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1. Introduction

Deep neural networks (DNNs) have achieved unprecedented
capabilities in tasks such as image and voice analysis and recog-
nition and have been widely adopted. However, computation
requirements and the associated energy consumption of neural
network implementations have been growing rapidly.[1] In addi-
tion, traditional computing architectures are ineffective for DNN
workloads due to the high memory access demands, making it
even more challenging to meet these computational require-
ments. Many systems based on digital CMOS technology have
been developed specifically for accelerating DNN workloads,
including GPU, FPGA, and more specialized accelerators like
DPUs. While these systems have shown significant improve-
ments over traditional CPUs in both computing power and

energy efficiency, continued innovation is
necessary to meet the growing demand.
Particularly, DNN inference workload on
edge computing platforms like mobile
and internet of things (IoT) has stringent
energy efficiency requirements due to lim-
ited energy supply, and unconventional
approaches like analog computing may
prove more advantageous in meeting this
requirement.

The most important limiting factor for
DNN computing is the transfer of data
between processors and off-chip memories
due to the limited density of existing
on-chip memory technology. In-memory
computing (IMC) systems, utilizing the
density advantage of emerging memory
technologies like RRAM, can potentially
store entire DNN models on-chip, thus
eliminating off-chip memory access.
Analog IMC systems that utilize the device

conductance to directly perform vector–matrix multiplication
(VMM) operations further allow device-level parallelism that
leads to higher performance.[2,3] Meanwhile, neural networks
are known for their fault tolerance, making it a feasible workload
for analog computing, which is generally unsuitable for tradi-
tional arithmetic operations due to its inherently lower precision.
Thus, analog IMC systems promise drastic improvement in
performance and energy efficiency for DNN applications and
have gained much popularity in recent years.[4–9] However, non-
idealities in memory devices and peripheral circuits can still
cause significant degradation of neural network inference
accuracy. In general, for analog computing systems, inference
accuracy needs to be ensured before any benefit in energy
efficiency can become material.

2. Tiled Analog IMC System and Architecture-
Aware Training

2.1. The Necessity of the Tiled Architecture

There are three types of important nonidealities in analog IMC
systems for VMM operations, interconnect parasitics, analog-to-
digital converter (ADC) limitations, and memory device noni-
dealities. Because energy efficiency is the most important target,
ADC operating frequency is likely to be limited to below
�100MHz.[10] At this speed, with more than 10 ns of hold time
between input change and ADC sampling, in conjunction with
the limited array size, transient effects are generally negligible in
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In analog in-memory computing systems based on nonvolatile memories such as
resistive random-access memory (RRAM), neural network models are often
trained offline and then the weights are programmed onto memory devices as
conductance values. The programmed weight values inevitably deviate from the
target values during the programming process. This effect can be pronounced for
emerging memories such as RRAM, PcRAM, and MRAM due to the stochastic
nature during programming. Unlike noise, these weight deviations do not change
during inference. The performance of neural network models is investigated
against this programming variation under realistic system limitations, including
limited device on/off ratios, memory array size, analog-to-digital converter (ADC)
characteristics, and signed weight representations. Approaches to mitigate such
device and circuit nonidealities through architecture-aware training are also
evaluated. The effectiveness of variation injection during training to improve the
inference robustness, as well as the effects of different neural network training
parameters such as learning rate schedule, will be discussed.
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memory arrays. Therefore, line resistance is the primary parasitic
effect. In a large array, the effect of line resistance is dependent
on data pattern from all cells in the array and the input signals,
and thus can only be compensated by performing expensive cal-
culations based on the memory states and input signals, which
defeats the purpose of IMC.[11] To address this issue, the array
size must be limited to avoid the effect of line resistance, and
large-scale neural networks have to be mapped onto multiple
arrays.[12] This is one of the reasons for the tiled architecture ana-
lyzed in this study. In our proposed system, the array size is
256� 64, and assuming line resistance of �2Ω per cell, device
LRS resistance of 33 kΩ, line resistance will have a negligible
effect on the array operation.

2.2. Cell Defects

In this study, we did not consider stuck at fault cell defects. The
defects have been considered by many prior studies, including
some of our works.[13] Generally, a small portion of stuck at open
devices will not have meaningful impacts. However, a shorted

device would saturate the output of an entire column.
Columns with shorted cells have to be disabled and replaced with
spare ones to deal with shorted devices. Although replacing
columns means extra areas are needed for spare columns, once
the defective ones are replaced, they will not have an impact on
the inference accuracy.

2.3. Error Caused by the Tiled Architecture

Although the tiled architecture avoids the line resistance effects,
the additional computing error caused by this implementation
needs to be analyzed, including the effects of ADC limitations
and device nonidealities. Several prior studies have been pub-
lished that discuss approaches to implement large DNN models
on practical RRAM arrays using a tiled architecture, as shown in
Figure 1.[12,14,15] The effects of limited RRAM array size, ADC
precision, signed weights representation in two RRAM cells,
and RRAM cell quantization effects in analog IMC systems have
been studied. In such a system, neural network models are
trained off-line and programmed onto memory arrays, and large

Figure 1. a) Tiled analog IMC systems. Large DNN layers are mapped onto multiple memory arrays. Analog outputs of each array are digitized by ADCs to
produce partial sums. The partial sums are then summed in the digital domain to produce the final layer output. b) Signed weights are represented on two
memory cells in two different columns. c) Device characteristics considered in this study. d) Neural network models are trained off-line and then
programmed onto memory arrays for inference.
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neural network layers are mapped onto multiple memory arrays
where partial sums (Psums) are produced by ADCs at each array
and summed in digital domain[14] (Figure 1a). Signed weights are
represented in two cells on two different columns that receive the
same input activations. Currents from the two columns are
quantized by ADCs individually, and then the digital output of
the negative column is subtracted from that of the positive
column (Figure 1b).

2.4. Architecture-Aware Training

In general, many of the device and circuit nonideality effects can
be effectively mitigated through architecture-aware training
methods,[14] where hardware details are mimicked in the training
process. In architecture-aware training, we developed a simulator
based on Google’s TensorFlow deep learning framework by mod-
ifying the training graph from the standard floating-point pipe-
line. To compare the impact of different hardware nonidealities,
we consider three inference pipelines, level 1 through level 3, and
their corresponding training topologies (Figure 2). In level 1,
only the quantization of weights and activations is considered.
In level 2, the effects of signed weights representation on two
cells and limited device on/off ratios are introduced. For both
training and inference in level 1 and level 2, we used the common
scheme for quantization-aware training,[16] where the weights
pass through the fakequantization function before calculations
are conducted. The fakequantization function does not change
the overall range of the weights and instead rounds the weights
to a number of fixed values determined by the range and resolu-
tion set for the function, and these parameters can be different
for each layer. For actual hardware representation of weights
where the conductance range is fixed for the whole system,
the outputs of each layer need to be multiplied by a high preci-
sion scalar to match that of the software model. In level 3, the
physical range of memory cells, the multiplier, limited memory
array size, and ADC precision limitation are introduced. As
described in Figure 2, separate multipliers are assigned to each
array and trained during the training process.

By sequentially introducing different levels of architecture
details during the training process, the neural network model
can potentially account for these architecture and device factors
and recover the desired model accuracy.[14] However, high levels
of device programming variation, which is indicative of today’s
analog memory devices, still present challenges in considerable
inference accuracy degradation.

3. System Setup

3.1. Networks Used for Benchmarking

In this study, we chose three neural network and dataset combi-
nations of various complexities to investigate the impact of ana-
log IMC accuracy at realistic device nonidealities for different
network and dataset complexity (Table 1). The first network is
a relatively simple VGG-block-based model trained for the
CIFAR-10 dataset.[17] This model contains only convolution
(Conv) layers, a fully connected (FC) layer, and MaxPool layers.
The second network is the Wide ResNet 16-8 model (WRN).[19]

This network uses residual connections and batch normalization
in addition to convolution and fully connected layers. We used
the WRN 16-8 network for the CIFAR-10 dataset and the more
complex CIFAR-100 dataset to test the effects on more challeng-
ing tasks.

3.2. Hardware Characteristics

We used 8bit ADC in our study because it has been found to offer
a good balance between energy efficiency and resolution, as
reducing resolution further does not appear to yield a meaning-
ful improvement in energy/sample.[18] RRAM cells with an ana-
log read current range of 0.3–3 μA, ADC input range of 0–45 μA,
and array size of 265� 64 were considered for the tiled
implementation.

3.3. Training Process

We first obtain floating-point models using standard practice. For
the VGG-block-based[17] models, we trained for 150 epochs using
the stochastic gradient descent (SGD) optimizer with a learning
rate of 0.001, momentum of 0.9. For WRNmodels, we follow the
parameters described in Zagoruyko and Komodakis.[19] Then,
different levels of hardware details are progressively introduced
during training, as schematically shown in Figure 3, along with
the parameters used during the training processes. Specifically,
level 1 models are fine-tuned from the floating-point models,
level 2 models are fine-tuned level 1 models, and level 3 models
are fine-tuned from level 2 models. We found this approach leads
to better model inference accuracy compared with training
directly the level 2 or level 3 models from scratch with random
weights.[14] In fact, we found that level 3 MNIST models trained
from random weights reached only 77.78% accuracy (compared
to 99.13% for model fine-tuned from level 2 and float model) in
previous studies, and level 3 VGG and WRN models produced
accuracies of only 10%, which is no more than chance for the
CIFAR-10 dataset. In the fine-tuning process, we used a learning
rate of 0.001 for the VGG-block-based model and trained for 20
epochs. For the WRN models, we used a learning rate schedule,
where the learning rate starts at 0.003, then steps down to 0.001,
0.0005, 0.0002 after 5, 10, 15 epochs and trained for a total of 40
epochs.

4. Effects of Computation Errors in Analog IMC
Systems

First, we present the effects of deterministic errors including
weight and activation quantization, signed weight representa-
tion, limited RRAM array size, ADC precision limitations, and
RRAM cell on/off ratios (Figure 4). For the three network–dataset
combinations we studied, when only quantization (activation and
weights quantized to 8bits) and signed weight representation
were considered during inference (level 2), there is minimal
accuracy drop from just using the quantization-aware trained
models[16] (level 1). We do note that the activation quantization
range in the inference pipelines must correspond to the input
range of activation function used during training (ReLu6,

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2100199 2100199 (3 of 12) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


etc.), or there is severe degradation in accuracy due to the limited
range due to the quantization effects.

However, in the presence of a low device on/off ratio and/or
array size and ADC limitations, the quantization-aware trained

models cannot produce acceptable accuracies. By introducing
the finite on/off ratio properties in the training pipeline,
device-aware trained models can successfully mitigate the effect
of limited on/off ratio down to 10, along with any effects due to

Figure 2. Architecture-aware training topology. We propose that architecture aware training can be considered in three levels. Level 1 is the standard
quantization-aware training method,[16] where high precision weights are passed through a fake-quantization function before computation. At level 2
device-aware training, signed weight representation in memory cells and limited on/off ratio are considered. At level 3 tile-aware training, the limited
memory array size and ADC precision limitation are also considered. In addition, for all 3 levels, variation can be injected on per minibatch basis to mimic
the effect of programming variation.
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the two-column signed weight representation, as shown in
Figure 4. On the other hand, in the presence of array size
and ADC limitations, the device-aware training, i.e., level 2 train-
ing pipeline, results in poor accuracy for the more complex mod-
els or datasets such as WRN. Acceptable results may be produced
by level 2 training for simpler models such as VGG-blocks due to
the use of only Conv and FC layers which are generally more
resilient to errors. As a result, tile-aware training (i.e., level 3
pipeline) must be used for the more complex models or datasets
to produce good accuracy, as shown in Figure 4. We believe the
more complicated model structure with residue connections and
the use of batch normalization layers make the WRN
models more sensitive to errors. Particularly, models with
batch normalization layers are sensitive to changes in activation
distribution, and the quantization of partial sums due to ADC
precision and range limitations produce a shift in activation
distributions.[20]

5. Programming Variation Effects on Inference
Accuracy

Next, we examine the effects of device variations on network
inference accuracy. Neural network models are trained off-line
and then programmed onto memory arrays for inference, and
the weights do not change during the inference process.
Combined with analog computation, this means any deviations
that occur during the device programming process result in
inference to be conducted on models that are effectively different
from the trained models, leading to potential accuracy degrada-
tion. Different from deterministic errors discussed earlier, the
randomness of device variations means each programmed chip
maps an essentially different model. Retraining each chip
individually may potentially recover the accuracy, but will be very
expensive and impractical. In the following, we investigate the
impact of device programming variation on large-scale DNN

Table 1. Models used for benchmarking. Only CNN and fully connected layers are shown. RRAM array size of 256� 64 is used.

Input size Filter shape Number of columns Row vector length Number of arrays

CIFAR-10 VGG Block

CNN 1 32� 32� 3 3� 3� 3� 32 64 27 1� 1

CNN 2 32� 32� 32 3� 3� 32� 32 64 288 2� 1

CNN 3 16� 16� 32 3� 3� 32� 64 128 288 2� 2

CNN 4 16� 16� 64 3� 3� 64� 64 128 576 3� 2

CNN 5 8� 8� 64 3� 3� 64� 128 256 576 3� 4

CNN 6 8� 8� 128 3� 3� 128� 128 256 1152 5� 4

FC 1 2048 2048� 128 256 2048 8� 4

FC 2 128 128� 10 10 128 1� 1

Total 78 arrays

WRN-16-8

G1_Conv 32� 32� 3 3� 3� 3� 16 32 27 1

G2_MB1_Conv1 32� 32� 16 3� 3� 16� 128 256 144 1� 4

G2_MB1_Conv2 32� 32� 128 3� 3� 128� 128 256 1152 5� 4

G2_Res_Conv 32� 32� 16 1� 1� 16� 128 256 16 1� 4

G2_MB2_Conv1 32� 32� 128 3� 3� 128� 128 256 1152 5� 4

G2_MB2_Conv2 32� 32� 128 3� 3� 128� 128 256 1152 5� 4

G3_MB1_Conv1 32� 32� 128 3� 3� 128� 256 512 1152 5� 8

G3_MB1_Conv2 32� 32� 256 3� 3� 256� 256 512 2304 10� 8

G3_Res_Conv 32� 32� 128 1� 1� 128� 256 512 128 1� 8

G3_MB2_Conv1 16� 16� 256 3� 3� 256� 256 512 2304 10� 8

G3_MB2_Conv2 16� 16� 256 3� 3� 256� 256 512 2304 10� 8

G4_MB1_Conv1 16� 16� 256 3� 3� 256� 512 1024 2304 10� 16

G4_MB1_Conv2 8� 8� 512 3� 3� 512� 512 1024 4608 19� 16

G4_Res_Conv 16� 16� 256 1� 1� 256� 512 1024 256 1� 16

G4_MB2_Conv1 8� 8� 512 3� 3� 512� 512 1024 4608 19x16

G4_MB2_Conv2 8� 8� 512 3� 3� 512� 512 1024 4608 19� 16

FC 512 512� 10 20 512 2� 1

Total 1447

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2100199 2100199 (5 of 12) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure 3. Architecture-aware training process and parameters used during training.

Figure 4. Effect of signed weights represented in two cells, on/off ratio, ADC, and array size limitation. Inference accuracy. Act Quant CR: activation and
weight quantization 8bits with activation quantization range corresponding to ReLu6 used during training, on/off ratio 1000. Act Quant IR: activation and
weight quantization 8bits with activation quantization range of 0–1 which does not correspond to the ReLu6 range used during training. Act Quant
CRþOn/Off: low on/off ratio of 10. Act Quant CRþOn/Offþ Arrayþ ADC: array size 265� 64, 8bit ADC. Floating-point accuracies for the
CIFAR-10 VGG, CIFAR-10 WRN, CIFAR-100 WRN models are 83.73%, 95.11%, and 74.74%.
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networks inference accuracy, the effectiveness of mitigations
methods, and factors that impact network robustness against
device variation under realistic device and circuit conditions.

We examined the effect of weight variations using models
trained with level 1, 2, and 3 pipelines, and studied the model accu-
racy in the corresponding inference conditions (e.g., when only
quantization effects, quantizationþ device on/off, and quantiza-
tion, on/off and finite array size and ADC precision effects are
present during inference, respectively) (Figure 5). Previous studies
have shown that the VGG-block-based model had minimal accu-
racy drop even at relatively high variation levels, while more com-
plex models show severe accuracy degradation.[14] In this section,
we thus used the more complex WRN-16-8 models for the CIFAR-
10 dataset to highlight the effects of device variations.

In the accuracy test, after weight storage, variations were
applied additively as Gaussian distributions with a constant stan-
dard deviation across all weights (i.e., 4% variation means the
standard deviation is 4% of the dynamic range of memory cells).
This variation distribution was chosen as a generic example
because memory technologies have substantially different char-
acteristics, and it represents a near-worst-case scenario. On one
side, many emerging resistive switching devices exhibit state-
dependent programming variation, where lower conductance
states are associated with lower variations,[5,21] which is less det-
rimental to inference accuracy. On the other side, programming
variations in multibit Flash memories are generally more state-
independent while also suffering from additional nonlinear
behaviors.[22,23] In level 2 and level 3 inference pipelines, where
signed weights are represented in two columns (Figure 1b), the

variations are applied independently to each cell. This is different
from variations that are directly applied to the signed weights
(level 1) and means the impacts of weight variations are not
equivalent between level 1 and the other pipelines. We also note
that the signed weight representation we adopted (Figure 1b) is
more realistic than the approach where differential cells (cells
consisting of two devices) are read out individually[2,5] and more
practical to implement in circuits compared to the approach
where two rows with positive and negative input voltages signs
are used to represent to positive and negative weights.

Because each programming session on each chip results in
effectively different models and different inference accuracy,
the process was simulated 40 times for each condition. The dis-
tribution of inference accuracy is shown in box plots (Figure 5).
The models are expected to be programmed onto memory arrays
and do not change during inference. Therefore, programming
time is less important. Thus, the top 25 percentile in the accuracy
distribution is more representative than the average or the
median because it can be achieved by attempting programming
sessions multiple times. Gray boxes in Figure 5 represent
inference accuracies of models trained without any mitigation
measures, and, in general, accuracy degradation becomes unac-
ceptable for variations beyond 4%.

When comparing between level 1 and level 2 pipelines, accu-
racy degradation is more pronounced in level 2 due to the signed
weight representation and low on/off ratio of memory devices
(Figure 5a,b). When ADC and array size limitation is introduced
at level 3, surprisingly, the accuracy degradation at high variation
levels (>4%) improved compared to level 1 and level 2. This is

Figure 5. Variation effect under different inference pipelines for WRN-16-8 network on the CIFAR-10 dataset, for models trained with different levels of
noise injection. The variation level is defined as standard deviation relative to the dynamic range of the weights. The boxplots show model inference
accuracy distribution from 40 runs. Legend: variation injected during training. Orange lines: floating-point baseline. Ideal Array and ADC: no array size
limitation, no quantization or range limitation of output. Realistic ADC: 8bit ADC with 0–45 μA as described in Section 3.2, array size 256� 64.
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likely due to the presence of trainable S2 multipliers on a per
array basis we implemented in the tiled architecture
(Figure 2).[14] At this level, we can also observe the negative effect
of a low device on/off ratio (Figure 5c,d). However, in general,
accuracy degradations become unacceptable when variations
exceed 4% of the dynamic range.

As a natural extension in the architecture-aware training
approach, we hypothesize that injecting noise during training
may improve inference accuracy. Specifically, we used weight
noise injection during training to mimic device programming
variations to produce trained DNN models that can produce bet-
ter inference accuracy in presence of variations. In this imple-
mentation, weight noise is added after each minibatch during
training, where an error is drawn from a Gaussian distribution
for each weight and then added to it. The standard deviation for
the Gaussian distribution is defined as relative to the dynamic
range of the memory cells. For example, 1.56% noise injection
means the Gaussian distribution has a standard deviation that is
1.56% of the dynamic range of memory cells. From a general
neural network training perspective, noise injection at inputs,
hidden units, and weights during training have long been pro-
posed as methods to improve the generalization ability of neural
networks.[24–28] In particular, weight noise injection has been
shown mathematically to improve fault tolerance as it produces
networks with smoother input–output mapping where the out-
put becomes less sensitive to noise.[26] Recent studies have also
applied this method to analog computing systems.[29–32]

However, these prior studies are generally limited to small-scale net-
works or did not consider realistic system limitations like ADC char-
acteristics, device on/off ratios, and especially array size limitations.
The improvements in inference accuracy from weight noise injec-
tion in training can be observed in Figure 5, and the trend in
improvements is consistent across different inference pipelines.
In general, higher level noise injection leads to better accuracy
recovery. For high device variations, noise injection not only allows
the average and the peak accuracy to recover but also reduces the
variation in performance between different runs.

The improvements from noise injection can also be observed
from model outputs directly. Figure 6a shows the error in model
outputs caused by device programming variation with CIFAR-10
validation dataset as input. For inference with a programming
variation level of 6.24%, the injection of noises of the same level
during training significantly reduces the error in the model out-
puts. For inference with a higher device programming variation
of 12.48%, although substantial errors still occur with 12.48%
noise injection, the trend in improvement is similar. When ran-
dom patterns are used as input for models trained on the
CIFAR-10, the error caused by programming variation is signifi-
cantly larger (Figure 5b). This suggests that neural network
models are trained for a specific input distribution, and the
impact of weight variation can be more pronounced if the
inference task is different from that during training.

The robustness of neural network models against weight varia-
tion can be characterized as part of the generalization ability.
It has been shown that the addition of weight variation exacerbates
inference error caused by generalization limitations and rough-
ness of neural network models.[26] This means, in order to obtain
acceptable inference accuracy for the same tasks, the models will
need to have better generalization ability in the presence of weight

variation, and many factors in the training process influence the
ability. Indeed, we have found that even whenmodels have similar
accuracy with no weight variations, they can have very different
robustness against variations. Prior literature has shown ample
results for the effects of quantization and learning rate on the gen-
eralization ability in standard digital implementation. However,
the effects of these factors on neural networks model have not
been discussed in the context of analog IMC systems with the
presence of realistic hardware limitations. In the next section,
we investigate the impact of learning rate, programming target
resolution, and different inference pipelines have on model
robustness against weight variation.

5.1. Effect of Higher Target Programming Resolution

Although 8bit programming target resolution cannot be reliably
represented by devices with a variation of even as low as 1.56%,
we found, compared to 4bit programming target, higher target
resolution produces models more robust to programming
variations (Figure 7). Thus, 8bit programming target resolution
was used in this work. We believe this is because, although
quantization-aware training methods produce models more
suited for the specific deterministic error caused by quantization,
these models have diminished generalization ability, thus more
sensitive to any additional errors like device variation.[16,33] The
higher target resolution produces trainedmodels with wider local
minima, thus higher robustness against variation in weights.

5.2. Effect of Difference Inference Pipeline on the Same Models

We observed that although the same model can generally achieve
very similar accuracies under different inference pipelines, in the
presence of weight variations very different behaviors are
obtained. For example, level 1 trained models show similar accu-
racy in the level 1 (Figure 5a) and level 2 (Figure 8a) inference
pipelines. However, in the presence of relatively high weight
variations, the accuracies are consistently lower in the level 2
inference pipeline. This is likely because level 1 trained models
are not optimized for the level 2 inference pipeline when addi-
tional hardware details are introduced that are not incorporated
during training, but the errors may not be large enough to cause
accuracy degradation when there is no weight variation. In the
presence of weight variations, the effects are amplified and lead
to much worse accuracy degradation when training is not
matched with the inference conditions.

5.3. Impact of Learning Rate

When a simple learning rate of 0.0002 is used in the fine-tuning
process instead of the learning rate schedule described in
Section 2.2, models achieved similar accuracies with no weight var-
iation. When weight variation is introduced, device-aware trained
models (level 2) showed no clear pattern between the two different
learning rates, while tile-aware trained (level 3) models with a learn-
ing rate of 0.0002 are more sensitive to weight variations compared
to ones obtained with the learning rate schedule (Figure 9). It is
well known that selecting suitable learning rates is critical in the
training process for neural network models to converge to optimal
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states, and learning rate schedules are often superior to constant
learning rates.[34] In this particular case, the learning rate schedule
showed an advantage in level 3 training but not in leve 2 training.
We believe the addition of array size and ADC limitations at level 3,
analogous to weight quantization, results in models with less
smooth input-mapping, thus illuminating the difference between
models produced by the different learning rates.

6. CIFAR-100 Results and Discussions

We also considered the WRN-16-8 model for the more complex
CIFAR-100 dataset. The results showed a similar general trend to
the results for the CIFAR-10 dataset, while models are much
more sensitive to variations across the board with significant
accuracy degradation at as low as 2% variation (Figure 10).

Figure 6. The proportional error of network model inference output with weight programming variation compared to inference output without variation,
level 3 model in level 3 inference pipeline with on/off ratio of 10. Programming variations are simulated 40 times, and results are aggregated. Tr. Var.:
variation injected during training. Inf. Var: variations experienced in the device programming process. a) Images from the validation dataset as input to
the network. b) Random pattern as input to the network.
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This, again, illustrates that larger scale networks, as well as more
complex tasks, are more sensitive to weight variations during
inference, and as neural networks and tasks become more com-
plicated, further improvements in DNN model robustness and
device performance may be required.

Other than improving the intrinsic precision of memory devi-
ces, two main methods have been proposed to improve weight
storage precision. The first is using multiple cells to encode dif-
ferent bits of one weight,[21,35] and the second is to use closed-
loop, write-verify programming schemes.[36,37] Using multiple
cells drastically decreases memory density and incurs additional
peripheral circuit overhead, thus resulting in decreases in com-
puting efficiency in terms of both area and energy. Closed-loop
programming processes have already been widely implemented,
but have not been able to yield programming precision high
enough for 8bit or even 4bit weights. As shown in Figure 10,
even 2% variation can lead to significant accuracy degradation
for complex tasks.

Here, we provide another possibility for future device and pro-
gramming algorithm design. Neural networks are generally
sparse, where weights close to zero constitute a large portion
of all weights. This means programming variations at low

conductance states have much higher impacts, and nonuniform
device programming variation characteristics can be engineered
to minimize the effect at low conductance value. In particular,
most resistive switching memory technologies have a limited
analog dynamic range where conductance can be changed con-
tinuously, compared to the entire dynamic range. For weights
close to zero, the corresponding memory devices can be hard
reset, where conductance is set to the lowest possible value
beyond the analog range. This would greatly reduce weight vari-
ation for weights close to zero because the absolute variation at
the lowest conductance state is generally much lower compared
to that inside the analog range. Although hard reset can have an
impact on endurance in some memory technology, program-
ming is expected to be infrequent, and endurance is unlikely
to be the primary limiting factor.

7. Conclusion

In this work, we took a systematic look at the weight variation
effect caused by memory device programming in analog IMC
systems, which appears to be the most difficult error source

Figure 7. Sensitivity to variation of tile-aware trained WRN-16-8 CIFAR-10 model in tiled inference pipeline with ADC limitation, array size of 265� 64,
on/off ratio of 10 for both training and inference, accuracy evaluations were run 40 times. a) Models trained with 8bit quantized weights and
8bit programming target resolution during inference. b) Models trained with 4bit quantized weights and 4bit programming target resolution during
inference.

Figure 8. WRN-16-8 models for the CIFAR-10 dataset. a) Accuracy of level 1 trained model in level 2 inference pipeline. b) 75th percentile accuracies of
level 1 trained models in level 2 inference pipeline, normalized to level 1 inference pipeline accuracies of corresponding training and inference variation.
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Figure 9. Effects of learning rates. a) Device-aware models trained with a learning rate of 0.0002, evaluated in tiled inference pipeline. b) 75th percentile
accuracies in (a) normalized to that of models trained with learning rate schedule (Figure 5b). c) 75th percentile tile-aware models evaluated in the tiled
pipeline with an on/off ratio of 10. d) Accuracies in (c) normalized to that of models trained with learning rate schedule (Figure 5d).

Figure 10. Variation effect under different inference pipeline for WRN-16-8 network on CIFAR-100 dataset.
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to mitigate. We show proper noise injection can improve model
robustness against weight variations. However, in the presence
of moderate to high variations and for complex tasks and models,
these methods may not be able to fully recover the accuracy drop.
Thus, further developments in algorithms to produce neural net-
works that are more robust against weight variations could be
critical for practical deployment for analog IMC systems for
neural network workload.
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