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Abstract

Epigenetic cell memory allows distinct gene expression patterns to persist in different cell
types despite a common genotype. Although different patterns can be maintained by the
concerted action of transcription factors (TFs), it was proposed that long-term persistence
hinges on chromatin state. Here, we study how the dynamics of chromatin state affect mem-
ory, and focus on a biologically motivated circuit motif, among histones and DNA modifica-
tions, that mediates the action of TFs on gene expression. Memory arises from time-scale
separation among three circuit’s constituent processes: basal erasure, auto and cross-catal-
ysis, and recruited erasure of modifications. When the two latter processes are sufficiently
faster than the former, the circuit exhibits bistability and hysteresis, allowing active and
repressed gene states to coexist and persist after TF stimulus removal. The duration of
memory is stochastic with a mean value that increases as time-scale separation increases,
but more so for the repressed state. This asymmetry stems from the cross-catalysis
between repressive histone modifications and DNA methylation and is enhanced by the rel-
atively slower decay rate of the latter. Nevertheless, TF-mediated positive autoregulation
can rebalance this asymmetry and even confers robustness of active states to repressive
stimuli. More generally, by wiring positively autoregulated chromatin modification circuits
under time scale separation, long-term distinct gene expression patterns arise, which are
also robust to failure in the regulatory links.

Author summary

Epigenetic cell memory ensures that cells are locked into specialized functions for the life-
time of an organism. Phenotype loss is often associated with disease, such as cancer, and
also required for artificially reprogramming cells from one type to another. Chromatin
state, determined by histone modifications and DNA methylation, has recently appeared
as a key mediator of epigenetic cell memory. However, a mechanistic understanding of
how the dynamics of chromatin state affect the temporal duration of this memory is lack-
ing. Here, we developed and analyzed a theoretical framework that includes these dynam-
ics in gene regulation. Our results show that when both recruited erasure and auto/cross-
catalysis among histone modifications and DNA methylation are sufficiently slower than
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basal erasure of all modifications, loss of cell memory will occur. Our mathematical for-
mulas show how the parameters capturing these time scales depend on the abundance of
methyl-DNA-binding proteins, on writers, erasers, and readers of nucleosome modifica-
tions, and on cell division time. With this information, one may design experimental
interventions to either enforce phenotypic plasticity or re-lock phenotypes in aberrant
cells.

Introduction

The maintenance of distinct cell identities without any difference in genotype is a critical prop-
erty of multicellular organisms. This property is captured by the word “epigenetic”, coined by
Conrad H. Waddington in 1942, to broadly indicate that different cell phenotypes can be asso-
ciated with the same genotype [1]. A natural question is how multicellular organisms can
ensure that distinct phenotypes are safely locked-in despite sharing the same genotype. This
question has been extensively investigated in systems biology [2, 3] and has been recently revis-
ited in light of the so-called “Epigenetic Revolution” [4]. Maintenance of distinct phenotypes
requires the inheritance of different gene expression patterns through subsequent cell divisions
[5]. During the natural process of cell differentiation, cells go through multiple fate decisions
and select among different gene expression patterns that are mutually exclusive and are robust
to both intrinsic noise and TF perturbations [6]. According to classical theory, these patterns
are all stable attractors of the dynamics of gene regulation networks (GRNSs) enabled by TF
binding to DNA. In each of these attractors, lineage-specific genes become continuously
expressed and often maintain their expression through positive autoregulation [7-9]. There-
fore, the GRN-centric perspective proposes that TF-enabled regulatory networks are fully
capable of maintaining epigenetic memory of cell-type-specific gene expression patterns in dif-
ferentiated cells.

Following an explosive number of discoveries fueling the Epigenetic Revolution, a different
and somewhat contrasting view has emerged on epigenetic cell memory [4]. A key argument
that detracts to the role of TF-enabled regulatory networks in maintaining memory states is
that maintenance is dictated by the binding of TFs to DNA. But, this binding is disrupted
upon DNA replication and cell division. Allis specifically says “This mechanism is transient in
dividing cells because progression of the DNA replication fork usually disrupts these protein-
DNA interactions, which then need to be re-established in the resulting daughter cells.” [10]
(Chapter 22). In [11], the authors also argue that “. . .feedback loops can clearly enable herita-
ble states of altered gene expression without any need to evoke chromatin. However, it is
unlikely that such feedback loops alone would enable the propagation of states throughout the
length of development and in the germline of complex organisms.”

It has therefore been proposed that it is the chromatin state, i.e., the extent of DNA compac-
tion mediated by histone and DNA modifications, that enables long-term transmission to suc-
cessive cell generations [10](Chapter 3), [11]. This view is supported by the discovery of
enzymatic processes that can copy histone modifications from modified histones to unmodi-
fied nearby histones, facilitating the maintenance of these modifications after DNA replication
and cell division [10, 12]. It is also reinforced by the already established fact that DNA methyl-
ation is copied from the parental DNA strand to the progeny strand immediately after DNA
replication [13, 14] and by the discovery of cooperative interactions between DNA methyla-
tion and histone modifications [15]. However, histone and DNA modifications result from
dynamic enzymatic processes that continuously write and erase modifications and not from a
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static read-and-copy process. It thus remains unclear how these dynamic processes may enable
long-term maintenance of gene expression states. These considerations motivate the need for
a theoretical framework that includes the dynamics of chromatin state in the regulation of
gene expression by TFs and determines how these dynamics affect the temporal duration of
memory. This question is even more pressing for engineering persistent synthetic genetic cir-
cuits in the chromosome of mammalian cells, in which silencing is a major obstacle to keeping
proper circuit function for extended temporal durations [16-19].

In this paper, we create a biologically motivated chemical reaction model of the gene’s inner
chromatin modification circuit that mediates the effect of TF inputs on gene expression
through histone modifications and DNA methylation. The circuit comprises auto-catalysis of
histone modifications, competitive recruitment of erasure between activating and repressive
modifications, cross-catalysis between repressive histone modifications and DNA methylation,
and basal erasure.

In this model, the effect of TFs on gene expression is not determined by the binding of TFs
to DNA alone, but by the recruitment of the enzymes for the de novo establishment of either
activating or repressive modifications. We first determine how time scale separation among
the circuit’s constituent processes affects memory of a TF input stimulus for both active and
repressed chromatin states, by analyzing the stability and probability of chromatin states, the
mean temporal duration of a chromatin state, and the variability of this duration. Then, we
study the relative contributions of TF-mediated regulation and chromatin dynamics to mem-
ory of active and repressed gene states in two ubiquitous GRN motifs: TF-mediated positive
autoregulation and mutual inhibition. Specifically, we analyze the mean temporal duration of
active and repressed chromatin states and their robustness to both repetitive disruptions of
TF-enabled regulatory links and to undesired input stimuli, such as due to endogenous
silencing.

Related work

Models of chromatin-mediated gene regulation, in which histone modifications, DNA methyl-
ation, and TF-mediated regulation are combined together, remain under-represented in the
literature [20]. Most existing models that include chromatin modifications into gene expres-
sion regulation are based on phenomenological rules rather than on the molecular reactions
that regulate chromatin state, and focus on specific biological processes, such as iPSC repro-
gramming [21-24] or epithelial-mesenchymal transition [25], and most of them are only suit-
able for computational simulations [21-23]. On the opposite side of the spectrum, highly
detailed mechanistic models have appeared for histone modifications alone, in which each
nucleosome within a gene is modeled and simulated as a distinct unit [26]. Different from
these existing works, we explicitly address how the duration of memory of a chromatin state is
modulated by the topological properties of the chromatin modification circuit, by relevant bio-
chemical parameters, and by the interplay between TF-based regulation and chromatin
dynamics.

Models
Model of the gene’s inner chromatin modification circuit

In this paper, we focus on a circuit motif that captures the interactions among H3K4 methyla-
tion/acetylation, H3K9 methylation, and DNA methylation, and has the nucleosome as the
basic unit that can carry these modifications (Fig 1A). H3K4 methylation (H3K4me3) typically
co-exists with acetylation and is associated with active chromatin state [10](Chapter 3), [27],
while H3K9 methylation (H3K9me2/3) and DNA methylation are a hallmark of repressed
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Fig 1. The gene’s inner chromatin modification circuit. (A) Nucleosome modifications: D (unmodified nucleosome), D* (nucleosome with a
activating histone modification, H3K4me3/ac), D} (nucleosome with only DNA methylation, CpGme), D} (nucleosome with only a repressive histone
modification, H3K9me3) and D?.z (nucleosome with both H3K9me3 and CpGme). (B) Pictorial representation of a gene with its nucleosomes carrying
various modifications. The left side arrow represents the promoter. (C) Competitive interactions between opposing histone modifications (activating
D* and repressive DY), wherein each modification recruits writers of itself and erasers of the opposing modification. (D) Complete chromatin
modification circuit that includes all the interactions described in Section “Models” (see also Figs B and C in S1 File). The numbers shaded in gray on
the arrows correspond to the reactions associated with the arrows, described in the main text and in Fig 2. In (C) and (D), enzymes that write (writers)
and erase (erasers) each modification are represented as Wy, W5, W3 and E,, E,, Es, respectively. The socket on each enzyme represents a domain that
binds to protein readers of the indicated (by the dashed lines) modification, enabling the process by which each modification recruits writers or erasers
to nearby histones. To distinguish the KMTs for H3K9 and H3K4, we define the writers for H3K9 methylation (Suv39H1) as KMT® and the writers for
H3K4 methylation (SETs and MLL1/2) as KMT*. Similarly, to distinguish the HDMTs for H3K9 methylation and H3K4 methylation, we define the
erasers for H3K9 methylation (JMJD2A) as HDMTR and the erasers for H3K4 methylation (JARID) as HDMT*. We use colored dotted lines to depict
the recruitment process by H3K4me3/ac (green lines), H3K9me3 (red lines), and CpGme (orange lines) and we use dotted black arrows to depict the
consequent effect on writing/erasing. The solid black arrow represents the nucleosome modification.

https://doi.org/10.1371/journal.pcbi.1009961.9001

chromatin state and, as such, are found at pluripotency genes and at lineage specific genes in
terminally differentiated cells [5].

Specifically, H3K4 and H3K9 methylation are typically mutually exclusive since the
enzymes that methylate H3K4 do not do so if the neighboring K9 residues are already methyl-
ated [28] and viceversa [29]. We therefore assume that each nucleosome carries either H3K9
methylation or H3K4 methylation but not both. We also assume that H3K4 methylation and
acetylation co-exist and we represent them by an activating “A” nucleosome modification (Fig
1A). Furthermore, for H3K9 methylation, we lump together the two methylation states (me2
and me3) for simplicity and call them “me3” because both of them are associated with gene
repression. Also, although nucleosomes carry two copies of each histone, we consider them as
one unit that can carry only one histone modification.
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In addition to these histone modifications, DNA itself can be methylated in correspondence
to the CpG dinucleotide (CpGme) [5, 10, 30]. DNA methylation is correlated with the absence
of H3K4 methylation [10](Chapter 6), since the enzymes that methylate H3K4 recognize
unmethylated DNA binding motifs [10](Chapter 1) and viceversa [10](Chapter 6), [31]. There-
fore, we assume that each nucleosome can carry either one or the other but not both (Fig 1A).
By contrast, DNA methylation can co-exist with H3K9 methylation [10](Chapters 6, 22) and
hence we allow a nucleosome to carry both modifications (Fig 1A). As a result, each gene will
include a number of nucleosomes with different modifications (Fig 1B).

In the next section, we introduce the molecular mechanisms and corresponding reactions
by which these modifications can be written, erased, and copied to nearby nucleosomes, which
will form the chromatin modification circuit (Fig 1C and 1D).

Histone modifications. Histone modifications can be modeled by enzymatic reactions
wherein an unmodified histone can be de novo modified by the action of writer enzymes.
These enzymes are called KMTs (lysine methyltransferases) for methylation and HAT's (his-
tone acetyltransferases) for acetylation and are recruited to DNA by, among others, sequence-
specific TFs [32](Chapter 6). These modifications can be actively removed by the action of
eraser enzymes. These enzymes are called HDMTs (histone demethylases) for de-methylation
and HDAC:s (histone deacetylases) for de-acetylation. Additionally, histone modifications can
be copied through a read-write process, wherein a modified histone is bound by a reader pro-
tein, which, in turn, recruits writers of the same modification [10]. We describe these in detail.

De novo establishment. As described in [10](Chapter 21), sequence-specific transcrip-
tional activators bind DNA and recruit HATS, such as the SAGA complex, to the promoter of
a gene, which becomes acetylated. Examples of transcriptional activators that recruit HATs
include Myc, GATA.1, and Gal4. The deposition of H3K4me3 then can occur co-transcrip-
tionally as RNA Polymerase II recruits SETs, a KMT that methylates H3K4 [33], [10](Chapter
3), or through the recruitment of SETs and MLL1/2 (also KMTs for H3K4) to DNA by the
CxxC binding domain that specifically recognizes unmethylated DNA [5](Chapter 7). Finally,
MLLs can be recruited to specific promoters by transcriptional activators such as Oct4 [34].
H3K9me3 is established by the writer action of Suv39H1 (a KMT for H3K9), which can also be
recruited to DNA by sequence-specific TFs. An example of this is the recruitment of this
enzyme to GATA.1 targets by the PU.1 TF, as a means to silence GATA.1 targets and promote
the myeloid lineage [35]. These modifications can be captured by the one-step enzymatic reac-
tions @, @, @ and @ in Fig 2. In the sequel, we will consider the ky, parameters as inputs to
the chromatin modification circuit since they can be modulated by TFs external to the circuit
(see Eqs (82), (83) in S1 File).

Auto-catalysis. Histone modifications can recruit more alike modifications to nearby
unmodified histones through a read-write mechanism. Specifically, protein readers bind the
modification and recruit writers of the same modification to nearby unmodified histones [10]
(Chapter 22), [27, 37-39]. For example, protein HP1a contains a chromodomain that specifi-
cally recognizes H3K9me3 and recruits the Suv39H1 methyltransferase responsible for H3K9
methylation [37]. Similarly, WDRG5 is a protein reader that recognizes specifically H3K4me3
and binds to SETs to recruit them for H3K4 methylation [27]. Similarly, for histone acetyla-
tion, the p300/CBP complex is a HAT that also has a bromodomain, so it is a reader and a
writer at the same time [10](Chapters 4,21), [5](Chapter 2). We capture this auto-catalytic pro-
cess by reactions @ for activating histone modifications and by reactions ® for repressive his-
tone modifications in Fig 2.

Recruited and basal erasure. An activating (repressing) histone modification can recruit
erasers for a repressing (activating) histone modification [40]. For example, JMJD2A is an
eraser for H3K9me3/2 and de-methylates H3K9me3/2 through its Jumonji domain while
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Fig 2. Reactions associated with the chromatin modification circuit motifs. Each reaction is associated with a number, which is referred to in the
main text. Specifically, reactions @, @, @, ®, @ and @ describe de novo establishment. Reactions @ and ® describe auto-catalysis, wherein a
modification recruits writers of the same modification to nearby nucleosomes. Reactions @ and @® describe cross-catalysis, wherein DNA methylation
recruits writers of repressive histone modifications and viceversa, respectively. Reactions ®, @, and @ represent basal erasure while reactions ®, ©®,
®, and @ represent recruited erasure, wherein competing modifications recruit erasers of each other. The different colored lines delimit the sets of
reactions that take place for each of the circuit motifs shown in Fig 1 and Figs B and C in S1 File. Specifically, Fig B depicts the circuit between activating
histone modifications and DNA methylation and Fig C depicts the circuit among repressive modifications. Here, we use one-step enzymatic reaction
models [36] to capture histone and DNA modifications. In the bottom-right corner, we indicate how the reaction rate constants depend on the amount
of writers and erasers, in which f{-) is a generic increasing function. Here, 77 and 7] are between 0 and 1 and defined in Section “Models”. Specifically, n =

1 in the absence of DNMT1 and # = 1 in the absence of MBD (see Section 1 in S1 File for the detailed form of the reaction constants and their
derivation).

https://doi.org/10.1371/journal.pcbi.1009961.9002

being able to bind H3K4me3 through the Tudor domain. Therefore, H3K4me3 helps recruit
this H3K9me3 eraser to DNA. In turn, JARID is an eraser of H3K4me3 and does so through
one of its PHD domains. Through a different PHD domain, it binds H3K9me3. Therefore,
H3K9me3 helps recruit this H3K4me3 eraser to DNA. Furthermore, the CHD4 subunit of the
NuRD (nucleosome remodeling and de-acetylase) complex contains a domain (a PHD
domain) that recognizes H3K9me3. This provides a mechanism through which H3K9me3
recruits HDACs. The corresponding reactions are number ® and ® in Fig 2. Furthermore, in
addition to recruited erasure, histone modifications are subject to basal erasure, wherein a
modification can be removed passively through dilution due to DNA replication during S
phase or through non-specific de-methylation [10](Chapter 22). Basal erasure is captured by
reactions ® and @ in Fig 2. The resulting circuit diagram is shown in Fig 1C, wherein each
modification auto-catalyzes itself and inhibits the other one.
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DNA methylation and crosstalk with histone modifications. Similar to histone modifi-
cations, DNA methylation can be captured by enzymatic reactions. Specifically, de novo estab-
lishment of CpG methylation is mediated by the DNMT3 enzyme (reactions @ and @ in Fig
2) and copy-write occurs through the DNMT1 enzyme, which quickly copies the methylation
pattern on the nascent DNA strand at replication. De-methylation occurs passively through
dilution due to DNA replication and by an active de-methylation mediated by TET enzymes
[10](Chapter 15). In particular, TET enzymes recognize CpGme dinucleotides and have cata-
Iytic activity to convert methylated CpG to hydroxilmethylated CpG, then to formylcytosine,
and finally to carbolxylcytosine [41, 42]. None of these modified forms are recognized by
DNMT1 and therefore they are subject to dilution via DNA replication [5](Chapter 17). The
ability of TET enzymes to convert methylated CpG to hydorxilmethylated CpG in vivo is ham-
pered by the binding of MBD proteins to methylated CpG [43]. Reversely, MBD proteins can-
not bind hydroxylmethylated DNA [42]. The combination of these processes can be captured
by a basal erasure reaction (reaction ® in Fig 2), where the expressions of the decay rate con-
stants & and k'T are derived in Section 1.3, Eqs (33) and (62) in S1 File. Specifically, we have
that 8 = 67, in which § is the dilution rate constant, 77 = 0 if the efficiency of the maintenance
process by DNMT1 is 100%, and 1 = 1 if DNMT1 is absent, consistent with earlier models
[44]. Similarly, we have that k;. = k], in which k7 is a constant proportional to the level of
TET enzyme, ij = 0 if MBD proteins are highly abundant, and # = 1 if MBD proteins are
absent.

Recruited erasure between activating histone modifications and DNA methylation.
DNA methylation and H3K4 methylation/acetylation have mechanisms to recruit erasers of
each other. Specifically, methylated CpGs recruit MeCP2 proteins, which associate with
HDAC: to establish de-acetylation [10](Chapter 15), [45-47]. Similarly, methylated CpGs
recruit MBD2, which interacts with the NuRD complex to also promote de-acetylation [10,
45]. These processes are captured by reaction ® in Fig 2. On the other hand, TET1 enzyme
has high propensity to bind to unmethylated CpGs through the CXXC domain [5](Chapter
17), [42]. This suggests a potential mechanism by which methylated H3K4 recruits TET1 to
nearby methylated CpGs, enhancing their de-methylation. This is captured by reaction @ in
Fig 2, in which the reaction constant k’T* has the same trend as k/T with the abundance of MBD
(Eq (76) in S1 File). A diagram representing the mutual inhibition between activating histone
modifications and DNA methylation is shown in Fig B in S1 File.

Cross-catalysis between repressive chromatin modifications. DNA methylation and
H3K9 methylation reinforce each other. Specifically, MBD proteins recognize methylated CpG
dinucleotides and recruit both histone modifying complexes to the methylated sites. MBDI, in
particular, binds to methylated CpG sites and recruits histone methyltransferases for H3K9,
SETDBI1 and Suv39H]1, which bring H3K9me3 about [45]. Similarly, MeCP2 binds methylated
CpGs and recruits histone methylases that lead to H3K9me3 [48]. We capture the process by
which DNA methylation recruits H3K9 methyltransferases by reactions ® in Fig 2. On the
other hand, DNMT3 binds to HP1 protein (reader of H3K9me3), suggesting that H3K9me3
recruits DNA methylation enzymes through HP1 [49]. This is captured by reactions @ in Fig
2. A diagram representing these synergistic interactions is shown in Fig C in S1 File. These
interactions create positive feedback loops, wherein each modification enhances the creation
of the other.

By combining the competitive interactions between activating and repressive modifications
(Fig 1C and Fig B in S1 File), with the cross-catalysis among repressive modifications (Fig C in
S1 File), we obtain the full chromatin modification circuit of Fig 1D, whose corresponding
reactions are listed in Fig 2. Sections 1.1-1.7 in S1 File contain the derivation of the models
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and of reaction constants. The expressions of reaction constants are function of the level of
eraser enzymes, writer enzymes, methyl-DNA binding proteins, and of cell division rate. Fig 2
summarizes these dependencies in a qualitative way. Section 1.8 in S1 File contains the list of
assumptions that were made to write these reactions. In particular, in this model we do not
include spatial regulation for simplicity, assuming that the higher-order structure of chromatin
allows any modified nucleosome to act on any other nucleosome within the gene, as in previ-
ous work [26]. Even if the model does not include spatial regulation, it still includes “beyond-
neighbor” interactions that play a role in bistability [26].

Model of transcriptional regulation by chromatin state

Chromatin state affects transcription by modulating nucleosome compaction. DNA wrapped
around highly compacted nucleosomes is difficult to access by TFs and therefore genes in such
DNA regions are not transcribed. By contrast, DNA wrapped around less compacted nucleo-
somes is more likely to be accessible by TFs, and hence is susceptible to transcription. Repres-
sive histone modifications and DNA methylation generally lead to increased compaction while
activating histone modifications keep a more open chromatin structure [10](Chapter 3).

We therefore assume that transcription is allowed only by D, but not by D or any of DY,
D5, and D},. In principle, nucleosome state D may allow some low basal transcription, through
non-specific targeting by chromatin remodelers [32, 50], but we assume this is sufficiently low
to be negligible. A more general model could include this basal rate, accounting for the fact
that transcription by RNA Pol II of D occurs concurrently with the deposition of H3K4me3
and hence with the conversion of D to D* [33]. Thus, by lumping together transcription and
translation, we obtain the following gene expression model (Section 4 in S1 File):

D* 5D+ X, X 50, (1)

in which X is the gene product, ¥, is the decay rate constant of X and e, = F(A, R) is an increas-
ing function of the concentration of TF activators A and a decreasing function of the concen-
tration of TF repressors R. Here, for simplicity, we assume that ¢, is a constant. The main
conclusions of this paper are not affected by this assumption.

Results

We analyze both the deterministic and stochastic behavior of the chromatin modification cir-
cuit model, focusing on the question of temporal duration of memory of transient input sti-
muli. Therefore, we regard this circuit as a dynamical system that takes k%, and k%,, modulated
by the binding of sequence-specific TFs to DNA, as inputs and gives as output the chromatin
state, captured by the number of modified nucleosomes D*, DY, D, and DY, within the gene
(Fig 3A and 3B).

We then consider two applications: TF-enabled positive autoregulation for robustness of
the active gene state to undesirable repressive input stimuli, such as due to endogenous silenc-
ing, and mutually repressing positively autoregulated chromatin modification circuits for
long-term persistence of multiple distinct gene expression patterns.

Time scale separation among constituent processes control bistability,
hysteresis, and time to memory loss
We first analyze the ordinary differential equation (ODE) model of the chromatin modifica-

tion circuit, focusing on how parameters affect bistability and hysteresis. Bistability is the co-
existence of two stable steady states, specifically active and repressed chromatin states, in the
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Fig 3. Time scale parameters ¢, ¢/, u and ¢’ control bistability and hysteresis in the chromatin modification circuit. (A) Diagram of the gene’s
inner chromatin modification circuit in which, compared to Fig 1D, we removed the lines and arrows indicating recruitment and catalysis. The
labels on each arrow specify the processes enabling that nucleosome modification as indicated below the reaction diagram. We use purple labels
for repressive modifications and blue labels for activating modifications. A visual representation of the relationships between the rates of these
processes and the parameters €, €, y and ¢/’ is provided. In particular, € and € quantify the time scales of basal and recruited erasure rates of all
modifications relative to those of auto and cross-catalysis. Similarly, 4 and ¢/ quantify the time scales of erasure rates (basal and recruited) of
repressive histone modifications and DNA methylation, respectively, relative to those of activating histone modifications. For the mathematical
definition, refer to Eq (2) and the related text. (B) Block diagram corresponding to the chromatin modification circuit. Here, n, n%, n® and n,
denote the numbers of modified nucleosomes D*, DY, DX, and DY, within the gene, k¥, = (k!,, k2,) and n* = n® + n¥ + n¥,. The pair (k%,, k%) are
the inputs and (1%, #") are the outputs. (C) Steady states of the system as a function of ¢, 4 and . Here, D* = n*/D,, and DX = n*/D,, are the
fractions of nucleosomes with activating or repressive modifications within the gene with a total of D, nucleosomes. Plots are obtained from
system (3) with u* = u® = u¥ = 0. The solid lines represent stable steady states, the dashed lines represent unstable steady states and the black
circle represents the bifurcation point (saddle-node bifurcation). In these plots 1 = uf, = u5 = u, = 0.1 and all the other parameters are set
equal to 1 (Fig K in S1 File shows different values). (D) Chart depicting the (¢, 4') combinations that result in a monostable (red, green or white) or
bistable (yellow) system for y = 10 (Fig L in S1 File shows different values of ). Here, € = 1. (E) Input/output steady state characteristics displaying
hysteresis for the (u*, D*) and (u®, D*) pairs, with uf = uf = R, for different values of € obtained from simulations of system (3). We consider
(D®,D*) = (1,0) as initial conditionsand we set u" = 0,0 =& =« = 1, u} = uf, = uf = 0.1, =1, = 1 and ¢’ = 0.8 (Fig M in S1 File shows
different values of y, ¢’ and €'). (F) Input/output steady state characteristics for the (u*, D*) pair, for different values of i’ obtained from
simulations of system (3). We consider (D*, D*) = (0, 1) as initial conditions and we set u* = 0, e = 0.07, ! = uf = uX = 0.1,

« =& = o = 0.1, and all the other parameters equal to 1 (Fig OA in S1 File shows the (uX, D®) steady state characteristics for the same parameter
values). (G) Input/output steady state characteristics for the (", D*) pair, for different values of € obtained from simulations of system (3). We
consider (D®, D*) = (1,0) as initial conditions and we set u® = 0, e = 0.15, 4 = 1, ¢/ = 1, 4! = uf, = uk = 0.1 and all the other parameters equal
to 1 (Fig OB in S1 File shows the (u*, D*) steady state characteristics for different values of ¢'). In all plots u* = ki, / (ki D,,,), u* = ki, /(kiD,,) for
ie{l,2}, (D* D*®) = (1,0) corresponds to the active state and (D*, D*) ~ (0, 1) corresponds to the repressed state. In the figure, we use green
and red, respectively, to indicate the activating and repressive modifications and related quantities.

https://doi.org/10.1371/journal.pcbi.1009961.9003

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009961  April 6, 2022 9/27


https://doi.org/10.1371/journal.pcbi.1009961.g003
https://doi.org/10.1371/journal.pcbi.1009961

PLOS COMPUTATIONAL BIOLOGY Epigenetic cell memory

absence of an input stimulus. Hysteresis occurs when the output of the system follows two dif-
ferent paths depending on whether the input is increased or decreased. In particular, the out-
put remains in the proximity of the value reached for high input when this is removed that is,
the system “remembers” a transient input stimulus. We then consider a stochastic model to
address the question of temporal duration of this memory, given that noise intrinsic to molec-
ular reactions can always displace the system’s state.

For our analysis, we let n, n?, n%, n¥, and n” denote the number of nucleosomes with acti-

. A .
vating (D™), repressive (D}

, D, and DY), and no modifications (D), respectively, within a
gene composed of a total of D, nucleosomes. All analyses are performed considering the unit-
with D;,; = Di/Q and Q the reaction volume. We define the
following non-dimensional parameters, capturing the characteristic time scales of the circuit’s

constituent processes:

less normalized time © = tkj, D, ,

k,, ky ok, S+ kY K Kk

:@v 0‘-=@, OC:@, €= kiD 76-—@, ,U-—Ey u

o = T
A
tot kE

(2)

Here, o is the non-dimensional auto-catalysis rate parameter, while &, and ¢ are the non-
dimensional cross-catalysis rate parameters, which we assume on the same order without loss
of generality. We further let (6 + k&) /(8 + k%) = bu with b = O(1), implying that  scales the
ratio between the erasure rates of repressive and activating histone modifications. We similarly
let (5 + k;)/ (6 + ki) = Bu’ with B= O(1), implying that y' scales the ratio between the era-
sure rates of DNA methylation and those of activating histone modifications. From these rela-
tionships, it also follows that (6 + k%) /(k4,D,,,) = beu and that (8" + k..)/(kD,,,) = Beit'.
Therefore, the parameter e scales the ratio between the basal rate at which all modifications are
erased and the rate at which they are auto or cross-catalyzed. Finally, since k} /k%, = pe’ and
Ky /Ky, = W', it follows that €’ scales the ratio between the rate at which modifications are
removed through mutual recruitment of erasers and that at which they are auto or cross-cata-
lyzed. These parameter definitions are pictorially conveyed in Fig 3A.

Putting these definitions together, in our model, € and €’ are non-dimensional parameters
that quantify the time scales of basal and recruited erasure rates of all modifications relative to
those of auto and cross-catalysis. Similarly, 4 and ¢’ are non-dimensional parameters that
quantify the time scales of erasure rates (basal and recruited) of repressive histone modifica-
tions and DNA methylation, respectively, relative to those of activating histone modifications.
Since these normalized parameters are functions of the biochemical reaction rate constants
(Eq (2)) and, in turn, the reaction rate constants are known functions of the level of writer and
eraser enzymes, TET enzymes, and MBD proteins (see Fig 2 and Section 1.6 in S1 File), it is
possible to experimentally vary these parameters by over-expressing, inhibiting, or by recruit-
ing these molecular players.

Deterministic behavior

We first analyze the ordinary differential equation (ODE) model of the chromatin modifica-
tion circuit, focusing on how the above parameters affect dynamics. To this end, we assume
that the number of total modifiable units Dy, is sufficiently large such that the variables n, nt,
nk, n®, and n” can be considered real-valued and thus their temporal evolution can be
described by ODEs. In particular, we describe the system in terms of fractions of modifiable
units, thatis D* = n*/D,, D} = n*/D,,, DX = n¥/D,,,, D¥, = n*,/D,, and D = n”/D,,. We
further introduce the normalized inputs #* = u} + u* with u} =k}, /(kj,D,,,) and

ut = ki, /(kyDyy,), iy = uiy + uf with ufy = ky, /KD, and uf = ks, /(kyD,,), iy =

tot? tot? tot?
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ul + uf with ul = k2, / (ki D,,,) and uf = k3, /(kj,D,,,). With these definitions and letting
% = dx/dr, the ODEs describing the system in non-dimensional variables are given by

1) +@) + (19) @®+®

DE = (@l + o/ (DB + DR))D + u(be + € D*)DE,

de novo est. 4 cross-catal.

@ +® + (3 1@ + (19

—(ufh + a(DF + D) + a(Dff + DY) DI —p (Be + € D*))Dff

erasure

@+6+6+® @+ W

DE = (@ + o(DE + D) + a(DE + DE))D + 11 (B¢ + € D*)DE,

de novo est. 4+ auto-catal. + cross-catal.

1) + (19) D+®

~(uR + o/ (DE + DE))DE —pu(be + ¢ DA))DE (3)

erasure

(10) + (19) @+®+®)

DR = (uf + o (DE 4+ DE)DE + (ull + o(DE + DE) + a(DE + DE))DE

de novo est. 4 cross-catal. de novo est. 4+ auto-catal. + cross-catal.

®+@+@+

—(u'(Be + € D) + p(be + € D)) D,

erasure

©+D+® ©+9+®
b= 0D T lDE D) (D DRI

in which D =1 — D¥ — DX — D® — D* and the circled numbers indicate the corresponding
reactions from Fig 2 (see Section 1.6 and Eqs (80) in S1 File for derivation).

In the absence of inputs (u* = uf = u} = 0), system (3) has a unique stable steady state, if €
is not sufficiently small. This steady state has D® > D for small i/'. When ¢ is sufficiently
small, the system is bistable, with both active (D* & 1) and repressed (D* = 1) co-existing sta-
ble chromatin states. But when y' is very small, even for small ¢, the system returns monostable
with a unique stable steady state corresponding to the repressed state (Fig 3C and 3D and Fig
Kin S1 File). Furthermore, as ¢/’ increases (DNA methylation erasure rate increases), the sys-
tem approximates well the histone modification system (Fig 1C), wherein DNA methylation is
not present. This is because when /' is sufficiently large, the DNA methylation is erased very
quickly and then D® = D® 4 DX + DX, ~ DE. As a consequence, when ¢ is sufficiently small
the system is bistable for intermediate values of 4, monostable with D* ~ 1 when y is large
and monostable with DX ~ 1 when  is small (Fig D in S1 File). Varying ¢ does not change
these trends, except for € < ¢, in which case the system returns monostable (Fig K in S1 File).

Fig 3E shows the input/output steady state characteristics of the chromatin modification
circuit. Specifically, as u* is increased starting from D* = 0, the state switches to D* ~ 1 for
u” above a critical value, which increases as ¢ decreases. When u* is decreased back to zero,
the path that D* follows is different and it can keep D* ~ 1 even when u” = 0 if € is sufficiently
small. In this case, we say that the state transition becomes irreversible and the system keeps
memory of its input stimulus. From a biological point of view, this implies that an activating
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transient input stimulus allows to permanently re-activate a silenced gene. This memory van-
ishes as € increases. When ' decreases, the value of u” required to flip the system’s state to
fully active increases until we reach a regime under which the memory is lost (Fig M in S1
File). A similar behavior is observed for the relationship between the repressing input «* (with
ut = uf = u*) and D* (Fig N in S1 File). Biologically, this implies that a repressive transient
input stimulus can permanently silence an initially active gene. However, as opposed to the
(u*, D*) characteristics, if we reduce ¢/, the minimum value of 4" required to silence the sys-
tem (D® ~ 1, D* & 0) decreases (Fig 3F and Fig N in S1 File). This also shows that as ¢/’ is
decreased, the active state becomes less robust to repressive input stimuli.

A comparison of the plots of Figs M and N in S1 File for small € and y = 1 reveals that, even
when g/ = 1, it takes smaller values of u" to switch the state to DX = 1 than the values of u*
required to switch the state to D* = 1. This fact highlights that it is the structure itself of the
chromatin modification circuit, rather than the rate constants alone, to “bias” the system
towards a repressed chromatin state. In fact, the two-layer topology of the repressive modifica-
tions confers increased robustness to the repressed state with respect to activating stimuli k7,
(Fig 3A). This is in contrast to what is observed for the system that does not include DNA
methylation (Fig 1C), wherein once all parameters are equal to each other, the stability land-
scape is symmetric (Section 2.1 in S1 File). Varying €' does not significantly affect these trends
(Figs M and N in S1 File), unless € < ¢, in which case hysteresis is lost (Fig 3G).

In summary, when recruited erasure (¢’) and auto-catalysis/cross-catalysis (o, @, o') are suf-
ficiently faster than basal erasure (¢), the circuit displays bistability and hysteresis, except if y
and/or y' are sufficiently small. In this case, the unique stable state is the fully repressed chro-
matin state, independent of all other parameters.

Stochastic behavior

We next evaluate how the stationary distribution of the chromatin state, the time to memory
loss, and the ability to reactivate a repressed gene depend on €, €, p and ¢/, and on the inputs
u* and u®. To this end, we first perform a computational study by using Gillespie’s Stochastic
Simulation Algorithm (SSA) [51]. We then complement this with a mathematical derivation of
the approximate expressions of both the stationary distribution and the time to memory loss
as a function of the parameters and input stimuli.

Fig 4A and 4B shows how the stationary distribution is shaped by e and ' (A) and by inputs
u® and u” (B). Specifically, ¢ has a most critical role. As it decreases, with all other parameters
remaining fixed, the peaks of the distribution become more concentrated about the fully
repressed and fully active chromatin states. Highly concentrated peaks imply that the probabil-
ity of finding the chromatin state outside of these configurations is very small. This property is
connected to the time to memory loss, defined as the expected value of the earliest time the
chromatin state reaches the active state starting from the repressed state and viceversa. In fact,
as € is decreased, the chromatin state starting in either the repressed or active state takes longer,
on average, to reach the active or repressed state for the first time, respectively (Fig 4C and
4D). In contrast to what found for the histone modification model of Fig 1C (Fig FA in S1
File), decreasing € also has an effect in increasing the height of the peak in correspondence of
the repressed state to the detriment of the peak corresponding to the active state (Fig 4A).
When ¢/ is decreased, this bias increases, and the peak in correspondence of the repressed
state becomes more concentrated (Fig 4A). Varying y has a similar effect as varying ¢’ (Fig S in
S1 File). Inputs u® and u” each increase the height of the peak corresponding to the repressed
and active state, respectively (Fig 4B). Consistent with the deterministic analysis (Fig M in S1
File), for smaller 1/, it is required a larger u” to increase the probability of finding the state in
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Fig 4. Time scale separation parameters ¢, ¢ and g’ control bimodality, time to memory loss, and reactivation time in the chromatin modification
circuit. (A)-(B) Stationary probability distributions 7 of (n*, n) for the chromatin modification circuit in Fig 3A obtained by simulating the reactions
listed in Fig 2 with the SSA. (A) Effect of € and ¢/’ on the distribution: in the left side plots € = 0.19, 0.02 and ¢/’ = 1. In the right side plots, 4’ = 1, 0.1 and

€ =0.19. (B) Effect of the input stimulus on the distribution: here, € = 0.12 and ¢ = 0.8. In the top plots, u” = 0, 1, and in the bottom plots uf = u? = u*
and u® = 0, 1 (Fig R shows different values of ' and ¢). The parameter values for each panel are listed in Table A in S1 File. In all simulations, ¢ = 1 and p
=1 (Figs S and T in S1 File show different values) and we decrease ¢ by decreasing § + k2 (similar results can be obtained if we vary k%, as shown in Fig
Qin S1 File). (C) Time trajectories of n* starting from a repressed chromatin state n* = 5, n® = n¥ = n¥, = 15, as e and ¢/’ are varied. Simulations are
stopped when n” = 6 for the first time. (D) Time trajectories of n* starting from an active chromatin state n* = 45, n%, = 5, as ¢ and ' are varied.

Simulations are stopped when 1” = 6 for the first time. In all plots of (C)-(D), time is normalized according to t = t% D, €=0.36,0.12, 4/ =1,0.5, u =
1,and ¢ =1 (Fig V in S1 File shows different values of €'). The parameter values are listed in Table B in S1 File. (E) Effect of € on the stationary
probability distribution 7. We set € = 0.12, 4’ = 1, y = 1 and € = 1, 0.001 from left to right (Fig U in S1 File shows different values of €'). The parameter
values for each panel are listed in Table P in S1 File. (F) Time trajectories of the system starting from #* = 45, n* = 5 and applying an input u* that, at
steady state, leads to a unimodal distribution in the proximity of the active state #* = Dyo. The parameter values are listed in Table C in S1 File. In
particular, u* = 3.2, 4/ = 0.1, e = 0.24,0.16, 4 = 1 and € = 1 (Fig W in S File shows different parameter values). In all plots, n* = n® + nf + n¥, and
simulations are obtained by implementing the set of reactions listed in Fig 2 with the SSA [51]. In all simulations, o« = & = & = 0.2. In our model,
parameters € and € quantify the time scales of basal and recruited erasure rates of all modifications relative to those of auto and cross-catalysis. Similarly,
parameters u and y' quantify the time scales of erasure rates (basal and recruited) of repressive histone modifications and DNA methylation,
respectively, relative to those of activating histone modifications. Mathematical definitions are found in Eq (2). In all plots (n*, n®) ~ (50, 0) corresponds
to the active state and (n, n%) = (0, 50) corresponds to the repressed state. In each panel of (C), (D), and (F), the number of trajectories plotted is 10.

https://doi.org/10.1371/journal.pchi.1009961.9004

the fully active chromatin state (Fig RB in S1 File). By contrast, €’ does not significantly affect
the trends observed for €, ¢/, p and the inputs, although it modulates some aspects of the distri-
bution (Section 3.5 and Figs Q and T in S1 File). Specifically, when € decreases compared to e,
the peaks of the distribution become less concentrated and, in the extreme case where €’ < ¢,
the distribution becomes unimodal (Fig 4E).
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In the regime where both ¢ < 1 and € < 1, in which the system displays a bimodal distri-
bution (Figs Q-T in S1 File), we can analytically derive a one-dimensional Markov chain
approximation that allows analytical computation of the stationary distribution and of the
time to memory loss as functions of the parameters (Sections 3.2-3.4 in S1 File). Biophysically,
in this regime, the reactions represented by the labels BE; and RE; in Fig 3A become slower
compared to those represented by the label C;. In particular, letting x = #n%, with x € [0, Dyo],
we have that, when e < 1, the stationary probability distribution 7(x) can be approximated by

ﬁ if x=0
Teey(x) =< 0 if x#0,D,,, (4)
Hip if x=D,,

with

(@t ut, ot ata)

P - = )
‘ (@ +uf, +1)
2 _
( —I—(oc—s—oc+oc)D“) . it (5)
i1 \ '€ (D‘f’(‘:i) K, (ﬁA + —(D]g"‘:’)) [l bPeKy, ut
P =P, -P,

in which 4 = u? + u*, u®, = u® + uf + uf + uf and K, defined in Eqs (161) and (171) in
S1 File, independent of ¢, p, ¢/ and €’ (see Section 3.3 in S1 File for the mathematical deriva-
tions). From this expression, we conclude that if € < 1, 7z(x) = 0 for all x except for x = Dy
(fully repressed state) and x = 0 (fully active state), implying that the probability of finding the
system in one of the intermediate states is about zero. This is in accordance with the computa-
tional results of Fig 4A, which show higher concentration around the extreme states, and with
Fig 4C and 4D, which show smaller likelihood of transitioning out of those extreme states as €
is decreased. When € goes to zero, P — 0o, which implies that 7#(Dy) ~ 1. This is consistent
with the structural bias of the chromatin modification circuit towards the repressed chromatin
state (Fig 3A) and the computational results of Fig RA in S1 File. This bias is enhanced as g’ is
decreased since P — oo as yy’ — 0, leading to m(Dy,) = 1. Furthermore, in agreement with
what observed in Fig 4B, an increase of u”* decreases P and hence increases 7(0). By contrast,
an increase of u® increases P, which, in turn, increases 71(D,,,). Also, larger u” values are
required to increase the probability of the active state to the same level when y' is smaller.
Similarly, the normalized time to memory loss of the repressed state can be approximated

as (Section 3.4 in S1 File)
Dtn( 1
T 6
TR Ui 62 < h' ) ( )

with A} an increasing function, 4’ (0) = 0, and K and K, functions independent of ¢, ¢/’ and y,

while the normalized time to memory loss of the active state can be approximated as
Ky (), R W)
T,~— |1 , 7
(1 0 2

with h} an increasing function and k}(0) = 0, and K4 and K, functions independent of ¢, ¢/
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and y. In the limiting condition where € — 0, we have that both 7, — oo and T, — 00. There-
fore, decreased e is the driver for increasing the extent of epigenetic memory of both the active
and repressed chromatin states. Furthermore, because of the structural asymmetry of the chro-
matin modification circuit, the power of € is different in the two above expressions, indicating
that decreased e increases the extent of memory much more for the repressed state than for the
active state. This is in contrast with what obtained for the histone modification circuit, in
which both 7, and 7, are O(1/¢) (Eqs (138) and (140) in S1 File). Finally, decreased y and y/
lead to larger 7, but to lower 7 ,. These trends are in agreement with the simulations in Fig 4C
and 4D. In particular, in each panel, we plotted a number of trajectories equal to 10 to provide
a comprehensive representation of the parameter effects on the trajectories and, at the same
time, a clear reading of the figure.

We next determine via simulation how the parameters €, ¢/ and € affect the time to reacti-
vation, i.e., the time it takes to re-activate an initially repressed chromatin state by applying a
sufficiently large activating input stimulus u” (Fig 4F). The time trajectories show a switch-like
behavior, which is more prominent for e < 1, 4/ < 1,and ¢ > 1 (Fig W in S1 File). Also, the
latency, i.e., the time the trajectory takes to switch after an activating input is applied, is highly
variable and its variability is mostly dictated by small € and small i/, which, together, make
gene reactivation a low probability event. Furthermore, the time to reactivation decreases by
increasing ¢’ and/or increasing €, consistent with results from the deterministic model (Fig X
in S1 File).

Taken together, our results indicate that basal erasure rate sufficiently smaller than
recruited erasure rate (e sufficiently small and €’ sufficiently larger than €) allows a bimodal dis-
tribution such that both active and repressed chromatin states each have high probabilities
compared to intermediate states. As € decreases, this distribution is more concentrated about
the fully active and repressed states and the time to memory loss of either state increases. Even
when there is no asymmetry between activating and repressive modification erasure rates (4 =
1 and ¢’ = 1), the time to memory loss is larger for the repressed chromatin state. This asym-
metry is accentuated by ¢/ < 1.

Relationship with published data

In [52], the authors study the kinetics of silencing and reactivation of chromatin modifications,
including H3K9me3 and DNA methylation, at the single-cell level. In particular, they show
that silencing and reactivation has a all-or-none behavior. Our model predicts that this all-or-
none response is observed when the underlying chromatin modification circuit has a bimodal
stationary distribution, which we proved requires ¢ < 1 and € sufficiently larger than e (Fig W
in S1 File). This suggests that in practice we should expect ¢ < 1 and € not too small. Further-
more, data on temporal dynamics of DNA de-methylation in vivo indicate that ¢’ < 1 (Section
3.11in S1 File). Early elegant experimental studies performed by [53] further show that the
latency of reactivation of a silenced gene is highly variable. In our model, a highly variable
latency of reactivation events is predicted under the parameter regime where both € and y' are
small (Fig 4F and Fig W in S1 File), suggesting that 4/ < 1 may in fact be responsible for the
experimentally observed latency of reactivation [53]. Furthermore, in [53] it is shown that
increased proliferation rate leads to a faster reactivation kinetics. In our model, increased pro-
liferation is captured by increased € and in fact higher € leads to faster kinetics of reactivation
events (Fig YA-YC in S1 File), in agreement with the observations in [53].

Finally, a basic DNA methylation model that does not include MBD proteins cannot reflect
the low effective active erasure rates of DNA methylation through the action of TET enzymes,
kr, encountered in vivo (reactions (45) in S1 File). In our model, the ability of TET enzymes to
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convert methylated DNA to hydorxilmethylated DNA is hampered by the binding of MBD
proteins to methylated DNA (Section 1.3 in S1 File). As a result, the effective active erasure
rate constant, k., derived in Eq (62) in S1 File, can be written as k. = k.7 in which kris a con-
stant proportional to the level of TET enzyme, where 7 = 0 if MBD proteins are highly abun-
dant, and ij = 1 if MBD proteins are absent (Eq (62) in S1 File). This implies that the
parameter u' = k; /k# is proportional to the amount of TET enzymes and decreases with the
amount of MBD proteins. Lower levels of MBD proteins result in higher 4 and in our model
this leads to faster reactivation kinetics and decreased variability of reactivation time (Fig
YD-YF in S1 File). This is consistent with the experimental observations of [54], which show
that knocking down of MBD proteins not only makes the reprogramming process faster, with
almost the entire cell population converted into iPS cells within 7 days, but makes it also
almost deterministic.

Positive TF-enabled autoregulation extends memory of active chromatin
state robustly to perturbations

The study of the chromatin modification circuit reported in the previous section shows that
the two-layer topology of the repressive modifications biases the system towards a repressed
chromatin state, and that this bias becomes even more pronounced for low values of ¢/'. It fol-
lows that, when the chromatin state is in the active configuration, without any activating input
stimulus, even a small perturbation can cause a quick silencing of the gene. For an engineered
gene expression system, this silencing will disrupt the intended engineered function of the cell
line, as observed in experiments with different cell types [16-19]. Here, we study how TF-
enabled positive autoregulation can alleviate this problem by restoring memory of the active
gene state and by making it more robust to endogenous silencing. A possible form of positive
autoregulation is when the gene product X acts as a TF activator that recruits writers of activat-
ing histone modifications to the gene. This is the case of many TFs involved in cell fate deter-
mination, such as Oct4 and Nanog [55]. The analysis of this design thus not only provides a
potential engineering solution to the silencing problem of chromosomally integrated gene
expression systems, but it also allows for a different understanding of the role of positive auto-
regulation in natural networks.

In this case, the input k%, of the chromatin modification circuit is a monotonically increasing
function of #* (Section 1.7 in S1 File). The positive autoregulation model is thus given by com-
bining the chromatin modification circuit reactions (Fig 2) with the gene expression reactions
(1), and the expression for ki, (Eq (82) in S1 File). The corresponding interaction diagram is
shown in Fig 5A and 5B shows the block diagram representation with input k¥, and output n~.

Deterministic behavior

Considering again the normalized time t = tk%, D, ,, and letting X := n*/D,,, with n* the
number of molecules of X, &, = «,/(k4,D,,),and 7 =y, /(k%D,,), % = dx/dr, the ODE asso-
ciated with gene expression in non-dimensional variables can be written as

X =aD'-3X. (8)

By assuming molecular counts sufficiently high to use ODEs and by combining the ODEs
of the chromatin modification circuit (3) with those of gene expression (8), we obtain the ODE
model of the positive autoregulation system (Eqs (1) in S2 File). We first realize bifurcation
plots with p, = a,/y, the bifurcation parameter (Fig A in S2 File). As p, increases, the system
transitions from monostable with one stable equilibrium point corresponding to the fully
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Fig 5. Positive autoregulation allows robust temporal extension of memory of the active chromatin state. (A) Diagram of a positively autoregulated
gene where the gene’s product X recruits writers of D*. A simplified representation of the chromatin modification circuit is introduced, in which the
the labels are not represented. (B) Block diagram corresponding to the circuit in panel (A). Here, k¥, = (kl,, k%,). Furthermore, k%, is the input and n*,
the number of molecules of X, is the output, which feeds back on ki, by increasing its value. (C) Input/output steady state characteristics for the
(uR, D*) pair, with u} = u} = u*, for different values of p, obtained from simulations of system Egs (1) in S2 File with (D*, D, X) = (0,1, p,) as initial
conditions. The parameter values are listed in Table A in S2 File. In particular, € = 1,y = 1, 4’ = 0.7, € = 0.1. (D) Stationary probability distribution 7
obtained by simulating the reactions listed in Table B in S2 File with the SSA. As before, n® = n® + nf + nf,. The parameter values of each plot are
listed in Table B in S2 File. In particular, p, = 0,0.1,10,¢ =1,y =1, ' = 0.5, ¢ = 0.12 (Figs B and C in S2 File show different parameter values). (E) Time
trajectories obtained by simulating the reactions listed in Table C in S2 File with the SSA with no inputs and starting with initial conditions n* = 45,
¥, = 5and n* = p, n*. Simulations are stopped the first time at which #* = 6. In all plots, time is normalized according to T = t% D, €=0.36, 4 =
0.5,4=1,¢ =1,and p, =0, 0.2, 5. The parameter values of each panel are listed in Table C in S2 File. In each panel, the number of trajectories plotted is
10. (F) Time trajectories of system of reactions listed in Table D in S2 File with the SSA starting from the active chromatin state (n* = 45, n° = 5 and n*
= 45). At the indicated times, n”~ is reset artificially to zero (dashed lines). The parameter values for each simulation are listed in Table D in S2 File. In
particular, p, =1, = 0.1,y = 1, € = 1 and € = 0.4, 0.02. For both values of ¢, the system is bistable. In our model, ¢, defined in Eq (2), is a non-
dimensional parameter that quantifies the time scales of basal erasure rate of all modifications relative to those of auto and cross-catalysis. In the figure,
we use green to indicate the activating modification and related quantities.

https://doi.org/10.1371/journal.pcbi.1009961.9005

repressed chromatin state to bistable in which also a fully active chromatin state is a stable
equilibrium. For lower values of i/, higher values of p, are required to make the fully active
state appear as a stable equilibrium. Therefore, increased p, can compensate, to some extent,
for the asymmetry of the system, thus restoring stability of the active state. Varying y has a sim-
ilar effect as varying ¢'. In order to gain a qualitative understanding of the way positive autore-
gulation affects the stability of the system, we also conducted a mathematical analysis
assuming that protein dynamics are much faster than chromatin modification dynamics. This
analysis shows that positive autoregulation has an effect equivalent to increasing the auto-
catalysis rate of the activating histone modification. Based on the bifurcation plots realized for
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the chromatin modification circuit (Fig K in S1 File), a higher auto-catalysis rate constant kf,
can restore the active state stability, consistent with the results in Fig A in S2 File.

The strength of positive autoregulation p, also affects the robustness of the active gene
state’s memory to endogenous silencing. Specifically, we introduce in our model possible per-
turbations that can lead to silencing, due to for example chromatin spreading from surround-
ing gene loci, by considering u¥, uX > 0. The input/output steady state characteristics (u*, D*)
with uf = uR = uR, shows persistence of the active state to increasing values of u” as p, is
increased (Fig 5C). These results imply enhanced robustness of the active state to repressive
input perturbations.

Stochastic behavior

Here, we determine how positive autoregulation modulates the stationary probability distribu-
tion of the chromatin state and the time to memory loss of the active state. To this end, we first
perform a computational study by simulating the full set of reactions (Table B in S2 File) with
the SSA [51]. This study shows that, increasing p,, the peak in correspondence to the active
state becomes more concentrated and its height increases to the detriment of the peak corre-
sponding to the repressed state (Fig 5D). However, for lower values of ¢/, the height of the
peak in correspondence to the active state is also lower, implying that a higher value of p, is
required to increase the peak to the same level (Fig C in S2 File). Reducing y has a similar effect
as reducing ¢/ (Fig C in S2 File). These results are in agreement with the temporal trajectories
of n (Fig 5E), which indicate that the time to memory loss of the active state increases when
Px is increased. The trends with which p, affects the time to memory loss of the active state do
not depend on € (Fig D in S2 File).

To gain an analytical understanding of how p, affects the stationary distribution and the
time to memory loss, we also computed analytically these quantities as a function of the system
parameters in the regime € < 1 and € < 1 and by assuming that protein dynamics are fast
compared to chromatin dynamics. The latter assumption may be satisfied if the protein is
quickly degrading due to proteolysis [56]. In this regime, we obtain a one-dimensional Markov
chain reduction of the system (Section 1.3 in S2 File), which leads to the stationary probability
distribution for € < 1 as

ﬁ, if x=0
T (x)~=q0 if x#0,D,, (9)
ﬁ) if x=D,,
with
_ (o ta+o)
b (ug Hutp 1)
S
_ 2( u®, + (0 + & + o —) _
v 7D.o. 1 < 12 ( )Dtot ' (ufz) (10)
P (D — 1) 5 ( i)\ | mbpeK, (uf)’
i=1 / tot K A ~A 1 tot Dot \770
:u:u € Dtot l<u0 + (u px + ) Dtot )
P =P, P,

. . R _ _ = . .

in which x = n", u,,, = uy + uy,, iy, = uy + uy, + uj + us, and K, defined in Eq (161) in S1
File. From these expressions, we conclude that by increasing p,, P decreases and, in turn, the
height of the peak in correspondence to x = 0 (active chromatin state) increases to the
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detriment of the height of the peak at x = Dy, (repressed chromatin state). Furthermore, the
smaller 4 and ¢/’ are, the higher p, has to be in order to raise the peak corresponding to the
active state. These results are in agreement with the computational results (Fig 5D and Fig C in
S2 File).

Using the same model reduction, we derive the formula of the normalized time to memory
loss of the active chromatin state, which, for € < 1, can be approximated as

= NfZ(px> £ h;(px,,u,u,)
‘EA ~ p 1 + 1:21 KA 9 (11)

in which f, and kj, are increasing functions of their arguments, h(p,,0) = 0, and K}, are func-
tions independent of €, ¢, y and p, (Section 1.4 in S2 File). From this expression, it follows that
if p, increases, 7, increases. This confirms that positive autoregulation helps extend the mem-
ory of the active state.

Taken together, these findings indicate that positive TF-enabled autoregulation contributes
to extend the duration of memory of an active chromatin state, thus re-balancing the asymme-
try that naturally biases the chromatin modification circuit towards a repressed state. This is
also manifested in the effect of positive autoregulation on the time to reactivation of a gene,
wherein the time to reactivation decreases by increasing p, (Fig E in S2 File).

We also determined how the chromatin modification circuit contributes to the robustness
of the active state’s memory to perturbations that reduce the availability of X at the gene (Fig
5F). For low € the robustness is improved, implying that the system is able to keep the active
chromatin state even when X is transiently removed. Then, small e may be a way in which the
chromatin modification circuit enables robustness of the active state’s memory to disruption
of the binding of the TF X to DNA, such as due to DNA replication and cell division.

Wiring positively autoregulated chromatin modification circuits allows
long-term persistence of gene expression patterns

Long-term and reconfigurable memory of multiple gene expression patterns is desirable for a
number of applications, such as programmable cell therapies and in vivo transdifferentiation,
wherein TFs need to be activated in a specific temporal sequence and in an exclusive fashion
[57, 58]. We thus analyze a candidate circuit to implement this function: two positively autore-
gulated chromatin modification circuits that mutually recruit writers of repressive modifica-
tions to each other (Fig 6A). This is also a common motif in GRNs involved in cell fate
determination, such as the PU.1/GATA.1 antagonism [35, 59], the Nanog/GATA interaction
[6], and the Cdx2/Oct4 circuit motif [6, 60].

For each gene, the chromatin modification circuit is described by the reactions in Fig 2 and
the gene expression reactions are listed in (1). In each gene’s chromatin modification circuit,
k%, is a monotonically increasing function of the other gene’s product level and k;, is a mono-
tonically increasing function of the gene’s self product level (Section 2.1, Egs (10) in S2 File).
The system is then obtained by input/output connecting two chromatin modification circuits
through the TFs that they are expressing (Fig 6B).

Deterministic behavior

By combining the ODE:s of the chromatin modification circuit and those of the gene expres-
sion circuit (Eqs (3) and (8), respectively) for each gene, by defining X = 5/ Dyopr Z = 1/ Doy
and by properly setting the inputs according to Eqs (13) in S2 File, we obtain the ODEs of the
mutual repression system (Eqs (14) in S2 File). To determine the number and stability of
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Fig 6. Mutual repression circuit: Robust memory of multiple co-existing gene expression patterns. (A) Interaction diagram of two mutually
repressing and positively autoregulated genes, wherein the product of each gene recruits writers of repressive chromatin modifications to the other
gene. Here, X and Z represent the products of the two genes. (B) Block diagram corresponding to the circuit in panel (A). Here, #* and n” correspond
to the number of molecules of X and Z, respectively. (C) Stationary probability distribution 7 of the system obtained by simulating the reactions listed
in Tables E and F in S2 File with the SSA, in which n® ¢ with € = X, Z represents the number of nucleosomes in each gene with activating histone
modifications. In (C), p, = p, = p with p = 0, 0.1, 10 and € = 0.48, 0.2. The parameter values of each plot are listed in Tables E and F in S2 File. For all
simulations we have y = 1, 4’ = 0.6, and ¢ = 1 (Figs G-I in S2 File show different parameter values). (D) Time trajectories of n * and n* # starting from

1™ X = Dyo and n™ Z = 0, in which n¥ and nZ are reset to zero at the indicated times (dashed line). Time is normalized with respect to % D,,. The
parameter values for each panel are listed in Tables G and H in S2 File. In particular, p = 0.15, 4 = 0.6, £ = 1, € = 1 and € as indicated. In all plots, we
assume equal parameters for both chromatin modification circuits. In our model, ¢, defined in Eq (2), is a non-dimensional parameter that quantifies
the time scales of basal erasure rate of all modifications relative to those of auto and cross-catalysis. In all plots (™€ ™ % = (50,0) and (n™ &, n® ) ~
(0, 50) correspond to the active and repressed state of gene ¢, with € = X, Z. In the figure, we use green and purple, respectively, to indicate D** and D*

Z and related quantities.

https://doi.org/10.1371/journal.pchi.1009961.9006

equilibria, we exploit the results obtained for the positive autoregulation circuit. In fact, the
block diagram in Fig 6B makes it explicit that the mutual repression circuit is the input/output
composition of two positively autoregulated genes, in which the output of one gene, n* or n”,
is used as an input to the other gene by increasing its k. This analysis, described in Section
2.3 in S2 File, shows that, for low p values and large ¢, the system has a unique stable steady
state about the origin, where both genes are “off”. By increasing p, the system acquires two sta-
ble steady states, in which one gene is “on” and the other is “off”. That is, one equilibrium with
D** > D*% and the other equilibrium with D** < D*#. When ¢ is small, also the steady
state about the origin is stable, while when ¢ is large, it is not. Thus, when p is large (high
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expression rate) and e is small, the system is tri-stable. When y/' is increased, the system can
have four co-existing stable steady states, acquiring a new stable steady state in which both
genes are “on” (Fig F in S2 File). Since we expect ' to be much smaller than one, this last sce-
nario may not be observed in practice.

Stochastic behavior

Here, denoting the number of nucleosomes in each gene with activating histone modifications
as n™ X and n™ %, we first determine how p,, p,, and € shape the stationary distribution of

(n™ X, ™ %) and hence the admissible gene expression patterns. Specifically, we perform a
computational study of the distribution by simulating the full set of reactions (Tables E and F
in S2 File) with the SSA [51]. If the production rate constant p of both proteins is low, indepen-
dent of ¢, the distribution has one peak only in correspondence to both genes being “off”, con-
sistent with the deterministic analysis. Therefore, the only possible gene expression pattern in
this regime is both genes “off”. When p is sufficiently increased, the peak in correspondence of
both genes “off” disappears and two peaks arise in correspondence of one gene “on” and the
other “oft”, thus enabling two symmetric gene expression patterns. There is an intermediate
protein production rate constant regime, in which a third gene expression pattern with both
genes “off” is also possible. In all cases, decreased € makes the distribution more concentrated
about each of the peaks, thereby also reducing the probability of transitioning out of that
expression pattern (Fig 6C). The admissible gene expression patterns are largely shaped by the
choice of the two protein production rate constants (Fig I in S2 File). Reducing ¢/, as before,
biases the distribution towards the repressed chromatin state (n™ X, n™ %) 2~ (0,0) (FigH in S2
File) while varying €’ does not change the trends with which the key parameters affect the dis-
tribution (Fig G in S2 File). The computational results of Fig 6C are in agreement with those
obtained from the analytical study (Section 2.4 in S2 File).

Furthermore, we determine computationally how e affects the robustness of the memory of
an admissible gene expression pattern with respect to resetting the amount of the gene’s pro-
tein products X and Z to 0 (Fig 6D). Lower € values result into enhanced robustness of the pat-
tern’s memory to resetting n* and n” to zero, indicating that the chromatin modification
circuit with lower € helps memory of co-existing gene expression patterns persist through
changes in the availability of TFs to the promoters. Finally, we analyzed whether overexpres-
sion of TF can transition the system from one gene expression pattern to the other one.
Indeed, even when a gene expression pattern displays high robustness to TFs variability
(low €), the system allows a transition from one admissible expression pattern to the other one
by TF overexpression (Fig ] in S2 File). The speed of transition increases with the level of over-
expression and decreases with e.

Discussion

We analyzed the dynamics of a biologically motivated circuit motif among histone modifica-
tions and DNA methylation within a gene, which we called the gene’s inner chromatin modifi-
cation circuit (Fig 1D). We found that separation of time scales among three constituent
processes, basal erasure, recruited erasure, and auto/cross-catalysis controls memory of input
stimuli. Specifically, when basal erasure rate € is sufficiently lower than both recruited erasure
rate € and auto/cross-catalysis rates (o, &, o), then the chromatin modification circuit shows
bistability, hysteresis, and the probability distribution of chromatin state is highly concentrated
about the active and repressed states (Figs 3C, 3D and 4A). Furthermore, the time to memory
loss of either active or repressed states increases with ¢, but significantly more so for the
repressed chromatin state due to the cross-catalysis among repressive histone modifications
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and DNA methylation. This asymmetry is enhanced by smaller ¢/, which is the ratio between
the decay rate of DNA methylation and that of activating histone modifications. Since the
decay rate of DNA methylation is very small due to the maintenance activity of DNMT1
enzyme, we estimated ¢/ < 1 (Section 3.1 in S1 File). In this parameter regime, the active chro-
matin state becomes poorly robust to repressive input stimuli (Fig 3F) and the height of the
peak of the distribution corresponding to the active chromatin state decreases (Fig 4A). TF-
enabled positive autoregulation re-balances this asymmetry, thereby allowing enhanced
robustness of the active chromatin state to repressive input stimuli (Fig 5C). At the same time,
under time scale separation, the chromatin modification circuit enables robustness of the
active chromatin state to repetitive disruptions of the positive autoregulation loop (Fig 5F). By
wiring positively autoregulated chromatin modification circuits, we can thus obtain concur-
rent mutually exclusive gene expression patterns, which are robust to repeated disruptions of
the regulatory links (Fig 6).

In addition to TF-enabled positive autoregulation, other forms of regulation are also possi-
ble, such as negative autoregulation and combinations of the two. For example, a form of TE-
enabled negative autoregulation is obtained when the protein X recruits writers of repressive
chromatin modifications. An instance of a TF that does so is the LANA protein, which recruits
DNMT3 to DNA [61]. Furthermore, different forms of autoregulation motifs can be obtained
when X regulates the expression of chromatin modifications’ erasers instead of writers. This is
observed, for example, for TF Oct4, which increases the expression of H3K9me3 eraser
JMJD2A and the expression of TET enzymes [62, 63] or in the regulatory system of olfactory
receptor activation, in which the expressed OR protein induces the expression of enzyme
Adcy3, which removes the histone demethylase LSD1 [64]. Future work will be devoted to ana-
lyzing the dynamical properties of these biologically found regulatory motifs.

The non-dimensional parameters ¢, €, y, and ¢/, which control the relative time scales
among the circuit’s constituent processes, are known functions of the concentrations of eras-
ers, writers, and readers of nucleosome modifications as well as of cell proliferation rate. As a
consequence, our model can predict how experimental interventions on these molecular play-
ers and cell division rate will affect plasticity, captured by less concentrated distributions of
chromatin states, the kinetics of gene reactivation, and the robustness of active states to repres-
sive stimuli. Indeed, our model predicts that in the absence of time scale separation, which
can be obtained by increasing e, the cell should be in a more plastic state, and gene
reactivation should be faster and less variable. This is consistent with the experiments of [53],
in which e was artificially increased by increasing proliferation rate. Similarly, our model pre-
dicts that increasing ¢’ should make gene re-activation faster and less stochastic. Our expres-
sion i = k! /k4 also suggests that increasing the level of TET enzymes effectively increases y/
only if the level of MBD proteins is sufficiently low (Eq (76) in S1 File). Indeed, reprogram-
ming experiments where TET was increased did not show dramatic changes on reprogram-
ming kinetics [65], but knocking down MBD proteins showed fast and almost deterministic
reactivation kinetics [54]. Future experiments on semi-synthetic chromosomally integrated
reporter systems will be required to directly validate some of the model’s predictions. For
example, experiments in which e is artificially increased by concurrently recruiting erasers for
both H3K9 and H3K4 methylation, such as JMJD2A and JARID, will demonstrate the morph-
ing of the distribution from bimodal to unimodal. Experiments where only erasers for H3K4
methylation (JARID) will be recruited can validate the prediction that the memory of the
repressed state is extended through the decrease of y and ¢/'. Finally, experiments in which
H3K9 methylation is completely erased through recruitment of JMJD2A but DNA methyla-
tion is present should show loss of bimodality, since this is not present in a model that only
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includes DNA methylation and H3K4 methylation (Fig B in S1 File). In addition, we will revise
the model in order to remove some of the biological simplifications, such as the well-mixed
model simplification and the assumption that a nucleosome cannot be characterized by more
than one modified histone simultaneously.

Our results suggest that reduced time scale separation (larger € and/or reduced €’) may be
implicated in phenotypic plasticity, wherein larger € allows for more probable transitions
among multiple admissible gene expression patterns and thus among different phenotypes
(Fig 6C). While small e embodies a gene expression pattern with high robustness to loss of TF
binding, larger € allows for more probable transitions following TF binding disruptions (Fig
6D). It is plausible that physiological requirements for high degree of cellular plasticity at the
initial stages of cell fate specification may be satisfied by a transiently larger € at cell fate specific
genes. Locking-in of the fate may then be aided by a decreased € at these cell fate specific genes
in terminally differentiated cells [8]. On the other hand, accidental changes of phenotype often
result in disease such as cancer [66, 67]. These accidents may correlate with increased € and/or
¢ at those genes that become disregulated. Global increases in € may then be caused by
increased proliferation rates since these increase the basal decay rate of all modifications.
Indeed, cellular states with high proliferation rates are associated with larger € and hence with
increased plasticity. These states include fastly proliferating cancer cells, pluripotent stem cells,
and, most generally, progenitor cells.

Finally, genomic integration of engineered genetic systems has appeared as a promising
approach for the creation of organoids [68] and for in vivo transdifferentiation [57, 58]. In par-
ticular, we found that positive autoregulation, by recruitment of writers of activating modifica-
tions or of erasers of repressive modifications, enables robustness of active chromatin states to
endogenous silencing factors. This provides design guidelines for chromosomally integrated
gene expression cassettes that are resilient to silencing. Similarly, mutual repression circuits
obtained by chromatin state regulation, as opposed to traditional TF-enabled regulation, can
be used for future cell fate decision circuits that remain locked-in with high probability but yet
are reconfigurable by external interventions.
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