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Challenges and applications. 

JASON K. ESHRAGHIAN, XINXIN WANG, AND WEI D. LU

MMEMRISTIVE ARRAYS ARE A NATURAL
fit to implement spiking neural network (SNN) 
acceleration. Representing information as 
digital spiking events can improve noise mar-
gins and tolerance to device variability com-
pared to analog bitline current summation 
approaches to multiply–accumulate (MAC) 
operations. Restricting neuron activations to 
single-bit spikes also alleviates the significant 
analog-to-digital converter (ADC) overhead 
that mixed-signal approaches have struggled to 
overcome. Binarized, and more generally, lim-
ited-precision, NNs are considered to trade off 
computational overhead with model accuracy, 
but unlike conventional deep learning models, 
SNNs do not encode information in the preci-
sion-constrained amplitude of the spike. Rath-
er, information may be encoded in the spike 
time as a temporal code, in the spike frequency 
as a rate code, and in any number of stand-
alone and combined codes. Even if activations 
and weights are bounded in precision, time can 
be thought of as continuous and provides an 
alternative dimension to encode information 
in. This article explores the challenges that face 
the memristor-based acceleration of NNs and 
how binarized SNNs (BSNNs) may offer a 
good fit for these emerging hardware systems.

PERSPECTIVE 
Nature has engineered the most efficient com-
putational processor, and yet the blueprint of 
the brain remains a mystery. As deep learn-
ing models scale to unsustainably large sizes, 
the question begs to be asked: How does the 
brain achieve within 20 W what it takes data 
centers hundreds of thousands of watts to 
process [1]–[3]? With NN training runtimes 
and data generation experiencing exponential 
rates of growth during the past decade [4], 
[5], there is a justified concern that advances 
in hardware will struggle to keep up, and the 
benefits derived from modern deep learning 
may soon saturate.

Optimizations need to be made across 
the full stack of computing. High-precision 
weights are unlikely to be the most efficient 
data type to encode information in NNs [6]. 

©
IM

A
G

E
 L

IC
E

N
S

E
D

 B
Y

 IN
G

R
A

M
 P

U
B

LI
S

H
IN

G

Memristor-Based 
Binarized Spiking 
Neural Networks

Digital Object Identifier 10.1109/MNANO.2022.3141443

Date of current version: 26 January 2022

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore.  Restrictions apply. 



 		  APRIL 2022  |  IEEE NANOTECHNOLOGY MAGAZINE  |  15

The isolation of memory and process-
ing compounds data transmission costs 
[7], [8]. Synchronous neuron activations 
demand regular (and often redundant) 
memory accesses [9]. Emerging mem-
ory technologies, such as memristors/
resistive random-access memory (RAM), 
are reducing the gap between the physi-
cal and algorithmic layers of computing 
from a bottom-up approach, while SNNs 
draw inspiration from the brain’s spike-
based computational paradigm, provid-
ing top-down integration opportunities 
[10]. Combining these approaches can 
overcome several challenges that face the 
development of memristive accelerators 
while reducing the adverse impact of lim-
ited-precision computation. A high-level 
overview of how conventional von Neu-
mann processing isolates the various lay-
ers, and how in-memory computing aims 
to converge these, is depicted in Figure 1.

This article provides our perspective 
on the challenges that face NN accel-
eration using memristive hardware and 
how BSNNs are positioned to overcome 
many of them. We present early empirical 

evidence of how spiking neurons can be 
parametrized to facilitate learning con-
vergence in BSNNs and how this reduces 
the burden of mixed-signal processing in 
memristive accelerators.

OPTIMIZING ACROSS THE STACK
Processing a NN, spiking or otherwise, 
relies heavily on frequent data movement 
between the processor and memory, and 
emerging memory technologies that can 
be directly integrated with advanced 
CMOS processes offer a promising way 
to reduce the cost of regular memory 
access [11], [12]. Most neuromorphic 
designs and NN accelerators address this 
by distributing memory arrays across 

processing units, which represents a form 
of near-memory processing [13]–[15]. 
Similarly, in-memory processing physi-
cally unites memory and computation 
within the same substrate [8], [16]–[19] 
and is thought to be analogous to how 
the brain can both store and operate on 
information within synapses (Figure 1).

A common way to implement MAC 
operations using memristors is to syn-
chronously draw current through an array 
of memristors, where the magnitude of 
current through each memristor is the 
product of the input voltage amplitude 
with the programmable conductance of 
the memristor. Charge is accumulated 
along the bitline such that the resultant 
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FIGURE 1 (a) Biological processing colocates the neural algorithm with the physical substrate it is processed on. Modern computing, on the other 
hand, optimizes for generality such that algorithms are treated somewhat independently of the hardware they are processed on. Each instruction 
is independently executed with repeated calls to and from memory, which means algorithms that are suited for parallelization are processed in a 
slow and sequential manner. (b) In-memory computing paradigms aim to reduce the gap between various abstractions by using devices to directly 
implement a small set of algorithms in a parallel and efficient approach. (c) The von Neumann architecture. I/O: input–output.

Representing information as digital spiking 
events can improve noise margins and tolerance 

to device variability.
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current represents an analog sum of prod-
ucts [20], [21]. Given that the dominant 
operation of NNs concerns matrix–vector 
multiplications, this approach provides 
a highly parallelized implementation of 
MACs and theoretically offers among 
the highest energy efficiency within con-
strained resources [Figure 2(a)] [22], [23]. 
In practice, such an implementation faces 
several challenges to widespread adop-
tion and commercialization, but a shift 
to spike-based computing can potentially 
overcome these issues, which are summa-
rized in Table 1.

PERFORMANCE-LEVEL CHALLENGES: 
ENERGY CONSUMPTION AND  
HEAT DISSIPATION
Conventional artificial NNs, such as deep 
learning models, are, by default, synchro-

nous algorithms. Every time an input is 
passed to a neuron, an activation is guar-
anteed to be returned in lockstep. The 
highly parallelized processing in mem-
ristive arrays from Figure 2(a) comes at 
the cost of highly parallel resistive heat 
dissipation. Heat dissipation is already a 
bottleneck in high-performance, single-
layer CPUs [24], and 3D integration 
scales power density with increasing layers. 
This problem is exacerbated by pushing 
additional layers farther from bottom-
mounted heatsinks, which drives junc-
tion temperatures higher [25]. Continued 
transistor scaling and 3D integration 
increase on-chip power density, which 
leads to higher temperatures and has 
harmful effects on reliability and perfor-
mance. Many advances in deep learning 
through the past decade have depended 

on architecture expansion and model scal-
ing [1], [26], and, unfortunately, heat dis-
sipation may fundamentally impose an 
upper bound on the number of operations 
and memory accesses that can take place.

The distributed representation of 
data through time as spikes enables an 
asynchronous mode of processing, as 
illustrated in Figure 2(b). Even when an 
input excitation is applied to a neuron, 
there is no guarantee that it will trigger 
an activation, which eliminates the need 
for downstream processing of the effect 
a spike has on subsequent layers, unlike 
conventional deep learning models. Cur-
rent accumulation along a bitline may be 
traded for either charge-based integra-
tion (to calculate the membrane poten-
tial of an integrating neuron model; see 
the “Spiking Neuron Model” section) or 
low-precision voltage conversion. When 
spikes are sparse, only a small proportion 
of the input spikes are applied to a single 
array, and the total bitline current can be 
reduced by the same factor as the number 
of rows in the array, which is often in 
excess of two orders of magnitude [12], 
[27]. Such an extreme reduction of bitline 
current significantly lessens resistive dis-
sipation in large-scale memristor arrays. 
SNN activation sparsity enables reduced 
processing and fewer memory read/
writes and offers an algorithmic solution 
to lessening the heat dissipation burden 
on vertically integrated memristive arrays.

DEVICE-LEVEL CHALLENGES: 
VARIATIONS AND  
CONDUCTANCE DRIFT
The analog characteristics of memristors 
are susceptible to device variations and 
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FIGURE 2 NN acceleration using memristive in-memory computing. (a) Memristors store weights 
as programmable conductances. MAC operations are performed on the basis of Ohm’s law and 
Kirchhoff’s current law by accumulating charge along the bitline. An analog current is converted 
into a digital voltage by an ADC for further processing and communication in the digital domain. 
(b) SNN acceleration using memristive hardware. The same operating principle is taken as in the 
preceding, where the input is constrained to sparsely triggered spikes. Eliminating the need for 
bitline charge accumulation enables the use of low-precision ADCs for subsequent integration or 
simply a sense amplifier to trigger a spike if the bitline capacitance is used to integrate charge. A 
typical array may have between 64 and 256 bitlines. DAC: digital-to-analog converter.

The challenges and solutions of memristor-based NN acceleration. 

ABSTRACTION MEMRISTIVE ARRAY CHALLENGES SNN-BASED SOLUTIONS

Device
Variance
conductance drift

D2D and C2C variation
Destructive readout

Binarized weights and activations
Sparsity and activity regularization

Circuit
ADC overhead
Sneak path currents

Peripheral circuitry dominates on-chip power/area
Scaling, IR drop, charge leakage

Temporal data encoding
Large Ron/Roff ratio, lateral inhibition

System
Data path stalling
Collisions

Shared weights/limited resources increase latency
Synchronous data processing

Sparse interlayer communication

Algorithm
Parameter quantization Compressed models are less tolerant to quantization noise High-precision time steps

D2D: device-to-device; C2C: cycle-to-cycle.

T A B L E  1
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perturbations. For example, electrochem-
ical metallization and filamentary valence 
change mechanism cells rely on ion 
migration to modulate resistance, and the 
fundamental stochastic filament forma-
tion and dissolution processes can result 
in large variations of device conductance 
[28]–[33]. When using single-bit activa-
tions that are emitted only once a neuron 
threshold is met, any incident noise is 
absorbed into the subthreshold dynamics 
of the neuron and thus largely eliminat-
ed. The variance of the spike amplitude 
no longer has a significant effect, as all 
necessary information is retained in the 
timing of the spike. The tradeoff of noise 
absorption is that relevant signals may 
also be eliminated. When errors are intro-
duced into the weight update process, 
it has been shown that learning conver-
gence can take a larger number of train-
ing epochs [34], [35].

Repetitive application of a driving 
voltage may lead to destructive readout 
and unintended programming in syn-
chronous systems. At nanoscale dimen-
sions, even small voltages can cause a 
large buildup of electric f ields in any 
given cell, thus providing suff icient 
energy to delocalize ions, which ulti-
mately manifests as conductance drift 
[36]–[38]. Drift is tolerable to some 
extent for the same reasons that device 
variations are acceptable for threshold-
gated activations. But SNNs can be 
treated as asynchronous, where a stored 
weight need only be accessed if a spike 
arrives at the corresponding presynap-
tic terminal. The frequency of spikes 
can also be decreased by training a net-
work to promote sparsity, for example, 
by using techniques such as L1 regu-
larization, which corresponds to lower 
memory access frequency and a reduced 
probability of read perturbations [39].

Device variance and conductance 
drift are highly undesirable where pre-
cise weight values are required [40]. The 
stringent noise margins for incremen-
tal analog programming have made it 
extremely challenging for large-scale 
implementations. In fact, all commercial 
memristive processes that are presently 
available conservatively opt for digital 
switching instead [41], [42]. To imple-
ment anything other than binarized 

weights will require additional cells and 
therefore increased area and power con-
sumption. While binarized weights can 
adversely impact metrics such as accuracy 
in deep learning models, reliance on the 
continuous temporal dimension in SNNs 
may amortize this cost.

CIRCUIT-LEVEL CHALLENGES: ADC 
OVERHEAD AND SNEAK PATHS
The cost of data converters that interface 
analog bitline currents to downstream 
digital processing as well as path cur-
rents are two of the biggest challeng-
es in deploying large-scale memristive 
accelerators. Nanoscale memristors offer 
extremely high density and vertical inte-
gration, and utilizing them as synaptic 
weights in bitline current summation 
is an incredibly efficient way to paral-
lelize MAC operations in the analog 
domain, but conversion into a digital 
voltage offsets a considerable portion of 

this benefit. As major functional blocks 
of any mixed-signal memristor-based 
accelerator, ADCs have been shown 
to account for a significant portion of 
the area usage and power consumption 
[12], [27], [43], [44]. An estimate of 
the total area and power usage of the 
various blocks of an integrated mem-
ristor-CMOS chip [45] performing 
feedforward processing is provided in 
Figure 3. In this instance, ADCs occupy 
approximately 2.5× more area and con-
sume 18× more power than the analog 
memristor modules.

The results of the MAC operations 
are often postprocessed through acti-
vation units and sent for further com-
putation in subsequent layers, which 
makes the conversion process unavoid-
able; communicating digital signals is 
far more robust than for analog. Spike-
based activation preserves the digitiza-
tion process by generating a binarized 
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FIGURE 3 The (a) power and (b) area of every in-memory computing module proposed in [45]. 
ADCs consume 18% of the power and occupy 10% of the area in each module. SRAM:  
static RAM.

Restricting neuron activations to single-bit 
spikes also alleviates the significant analog-to-

digital converter overhead that mixed-signal 
approaches have struggled to overcome.
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output (spike or not) and can potentially 
eliminate the need for ADCs, replacing 
them with current sense amplifiers and 
comparators to determine if the bitline 
current (or charge) exceeds the neuron’s 
firing threshold.

Sneak path currents occur where 
charge leaks through low-resistance path-
ways across an array [46], [47]. In the 
absence of selectors and high-resistance 
devices, this can have a detrimental effect 
on analog computation, and spike-based 
computation addresses this issue in sev-
eral ways. First, as with device varia-
tion, the noise tolerance of thresholded 
activations is much greater than that for 
nonspiking NNs. Second, using high 
temporal precision for each time step 
makes it increasingly unlikely for two 
spikes to occur in exact unison, such that 
only the largest bitline current needs to 
be transmitted to subsequent layers. That 
is to say, any sneak path currents may be 
neglected. Finally, SNNs may integrate 
lateral inhibition mechanisms that sup-
press firing from all neurons (other than 
the most excitable one) in a given layer 
[48]. In doing so, it can be guaranteed 
that only one neuron per layer is firing 
at any time, providing an alternative, 
biologically plausible mechanism to sim-
ply ignore all sneak path currents in this 
“winner-take-all” mechanism, while also 
sparsifying network activity [49], [50].

SYSTEM-LEVEL CHALLENGES: DATA 
PATH STALLING AND COLLISIONS
Where the number of data paths exceeds 
the number of parameters, the param-
eters are likely reused with each forward 
pass. This is especially the case for con-
volutions, where parameters/weights 
are shared among nodes. As an exam-
ple, when processing a 224 × 224 image 
with the Visual Geometry Group (VGG) 

16 architecture, 99% of the total opera-
tions are convolutions, and yet 99% of 
the memory is allocated to parameters 
in dense layers [51]. Unless weights are 
duplicated in memory, this often means 
the data path must be stalled while each 
input is sequentially applied to the weight, 
thus increasing latency [52]. This chal-
lenge is not limited to memristive hard-
ware accelerators [53], [54]. Data path 
stalling may become a necessity where the 
bandwidth of peripheral circuitry is insuf-
ficient to cope with reading out the data 
from every bitline in a memristive array 
in parallel, which is especially the case for 
high-speed ADCs, which are common-
ly shared across multiple bitlines as they 
exceed the minimum pitch. Sharing is also 
commonly used to reduce the total ADC 
power and area, at a cost of increased 
data path latency. This is another instance 
where activation sparsity is highly benefi-
cial, as there are fewer data in the signal 
path that may be stalled [55].

In terms of the interlayer communi-
cation of data, routing spikes between 
layers is far less expensive than directing 
multibit activations. Sparsity again plays 
a critical role, as the infrequent occur-
rence of spikes means communication 
channels are often free to route spikes to 
their designated target, which reduces 
the chance of collisions and thus having 
to stall the signal path for channels to be 
cleared. This benefit extends to all NN 
accelerators beyond memristor-based 
processing [56].

ALGORITHM-LEVEL CHALLENGES: 
UNDERPARAMETERIZED 
ARCHITECTURES
Processing NN algorithms on embed-
ded and resource-constrained hardware 
typically requires using limited-preci-
sion techniques to reduce the amount 

of memory and resources required. This 
might appear to manifest as a device-level 
issue, where improving the analog pro-
gramming reliability of memristors could 
theoretically solve the problem. Howev-
er, there is significant interplay between 
weight/activation precision and model-
specific accuracy. In general, quantiza-
tion and binarization necessarily incur 
accuracy degradation as a result of the 
computational approximations that are 
made [57], [58]. While techniques such 
as quantization-aware training [59]–[61], 
asymmetrical quantization [62], [63], 
and knowledge distillation [64], [65] 
have been devised to reduce the impact 
of quantization noise, different types of 
models still show varying degrees of tol-
erance to such approximations.

In general, large-scale networks 
appear to be far more tolerant of quan-
tization errors than constrained mod-
els are. For example, the work in [27] 
demonstrates how an overparameterized 
model, such as VGG16, with 138 million 
parameters, is far more robust to quan-
tization noise than compressed model  
fami l ies, such as Mobi leNets, with 
13 million parameters. When processed on 
tiled memristive arrays, VGG16 showed 
an accuracy degradation of only 2.41%, 
whereas MobileNet dropped far further, 
by 5.9%. The underlying issue here is 
that quantization and model compres-
sion techniques have been designed with 
the same goal of resource-constrained 
processing, but somewhat ironically, 
reducing the precision of compressed 
models is far more detrimental to accu-
racy. While various methods, such as 
those used in Tiny Machine Learning, 
are continuously being developed to help 
overcome these challenges to various 
degrees [66], SNNs may once again be 
considered a case that is less sensitive to 
the precision loss problem. By encoding 
data in the temporal domain, this par-
tially sidesteps the challenges associated 
with limited-precision activations since 
even if weights were to be binarized, the 
temporal precision of a simulation may 
be enhanced to offset this. To summa-
rize, SNNs have the potential to address 
several major challenges of memristive 
NN acceleration across the stack. The 
benef its of temporal data encoding, 

Even if activations and weights are bounded in 
precision, time can be thought of as continuous 

and provides an alternative dimension to encode 
information in.
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single-bit interlayer communication via 
spikes, and sparse activations trickle 
down to extract more value out of devic-
es, circuits, and architectures.

BSNNs
To ease hardware implementation and 
algorithm development, we consider 
SNNs that are topologically identical 
to conventional NNs, where the arti-
f icial neuron model is swapped for a 
spiking neuron model. This means the 
same types of layers can be represented, 
including dense, convolutional, resid-
ual, and recurrent layers. Since SNNs 
are also treated as acyclic graphs, the 
backpropagation-through-time (BPTT) 
algorithm can be used to train them in a 
manner almost identical to how it would 
be performed with a recurrent NN [67].

SPIKING NEURON MODEL
The leaky integrate-and-fire (LIF) neu-
ron model is commonly used in conjunc-
tion with large-scale network models [68]. 
Although it is a very coarse simplification 
of biological neurons, the relatively simple 
dynamics make it computationally inex-
pensive and easily trainable with the BPTT 
algorithm. The LIF neuron is based on 
a passive membrane model consisting of 
a resistor and capacitor connected in par-
allel, where a spike is emitted from the 
neuron only when the membrane potential 
exceeds a firing threshold. This spike is 
typically encoded by the value “1,” which 
is emitted to downstream neurons, and 
the membrane potential of the activated 
neuron is reset. Otherwise, no activation 
is emitted from the neuron (i.e., “0”).

The f irst-order linear differential 
equation representing the RC circuit can 
be solved using the forward Euler meth-
od, where input current is substituted 
for a weighted input, Iin[t] = WX[t], and 
several simplifications are made to reduce 
the number of tunable hyperparameters. 
A complete derivation is provided in [69], 
where the resulting time-discretized neu-
ron model is represented by

[ ] [ ] [ ] [ ] ,U t U t WX t S t1 1
decay input

out

reset

b i+ = + + -
1 2 3444 444> >

� (1)

where U [t] is the membrane poten-
tial of the neuron, or equivalently, the 

hidden state; [ , ]0 1!b  is the decay 
rate of the membrane potential; and 

t ,[ ]S 0 1out ! " , is the output spike gen-
erated by the neuron. When the neuron 
is at rest, ,S 0out =  and if the membrane 
potential exceeds the threshold ,i  then 

,S 1out =  which activates the reset term, 
thus driving the membrane potential 
back down. The following equation for-
malizes the spike generation condition:

	 t
,
,

if 
otherwise.[ ]S

U t1
0out

$ i
=

6 @) � (2)

The qualitative behavior of (1) is as 
follows. When an excitatory (or inhibitory 
input) is applied by WX[t + 1], the mem-
brane potential experiences a sudden jump 
(or decrease), followed by an exponential 
relaxation back to .U 0"  A spike is emit-
ted to subsequent layers if a positive jump 
causes U[t] to reach the threshold .i  A 
full network implementation vectorizes U, 
X, and Sout. Here, W is a weight matrix, 
and in our experiments, b  is treated as a 
global constant, though it can also be set 
to a learnable parameter [70], [71].

The result of (2) is already binarized, 
whereas several additional constraints 
must be imposed on (1) for binarized 
memrist ive processing. Specif ically, 

, ,W 1 1! - +" ,  such that if a neuron is 
at rest, U[t] = 0, and an incoming spike 
X[t + 1] = 1 is weighted by an excitatory 
synapse, W = +1, the membrane potential 
at the next time step will be U[t + 1] = 1. 
If the threshold is normalized to ,1i =  
it guarantees that a spike is triggered, 

,S 1out =  and no long-term temporal 
leakage dynamics are experienced by the 
neuron as a result of the reset mechanism 
from (1) being activated. Therefore, W, 
X, and Sout are all binarized quantities, 
and U is also binarized in the absence of 
inhibitory inputs.

When a neuron is inhibited, which 
necessari ly arises due to a negative 
weight (recalling that a spiking input X is 
restricted to either “1” or “0”), the mem-
brane potential becomes unbounded. 
We apply membrane potential clipping 
by capping , .U 1 1! - +6 @  This condi-
tion affects only neurons that are subject 
to an aggregate of multiple excitatory 
(or inhibitory) inputs. While it is not a 
necessary constraint, in practice, this 
limitation can be implemented by current 
limiting the bitline. It also eliminates the 
impact of any spike collisions that would 
otherwise cause the magnitude of the 
current to fall out of bounds.

TRAINING BSNNs
Two approximations are made to over-
come the nondifferentiable operators 
that are applied to weights and hidden 
states during binarization and thresh-
olded spiking. During the forward pass, 
(2) is applied to the membrane potential 
and acts as a threshold-shifted Heavi-
side operator. As the derivative of this 
function evaluates to “0” across almost 
the entire domain, the first approxima-
tion is to use a proxy for the gradient 
term during the backward pass, com-
monly referred to as a surrogate gradient 
[72]–[74]. In our experiments, we use 
the derivative of a threshold-shifted fast 
sigmoid function:

	 ,S
k U

U
1 i

i
=

+ -

-u
^

^ h
h � (3)

	 ,
U
S

k U1
1

22
2

i
=

+ -

u

^ h � (4)

where the tilde above Su  indicates that (3) 
is an approximation of (2); k is a hyper-
parameter that varies the steepness of the 
squashing function.

The second approximation accounts 
for the binarization of weights, where the 

There is a justified concern that advances in 
hardware will struggle to keep up, and the 

benefits derived from modern deep learning 
may soon saturate.
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SNN is trained using low-precision infer-
ence coupled with high-precision weight 
updates [74]. A floating-point version of 
the weights is stored, and a quantized 
version of the weights is used during the 
forward pass to calculate the loss at the 
output. During error backpropagation, 
the gradient is computed with respect to 
each layer’s activations and binary weights. 
The gradients are used to update the high-
precision weights during the update step. 
This process is repeated for all time steps.

Formally, consider Wr  to be a full-
precision proxy for the binarized weight 

.Wb  During the forward pass,

	 Wsign )( .Wb r= � (5)

Because the sign function is nondiffer-
entiable, a straight-through estimator 
(STE) is used to backpropagate an esti-
mation of the gradient to the full-preci-
sion proxy instead [74]. The STE treats 
the gradient process as though the bina-
rization step had not occurred and takes 
the following form:

	 .
W
W 1

r

b

2
2

= � (6)

If gradient clipping is applied, (6) 
would otherwise evaluate to zero. To 
complete the picture, the backpropaga-
tion step approximates the gradient of 
the loss with respect to the binarized 
weight as follows, where it is assumed 

that the gradient with respect to each 
spike / SL 22 u  is available:

	 .
W S U

S
W
ULL

r b2
2

2
2

2
2

2
2=

u
� (7)

Each term in (7) can be analytically solved 
and is then used to calculate the magni-
tude and direction of the weight update. 
The form of (7) may be generalized using 
the chain rule to handle weight updates in 
deeper layers.

SPIKE-BASED OBJECTIVES
A variety of loss functions can formulate 
the supervised learning task as either a 
classification problem or classification dis-
guised as a multivariate regression problem. 
In the former case, the neuron representing 
the correct class can be promoted to fire 
the most frequently in a rate code or fire 
first in a temporal code. The latter case may 
require correct and incorrect classes to have 
prespecified targets in a continuous range, 
such as a spike count, spike time, or target 
membrane potential [69].

Our experiments apply the cross-
entropy loss function to the total spike 
count of the output layer. The aim is to 
maximize the spike count of the correct 
class ,c RNC!v  where NC  is the number 
of classes; ci  is the ith element of cv and 
used as the logits in the softmax function:

	 .p
e

e
i

i

N c

c

1

C
i

i

=

=
/

� (8)

The cross entropy between pi  and 
the one-hot encoded target vector 

,y 0 1 N
i

C! " ,  is obtained using
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=
=
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The sparsity of the spikes in BSNNs 
can be enhanced through the follow-
ing approaches. A fast decay rate for the 
neuron model can prevent the neuron 
from firing spikes frequently, which may 
be suitable for static tasks that do not 
have memory dependence. However, this 
does not exploit the temporal dynam-
ics of SNNs. Second, lateral inhibition 
between neurons in the same layer can 
be leveraged to prevent all other neurons 
from firing after the earliest spike occurs. 
Third, the postsynaptic current can be 
bounded within a fixed range, which can 
suppress excessive firing rates and also 
referred to as activation clipping.

EXPERIMENTAL RESULTS
On the basis of the spiking neuron 
model and training strategies discussed 
in the preceding, we designed sever-
al BSNNs to assess the use of biased 
gradient estimators that can be used 
to leverage memristive accelerators. 
The architecture of the proposed con-
volutional SNN is detailed in Table 2, 
where average pooling is applied to the 
weighted inputs rather than the output 
spikes. If applied to output spikes, the 
sparse nature of activations would cause 
each spike to be averaged with zeros and 
reduce each spike’s influence on down-
stream layers. A similar issue occurs with 
maximum pooling, where better results 
can be obtained by downsampling the 
membrane potential rather than tiebreak-
ing zeros and ones.

We performed a simulation sweep for 
training the proposed BSNN across the 
Modified National Institute of Standards 
and Technology (MNIST) and Fashion 
MNIST (FMNIST) data sets by using a 
variety of hyperparameters, where each 
simulation was conducted for 100 steps 
of duration trained using the Adam  
optimizer ( 0.91b =  and 0.9992b = ) 
[76]. The batch size of all experiments 
was fixed to 128, and batch normaliza-
tion is applied to each convolution layer. 

The network structure.

LAYER INPUT CHANNEL KERNEL SIZE OUTPUT SIZE

Convolutional 1 1 5 16

Average pooling 1 16 2 16

Convolutional 2 16 5 64

Average pooling 2 64 2 64

Fully connected 64 × 7 × 7 2 10

T A B L E  2

SNNs draw inspiration from the brain’s  
spike-based computational paradigm, providing 

top-down integration opportunities.
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Full precision and BSNNs are used, with 
varying gradient, weight, and activa-
tion clipping conditions; surrogate gra-
dient slope k; the initial learning rate; 
and dropout at the final dense layer. One 
hundred separate trials are conducted 
for each experiment of five epochs, each 
using a tree-structured Parzen estima-
tor algorithm to randomly sample from 
the wide hyperparameter space [77]. The 
parameter sweep is depicted in a con-
tour plot of the test set accuracy for the 
MNIST in Figure 4. The best hyperpa-
rameters from the sweep are then used 
for a longer simulation run using early 
stopping and a cosine annealing learn-
ing rate scheduler [78]. Final simulations 
were conducted in snnTorch [69], with the 
results on the test set listed in Table 3.

While accuracy degradation is expect-
ed for the BSNN compared with the 
full-precision models, inspection of the 
results indicates that BSNNs with larger 
thresholds and smaller surrogate gradient 
slopes [k from (4)] minimize the accuracy 

loss. Both observations are quite intui-
tive. First, larger thresholds are preferred, 
as this provides the spiking neuron with 
a wider dynamic range. While a thresh-
old of “1” would immediately elicit an 
output spike in response to an input 
spike (assuming an initial condition of 

),U 0$  a higher threshold affords the 
neuron with a larger range of permis-
sible states before spiking may take place. 
However, the f iring threshold cannot 
be arbitrarily increased since it will lead 
to reduced firing in deeper layers, which 
may cause problems with training con-
vergence, due to vanishing gradients.

Second, the smaller gradient slope 
in BSNNs reduces the bias in the gradi-
ent estimator. As ,k 0"  the gradient 
becomes more precise, at the expense of 
inducing dead neurons. When weights 
are binarized, error is introduced during 
the quantization-aware training step. To 
compensate for this, our results indicate 
that the slope must be decreased relative 
to the high-precision case to balance the 

amount of error injection during train-
ing. Since BSNNs are already injecting 
bias by using STEs at the binarization 
step and surrogate gradients at the thres-
holded firing step, we expect that the 
tendency to smaller surrogate gradient 
slopes is the network’s way of reducing 
bias. Analogous to the threshold, k can-
not be indefinitely decreased; otherwise, 
it will drive gradients to zero, i.e., the 
dead neuron problem. Although vanish-
ing gradients and dead neurons are often 
described interchangeably, this result 
highlights a nuanced distinction between 
the two. Vanishing gradients occur as a 
result of the activation variance falling 
below “1,” here as a result of reduced 
spiking. Dead neurons occur as a result 
of a nondifferentiable gradient.

Considering a typical memristor 
device that draws 3 µA of current in the 
low-resistance state, with a 0.3-V read 
voltage, an on/off ratio of 10, a 256 × 
64 crossbar array size, and a 40-µW, 
40-MHz, 8-bit successive-approximation 
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FIGURE 4 The test set accuracy after an MNIST parameter sweep across 100 training trials of five epochs each. Trials that do not appear promising 
on the basis of optimizing the test set accuracy are pruned using the asynchronous successive halving algorithm [75]. This explains the significant 
clustering of experiments, while other regions seem to be unexplored. (a) Membrane potential decay rate versus threshold. (b) Surrogate gradient 
slope versus threshold. (c) Membrane potential decay rate versus surrogate gradient slope. 

The experimental results.

DATA SET NETWORK BETA
LEARNING 
RATE THRESHOLD SLOPE

ACTIVATION 
CLIP DROPOUT RESULTS

MNIST flt32 SNN 0.92 1.9e −3 2 6.03 True 0.1 99.29%

MNIST BSNN 0.83 2.7e −3 6.4 2.8 True 0.1 98.9%

FMNIST flt32 SNN 0.39 2e −3 1.5 7.66 True 0.1 91.13%

FMNIST BSNN 0.87 1.6e −2 6.7 3.9 False 0 87.91%

T A B L E  3
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(SAR) ADC, the throughput of the 
full-precision artif icial NN proposed 
here is ~74 tera operations per second 
(TOPS)/W, where the ADC consumes 
4.77% of the total power. For the BSNN 
with activation clipping, only 1-bit ADCs 
are required for the readout, and they 
can be implemented using charge-based 
comparators. The SAR ADC power con-
sumption scales exponentially with the 
resolution, and the throughput of the 
three-layer network can be improved to 
~153 TOPS/W, where the data conver-
sion step consumes only 0.03% of the 
total power.

CONCLUSION
The challenges of mixed-signal NN 
memristive acceleration can be partially 
offset using SNNs, and we have pro-
vided a perspective on how characteris-
tics of BSNNs can overcome issues that 
exist across the various abstraction layers. 
We conducted a simulation analysis to 
intuit the impacts of network param-
eters on accuracy and explored training 
strategies that may be used to improve 
performance. We showed that the pre-
ferred hyperparameters of BSNNs shift 
toward those that reduce the bias in gra-
dient estimators while aiming to increase 
the available range in the subthreshold 
region of membrane potential. Our find-
ings give an indication of how one might 
improve performance on temporally 
dynamic data sets, such as those pro-
cured from dynamic vision sensors, on 
resource-constrained hardware. While 
accuracy degradation may be intolera-
ble on more challenging data sets, the 
power savings and circuit-level simplifica-
tions are a sound justification for further 
exploring how BSNNs can be pushed 
toward achieving similar performance on 
high-precision networks.
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