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ABSTRACT

We prove that every bounded function f : {-1,1}" — [-1,1] of
degree at most d can be learned with Ly-accuracy ¢ and confidence
1 -6 from log(g) g=d-10d**\logd 1andom queries, where C > 1
is a universal finite constant.
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1 INTRODUCTION

Every function f : {-1,1}" — R admits a unique Fourier-Walsh
expansion of the form

Vee{-L1}",  f= Y fSwsk),

Sc{l,...,n}

1

where ws(x) = [];es x;i and the Fourier coefficients f (S) are given
by

A 1
£ = on

VSC{lL,...,n} Y, fyws@. ©

ye{-11}"

We say that f has degree at most d € {1,...,n} iff(S) = 0 for
every subset S with |S| > d.

1.1 Learning Functions on the Hypercube

Let C be a class of functions f : {—1,1}" — R on the n-dimensional
discrete hypercube. The problem of learning the class € can be
described as follows: given a source of examples (x, f(x)), where
x € {-1,1}", for an unknown function f € C, compute a hypothesis
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function h : {-1,1}" — R which is a good approximation of f
up to a given error in some prescribed metric. In this paper we
will be interested in the random query model with Lz-error, in
which we are given N independent examples (x, f(x)), each chosen
uniformly at random from the discrete hypercube {-1, 1}", and we
want to efficiently construct a (random) function b : {-1,1}" - R
such that ||h - f ||i2 < ¢ with probability at least 1 — §, where
&,6 € (0,1) are given accuracy and confidence parameters. The
goal is to construct a randomized algorithm which produces the
hypothesis function h from a minimal number N of examples.
The above very general problem has been studied for decades
in computational learning theory and many results are known',
primarily for various classes C of structured Boolean functions
f:+{-1,1}" — {-1, 1}. Already since the late 1980s, researchers
used the Fourier-Walsh expansion (1) to design such learning
algorithms (see the survey [14]). Perhaps the most classical of
these is the Low-Degree Algorithm of Linial, Mansour and Nisan
[12] who showed that for the class GZ of all bounded functions
f+{-1,1}" — [-1,1] of degree at most d there exists an algo-
rithm which produces an e-approximation of f with probability at

2%) samples. In this generality, the

least 1 — § using N = % log(
O,, 5,d(nd log n) estimate of [12] was the state of the art until the
recent work [11] of Iyer, Rao, Reis, Rothvoss and Yehudayoff who
employed analytic techniques to derive new bounds on the ¢;-size
of the Fourier spectrum of bounded functions (see also Section
3) and used these estimates to show that N = O, 3,d(nd_1 log n)
examples suffice to learn 4. The goal of the present paper is to
further improve this result and show that in fact N = O, s, 4(log n)
samples suffice for this purpose.

TueEoREM 1. Fixe,§ € (0,1),n € N,d € {1,...,n} and a bounded
function f : {-1,1}"* — [—-1,1] of degree at mostd. IfN € N satisfies

Cd3/2 ll d d
N > min {exp( o8 ), ddn log (g) )

gd+1
where C € (0, 00) is a large numerical constant, then N uniformly
random independent queries of pairs (x, f(x)), where x € {-1,1}",
suffice for the construction of a random function h : {-1,1}" - R
satisfying the condition ||h — f||]%2 < ¢ with probability at least 1 — J.

®)

The proof of Theorem 1 relies on some important approximation
theoretic estimates going back to the 1930s which we shall now
describe (see also [9]). To the best of our knowledge, these tools
had not yet been exploited in the computational learning theory
literature.

!We will by no means attempt to survey this (vast) field, so we refer the interested
reader to the relevant chapters of O’Donnell’s book [15] and the references therein.
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1.2 The Fourier Growth of Walsh Polynomials

in fﬁ
d+1

Estimates for the growth of coefficients of polynomials as a function
of their degree and their maximum on compact sets go back to the
early days of approximation theory (see [5]). A seminal result of
this nature is Littlewood’s celebrated %—inequality [13] for bilinear
forms which was later generalized by Bohnenblust and Hille [4]
for multilinear forms on the torus T" or the unit square [—1, 1]".
By means of polarization, one can use this multilinear estimate to
derive an inequality for polynomials which reads as follows?. For
every K € {R,C} and d € N, there exists B]§ € (0, ) such that for
every n € N and every coefficients ¢, € K, where a € (NU {0})"
with |a| < d, we have

d+1
2d

2d
Z lcq | @+ < B]§ max{ Z cax®|: |Ixllen ) < 1}.
|| <d la|<d
©
Moreover, ﬂ is the smallest exponent for which the optimal con-

stant in (4) is independent of the number of variables n of the
polynomial. The exact asymptotics of the constants B§ and BS
remain unknown, however it is known that there is a significant
gap between B]S and BS, namely that lim supd_,w(BIs)l/d =1+V2

whereas BS < cVdnd o1 o finite constant C > 1 (see [1, 6-9] for
these and other important advances of the last decade). Restrict-
ing inequality (4) to real multilinear polynomials, convexity shows
that the maximum on the right-hand side is attained at a point
x € {-1,1}", which, in view of (1), makes (4) an estimate for the
Fourier-Walsh growth of functions on the discrete hypercube. We
shall denote by leﬂ} the corresponding optimal constant (first ex-
plicitly investigated by Blei in [3, p. 175]), that is, the least constant
such that for every n € N and every function f : {-1,1}" — R of
degree at most d,

2

Sc{l,...,n}

d+1
2d

Ferd | <BEYIfL. 5)

The best known quantitative result in this setting is due to Defant,

Mastylo and Pérez [8] who showed that B({fl} < exp(k+/dlogd)
for a universal constant k € (0, o). The main contribution of this
work is the following theorem relating the growth of the constant
Bc{lil} and learning.

THEOREM 2. Fixe, 6 € (0,1),n € N,d € {1,...,n} and a bounded
function f : {-1,1}"* — [-1,1] of degree at mostd. IfN € N satisfies

N> dH(B{*l})Zdl g(3). ©)

then given N uniformly random independent queries of pairs (x, f(x)),
where x € {—1,1}", one can construct a function h : {-1,1}"* - R
satisfying ||h — f||%2 < ¢ with probability at least 1 — §.

In Section 2 we will prove Theorem 2 and use it to derive The-
orem 1. In Section 3 we will present some additional remarks on

., an) € WU {0})", we use the standard notations |a| = a; +

— 5% @n
=0 x,

2For a = (ary, . .
-+ oy and x*

204

Alexandros Eskenazis and Paata Ivanisvili

Boolean analysis and learning, in particular showing that the de-
pendence on n in Theorem 1 is optimal for § < % Moreover, we
shall improve the recent bounds of [11] on the ¢;-Fourier growth
of bounded functions of low degree.

2 PROOFS

Proor oF THEOREM 2. Fix a parameter b € (0, o) and denote by

o5 50

Let X1,...,Xn, be independent random vectors, each uniformly
distributed on {—1,1}". For a subset S C {1,...,n} with |S| < d
consider the empirical Walsh coefficient of f, given by

™)

Np
1
as = Ny Zf(xj)WS(Xj)~ )
j=
As ag is a sum of bounded i.i.d. random variables and E[as] f (S),

the Chernoff bound gives

VSC{l....n},  Pllas—f(S)| > b} < 2exp(-Nyb*/2). (9)

Therefore, using the union bound and taking into account that f
has degree at most d, we get

]P’{|a5 —f(5)| < b,forevery S C {1,...,n} with |S| < d}

d 10
>1-2 Z (Z) exp(—N,b?/2) D (10)
k=0

Denote the event on the LHS by Gj,. Fix an additional parameter
a € (b, ) and consider the random collection of sets given by

Sa M {scit....n}: las| = a}. (1)
Observe that if the event Gy, of equation (10) holds, then
VS€Sa  IfOl<las - f(S)l+lasl <a+b  (12)
and
VSeSa  If©) = las|—las - f(S)=a-b.  (13)

Finally, consider the random function h, p, : {~1,1}" — R given
by

Vee (L1 b€ D asws).  (9)

Se8,
Combining (13) with inequality (5), we deduce that

13 ~
8al @by # Y (fe

Se8,

2

Sc{1,...,n}

< (a- by # O € (a- by # @,

(15)
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Therefore, on the event G;, we have

-fIE, = D)

Sc{1,...,n}

= > las—fSP +

Se8,

|ha,5(S) = FS
D IfePr
SgSa

2 .
D 1salt? + @rn) S 1)

S¢84

”ha,b

(16)

5)A(15)
()/\( (B {il})d+l ((a=b)~ T p? +(a+b)d“)

Choosing a = b(1 + Vd + 1), we deduce that

2
by 4var.s — L,

(17)
< BN E T (@ + 1) F 4 @+ Vd+ )T,

Next, we need the technical inequality: for all d > 1,

(d+ 1)‘% +(2+ ‘/m)ﬁ < (eMd+ 1)@ (18)

Rearranging the terms, it suffices to show that

1

(2+ Vd + 1 )d+l <(d+1)d+l (ed+1 —m)

(19)

1

7 We have

L 4
which is equivalent to (—2= + 1) @1 < e@ —

\/T

2 (%
d+1(<)1+ 3 Seﬁ— 1
d+1

s

2 a1
+1] < (\/5 +1
( Vd +1 ) )
where inequality (*) holds because the left hand side is convex in

. def . c1 s 1
the variable 1 = ﬁ whereas the right hand side is linear and

since (*) holds at the endpoints A = 0, 1.
Combining (17) and (18) we see that ”hb(1+\/d?) b= f||12‘2 <e

holds for b? < e’sd’lfd“(B({;l})’Zd. Plugging this choice of b in
(7) shows that given N random queries, where

w2350

. . 2 .
the function hb(1+\/ﬁ),b satisfies ”hb(1+\/ﬁ),b - f||L2 < ¢ with
probability at least 1 — § and the conclusion of the theorem follows
from elementary estimates, such as

d d K d Gk
WIS Tt Co

Theorem 1 is a straightforward consequence of Theorem 2.

€6d(B({;t1})2d

ed+1 (20)

<

Proor oF THEOREM 1. Our Theorem 2 combined with the bound
Ba{lil} < exp(x+/dlogd) of [8] imply the conclusion of Theorem 1

C+/dlogd . .
M, where C € (0, 0) is a large universal con-

exp(Cy/dlogd)
n

for ¢ >

stant. The case ¢ <
Algorithm of [12].

follows from the Low-Degree
i
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3 CONCLUDING REMARKS

We conclude with a few additional remarks on the spectrum of
bounded functions defined on the hypercube and learning algo-
rithms. For a function f : {-1,1}" — R, its Rademacher projection
onlevel € € {1,...,n} is defined as

Vxe{-1,1}",  Radf(x)= Z fS)ws(x).  (21)

Sc{l,...,n}
|S|=¢

1. The first main theorem of [11] asserts thatif f : {-1,1}" - R

is a function of degree d, then for £ € {1,...,d},
LV RO ><o>| . ,
N fllr,, if(d—<)iseven
Z— - If L., if (d - ) is odd

where Ty(t) is the d-th Chebyshev polynomial of the first kind,
that is, the unique real polynomial of degree d such that cos(df) =
T;(cos 0) for every 8 € R. Moreover, Iyer, Rao, Reis, Rothvoss and
Yehudayoff observed in [11, Proposition 2] that this estimate is
asymptotically sharp. We present a simple proof of their inequality
(22) (see also [10] for related arguments).

Proor oF (22). For any f : {—1,1}" — R consider its harmonic

extension on [—1,1]",
Z £(5) ]_[ xj. (23)

vxe[-1,11",  f(xp....
Sc{y,..., n} Jjes

,Xn) =
By convexity l'f‘l'Lm([_l’l]n) = I fllz=({-1,1}n)- In particular, the
restriction of f on the ray t(x1,...,xp), t € [-1,1], ie

def

VieR,  he(t) < Z FSwstS (29
Sciy,..., n}
satisfies max; ¢[_q 1] [hx(t)] < || fllL,, forall (x1, ..., xn) € {-1,1}™.

Therefore, since deghy < d, a classical inequality of Markov (see
e.g. [5, p- 248]) gives

T (O)I

|h<">(o>| . if (d - £) is even

VA
Mz

and (22) follows by taking a maximum over all x € {-1,1}".

[Rad, f(x)| =

|T‘” O]

if (d —¢)is odd

[m]

In particular, as observed in [11], inequality (22) implies that if
f has degree at most d then

Vee{l,...,d},

dt
IRade fl,, < - Ifllee (29)

2. The second main theorem of [11] asserts that if a function

f + {-1,1}" — [-1,1] has degree at most d, then for every
€ {1,...,d} we have
S Radf©) = Y 1) <nTale) ()
Sc{1,...,n} Sc{1,...,n}
IS|=¢

The Bohnenblust-Hille-type inequality of [8] implies the following
improved bound.
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CororrArY 3. Letn € Nandd € {1,...,n}. Then, every bounded
function f : {-1,1}" — [-1, 1] of degree at most d satisfies

2

Sc{1,...,n}
|S|=¢

-1
. ¥a 4 _
If(S)Is(Z)2 eKV(”l"g{’i—':O(n%dﬁf—w), (27)

for some universal constant ¢ € (0,1) and all € € {1, ...,d}.

Proor. Combining Hélder’s inequality with the estimate of [8]
and (25) we get

2

Sc{1,...,n}
IS|=¢

[Rad, £ ($)| 7

2

Sc{1,...,n}

. n\%
fon=(;)

-1

(Z) “ exp(m/é)logt’)”RadngLm

(28)

IA

(25)

-1
2 dat

< (Z) exp(lc\/flogf)?.

The last inequality of (27) follows from (22) and the elementary

bound (%) < (2€)". O

We refer to the recent work [2] for a systematic study of in-
equalities relating the Fourier growth with various well-studied
properties of Boolean functions.

3. It is simple to observe (see also [15, Proposition 3.31]) that if
f:{-1,1}" — {-1,1} isa Boolean functionand 4 : {-1,1}" - R
is an arbitrary function, then

“sign(h) - f”]i = 4P{sign(h) # [}

(29)
<4P{|h~fl =1} < 4lh - fIIf,.

where we define sign(0) as +1 arbitrarily. Therefore, applying Theo-
rem 1 to a Boolean function, the above algorithm produces a Boolean
function h = sign(h) which is a 4¢-approximation of f.

4. In Theorem 1 we showed that functions f : {-1,1}" — [-1,1]
of degree at most d can be learned with accuracy at most ¢ and
confidence at least 1 — & from N = O, 4(log(n/5)) random queries.
We will now show that this estimate is sharp for small enough
values of 4.

PROPOSITION 4. Suppose that all the bounded linear functions
€:{-1,1}" — [-1,1] can be learned with accuracy at most% and
confidence at least 1 — ﬁ from N random queries. Then N > log, n.

PRroOF. By the assumption, for any input (X1,y1), ..., XN,YN) €
{-1,1}" x [-1, 1], there exists a function

by oo (Xnoyn) {-1.1}" - R (30)

such that if the random vectors X1, ..., XN are chosen indepen-
dently and uniformly from {—1, 1}" and there exists a linear func-
tion ¢ : {~1,1}" — [~1,1] such that y; = £(Xj) for every j, then
P(Qp) >1— ﬁ where Qy is the event

def 1
Q= {E(h(Xl,f(Xl)),...,(XN,Z(XN)) -0)* < 5}- (1)
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Let Xj = (Xj(1),...,Xj(n)) for j € {1,...,N} and consider the
event

W= {X;j(1) = X;(2), Vje{1,....,N}}. (32)

By the independence of the samples, we have P(W) = ZLN There-
fore, if N < log, n and we consider the standard linear functions
ri : {-1,1}"* — {-1,1} given by ri(x) = x;, then

1 1
P(erﬂQ,2)>l—;Zl—z—N:I—P(W), (33)
which implies that Q, N Q,, "W # 0. Choosing X1, . .., Xy from
this event and denoting by

h = ho, xa), e X ) = Ao @), O xn @), G4

we deduce from the triangle inequality that

2 2 2 GD

2=E(r1 —rp)* <2B(h—r1)* +2E(h-ry)® < 2 (35)
which is clearly a contradiction. Therefore N > log, n. O
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