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ABSTRACT

We prove that every bounded function f : {−1, 1}n → [−1, 1] of
degree at most d can be learned with L2-accuracy ε and confidence

1 − δ from log(n
δ
) ε−d−1Cd3/2√logd random queries, where C > 1

is a universal finite constant.
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1 INTRODUCTION

Every function f : {−1, 1}n → R admits a unique FourierśWalsh

expansion of the form

∀ x ∈ {−1, 1}n , f (x) =
∑

S ⊆{1, ...,n }
f̂ (S)wS (x), (1)

wherewS (x) =
∏

i ∈S xi and the Fourier coefficients f̂ (S) are given
by

∀ S ⊆ {1, . . . ,n}, f̂ (S) = 1

2n

∑
y∈{−1,1}n

f (y)wS (y). (2)

We say that f has degree at most d ∈ {1, . . . ,n} if f̂ (S) = 0 for

every subset S with |S | > d .

1.1 Learning Functions on the Hypercube

Let C be a class of functions f : {−1, 1}n → R on the n-dimensional

discrete hypercube. The problem of learning the class C can be

described as follows: given a source of examples (x , f (x)), where
x ∈ {−1, 1}n , for an unknown function f ∈ C, compute a hypothesis
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function h : {−1, 1}n → R which is a good approximation of f

up to a given error in some prescribed metric. In this paper we

will be interested in the random query model with L2-error, in

which we are given N independent examples (x , f (x)), each chosen

uniformly at random from the discrete hypercube {−1, 1}n , and we
want to efficiently construct a (random) function h : {−1, 1}n → R
such that ∥h − f ∥2

L2
< ε with probability at least 1 − δ , where

ε,δ ∈ (0, 1) are given accuracy and confidence parameters. The

goal is to construct a randomized algorithm which produces the

hypothesis function h from a minimal number N of examples.

The above very general problem has been studied for decades

in computational learning theory and many results are known1,

primarily for various classes C of structured Boolean functions

f : {−1, 1}n → {−1, 1}. Already since the late 1980s, researchers

used the FourierśWalsh expansion (1) to design such learning

algorithms (see the survey [14]). Perhaps the most classical of

these is the Low-Degree Algorithm of Linial, Mansour and Nisan

[12] who showed that for the class Cd
b
of all bounded functions

f : {−1, 1}n → [−1, 1] of degree at most d there exists an algo-

rithm which produces an ε-approximation of f with probability at

least 1 − δ using N = 2nd

ε log( 2nd
δ

) samples. In this generality, the

Oε,δ,d (nd logn) estimate of [12] was the state of the art until the

recent work [11] of Iyer, Rao, Reis, Rothvoss and Yehudayoff who

employed analytic techniques to derive new bounds on the ℓ1-size

of the Fourier spectrum of bounded functions (see also Section

3) and used these estimates to show that N = Oε,δ,d (nd−1 logn)
examples suffice to learn C

d
b
. The goal of the present paper is to

further improve this result and show that in fact N = Oε,δ,d (logn)
samples suffice for this purpose.

Theorem 1. Fix ε,δ ∈ (0, 1),n ∈ N,d ∈ {1, . . . ,n} and a bounded
function f : {−1, 1}n → [−1, 1] of degree at mostd . IfN ∈ N satisfies

N ≥ min

{
exp(Cd3/2

√
logd)

εd+1
,
4dnd

ε

}
log

(n
δ

)
, (3)

where C ∈ (0,∞) is a large numerical constant, then N uniformly

random independent queries of pairs (x , f (x)), where x ∈ {−1, 1}n ,
suffice for the construction of a random function h : {−1, 1}n → R
satisfying the condition ∥h − f ∥2

L2
< ε with probability at least 1− δ .

The proof of Theorem 1 relies on some important approximation

theoretic estimates going back to the 1930s which we shall now

describe (see also [9]). To the best of our knowledge, these tools

had not yet been exploited in the computational learning theory

literature.

1We will by no means attempt to survey this (vast) field, so we refer the interested
reader to the relevant chapters of O’Donnell’s book [15] and the references therein.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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1.2 The Fourier Growth of Walsh Polynomials

in ℓ 2d
d+1

Estimates for the growth of coefficients of polynomials as a function

of their degree and their maximum on compact sets go back to the

early days of approximation theory (see [5]). A seminal result of

this nature is Littlewood’s celebrated 4
3 -inequality [13] for bilinear

forms which was later generalized by Bohnenblust and Hille [4]

for multilinear forms on the torus Tn or the unit square [−1, 1]n .
By means of polarization, one can use this multilinear estimate to

derive an inequality for polynomials which reads as follows2. For

every K ∈ {R,C} and d ∈ N, there exists BK
d
∈ (0,∞) such that for

every n ∈ N and every coefficients cα ∈ K, where α ∈ (N ∪ {0})n
with |α | ≤ d , we have

©­«
∑
|α | ≤d

|cα |
2d
d+1

ª®¬
d+1
2d

≤ BK
d
max

{ ���� ∑
|α | ≤d

cαx
α

���� : ∥x ∥ℓn∞(K) ≤ 1

}
.

(4)

Moreover, 2d
d+1

is the smallest exponent for which the optimal con-

stant in (4) is independent of the number of variables n of the

polynomial. The exact asymptotics of the constants BR
d
and BC

d
remain unknown, however it is known that there is a significant

gap between BR
d
and BC

d
, namely that lim supd→∞(BR

d
)1/d = 1+

√
2

whereas BC
d
≤ C

√
d lnd for a finite constant C > 1 (see [1, 6ś9] for

these and other important advances of the last decade). Restrict-

ing inequality (4) to real multilinear polynomials, convexity shows

that the maximum on the right-hand side is attained at a point

x ∈ {−1, 1}n , which, in view of (1), makes (4) an estimate for the

FourierśWalsh growth of functions on the discrete hypercube. We

shall denote by B
{±1}
d

the corresponding optimal constant (first ex-

plicitly investigated by Blei in [3, p. 175]), that is, the least constant

such that for every n ∈ N and every function f : {−1, 1}n → R of

degree at most d ,

©­«
∑

S ⊆{1, ...,n }
| f̂ (S)|

2d
d+1

ª®¬
d+1
2d

≤ B
{±1}
d

∥ f ∥L∞ . (5)

The best known quantitative result in this setting is due to Defant,

Mastyło and Pérez [8] who showed that B
{±1}
d

≤ exp(κ
√
d logd)

for a universal constant κ ∈ (0,∞). The main contribution of this

work is the following theorem relating the growth of the constant

B
{±1}
d

and learning.

Theorem 2. Fix ε,δ ∈ (0, 1),n ∈ N,d ∈ {1, . . . ,n} and a bounded
function f : {−1, 1}n → [−1, 1] of degree at mostd . IfN ∈ N satisfies

N ≥ e8d2

εd+1
(B {±1}

d
)2d log

(n
δ

)
, (6)

then givenN uniformly random independent queries of pairs (x , f (x)),
where x ∈ {−1, 1}n , one can construct a function h : {−1, 1}n → R
satisfying ∥h − f ∥2

L2
< ε with probability at least 1 − δ .

In Section 2 we will prove Theorem 2 and use it to derive The-

orem 1. In Section 3 we will present some additional remarks on

2For α = (α1, . . . , αn ) ∈ (N ∪ {0})n , we use the standard notations |α | = α1 +

· · · + αn and xα = x
α1
1 · · · xαnn .

Boolean analysis and learning, in particular showing that the de-

pendence on n in Theorem 1 is optimal for δ ≍ 1
n . Moreover, we

shall improve the recent bounds of [11] on the ℓ1-Fourier growth

of bounded functions of low degree.

2 PROOFS

Proof of Theorem 2. Fix a parameter b ∈ (0,∞) and denote by

Nb
def
=

⌈
2

b2
log

(
2

δ

d∑
k=0

(
n

k

))⌉
. (7)

Let X1, . . . ,XNb
be independent random vectors, each uniformly

distributed on {−1, 1}n . For a subset S ⊆ {1, . . . ,n} with |S | ≤ d

consider the empirical Walsh coefficient of f , given by

αS =
1

Nb

Nb∑
j=1

f (X j )wS (X j ). (8)

As αS is a sum of bounded i.i.d. random variables and E[αS ] = f̂ (S),
the Chernoff bound gives

∀ S ⊆ {1, . . . ,n}, P
{
|αS − f̂ (S)| > b

}
≤ 2 exp(−Nbb

2/2). (9)

Therefore, using the union bound and taking into account that f

has degree at most d , we get

P
{
|αS − f̂ (S)| ≤ b, for every S ⊆ {1, . . . ,n} with |S | ≤ d

}
≥ 1 − 2

d∑
k=0

(
n

k

)
exp(−Nbb

2/2)
(7)
≥ 1 − δ .

(10)

Denote the event on the LHS by Gb . Fix an additional parameter

a ∈ (b,∞) and consider the random collection of sets given by

Sa
def
=

{
S ⊆ {1, . . . ,n} : |αS | ≥ a

}
. (11)

Observe that if the event Gb of equation (10) holds, then

∀ S < Sa , | f̂ (S)| ≤ |αS − f̂ (S)| + |αS | < a + b (12)

and

∀ S ∈ Sa , | f̂ (S)| ≥ |αS | − |αS − f̂ (S)| ≥ a − b . (13)

Finally, consider the random function ha,b : {−1, 1}n → R given

by

∀ x ∈ {−1, 1}n , ha,b (x)
def
=

∑
S ∈Sa

αSwS (x). (14)

Combining (13) with inequality (5), we deduce that

|Sa |
(13)
≤ (a − b)−

2d
d+1

∑
S ∈Sa

| f̂ (S)|
2d
d+1

≤ (a − b)−
2d
d+1

∑
S ⊆{1, ...,n }

| f̂ (S)|
2d
d+1

(5)
≤ (a − b)−

2d
d+1 (B {±1}

d
)

2d
d+1 .

(15)
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Therefore, on the event Gb we have

∥ha,b − f ∥2L2 =
∑

S ⊆{1, ...,n }

��ĥa,b (S) − f̂ (S)
��2

=

∑
S ∈Sa

|αS − f̂ (S)|2 +
∑
S<Sa

| f̂ (S)|2

(12)
< |Sa |b2 + (a + b)

2
d+1

∑
S<Sa

| f̂ (S)|
2d
d+1

(5)∧(15)
≤ (B {±1}

d
)

2d
d+1

(
(a − b)−

2d
d+1b2 + (a + b)

2
d+1

)
.

(16)

Choosing a = b(1 +
√
d + 1), we deduce that

∥h
b(1+

√
d+1),b − f ∥2L2

< (B {±1}
d

)
2d
d+1b

2
d+1 ((d + 1)−

d

d+1 + (2 +
√
d + 1)

2
d+1 ).

(17)

Next, we need the technical inequality: for all d ≥ 1,

(d + 1)−
d

d+1 + (2 +
√
d + 1)

2
d+1 ≤ (e4(d + 1))

1
d+1 . (18)

Rearranging the terms, it suffices to show that

(2 +
√
d + 1)

2
d+1 ≤ (d + 1)

1
d+1

(
e

4
d+1 − 1

d + 1

)
, (19)

which is equivalent to
( 2√

d+1
+ 1

) 2
d+1 ≤ e

4
d+1 − 1

d+1
. We have

(
2

√
d + 1

+ 1

) 2
d+1

≤
(√

2 + 1
) 2
d+1 (∗)

≤ 1 +
3

d + 1
≤ e

4
d+1 − 1

d + 1
,

where inequality (∗) holds because the left hand side is convex in

the variable λ
def
=

2
d+1

whereas the right hand side is linear and

since (∗) holds at the endpoints λ = 0, 1.

Combining (17) and (18) we see that ∥h
b(1+

√
d+1),b − f ∥2

L2
< ε

holds for b2 ≤ e−5d−1εd+1(B {±1}
d

)−2d . Plugging this choice of b in

(7) shows that given N random queries, where

N =


e6d(B {±1}

d
)2d

εd+1
log

(
2

δ

d∑
k=0

(
n

k

))
, (20)

the function h
b(1+

√
d+1),b satisfies ∥h

b(1+
√
d+1),b − f ∥2

L2
< ε with

probability at least 1 − δ and the conclusion of the theorem follows

from elementary estimates, such as

d∑
k=0

(
n

k

)
≤

d∑
k=0

nk

k!
=

d∑
k=0

dk

k!

(n
d

)k
≤

(en
d

)d
. □

Theorem 1 is a straightforward consequence of Theorem 2.

Proof of Theorem 1. Our Theorem 2 combinedwith the bound

B
{±1}
d

≤ exp(κ
√
d logd) of [8] imply the conclusion of Theorem 1

for ε ≥ exp(C
√
d logd )
n , where C ∈ (0,∞) is a large universal con-

stant. The case ε <
exp(C

√
d logd )
n follows from the Low-Degree

Algorithm of [12]. □

3 CONCLUDING REMARKS

We conclude with a few additional remarks on the spectrum of

bounded functions defined on the hypercube and learning algo-

rithms. For a function f : {−1, 1}n → R, its Rademacher projection

on level ℓ ∈ {1, . . . ,n} is defined as

∀ x ∈ {−1, 1}n , Radℓ f (x) =
∑

S ⊆{1, ...,n }
|S |=ℓ

f̂ (S)wS (x). (21)

1. The first main theorem of [11] asserts that if f : {−1, 1}n → R
is a function of degree d , then for ℓ ∈ {1, . . . ,d},



Radℓ f 

L∞ ≤


|T (ℓ)
d

(0) |
ℓ!

· ∥ f ∥L∞ , if (d − ℓ) is even
|T (ℓ)
d−1(0) |
ℓ!

· ∥ f ∥L∞ , if (d − ℓ) is odd
, (22)

where Td (t) is the d-th Chebyshev polynomial of the first kind,

that is, the unique real polynomial of degree d such that cos(dθ ) =
Td (cosθ ) for every θ ∈ R. Moreover, Iyer, Rao, Reis, Rothvoss and

Yehudayoff observed in [11, Proposition 2] that this estimate is

asymptotically sharp. We present a simple proof of their inequality

(22) (see also [10] for related arguments).

Proof of (22). For any f : {−1, 1}n → R consider its harmonic

extension on [−1, 1]n ,

∀x ∈ [−1, 1]n , f̃ (x1, . . . ,xn ) =
∑

S ⊆{1, ...,n }
f̂ (S)

∏
j ∈S

x j . (23)

By convexity ∥ f̃ ∥L∞([−1,1]n ) = ∥ f ∥L∞({−1,1}n ). In particular, the

restriction of f̃ on the ray t(x1, . . . ,xn ), t ∈ [−1, 1], i.e.

∀ t ∈ R, hx (t)
def
=

∑
S ⊆{1, ...,n }

f̂ (S)wS (x)t |S | (24)

satisfiesmaxt ∈[−1,1] |hx (t)| ≤ ∥ f ∥L∞ for all (x1, . . . ,xn ) ∈ {−1, 1}n .
Therefore, since deghx ≤ d , a classical inequality of Markov (see

e.g. [5, p. 248]) gives

��Radℓ f (x)�� = |h(ℓ)x (0)|
ℓ!

≤


|T (ℓ)
d

(0) |
ℓ!

· ∥ f ∥L∞ , if (d − ℓ) is even
|T (ℓ)
d−1(0) |
ℓ!

· ∥ f ∥L∞ , if (d − ℓ) is odd

and (22) follows by taking a maximum over all x ∈ {−1, 1}n . □

In particular, as observed in [11], inequality (22) implies that if

f has degree at most d then

∀ ℓ ∈ {1, . . . ,d},


Radℓ f 

L∞ ≤ dℓ

ℓ!
· ∥ f ∥L∞ . (25)

2. The second main theorem of [11] asserts that if a function

f : {−1, 1}n → [−1, 1] has degree at most d , then for every

ℓ ∈ {1, . . . ,d} we have∑
S ⊆{1, ...,n }

|�Radℓ f (S)| = ∑
S ⊆{1, ...,n }

|S |=ℓ

| f̂ (S)| ≤ n
ℓ−1
2 dℓe(

ℓ+1
2 ). (26)

The BohnenblustśHille-type inequality of [8] implies the following

improved bound.
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Corollary 3. Let n ∈ N and d ∈ {1, . . . ,n}. Then, every bounded
function f : {−1, 1}n → [−1, 1] of degree at most d satisfies

∑
S ⊆{1, ...,n }

|S |=ℓ

| f̂ (S)| ≤
(
n

ℓ

) ℓ−1
2ℓ

eκ
√
ℓ log ℓ d

ℓ

ℓ!
= O

(
n

ℓ−1
2 dℓℓ−cℓ

)
, (27)

for some universal constant c ∈ (0, 1) and all ℓ ∈ {1, . . . ,d}.

Proof. Combining Hölder’s inequality with the estimate of [8]

and (25) we get

∑
S ⊆{1, ...,n }

|S |=ℓ

| f̂ (S)| ≤
(
n

ℓ

) ℓ−1
2ℓ

( ∑
S ⊆{1, ...,n }

|�Radℓ f (S)| 2ℓ
ℓ+1

) ℓ+1
2ℓ

≤
(
n

ℓ

) ℓ−1
2ℓ

exp(κ
√
ℓ log ℓ)



Radℓ f 

L∞
(25)
≤

(
n

ℓ

) ℓ−1
2ℓ

exp(κ
√
ℓ log ℓ)d

ℓ

ℓ!
.

(28)

The last inequality of (27) follows from (22) and the elementary

bound
(n
ℓ

)
≤

(
ne
ℓ

)ℓ
. □

We refer to the recent work [2] for a systematic study of in-

equalities relating the Fourier growth with various well-studied

properties of Boolean functions.

3. It is simple to observe (see also [15, Proposition 3.31]) that if

f : {−1, 1}n → {−1, 1} is a Boolean function and h : {−1, 1}n → R
is an arbitrary function, then

sign(h) − f



2
L2
= 4P{sign(h) , f }

≤ 4P{|h − f | ≥ 1} ≤ 4∥h − f ∥2L2 ,
(29)

where we define sign(0) as ±1 arbitrarily. Therefore, applying Theo-
rem 1 to a Boolean function, the above algorithm produces a Boolean

function h̃ = sign(h) which is a 4ε-approximation of f .

4. In Theorem 1 we showed that functions f : {−1, 1}n → [−1, 1]
of degree at most d can be learned with accuracy at most ε and

confidence at least 1− δ from N = Oε,d

(
log(n/δ )

)
random queries.

We will now show that this estimate is sharp for small enough

values of δ .

Proposition 4. Suppose that all the bounded linear functions

ℓ : {−1, 1}n → [−1, 1] can be learned with accuracy at most 1
2 and

confidence at least 1 − 1
2n from N random queries. Then N > log2 n.

Proof. By the assumption, for any input (X1,y1), . . . , (XN ,yN ) ∈
{−1, 1}n × [−1, 1], there exists a function

h(X1,y1), ...,(XN ,yN ) : {−1, 1}n → R (30)

such that if the random vectors X1, . . . ,XN are chosen indepen-

dently and uniformly from {−1, 1}n and there exists a linear func-

tion ℓ : {−1, 1}n → [−1, 1] such that yj = ℓ(X j ) for every j, then

P(Ωℓ) > 1 − 1
2n , where Ωℓ is the event

Ωℓ
def
=

{
E
(
h(X1, ℓ(X1)), ...,(XN , ℓ(XN )) − ℓ

)2
<

1

2

}
. (31)

Let X j = (X j (1), . . . ,X j (n)) for j ∈ {1, . . . ,N } and consider the

event

W =
{
X j (1) = X j (2), ∀ j ∈ {1, . . . ,N }

}
. (32)

By the independence of the samples, we have P(W) = 1
2N

. There-

fore, if N ≤ log2 n and we consider the standard linear functions

ri : {−1, 1}n → {−1, 1} given by ri (x) = xi , then

P(Ωr1 ∩ Ωr2 ) > 1 − 1

n
≥ 1 − 1

2N
= 1 − P(W), (33)

which implies that Ωr1 ∩ Ωr2 ∩W , ∅. Choosing X1, . . . ,XN from

this event and denoting by

h = h(X1,X1(1)), ...,(XN ,XN (1)) = h(X1,X1(2)), ...,(XN ,XN (2)), (34)

we deduce from the triangle inequality that

2 = E(r1 − r2)2 ≤ 2E(h − r1)2 + 2E(h − r2)2
(31)
< 2 (35)

which is clearly a contradiction. Therefore N > log2 n. □

ACKNOWLEDGMENTS

We are very grateful to Assaf Naor for constructive feedback and

to Lauritz Streck for useful discussions which led to Proposition 4.

A. E. was supported by a Junior Research Fellowship from Trinity

College, Cambridge. P. I. was partially supported by the NSF grants

DMS-2152346 and CAREER-DMS-2152401.

REFERENCES
[1] Frédéric Bayart, Daniel Pellegrino, and Juan Benigno Seoane-Sepúlveda. 2014.

The Bohr radius of the n-dimensional polydisk is equivalent to
√
(logn)/n. Adv.

Math. 264 (2014), 726ś746. https://doi.org/10.1016/j.aim.2014.07.029
[2] Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio,

and Emanuele Viola. 2021. Fourier growth of structured F2-polynomials and
applications. (2021). To appear in RANDOM 2021. Preprint available at https:
//arxiv.org/abs/2107.10797.

[3] Ron Blei. 2001. Analysis in integer and fractional dimensions. Cambridge Studies
in Advanced Mathematics, Vol. 71. Cambridge University Press, Cambridge.
xx+556 pages. https://doi.org/10.1017/CBO9780511543012

[4] Henri Frederic Bohnenblust and Einar Hille. 1931. On the absolute convergence
of Dirichlet series. Ann. of Math. (2) 32, 3 (1931), 600ś622. https://doi.org/10.
2307/1968255

[5] Peter Borwein and Tamás Erdélyi. 1995. Polynomials and polynomial inequalities.
Graduate Texts in Mathematics, Vol. 161. Springer-Verlag, New York. x+480
pages. https://doi.org/10.1007/978-1-4612-0793-1

[6] Jamilson R. Campos, Pablo Jiménez-Rodríguez, Gustavo A. Muñoz Fernández,
Daniel Pellegrino, and Juan Benigno Seoane-Sepúlveda. 2015. On the real poly-
nomial Bohnenblust-Hille inequality. Linear Algebra Appl. 465 (2015), 391ś400.
https://doi.org/10.1016/j.laa.2014.09.040

[7] Andreas Defant, Leonhard Frerick, Joaquim Ortega-Cerdà, Myriam Ounaïes,
and Kristian Seip. 2011. The Bohnenblust-Hille inequality for homogeneous
polynomials is hypercontractive. Ann. of Math. (2) 174, 1 (2011), 485ś497. https:
//doi.org/10.4007/annals.2011.174.1.13

[8] Andreas Defant, Mieczysław Mastyło, and Antonio Pérez. 2019. On the Fourier
spectrum of functions on Boolean cubes. Math. Ann. 374, 1-2 (2019), 653ś680.
https://doi.org/10.1007/s00208-018-1756-y

[9] Andreas Defant and Pablo Sevilla-Peris. 2014. The Bohnenblust-Hille cycle of
ideas from a modern point of view. Funct. Approx. Comment. Math. 50, 1, [2013
on table of contents] (2014), 55ś127. https://doi.org/10.7169/facm/2014.50.1.2

[10] Alexandros Eskenazis and Paata Ivanisvili. 2020. Polynomial inequalities on the
Hamming cube. Probab. Theory Related Fields 178, 1-2 (2020), 235ś287. https:
//doi.org/10.1007/s00440-020-00973-y

[11] Siddharth Iyer, Anup Rao, Victor Reis, Thomas Rothvoss, and Amir Yehudayoff.
2021. Tight bounds on the Fourier growth of bounded functions on the hypercube.
(2021). To appear in ECCC 2021. Preprint available at https://arxiv.org/abs/2107.
06309.

[12] Nathan Linial, Yishay Mansour, and Noam Nisan. 1993. Constant depth circuits,
Fourier transform, and learnability. J. Assoc. Comput. Mach. 40, 3 (1993), 607ś620.
https://doi.org/10.1145/174130.174138

206

https://doi.org/10.1016/j.aim.2014.07.029
https://arxiv.org/abs/2107.10797
https://arxiv.org/abs/2107.10797
https://doi.org/10.1017/CBO9780511543012
https://doi.org/10.2307/1968255
https://doi.org/10.2307/1968255
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1016/j.laa.2014.09.040
https://doi.org/10.4007/annals.2011.174.1.13
https://doi.org/10.4007/annals.2011.174.1.13
https://doi.org/10.1007/s00208-018-1756-y
https://doi.org/10.7169/facm/2014.50.1.2
https://doi.org/10.1007/s00440-020-00973-y
https://doi.org/10.1007/s00440-020-00973-y
https://arxiv.org/abs/2107.06309
https://arxiv.org/abs/2107.06309
https://doi.org/10.1145/174130.174138


Learning Low-Degree Functions from a Logarithmic Number of Random Queries STOC ’22, June 20ś24, 2022, Rome, Italy

[13] John Edensor Littlewood. 1930. On bounded bilinear forms in an infinite num-
ber of variables. Q. J. Math. os-1, 1 (01 1930), 164ś174. https://doi.org/10.
1093/qmath/os-1.1.164 arXiv:https://academic.oup.com/qjmath/article-pdf/os-
1/1/164/4482719/os-1-1-164.pdf

[14] Yishay Mansour. 1994. Learning Boolean Functions via the Fourier Transform.
Springer US, Boston, MA, 391ś424. https://doi.org/10.1007/978-1-4615-2696-
4_11

[15] Ryan O’Donnell. 2014. Analysis of Boolean functions. Cambridge University Press,
New York. xx+423 pages. https://doi.org/10.1017/CBO9781139814782

207

https://doi.org/10.1093/qmath/os-1.1.164
https://doi.org/10.1093/qmath/os-1.1.164
https://arxiv.org/abs/https://academic.oup.com/qjmath/article-pdf/os-1/1/164/4482719/os-1-1-164.pdf
https://arxiv.org/abs/https://academic.oup.com/qjmath/article-pdf/os-1/1/164/4482719/os-1-1-164.pdf
https://doi.org/10.1007/978-1-4615-2696-4_11
https://doi.org/10.1007/978-1-4615-2696-4_11
https://doi.org/10.1017/CBO9781139814782

	Abstract
	1 Introduction
	1.1 Learning Functions on the Hypercube
	1.2 The Fourier growth of Walsh polynomials in 2dd+1

	2 Proofs
	3 Concluding remarks
	Acknowledgments
	References

