes the active blocks
for the Ith € {0,1,..., L —1, L} loop iteration. The work performed by the GTS and
LTS schemes can be written as (3.17) and (3.16).

L
(316) VVlts = Z 2L_lal7
=0
L
(3.17) Wots =28 " an.
=0

Assuming constant time to perform a work unit, for speedup S, 1/S can be written

as (3.18). Since, % < %, the maximum theoretical speedup that can be achieved for

a given block distribution can be written as S < %

Wits 1 aq ar,
3.18 - ( a2 —) 1, wh
(3.18) Wore ~ W] ap + 5 +t L ) <1, where

L
(3.19) W=> a.
=0
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3.13. LTS with external library packages. The proposed LTS approach
uses the available spatial adaptivity to enable temporal adaptivity and is not limited
to octree grids. The LTS approach can be extended in a mesh agnostic way to the
underlying meshing library. To enable LTS on a given grid structure, the underlying
meshing library needs to provide the following neighborhood mappings (see Figures
4 and 5).

e Element to element map: For a given element in the grid, what are its
neighboring elements?

e Element to shared node map: For a given element in the grid, what are
its element shared indices?

e Element to local node map: For a given element in the grid, what are
its element local indices? The above will allow storing solution vectors that
are not synchronized in time. The mapping between element local to element
shared is provided by appropriate interpolations (i.e., in both space and time).

Provided these additional data structures, the proposed LTS approach can be easily
extended to other mesh libraries such as pdest [17] and AMReX [59].

4. Results. This section presents an overall evaluation of the proposed LTS
methodology in terms of (1) parallel scalability, (2) accuracy of the method for linear
and nonlinear problems, and (3) performance evaluation of the octree grid generation
and balancing.

4.1. Experimental setup. The large scalability experiments reported in this
paper were performed on TACC’s Frontera supercomputer. Frontera is an Intel su-
percomputer with a total of 8,008 nodes, each consisting of a Xeon Platinum 8280
(“Cascade Lake”) processor, with a total of 448,448 cores. Each node has 192GB of
memory. The interconnect is based on Mellanox HDR technology with full HDR (200
GDb/s) connectivity between the switches and HDR100 (100 Gb/s) connectivity to the
compute nodes.

4.2. Nonlinear and linear wave propagation. In this section, we introduce a
simple model to demonstrate LTS, the classical wave equation. We write the classical
wave equation in a form with first derivatives in time and second derivatives in space.
This allows us to easily apply the specified, explicit schemes.

For a scalar function x (¢, z%), the classical wave equation in Cartesian coordinates
(t,z,y,z) with a nonlinear source term can be written as

2 [0 92 & sin(2y)
(4.1) (f%2_<8x2+ay2+8z2>x__c 2

)

where r = /22 + y2 + 22. We write the equation as a first-order in time system by
introducing the variable ¢ as

ox
(4.2) ==y,

o¢ [ 0 0? 02 sin(2x)
(43) m(axﬁayz*az)xc o

For nonlinear wave propagation results presented in this paper, we used ¢ = 1. We
choose outgoing radiative boundary conditions for this system [4]. We assume that
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the variables x and ¢ approach the form of spherical waves as r — co, which decay
as 1/r*. The radiative boundary conditions then have the form

8f_1<6f of  of

(4.4) o 7 \%as +y8_y +2$) —k(f = fo),

where f represents the functions x and ¢, and fj is an asymptotic value. We assume
k=1 for x and k = 2 for ¢.

For the linear wave propagation results presented, we simply zero out the non-
linear source term (i.e., set ¢ = 0). The analytical solution for the 1D linear wave
operator in (4.1) with zero source term can be written as

flx—t)+ flz+1)
2

(4.5) x(t,x) = , where x(0,z) = f(z).

4.3. Accuracy. We conduct numerical experiments using linear and nonlinear
wave propagation to test the accuracy of our methods and implementation (see Figure
13). We compute the analytical solution for wave propagation in the x direction
for linear wave propagation and compare the analytical solution with the computed
solution using global and local timestepping. For the above experiments, we used
a third-order RK scheme with increasing spacetime resolution. Figure 14 shows the
numerical error for LTS and GTS approaches with increasing resolution.

Since the computation of the analytical solution for the 1D wave operator with
a nonlinear source term is complicated, we compare the /o, norm computed on the
numerical difference between global and local evolved timesteps. In Table 1 we present
the difference between the solution x evolved using GTS and LTS for increasing
maximum refinement level (MAXDEPTH) 8 and 10. Again, both GTS and LTS are in
agreement close to machine precision.

4.4. LTS efficiency and space adaptivity. As mentioned in section 3.12, we
can approximate the speedup S between LTS and GT'S for a given octant distribution.
Since we can end up with meshes where the use of LTS will not provide significant
advantages over GT'S, we can selectively use LTS based on the expected speedup.

Fic. 13. Plots for linear wave propagation with LTS with a velocity vector (1,1,1) using a
Gaussian pulse centered at (0,0,0) as the initial condition. Images shown from left to right and top
to bottom in increasing order of simulation time.
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F1a. 14. Discrete la error compared to the analytical solution for the 1D wave operator in three
dimensions for GTS and LTS timestepping. For this experiment we used MAXDEPTH of 8 and 10
with refinement trigger tolerance of 1075,

TABLE 1
lo difference between GTS and LTS at corresponding timesteps for nonlinear wave propagation.
For this experiment we used MAXDEPTH of 8 and 10 with refinement trigger tolerance of 1075, Note
that for MAXDEPTH 8, 8 global timesteps and for MAXDEPTH 10, 32 global timesteps were equivalent
for a single LTS step.

Time (s) Xt — Xgtsl2
MAXDEPTH=8 MAXDEPTH=10

0.00 0 0

0.42 2.44E-11 5.99E-13

0.83 4.59E-11 1.85E-12

1.25 6.43E-11 3.31E-12

1.67 7.97E-11 4.70E-12

2.08 9.30E-11 5.84E-12

2.50 1.05E-10 6.68E-12

2.92 1.15E-10 7.23E-12

3.33 1.25E-10 7.58E-12

3.75 1.34E-10 7.86E-12

4.17 1.42E-10 8.17E-12

4.58 1.48E-10 8.56E-12

5.00 1.54E-10 9.03E-12

To evaluate our speedup model (3.18), and to assess the overhead of applying the
LTS correction operators, we computed the actual speedup reported for the linear
wave propagation with increasing MAXDEPTH. The estimated and reported speedup
values are presented in Table 2, and weak scalability study on the above problem is
presented in Figure 15. As can be seen, the estimated speedup values are sufficiently
close to the predicted ones, allowing applications to determine when it is beneficial to
use LTS.

Adaptivity in spacetime can be vital for computational applications, especially
when spacetime adaptivity is necessary to make these simulations feasible even on
leadership architectures. Here we present estimated speedup by using LTS, for the
simulation of binary black hole mergers and the computation of the resulting gravi-
tational waves [1, 3, 35, 26]. These simulations’ computational cost increases signifi-
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TABLE 2
The estimated versus reported speedup for LTS over GTS for linear wave propagation with
increasing MAXDEPTH for adaptive octrees.

d | lmin | lmaz | GTS (s) | LTS (s) | Est. speedup | Reported speedup
9 2 7 2.91 0.88 3.31 3.30
10 3 8 26.69 9.26 3.31 2.87
11 2 9 114.74 36.76 3.49 3.12
12 2 10 238.05 73.94 3.56 3.21

Ubik_sync (LTS) Utime interp. rhs (LTS) Hcomm (LTS) Eblk,sync GTS)
B rhs 6Ts) B comm (GTS)

W~
T
I

|

time (s) —

| | | |

I I I I
o ) > b ) QL N > (s} B N
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Fia. 15. Weak scaling results on TACC’s Frontera for RK3 timestepping using LTS (left) and
GTS (right) approaches. For this experiment, the mazimum and minimum refinement levels are
lmaz = 8 and lyin = 3, hence AL = 5. Therefore a single LTS step is equivalent to 2AL — 32
global timesteps. For LTS, the plot shows the overall cost breakdown between block synchronization
(blk-sync), applying time interpolations between blocks (LTS-interp.), computing the RHS (rhs)
and communication costs (comm). For GTS, we show the cost breakdown between blk_sync, rhs,
and comm. Note that for GTS time interpolations are not required. Note the significant difference of
blk_sync cost between LTS and GTS. For GTS blk_sync is a global operation, while in LTS blk_sync
is a local operation, where synchronization is performed only on the subset of blocks, which are
currently being evolved. These weak scaling results were performed using a grain size of ~ 100K
unknowns per core, with the number of cores ranging from 8 to 16,384 cores. The largest problem
recorded had 1.6 x 10° unknowns. The above results are generated for radial wave propagation with
a MAXDEPTH 10 and a refinement tolerance of 1075.

cantly when the mass ratio ¢ of the two black holes increases. Assuming we need n
grid points in one dimension to capture the larger black hole, to capture the smaller
black hole in the presence of the larger black hole, we need gn in one dimension, hence,
an increase of ¢3 points in three dimensions. The above makes the large mass ratio
gravitational wave simulations infeasible at the time. We use these large mass ratio bi-
nary black hole grids (see Figure 16) to estimate the speedup that the time adaptivity
can enable (see Table 3). For mass ratios of 10, one can expect up to 70x speedup,
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Fia. 16. Example octree grids generated for black hole binaries with mass ratio 1,10,100.

TABLE 3
Estimated speedup for binary black hole grid with increasing mass ratios from 1 to 10.

Mass ratio | lmin | Imaz Est. speedup

mi
1 3 15 9.82
2 3 16 18.105
5 3 18 15.035
10 3 22 71.8302

which is a significant reduction in the cost (runtime and energy) of estimating the
gravitational waves and can reduce the burden on supercomputing resources.

4.5. Weak and strong scaling. Parallel scalability of timesteppers is essential
when dealing with large-scale simulations. This section presents weak and strong scal-
ability results for the linear wave propagation problem on octree meshes using global
and local timestepping. For both weak and strong scaling, we used 73 grid points per
octant. For weak scaling, we set the computational domain to [—10,10]® and used
MAXDEPTH 10. The MAXDEPTH 10 grid generated I, = 3 and 4 = 8, hence 32
global timesteps is equivalent to a single LTS timestep. Therefore, in order to make
the GTS and LTS results comparable, in the following scaling results, we present
timing for 32 steps in GTS and 1 step (32 partial steps) in LTS. In weak scaling, we
increase the grid size, keeping the degrees of freedom per core roughly constant (100K
unknowns per core). Weak scaling results for LTS and GTS are presented in Figure
15. Each bar presents the corresponding evolution time between LTS and GTS. For
each scheme, we present the overall cost breakdown between computation of the RHS
(rhs) of the PDE, and block padding synchronization (blk_sync) and interprocess
communication (comm). The blk_sync cost consists of space interpolation, which
is common for both LTS and GTS schemes due to space adaptivity. We present
an extra fraction of time interpolation cost between blocks only present in the LTS.
For GTS the blk_sync operation is a global synchronization, i.e., all the blocks are
evolved and need to synchronize the padding regions for the next rhs computation.
In contrast, for the LTS scheme the blk_sync operation is a local (partial) synchro-
nization limited to the blocks evolved at the current partial step followed by time
interpolation to correct the padding regions between blocks. The weak scaling plot
shows that the partial synchronization with appropriate time interpolation is more
efficient than the global synchronization in the GTS scheme.

To perform strong scaling (see Figure 17 ), we used MAXDEPTH 12 and recorded
lmin and l,q. were 3 and 10, respectively. Therefore, 128 global timesteps are equiv-
alent to a single LTS timestep. We keep the total grid size fixed at 262M unknowns
for strong scaling tests and increase the number of cores from 64 to 8192. The strong
scaling plot shows the same cost breakdown described above. The recorded average
parallel efficiencies between LTS and GTS schemes were 87% and 74%, respectively.
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Fic. 17. Strong scaling results on TACC’s Frontera for LTS (left) and GTS (right) timestepping
using the RK3 explicit scheme. For this experiment, the refinement levels are lmaz = 10 and lyin =
3, hence AL = 7. Therefore a single LTS is equivalent to 28L = 128 global timesteps. For LTS,
the plot shows the overall cost breakdown between block synchronization (blk_sync), applying time
interpolations between blocks (LTS.interp.), computing the RHS (Ths) and the communication costs
(comm). For GTS, we show the cost breakdown between blk_sync, rhs, and comm (time interpolations
are not required for GTS). A significant difference of blk_sync cost between LTS and GTS. For
GTS blk_sync is a global operation, while in LTS blk_sync is a local operation, where synchronization
is performed only on the subset of blocks, which are currently being evolved. Presented strong scaling
study performed using a fized problem size of 262M unknowns where the number of cores ranges
from 64 to 8192 cores. Note that for strong scaling results remeshing is disabled in order to keep the
problem size fixed and unchanged during evolution.

The low overhead of blk_sync operation allows LTS to demonstrate superior weak
and strong scalability compared to the GTS scheme.

4.6. Weighted partitioning and mesh generation. The performance of data
partitioning and mesh generation is crucial for AMR applications, especially when
the computational grid changes frequently. We refer to this process as re-meshing,
which requires repartitioning the data (since the refinement change may have caused
load imbalance), enforcing 2:1 balancing, and mesh data structure generation. The
performance of the remeshing is crucial, but it is not the main focus of this paper.
In the current implementation, we trigger refinement in LTS when all the blocks are
synchronized in time. Figure 13 shows how the grid changes as the wave propagates
radially outward. Figures 18 and 19 show the weak and strong scalability of the
operations related to remeshing. The above experiments show that mesh generation
has a relatively high computational cost, compared to SFC weighted partitioning and
2:1 balancing of octrees. This is mainly because mesh generation performs a large
number of search operations on the octree to build the neighborhood data structures,
which are essential to performing numerical computations.

5. Conclusions. This paper presented methods to enable time adaptivity for
solving PDEs numerically on spatially adaptive grids. We presented experimental
results for the accuracy and scalability of the presented approaches. We show that
time adaptivity for highly adaptive octrees with high refinement levels can be essential
to reduce overall time to solution. As future work, we are hoping to explore (1)
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Fic. 18. Weak scaling results in TACC’s Frontera to perform SFC-based weighted partitioning
(SFC_Wpart) for Gaussian octant distribution centered at (0,0,0) followed by 2:1 balancing (bal.2:1)
of the octants, which is used as the input for the mesh generation (mesh_gen). For this experiment,
we used 1.6 M grid points per core, using 73 points per octant, with the number of cores varying from
8 to 2048. The largest problem reported had a total of 3.3B grid points, where the mesh generation

completed under 2s.

Il SFC_Wpart Opal. (2:1)0 mesh_gen

10 |-

time (s) —

number of cores —

F1a. 19. Strong scaling results in TACC’s Frontera to perform SFC-based weighted partitioning
(SFC_Wpart) for Gaussian octant distribution centered at (0,0,0) followed by 2:1 balancing (bal.2:1)
of the octants, which is used as the input for the mesh generation (mesh_gen). For the depicted strong
scaling, we keep the problem size fized at 3.3B grid points with the number of cores increasing from

32 to 2048.

LTS approaches for implicit timesteppers, (2) scalable LTS in heterogeneous clusters
with GPUs, and (3) efficient localized grid update (remesh) that is well suited for

LTS approaches.
Appendix A. Code description and evaluation.

A.1. Experiments. Experiments performed in Frontera are executed in the

following module environment.
Currently Loaded Modulefiles:
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1) intel/19.0.5 4) python3/3.7.0
2) impi/19.0.5 5) autotools/1.2
3) petsc/3.12 6) cmake/3.16.1

A.1.1. NLSigma. The source code used in the paper is open source and avail-
able at https://github.com/paralab/Dendro-5.01. All the experiments presented in
the paper use the main source files in the NLSigma folder. To build the code,

mkdir build

cd build
ccmake ../.

make nlsmSolverNUTS -j4
More details on the required packages and how to build the code can be found at
the repository main page. To enable internal profile counters (for timing the code),
ENABLE DENDRO_PROFILE_COUNTERS on, and to switch between linear and nonlinear
wave propagation, NLSM_NONLINEAR off and on correspondingly. nlsmSolverNUTS
takes two arguments; the first argument is the path to the parameter file, and the
second argument is the timestepping mode, which is an integer value,

e 0: Perform LTS timestepping.

e 1: Perform GTS timestepping.

e 2: Perform single LTS step and required steps by the uniform timestepping,
each the same time.

e 3: Perform 2 until we reach the simulation end time specified on the parameter
file.

A.1.2. NLSM convergence. The configuration file for convergence tests is
provided under the repository folder NLSigma/par/nlsm d<8,10>.par.json. The
detailed description for each parameter in the file is provided as a comment in the
parameter file. In order to run the cases, please use
ibrun -np <mpi tasks> ./NLSigma/nlsmSolverNUTS <par file> <ts_mode>
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