
14 | IEEE NANOTECHNOLOGY MAGAZINE | APRIL 2022 1932-4510/22©2022IEEE

M

Challenges and applications.

JASON K. ESHRAGHIAN, XINXIN WANG, AND WEI D. LU

MMEMRISTIVE ARRAYS ARE A NATURAL
fit to implement spiking neural network (SNN)
acceleration. Representing information as
digital spiking events can improve noise mar-
gins and tolerance to device variability com-
pared to analog bitline current summation
approaches to multiply–accumulate (MAC)
operations. Restricting neuron activations to
single-bit spikes also alleviates the significant
analog-to-digital converter (ADC) overhead
that mixed-signal approaches have struggled to
overcome. Binarized, and more generally, lim-
ited-precision, NNs are considered to trade off
computational overhead with model accuracy,
but unlike conventional deep learning models,
SNNs do not encode information in the preci-
sion-constrained amplitude of the spike. Rath-
er, information may be encoded in the spike
time as a temporal code, in the spike frequency
as a rate code, and in any number of stand-
alone and combined codes. Even if activations
and weights are bounded in precision, time can
be thought of as continuous and provides an
alternative dimension to encode information
in. This article explores the challenges that face
the memristor-based acceleration of NNs and
how binarized SNNs (BSNNs) may offer a
good fit for these emerging hardware systems.

PERSPECTIVE
Nature has engineered the most efficient com-
putational processor, and yet the blueprint of
the brain remains a mystery. As deep learn-
ing models scale to unsustainably large sizes,
the question begs to be asked: How does the
brain achieve within 20 W what it takes data
centers hundreds of thousands of watts to
process [1]–[3]? With NN training runtimes
and data generation experiencing exponential
rates of growth during the past decade [4],
[5], there is a justified concern that advances
in hardware will struggle to keep up, and the
benefits derived from modern deep learning
may soon saturate.

Optimizations need to be made across
the full stack of computing. High-precision
weights are unlikely to be the most efficient
data type to encode information in NNs [6].

©
IM

A
G

E
 L

IC
E

N
S

E
D

 B
Y

 IN
G

R
A

M
 P

U
B

LI
S

H
IN

G

Memristor-Based
Binarized Spiking
Neural Networks

Digital Object Identifier 10.1109/MNANO.2022.3141443

Date of current version: 26 January 2022

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

 		 APRIL 2022 | IEEE NANOTECHNOLOGY MAGAZINE | 15

The isolation of memory and process-
ing compounds data transmission costs
[7], [8]. Synchronous neuron activations
demand regular (and often redundant)
memory accesses [9]. Emerging mem-
ory technologies, such as memristors/
resistive random-access memory (RAM),
are reducing the gap between the physi-
cal and algorithmic layers of computing
from a bottom-up approach, while SNNs
draw inspiration from the brain’s spike-
based computational paradigm, provid-
ing top-down integration opportunities
[10]. Combining these approaches can
overcome several challenges that face the
development of memristive accelerators
while reducing the adverse impact of lim-
ited-precision computation. A high-level
overview of how conventional von Neu-
mann processing isolates the various lay-
ers, and how in-memory computing aims
to converge these, is depicted in Figure 1.

This article provides our perspective
on the challenges that face NN accel-
eration using memristive hardware and
how BSNNs are positioned to overcome
many of them. We present early empirical

evidence of how spiking neurons can be
parametrized to facilitate learning con-
vergence in BSNNs and how this reduces
the burden of mixed-signal processing in
memristive accelerators.

OPTIMIZING ACROSS THE STACK
Processing a NN, spiking or otherwise,
relies heavily on frequent data movement
between the processor and memory, and
emerging memory technologies that can
be directly integrated with advanced
CMOS processes offer a promising way
to reduce the cost of regular memory
access [11], [12]. Most neuromorphic
designs and NN accelerators address this
by distributing memory arrays across

processing units, which represents a form
of near-memory processing [13]–[15].
Similarly, in-memory processing physi-
cally unites memory and computation
within the same substrate [8], [16]–[19]
and is thought to be analogous to how
the brain can both store and operate on
information within synapses (Figure 1).

A common way to implement MAC
operations using memristors is to syn-
chronously draw current through an array
of memristors, where the magnitude of
current through each memristor is the
product of the input voltage amplitude
with the programmable conductance of
the memristor. Charge is accumulated
along the bitline such that the resultant

Devices
I/O

CPU

Devices

Devices

D
at

a
Bu

s

Ad
dr

es
s

Bu
s

C
on

tro
l B

us

M
em

or
y

AD
C

“Devices”
Neurons, Synapses

Circuits

Circuits

Circuits

Neural Circuits

Systems

Systems

Systems

Systems
Visual Processing,
Hippocampus,
and so on

Algorithms

Algorithms

Algorithms

Algorithms

(a) (b)

(c)

FIGURE 1 (a) Biological processing colocates the neural algorithm with the physical substrate it is processed on. Modern computing, on the other
hand, optimizes for generality such that algorithms are treated somewhat independently of the hardware they are processed on. Each instruction
is independently executed with repeated calls to and from memory, which means algorithms that are suited for parallelization are processed in a
slow and sequential manner. (b) In-memory computing paradigms aim to reduce the gap between various abstractions by using devices to directly
implement a small set of algorithms in a parallel and efficient approach. (c) The von Neumann architecture. I/O: input–output.

Representing information as digital spiking
events can improve noise margins and tolerance

to device variability.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

16 | IEEE NANOTECHNOLOGY MAGAZINE | APRIL 2022	

current represents an analog sum of prod-
ucts [20], [21]. Given that the dominant
operation of NNs concerns matrix–vector
multiplications, this approach provides
a highly parallelized implementation of
MACs and theoretically offers among
the highest energy efficiency within con-
strained resources [Figure 2(a)] [22], [23].
In practice, such an implementation faces
several challenges to widespread adop-
tion and commercialization, but a shift
to spike-based computing can potentially
overcome these issues, which are summa-
rized in Table 1.

PERFORMANCE-LEVEL CHALLENGES:
ENERGY CONSUMPTION AND
HEAT DISSIPATION
Conventional artificial NNs, such as deep
learning models, are, by default, synchro-

nous algorithms. Every time an input is
passed to a neuron, an activation is guar-
anteed to be returned in lockstep. The
highly parallelized processing in mem-
ristive arrays from Figure 2(a) comes at
the cost of highly parallel resistive heat
dissipation. Heat dissipation is already a
bottleneck in high-performance, single-
layer CPUs [24], and 3D integration
scales power density with increasing layers.
This problem is exacerbated by pushing
additional layers farther from bottom-
mounted heatsinks, which drives junc-
tion temperatures higher [25]. Continued
transistor scaling and 3D integration
increase on-chip power density, which
leads to higher temperatures and has
harmful effects on reliability and perfor-
mance. Many advances in deep learning
through the past decade have depended

on architecture expansion and model scal-
ing [1], [26], and, unfortunately, heat dis-
sipation may fundamentally impose an
upper bound on the number of operations
and memory accesses that can take place.

The distributed representation of
data through time as spikes enables an
asynchronous mode of processing, as
illustrated in Figure 2(b). Even when an
input excitation is applied to a neuron,
there is no guarantee that it will trigger
an activation, which eliminates the need
for downstream processing of the effect
a spike has on subsequent layers, unlike
conventional deep learning models. Cur-
rent accumulation along a bitline may be
traded for either charge-based integra-
tion (to calculate the membrane poten-
tial of an integrating neuron model; see
the “Spiking Neuron Model” section) or
low-precision voltage conversion. When
spikes are sparse, only a small proportion
of the input spikes are applied to a single
array, and the total bitline current can be
reduced by the same factor as the number
of rows in the array, which is often in
excess of two orders of magnitude [12],
[27]. Such an extreme reduction of bitline
current significantly lessens resistive dis-
sipation in large-scale memristor arrays.
SNN activation sparsity enables reduced
processing and fewer memory read/
writes and offers an algorithmic solution
to lessening the heat dissipation burden
on vertically integrated memristive arrays.

DEVICE-LEVEL CHALLENGES:
VARIATIONS AND
CONDUCTANCE DRIFT
The analog characteristics of memristors
are susceptible to device variations and

AD
C

AD
C

AD
C

DAC

DAC

DAC DAC

DAC

DAC
0

(a) (b)

∫ ∫ ∫

0

I Active
Synapse

Input
Spike

FIGURE 2 NN acceleration using memristive in-memory computing. (a) Memristors store weights
as programmable conductances. MAC operations are performed on the basis of Ohm’s law and
Kirchhoff’s current law by accumulating charge along the bitline. An analog current is converted
into a digital voltage by an ADC for further processing and communication in the digital domain.
(b) SNN acceleration using memristive hardware. The same operating principle is taken as in the
preceding, where the input is constrained to sparsely triggered spikes. Eliminating the need for
bitline charge accumulation enables the use of low-precision ADCs for subsequent integration or
simply a sense amplifier to trigger a spike if the bitline capacitance is used to integrate charge. A
typical array may have between 64 and 256 bitlines. DAC: digital-to-analog converter.

The challenges and solutions of memristor-based NN acceleration.

ABSTRACTION MEMRISTIVE ARRAY CHALLENGES SNN-BASED SOLUTIONS

Device
Variance
conductance drift

D2D and C2C variation
Destructive readout

Binarized weights and activations
Sparsity and activity regularization

Circuit
ADC overhead
Sneak path currents

Peripheral circuitry dominates on-chip power/area
Scaling, IR drop, charge leakage

Temporal data encoding
Large Ron/Roff ratio, lateral inhibition

System
Data path stalling
Collisions

Shared weights/limited resources increase latency
Synchronous data processing

Sparse interlayer communication

Algorithm
Parameter quantization Compressed models are less tolerant to quantization noise High-precision time steps

D2D: device-to-device; C2C: cycle-to-cycle.

T A B L E 1

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

 		 APRIL 2022 | IEEE NANOTECHNOLOGY MAGAZINE | 17

perturbations. For example, electrochem-
ical metallization and filamentary valence
change mechanism cells rely on ion
migration to modulate resistance, and the
fundamental stochastic filament forma-
tion and dissolution processes can result
in large variations of device conductance
[28]–[33]. When using single-bit activa-
tions that are emitted only once a neuron
threshold is met, any incident noise is
absorbed into the subthreshold dynamics
of the neuron and thus largely eliminat-
ed. The variance of the spike amplitude
no longer has a significant effect, as all
necessary information is retained in the
timing of the spike. The tradeoff of noise
absorption is that relevant signals may
also be eliminated. When errors are intro-
duced into the weight update process,
it has been shown that learning conver-
gence can take a larger number of train-
ing epochs [34], [35].

Repetitive application of a driving
voltage may lead to destructive readout
and unintended programming in syn-
chronous systems. At nanoscale dimen-
sions, even small voltages can cause a
large buildup of electric f ields in any
given cell, thus providing suff icient
energy to delocalize ions, which ulti-
mately manifests as conductance drift
[36]–[38]. Drift is tolerable to some
extent for the same reasons that device
variations are acceptable for threshold-
gated activations. But SNNs can be
treated as asynchronous, where a stored
weight need only be accessed if a spike
arrives at the corresponding presynap-
tic terminal. The frequency of spikes
can also be decreased by training a net-
work to promote sparsity, for example,
by using techniques such as L1 regu-
larization, which corresponds to lower
memory access frequency and a reduced
probability of read perturbations [39].

Device variance and conductance
drift are highly undesirable where pre-
cise weight values are required [40]. The
stringent noise margins for incremen-
tal analog programming have made it
extremely challenging for large-scale
implementations. In fact, all commercial
memristive processes that are presently
available conservatively opt for digital
switching instead [41], [42]. To imple-
ment anything other than binarized

weights will require additional cells and
therefore increased area and power con-
sumption. While binarized weights can
adversely impact metrics such as accuracy
in deep learning models, reliance on the
continuous temporal dimension in SNNs
may amortize this cost.

CIRCUIT-LEVEL CHALLENGES: ADC
OVERHEAD AND SNEAK PATHS
The cost of data converters that interface
analog bitline currents to downstream
digital processing as well as path cur-
rents are two of the biggest challeng-
es in deploying large-scale memristive
accelerators. Nanoscale memristors offer
extremely high density and vertical inte-
gration, and utilizing them as synaptic
weights in bitline current summation
is an incredibly efficient way to paral-
lelize MAC operations in the analog
domain, but conversion into a digital
voltage offsets a considerable portion of

this benefit. As major functional blocks
of any mixed-signal memristor-based
accelerator, ADCs have been shown
to account for a significant portion of
the area usage and power consumption
[12], [27], [43], [44]. An estimate of
the total area and power usage of the
various blocks of an integrated mem-
ristor-CMOS chip [45] performing
feedforward processing is provided in
Figure 3. In this instance, ADCs occupy
approximately 2.5× more area and con-
sume 18× more power than the analog
memristor modules.

The results of the MAC operations
are often postprocessed through acti-
vation units and sent for further com-
putation in subsequent layers, which
makes the conversion process unavoid-
able; communicating digital signals is
far more robust than for analog. Spike-
based activation preserves the digitiza-
tion process by generating a binarized

33%

44% 45%

18%

ADCADC

Arithmetic UnitsArithmetic Units

SRAMSRAM

CrossbarCrossbar

(a) (b)

RoutersRouters

19%

22%

4%

4%
1%

10%

FIGURE 3 The (a) power and (b) area of every in-memory computing module proposed in [45].
ADCs consume 18% of the power and occupy 10% of the area in each module. SRAM:
static RAM.

Restricting neuron activations to single-bit
spikes also alleviates the significant analog-to-

digital converter overhead that mixed-signal
approaches have struggled to overcome.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

18 | IEEE NANOTECHNOLOGY MAGAZINE | APRIL 2022	

output (spike or not) and can potentially
eliminate the need for ADCs, replacing
them with current sense amplifiers and
comparators to determine if the bitline
current (or charge) exceeds the neuron’s
firing threshold.

Sneak path currents occur where
charge leaks through low-resistance path-
ways across an array [46], [47]. In the
absence of selectors and high-resistance
devices, this can have a detrimental effect
on analog computation, and spike-based
computation addresses this issue in sev-
eral ways. First, as with device varia-
tion, the noise tolerance of thresholded
activations is much greater than that for
nonspiking NNs. Second, using high
temporal precision for each time step
makes it increasingly unlikely for two
spikes to occur in exact unison, such that
only the largest bitline current needs to
be transmitted to subsequent layers. That
is to say, any sneak path currents may be
neglected. Finally, SNNs may integrate
lateral inhibition mechanisms that sup-
press firing from all neurons (other than
the most excitable one) in a given layer
[48]. In doing so, it can be guaranteed
that only one neuron per layer is firing
at any time, providing an alternative,
biologically plausible mechanism to sim-
ply ignore all sneak path currents in this
“winner-take-all” mechanism, while also
sparsifying network activity [49], [50].

SYSTEM-LEVEL CHALLENGES: DATA
PATH STALLING AND COLLISIONS
Where the number of data paths exceeds
the number of parameters, the param-
eters are likely reused with each forward
pass. This is especially the case for con-
volutions, where parameters/weights
are shared among nodes. As an exam-
ple, when processing a 224 × 224 image
with the Visual Geometry Group (VGG)

16 architecture, 99% of the total opera-
tions are convolutions, and yet 99% of
the memory is allocated to parameters
in dense layers [51]. Unless weights are
duplicated in memory, this often means
the data path must be stalled while each
input is sequentially applied to the weight,
thus increasing latency [52]. This chal-
lenge is not limited to memristive hard-
ware accelerators [53], [54]. Data path
stalling may become a necessity where the
bandwidth of peripheral circuitry is insuf-
ficient to cope with reading out the data
from every bitline in a memristive array
in parallel, which is especially the case for
high-speed ADCs, which are common-
ly shared across multiple bitlines as they
exceed the minimum pitch. Sharing is also
commonly used to reduce the total ADC
power and area, at a cost of increased
data path latency. This is another instance
where activation sparsity is highly benefi-
cial, as there are fewer data in the signal
path that may be stalled [55].

In terms of the interlayer communi-
cation of data, routing spikes between
layers is far less expensive than directing
multibit activations. Sparsity again plays
a critical role, as the infrequent occur-
rence of spikes means communication
channels are often free to route spikes to
their designated target, which reduces
the chance of collisions and thus having
to stall the signal path for channels to be
cleared. This benefit extends to all NN
accelerators beyond memristor-based
processing [56].

ALGORITHM-LEVEL CHALLENGES:
UNDERPARAMETERIZED
ARCHITECTURES
Processing NN algorithms on embed-
ded and resource-constrained hardware
typically requires using limited-preci-
sion techniques to reduce the amount

of memory and resources required. This
might appear to manifest as a device-level
issue, where improving the analog pro-
gramming reliability of memristors could
theoretically solve the problem. Howev-
er, there is significant interplay between
weight/activation precision and model-
specific accuracy. In general, quantiza-
tion and binarization necessarily incur
accuracy degradation as a result of the
computational approximations that are
made [57], [58]. While techniques such
as quantization-aware training [59]–[61],
asymmetrical quantization [62], [63],
and knowledge distillation [64], [65]
have been devised to reduce the impact
of quantization noise, different types of
models still show varying degrees of tol-
erance to such approximations.

In general, large-scale networks
appear to be far more tolerant of quan-
tization errors than constrained mod-
els are. For example, the work in [27]
demonstrates how an overparameterized
model, such as VGG16, with 138 million
parameters, is far more robust to quan-
tization noise than compressed model
fami l ies, such as Mobi leNets, with
13 million parameters. When processed on
tiled memristive arrays, VGG16 showed
an accuracy degradation of only 2.41%,
whereas MobileNet dropped far further,
by 5.9%. The underlying issue here is
that quantization and model compres-
sion techniques have been designed with
the same goal of resource-constrained
processing, but somewhat ironically,
reducing the precision of compressed
models is far more detrimental to accu-
racy. While various methods, such as
those used in Tiny Machine Learning,
are continuously being developed to help
overcome these challenges to various
degrees [66], SNNs may once again be
considered a case that is less sensitive to
the precision loss problem. By encoding
data in the temporal domain, this par-
tially sidesteps the challenges associated
with limited-precision activations since
even if weights were to be binarized, the
temporal precision of a simulation may
be enhanced to offset this. To summa-
rize, SNNs have the potential to address
several major challenges of memristive
NN acceleration across the stack. The
benef its of temporal data encoding,

Even if activations and weights are bounded in
precision, time can be thought of as continuous

and provides an alternative dimension to encode
information in.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

 		 APRIL 2022 | IEEE NANOTECHNOLOGY MAGAZINE | 19

single-bit interlayer communication via
spikes, and sparse activations trickle
down to extract more value out of devic-
es, circuits, and architectures.

BSNNs
To ease hardware implementation and
algorithm development, we consider
SNNs that are topologically identical
to conventional NNs, where the arti-
f icial neuron model is swapped for a
spiking neuron model. This means the
same types of layers can be represented,
including dense, convolutional, resid-
ual, and recurrent layers. Since SNNs
are also treated as acyclic graphs, the
backpropagation-through-time (BPTT)
algorithm can be used to train them in a
manner almost identical to how it would
be performed with a recurrent NN [67].

SPIKING NEURON MODEL
The leaky integrate-and-fire (LIF) neu-
ron model is commonly used in conjunc-
tion with large-scale network models [68].
Although it is a very coarse simplification
of biological neurons, the relatively simple
dynamics make it computationally inex-
pensive and easily trainable with the BPTT
algorithm. The LIF neuron is based on
a passive membrane model consisting of
a resistor and capacitor connected in par-
allel, where a spike is emitted from the
neuron only when the membrane potential
exceeds a firing threshold. This spike is
typically encoded by the value “1,” which
is emitted to downstream neurons, and
the membrane potential of the activated
neuron is reset. Otherwise, no activation
is emitted from the neuron (i.e., “0”).

The f irst-order linear differential
equation representing the RC circuit can
be solved using the forward Euler meth-
od, where input current is substituted
for a weighted input, Iin[t] = WX[t], and
several simplifications are made to reduce
the number of tunable hyperparameters.
A complete derivation is provided in [69],
where the resulting time-discretized neu-
ron model is represented by

[] [] [] [] ,U t U t WX t S t1 1
decay input

out

reset

b i+ = + + -
1 2 3444 444> >

� (1)

where U [t] is the membrane poten-
tial of the neuron, or equivalently, the

hidden state; [,]0 1!b is the decay
rate of the membrane potential; and

t ,[]S 0 1out ! " , is the output spike gen-
erated by the neuron. When the neuron
is at rest, ,S 0out = and if the membrane
potential exceeds the threshold ,i then

,S 1out = which activates the reset term,
thus driving the membrane potential
back down. The following equation for-
malizes the spike generation condition:

	 t
,
,

if
otherwise.[]S

U t1
0out

$ i
=

6 @) � (2)

The qualitative behavior of (1) is as
follows. When an excitatory (or inhibitory
input) is applied by WX[t + 1], the mem-
brane potential experiences a sudden jump
(or decrease), followed by an exponential
relaxation back to .U 0" A spike is emit-
ted to subsequent layers if a positive jump
causes U[t] to reach the threshold .i A
full network implementation vectorizes U,
X, and Sout. Here, W is a weight matrix,
and in our experiments, b is treated as a
global constant, though it can also be set
to a learnable parameter [70], [71].

The result of (2) is already binarized,
whereas several additional constraints
must be imposed on (1) for binarized
memrist ive processing. Specif ically,

, ,W 1 1! - +" , such that if a neuron is
at rest, U[t] = 0, and an incoming spike
X[t + 1] = 1 is weighted by an excitatory
synapse, W = +1, the membrane potential
at the next time step will be U[t + 1] = 1.
If the threshold is normalized to ,1i =
it guarantees that a spike is triggered,

,S 1out = and no long-term temporal
leakage dynamics are experienced by the
neuron as a result of the reset mechanism
from (1) being activated. Therefore, W,
X, and Sout are all binarized quantities,
and U is also binarized in the absence of
inhibitory inputs.

When a neuron is inhibited, which
necessari ly arises due to a negative
weight (recalling that a spiking input X is
restricted to either “1” or “0”), the mem-
brane potential becomes unbounded.
We apply membrane potential clipping
by capping , .U 1 1! - +6 @ This condi-
tion affects only neurons that are subject
to an aggregate of multiple excitatory
(or inhibitory) inputs. While it is not a
necessary constraint, in practice, this
limitation can be implemented by current
limiting the bitline. It also eliminates the
impact of any spike collisions that would
otherwise cause the magnitude of the
current to fall out of bounds.

TRAINING BSNNs
Two approximations are made to over-
come the nondifferentiable operators
that are applied to weights and hidden
states during binarization and thresh-
olded spiking. During the forward pass,
(2) is applied to the membrane potential
and acts as a threshold-shifted Heavi-
side operator. As the derivative of this
function evaluates to “0” across almost
the entire domain, the first approxima-
tion is to use a proxy for the gradient
term during the backward pass, com-
monly referred to as a surrogate gradient
[72]–[74]. In our experiments, we use
the derivative of a threshold-shifted fast
sigmoid function:

	 ,S
k U

U
1 i

i
=

+ -

-u
^

^ h
h � (3)

	 ,
U
S

k U1
1

22
2

i
=

+ -

u

^ h � (4)

where the tilde above Su indicates that (3)
is an approximation of (2); k is a hyper-
parameter that varies the steepness of the
squashing function.

The second approximation accounts
for the binarization of weights, where the

There is a justified concern that advances in
hardware will struggle to keep up, and the

benefits derived from modern deep learning
may soon saturate.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

20 | IEEE NANOTECHNOLOGY MAGAZINE | APRIL 2022	

SNN is trained using low-precision infer-
ence coupled with high-precision weight
updates [74]. A floating-point version of
the weights is stored, and a quantized
version of the weights is used during the
forward pass to calculate the loss at the
output. During error backpropagation,
the gradient is computed with respect to
each layer’s activations and binary weights.
The gradients are used to update the high-
precision weights during the update step.
This process is repeated for all time steps.

Formally, consider Wr to be a full-
precision proxy for the binarized weight

.Wb During the forward pass,

	 Wsign)(.Wb r= � (5)

Because the sign function is nondiffer-
entiable, a straight-through estimator
(STE) is used to backpropagate an esti-
mation of the gradient to the full-preci-
sion proxy instead [74]. The STE treats
the gradient process as though the bina-
rization step had not occurred and takes
the following form:

	 .
W
W 1

r

b

2
2

= � (6)

If gradient clipping is applied, (6)
would otherwise evaluate to zero. To
complete the picture, the backpropaga-
tion step approximates the gradient of
the loss with respect to the binarized
weight as follows, where it is assumed

that the gradient with respect to each
spike / SL 22 u is available:

	 .
W S U

S
W
ULL

r b2
2

2
2

2
2

2
2=

u
� (7)

Each term in (7) can be analytically solved
and is then used to calculate the magni-
tude and direction of the weight update.
The form of (7) may be generalized using
the chain rule to handle weight updates in
deeper layers.

SPIKE-BASED OBJECTIVES
A variety of loss functions can formulate
the supervised learning task as either a
classification problem or classification dis-
guised as a multivariate regression problem.
In the former case, the neuron representing
the correct class can be promoted to fire
the most frequently in a rate code or fire
first in a temporal code. The latter case may
require correct and incorrect classes to have
prespecified targets in a continuous range,
such as a spike count, spike time, or target
membrane potential [69].

Our experiments apply the cross-
entropy loss function to the total spike
count of the output layer. The aim is to
maximize the spike count of the correct
class ,c RNC!v where NC is the number
of classes; ci is the ith element of cv and
used as the logits in the softmax function:

	 .p
e

e
i

i

N c

c

1

C
i

i

=

=
/

� (8)

The cross entropy between pi and
the one-hot encoded target vector

,y 0 1 N
i

C! " , is obtained using

	 .logy pL
i

N

i i
0

C

=
=

/ ^ h � (9)

The sparsity of the spikes in BSNNs
can be enhanced through the follow-
ing approaches. A fast decay rate for the
neuron model can prevent the neuron
from firing spikes frequently, which may
be suitable for static tasks that do not
have memory dependence. However, this
does not exploit the temporal dynam-
ics of SNNs. Second, lateral inhibition
between neurons in the same layer can
be leveraged to prevent all other neurons
from firing after the earliest spike occurs.
Third, the postsynaptic current can be
bounded within a fixed range, which can
suppress excessive firing rates and also
referred to as activation clipping.

EXPERIMENTAL RESULTS
On the basis of the spiking neuron
model and training strategies discussed
in the preceding, we designed sever-
al BSNNs to assess the use of biased
gradient estimators that can be used
to leverage memristive accelerators.
The architecture of the proposed con-
volutional SNN is detailed in Table 2,
where average pooling is applied to the
weighted inputs rather than the output
spikes. If applied to output spikes, the
sparse nature of activations would cause
each spike to be averaged with zeros and
reduce each spike’s influence on down-
stream layers. A similar issue occurs with
maximum pooling, where better results
can be obtained by downsampling the
membrane potential rather than tiebreak-
ing zeros and ones.

We performed a simulation sweep for
training the proposed BSNN across the
Modified National Institute of Standards
and Technology (MNIST) and Fashion
MNIST (FMNIST) data sets by using a
variety of hyperparameters, where each
simulation was conducted for 100 steps
of duration trained using the Adam
optimizer (0.91b = and 0.9992b =)
[76]. The batch size of all experiments
was fixed to 128, and batch normaliza-
tion is applied to each convolution layer.

The network structure.

LAYER INPUT CHANNEL KERNEL SIZE OUTPUT SIZE

Convolutional 1 1 5 16

Average pooling 1 16 2 16

Convolutional 2 16 5 64

Average pooling 2 64 2 64

Fully connected 64 × 7 × 7 2 10

T A B L E 2

SNNs draw inspiration from the brain’s
spike-based computational paradigm, providing

top-down integration opportunities.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

 		 APRIL 2022 | IEEE NANOTECHNOLOGY MAGAZINE | 21

Full precision and BSNNs are used, with
varying gradient, weight, and activa-
tion clipping conditions; surrogate gra-
dient slope k; the initial learning rate;
and dropout at the final dense layer. One
hundred separate trials are conducted
for each experiment of five epochs, each
using a tree-structured Parzen estima-
tor algorithm to randomly sample from
the wide hyperparameter space [77]. The
parameter sweep is depicted in a con-
tour plot of the test set accuracy for the
MNIST in Figure 4. The best hyperpa-
rameters from the sweep are then used
for a longer simulation run using early
stopping and a cosine annealing learn-
ing rate scheduler [78]. Final simulations
were conducted in snnTorch [69], with the
results on the test set listed in Table 3.

While accuracy degradation is expect-
ed for the BSNN compared with the
full-precision models, inspection of the
results indicates that BSNNs with larger
thresholds and smaller surrogate gradient
slopes [k from (4)] minimize the accuracy

loss. Both observations are quite intui-
tive. First, larger thresholds are preferred,
as this provides the spiking neuron with
a wider dynamic range. While a thresh-
old of “1” would immediately elicit an
output spike in response to an input
spike (assuming an initial condition of

),U 0$ a higher threshold affords the
neuron with a larger range of permis-
sible states before spiking may take place.
However, the f iring threshold cannot
be arbitrarily increased since it will lead
to reduced firing in deeper layers, which
may cause problems with training con-
vergence, due to vanishing gradients.

Second, the smaller gradient slope
in BSNNs reduces the bias in the gradi-
ent estimator. As ,k 0" the gradient
becomes more precise, at the expense of
inducing dead neurons. When weights
are binarized, error is introduced during
the quantization-aware training step. To
compensate for this, our results indicate
that the slope must be decreased relative
to the high-precision case to balance the

amount of error injection during train-
ing. Since BSNNs are already injecting
bias by using STEs at the binarization
step and surrogate gradients at the thres-
holded firing step, we expect that the
tendency to smaller surrogate gradient
slopes is the network’s way of reducing
bias. Analogous to the threshold, k can-
not be indefinitely decreased; otherwise,
it will drive gradients to zero, i.e., the
dead neuron problem. Although vanish-
ing gradients and dead neurons are often
described interchangeably, this result
highlights a nuanced distinction between
the two. Vanishing gradients occur as a
result of the activation variance falling
below “1,” here as a result of reduced
spiking. Dead neurons occur as a result
of a nondifferentiable gradient.

Considering a typical memristor
device that draws 3 µA of current in the
low-resistance state, with a 0.3-V read
voltage, an on/off ratio of 10, a 256 ×
64 crossbar array size, and a 40-µW,
40-MHz, 8-bit successive-approximation

(a) (c)(b)

95.5

94.5

93.5

92.5

91.5

90.5

O
bj

ec
tiv

e
Va

lu
e

3

2.5

2

1.5

Th
re

sh
ol

d

3

2.5

2

1.5

Th
re

sh
ol

d

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.80 50 100
Membrane Potential Decay β Membrane Potential Decay βSurrogate Gradient Slope

Su
rro

ga
te

 G
ra

di
en

t S
lo

pe

100

80

60

40

20

0

FIGURE 4 The test set accuracy after an MNIST parameter sweep across 100 training trials of five epochs each. Trials that do not appear promising
on the basis of optimizing the test set accuracy are pruned using the asynchronous successive halving algorithm [75]. This explains the significant
clustering of experiments, while other regions seem to be unexplored. (a) Membrane potential decay rate versus threshold. (b) Surrogate gradient
slope versus threshold. (c) Membrane potential decay rate versus surrogate gradient slope.

The experimental results.

DATA SET NETWORK BETA
LEARNING
RATE THRESHOLD SLOPE

ACTIVATION
CLIP DROPOUT RESULTS

MNIST flt32 SNN 0.92 1.9e −3 2 6.03 True 0.1 99.29%

MNIST BSNN 0.83 2.7e −3 6.4 2.8 True 0.1 98.9%

FMNIST flt32 SNN 0.39 2e −3 1.5 7.66 True 0.1 91.13%

FMNIST BSNN 0.87 1.6e −2 6.7 3.9 False 0 87.91%

T A B L E 3

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

22 | IEEE NANOTECHNOLOGY MAGAZINE | APRIL 2022	

(SAR) ADC, the throughput of the
full-precision artif icial NN proposed
here is ~74 tera operations per second
(TOPS)/W, where the ADC consumes
4.77% of the total power. For the BSNN
with activation clipping, only 1-bit ADCs
are required for the readout, and they
can be implemented using charge-based
comparators. The SAR ADC power con-
sumption scales exponentially with the
resolution, and the throughput of the
three-layer network can be improved to
~153 TOPS/W, where the data conver-
sion step consumes only 0.03% of the
total power.

CONCLUSION
The challenges of mixed-signal NN
memristive acceleration can be partially
offset using SNNs, and we have pro-
vided a perspective on how characteris-
tics of BSNNs can overcome issues that
exist across the various abstraction layers.
We conducted a simulation analysis to
intuit the impacts of network param-
eters on accuracy and explored training
strategies that may be used to improve
performance. We showed that the pre-
ferred hyperparameters of BSNNs shift
toward those that reduce the bias in gra-
dient estimators while aiming to increase
the available range in the subthreshold
region of membrane potential. Our find-
ings give an indication of how one might
improve performance on temporally
dynamic data sets, such as those pro-
cured from dynamic vision sensors, on
resource-constrained hardware. While
accuracy degradation may be intolera-
ble on more challenging data sets, the
power savings and circuit-level simplifica-
tions are a sound justification for further
exploring how BSNNs can be pushed
toward achieving similar performance on
high-precision networks.

ACKNOWLEDGMENTS
This work was supported, in part, by
Semiconductor Research Corporation
and DARPA, through the Applications
Driving Architectures Research Center,
and the National Science Foundation,
through awards ECCS-1915550 and
CCF-1900675.

ABOUT THE AUTHORS
Jason K. Eshraghian (jasonesh@umich.
edu) is with the Department of Electrical
Engineering and Computer Science, Uni-
versity of Michigan, Ann Arbor, Michi-
gan, 48109, USA.

Xinxin Wang (xinxinw@umich.
edu) is with the Department of Electri-
cal Engineering and Computer Science,
University of Michigan, Ann Arbor,
Michigan, 48109, USA.

Wei D. Lu (wluee@umich.edu) is with
the Department of Electrical Engineering
and Computer Science, University of Mich-
igan, Ann Arbor, Michigan, 48109, USA.

REFERENCES
[1]	 T. B. Brown et al., “Language models are few-

shot learners,” 2020, arXiv:2005.14165.
[2]	 P. Dhar, “The carbon impact of artificial intel-

ligence,” Nature Mach. Intell., vol. 2, no. 8, pp.
423–425, 2020, doi: 10.1038/s42256-020-
0219-9.

[3]	 L. F. W. Anthony, B. Kanding, and R. Selvan,
“Carbontracker: Tracking and predicting the car-
bon footprint of training deep learning models,”
2020, arXiv:2007.03051.

[4]	 N. C. Thompson, K. Greenewald, K. Lee, and
G. F. Manso, “The computational limits of deep
learning,” 2020, arXiv:2007.05558.

[5]	 D. Amodei and D. Hernandez, “AI and com-
pute,” OpenAI, 2019. https://openai.com/blog/
ai-and-compute/

[6]	 S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.
Narayanan, “Deep learning with limited numeri-
cal precision,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2015, pp. 1737–1746.

[7]	 D. Ielmini and H.-S. P. Wong, “In-memory com-
puting with resistive switching devices,” Nature
Electron., vol. 1, no. 6, pp. 333–343, 2018, doi:
10.1038/s41928-018-0092-2.

[8]	 M. A. Zidan, J. P. Strachan, and W. D. Lu, “The
future of electronics based on memristive sys-
tems,” Nature Electron., vol. 1, no. 1, pp. 22–29,
2018, doi: 10.1038/s41928-017-0006-8.

[9]	 F. Naveros, N. R. Luque, J. A. Garrido, R. R.
Carrillo, M. Anguita, and E. Ros, “A spiking
neural simulator integrating event-driven and
time-driven computation schemes using par-
allel CPU-GPU co-processing: A case study,”
IEEE Trans. Neural Netw. Learn. Syst., vol.
26, no. 7, pp. 1567–1574, 2014, doi: 10.1109/
TNNLS.2014.2345844.

[10]	 C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up
and top-down neural processing systems design:
Neuromorphic intelligence as the convergence
of natural and artif icial intelligence,” 2021,
arXiv:2106.01288.

[11]	 A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh,
and E. Eleftheriou, “Memory devices and applica-
tions for in-memory computing,” Nature Nano-
technol., vol. 15, no. 7, pp. 529–544, 2020, doi:
10.1038/s41565-020-0655-z.

[12]	 F. Cai et al., “A fully integrated reprogrammable
memristor–CMOS system for efficient multiply–
accumulate operations,” Nature Electron., vol. 2,
no. 7, pp. 290–299, 2019, doi: 10.1038/s41928-
019-0270-x.

[13]	 N. P. Jouppi et al., “In-datacenter performance
analysis of a tensor processing unit,” in Proc. 44th
Annu. Int. Symp. Comput. Architecture, 2017, pp.
1–12, doi: 10.1145/3079856.3080246.

[14]	 M. Lask in et al . , “Pa ra l lel t ra in ing of
deep networks with local updates,” 2020,
arXiv:2012.03837.

[15]	 J. Zhu, J. Jiang, X. Chen, and C.-Y. Tsui, “Spar-
seNN: An energy-efficient neural network accel-
erator exploiting input and output sparsity,” in
Proc. 2018 Design, Autom. Test Europe Conf.
Exhib. (DATE), pp. 241–244, doi: 10.23919/
DATE.2018.8342010.

[16]	 J. K . Eshraghian, S.-M. Kang, S. Baek,
G. Orchard, H. H.-C. Iu, and W. Lei, “Ana-
log weights in ReRAM DNN accelerators,” in
Proc. 2019 IEEE Int. Conf. Artif. Intell. Circuits
Syst. (AICAS), pp. 267–271, doi: 10.1109/
AICAS.2019.8771550.

[17]	 B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan,
and W. D. Lu, “Eff icient in-memory comput-
ing architecture based on crossbar arrays,” in
Proc. 2015 IEEE Int. Electron Devices Meet-
ing (IEDM), pp. 17.5.1–17.5.4, doi: 10.1109/
IEDM.2015.7409720.

[18]	 M. Rahimi Azghadi et al., “Complementary met-
al-oxide semiconductor and memristive hardware
for neuromorphic computing,” Adv. Intell. Syst.,
vol. 2, no. 5, p. 1,900,189, 2020, doi: 10.1002/
aisy.201900189.

[19]	 S. M. Kang et al., “How to build a memristive
integrate-and-fire model for spiking neuronal sig-
nal generation,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 12, pp. 4837–4850, 2021,
doi: 10.1109/TCSI.2021.3126555.

[20]	M. Hu et al., “Dot-product engine for neu-
romorphic computing: Programming 1T1M
crossbar to accelerate matrix-vector multiplica-
tion,” in Proc. 53rd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2016, p. 19, doi:
10.1145/2897937.2898010.

[21]	 A. Shafiee et al., “ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic
in crossbars,” ACM SIGARCH Comput. Architec-
ture News, vol. 44, no. 3, pp. 14–26, Oct. 2016,
doi: 10.1145/3007787.3001139.

[22]	 Z. Li et al., “RR AM-DNN: An RR AM and
model-compression empowered all-weights-on-
chip DNN accelerator,” IEEE J. Solid-State Cir-
cuits, vol. 56, no. 4, pp. 1105–1115, 2020, doi:
10.1109/JSSC.2020.3045369.

[23]	 W. Wan et al., “A 74 TMCAS/W CMOSRRAM
neurosynaptic core with dynamically reconfigu-
rable dataf low and in-situ transposable weights
for probabilistic graphical models,” in Proc. 2020
IEEE Int. Solid-State Circuits Conf. (ISSCC),
pp. 498–500.

[24]	M. S. Bakir et al., “3D heterogeneous integrat-
ed systems: Liquid cooling, power delivery, and
implementation,” in Proc. 2008 IEEE Custom

The benefits of temporal data encoding, single-
bit interlayer communication via spikes, and

sparse activations trickle down to extract more
value out of devices, circuits, and architectures.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

 		 APRIL 2022 | IEEE NANOTECHNOLOGY MAGAZINE | 23

Integrated Circuits Conf., pp. 663–670, doi:
10.1109/CICC.2008.4672173.

[25]	D. Rich et al., “Heterogeneous 3D nano-systems:
The N3XT approach?” in NANO-CHIPS 2030,
B. Murmann and B. Hoeff linger, Eds. Cham:
Springer-Verlag, 2020, pp. 127–151.

[26]	A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in Proc. Adv. Neural Inform.
Process. Syst., 2012, vol. 25, pp. 1097–1105.

[27]	 Q. Wang, X. Wang, S. H. Lee, F.-H. Meng,
and W. D. Lu, “A deep neural network accel-
erator based on tiled RR AM architecture,”
in Proc. 2019 IEEE Int. Electron Devices Meet-
ing (IEDM), pp. 14.4.1–14.4.4, doi: 10.1109/
IEDM19573.2019.8993641.

[28]	 I. Valov, R. Waser, J. R. Jameson, and M. N.
Kozicki, “Electrochemical metallization mem-
ories—fundamentals, applications, prospects,”
Nanotechnology, vol. 22, no. 25, p. 254,003,
2011, doi: 10.1088/0957-4484/22/25/254003.

[29]	 S. Menzel, U. Bottger, and R. Waser, “Simulation
of multilevel switching¨ in electrochemical metal-
lization memory cells,” J. Appl. Phys., vol. 111,
no. 1, p. 014501, 2012, doi: 10.1063/1.3673239.

[30]	 B. Choi et al., “Resistive switching mechanism
of TiO2 thin films grown by atomic-layer deposi-
tion,” J. Appl. Phys., vol. 98, no. 3, p. 033715,
2005, doi: 10.1063/1.2001146.

[31]	 D. B. Strukov, G. S. Snider, D. R. Stewart, and
R. S. Williams, “The missing memristor found,”
Nature, vol. 453, no. 7191, pp. 80–83, 2008,
doi: 10.1038/nature06932.

[32]	 N. Raghavan et al., “Stochastic variability of
vacancy f ilament conf iguration in ultra-thin
dielectric RRAM and its impact on OFF-state
reliability,” in Proc. 2013 IEEE Int. Electron
Devices Meeting, pp. 21.1.1–21.1.4, doi: 10.1109/
IEDM.2013.6724674.

[33]	 Y. Li et al., “Filament-free bulk resistive memory
enables deterministic analogue switching,” Adv.
Mater., vol. 32, no. 45, p. 2,003,984, 2020, doi:
10.1002/adma.202003984.

[34]	B. A. Richards et al., “A deep learning framework
for neuroscience,” Nature Neurosci., vol. 22, no.
11, pp. 1761–1770, 2019, doi: 10.1038/s41593-
019-0520-2.

[35]	Y.-C. Chen, J. K. Eshraghian, I. Shipley, and M.
Weiss, “Analog synaptic behaviors in carbon-
based self-selective RRAM for in-memory super-
vised learning,” in Proc. 2021 IEEE 71st Electron.
Components Technol. Conf. (ECTC), pp. 1645–
1651, doi: 10.1109/ECTC32696.2021.00261.

[36]	A. Chanthbouala et al. “A ferroelectric memris-
tor,” Nature Mater., vol. 11, no. 10, pp. 860–
864, 2012, doi: 10.1038/nmat3415.

[37]	 W. Shim, Y. Luo, J.-s. Seo, and S. Yu, “Impact
of read disturb on multilevel RR AM based
inference engine: Experiments and model pre-
dict ion,” in Proc. 2020 IEEE Int. Reliab.
Phys. Symp. (IRPS), pp. 1–5, doi: 10.1109/
IRPS45951.2020.9129252.

[38]	 J. K. Eshraghian, K. Cho, and S. M. Kang,
“A 3-D reconfigurable RRAM crossbar infer-
ence engine,” in Proc. 2021 IEEE Int. Symp.
Circuits Syst. (ISCAS), pp. 1–5, doi: 10.1109/
ISCAS51556.2021.9401672.

[39]	 P. T. P. Tang, T.-H. Lin, and M. Davies, “Sparse
coding by spiking neural networks: Conver-
gence theory and computational results,” 2017,
arXiv:1705.05475.

[40]	C.-Y. Lin et al., “Adaptive synaptic memory
via lithium ion modulation in RRAM devices,”
Small, vol. 16, no. 42, p. 2,003,964, 2020, doi:
10.1002/smll.202003964.

[41]	 “ef lash,” TSM Corporation, Reston, VA, USA,
2020. [Online]. Available: https://www.tsmc.
com/english/dedicatedFoundry/technology/
eflash.htm

[42]	F. T. Hady, A. Foong, B. Veal, and D. Wil-
l iams, “Platform storage performance with
3D XPoint technology,” Proc. IEEE, vol. 105,
no. 9, pp. 1822–1833, 2017, doi: 10.1109/
JPROC.2017.2731776.

[43]	 J. M. Correll et al., “A fully integrated repro-
grammable CMOS-RRAM compute-in-memo-
ry coprocessor for neuromorphic applications,”
IEEE J. Explor. Solid-State Computat., vol. 6,
no. 1, pp. 36 – 44, 2020, doi: 10.1109/
JXCDC.2020.2992228.

[44]	P. Yao et al., “Fully hardware-implemented mem-
ristor convolutional neural network,” Nature,
vol. 577, no. 7792, pp. 641–646, 2020, doi:
10.1038/s41586-020-1942-4.

[45]	X. Wang et al., “TAICHI: A tiled architecture
for in-memory computing and heterogeneous
integration,” IEEE Trans. Circuits Syst., II,
Exp. Briefs, early access, 2021, doi: 10.1109/
TCSII.2021.3097035.

[46]	M. A. Zidan, H. A. H. Fahmy, M. M. Hussain,
and K. N. Salama, “Memristor-based memory:
The sneak paths problem and solutions,” Micro-
electron. J., vol. 44, no. 2, pp. 176–183, 2013,
doi: 10.1016/j.mejo.2012.10.001.

[47]	 C.-Y. Lin et al., “A highspeed MIM resistive
memory cell with an inherent vanadium selector,”
Appl. Mater. Today, vol. 21, p. 100,848, Dec.
2020, doi: 10.1016/j.apmt.2020.100848.

[48]	C. Blakemore, R. H. Carpenter, and M. A.
Georgeson, “Lateral inhibition between orien-
tation detectors in the human visual system,”
Nature, vol. 228, no. 5266, pp. 37–39, 1970, doi:
10.1038/228037a0.

[49]	 I. Ebong and P. Mazumder, “Memristor based
STDP learning network for position detection,”
in Proc. 2010 Int. Conf. Microelectron., 2010, pp.
292–295, doi: 10.1109/ICM.2010.5696142.

[50]	 J. K. Eshraghian et al., “Neuromorphic vision
hybrid RRAM-CMOS architecture,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26,
no. 12, pp. 2816–2829, 2018, doi: 10.1109/
TVLSI.2018.2829918.

[51]	 K. Simonyan and A. Zisserman, “Very deep con-
volutional networks for large-scale image recogni-
tion,” 2014, arXiv:1409.1556.

[52]	 X. Wang, M. A. Zidan, and W. D. Lu, “A cross-
bar-based in-memory computing architecture,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 12, pp. 4224–4232, 2020, doi: 10.1109/
TCSI.2020.3000468.

[53]	 S. Dong, X. Gong, Y. Sun, T. Baruah, and D.
Kaeli, “Characterizing the microarchitectural
implications of a convolutional neural network
(CNN) execution on GPUs,” in Proc. 2018 ACM/
SPEC Int. Conf. Performance Eng., pp. 96–106,
doi: 10.1145/3184407.3184423.

[54]	J. Zhang and J. Li, “Improving the per-
formance of OpenCL-based FPGA accel-
erator for convolutional neural network,” in
Proc. 2017 ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, pp. 25–34, doi:
10.1145/3020078.3021698.

[55]	P. Knag, C. Liu, and Z. Zhang, “A 1.40 mm2
141mW 898GOPS sparse neuromorphic proces-
sor in 40nm CMOS,” in Proc. 2016 IEEE Symp.
VLSI Circuits (VLSI-Circuits), pp. 1–2, doi:
10.1109/VLSIC.2016.7573526.

[56]	P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A
sparse coding neural network ASIC with on-
chip learning for feature extraction and encod-
ing,” IEEE J. Solid-State Circuits, vol. 50,
no. 4, pp. 1070–1079, 2015, doi: 10.1109/
JSSC.2014.2386892.

[57]	 I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio, “Binarized neural networks,” in Proc.
Adv. Neural Inform. Process. Syst., 2016, vol. 29.

[58]	Y. Umuroglu et al., “FINN: A framework for
fast, scalable binarized neural network infer-

ence,” in Proc. 2017 ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, pp. 65–74,
doi: 10.1145/3020078.3021744.

[59]	 S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural networks with
pruning, trained quantization and Huffman cod-
ing,” 2015, arXiv:1510.00149.

[60]	S. K. Esser, J. L. McKinstry, D. Bablani, R.
Appuswamy, and D. S. Modha, “Learned step
size quantization,” 2019, arXiv:1902.08153.

[61]	 S. Uhlich et al., “Mixed precision DNNs: All
you need is a good parametrization,” 2019,
arXiv:1905.11452.

[62]	 T. Zhang, Z. Lin, G. Yang, and C. D. Sa, “Qpy-
torch: A low-precision arithmetic simulation
framework,” 2019, arXiv:1910.04540.

[63]	 J. Huang, J. Reed, D. Khudia, and J. Park,
“FBGEMM.” 2021, GitHub. https://github.
com/dskhudia/FBGEMM (Accessed: 2021).

[64]	 J. Gou, B. Yu, S. J. Maybank, and D. Tao,
“Knowledge distillation: A survey,” Int. J. Com-
put. Vis., vol. 129, no. 6, pp. 1789–1819, 2021,
doi: 10.1007/s11263-021-01453-z.

[65]	A. Polino, R. Pascanu, and D. Alistarh, “Model
compression via distillation and quantization,”
2018, arXiv:1802.05668.

[66]	C. R. Banbury et al., “Benchmarking TinyML
systems: Challenges and direct ion,” 2020,
arXiv:2003.04821.

[67]	 P. J. Werbos, “Backpropagation through time:
What it does and how to do it,” Proc. IEEE,
vol. 78, no. 10, pp. 1550–1560, 1990, doi:
10.1109/5.58337.

[68]	L. Lapique, “Recherches quant itat ives sur
l’excitation electrique des nerfs traitee comme
une polarization,” J. Physiol. Pathol., vol. 9, pp.
620–635, 1907.

[69]	 J. K. Eshraghian et al., “Training spiking neu-
ral networks using lessons from deep learning,”
2021, arXiv:2109.12894.

[70]	 W. Fang, Z. Yu, Y. Chen, T. Masquelier, T.
Huang, and Y. Tian, “Incorporat ing learn-
able membrane t ime constant to enhance
learning of spiking neural networks,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp.
2661–2671.

[71]	 N. Perez-Nieves, V. C. Leung, P. L. Dragotti,
and D. F. Goodman, “Neural heterogeneity pro-
motes robust learning,” Nature Commun., vol.
12, no. 1, p. 5791, 2021, doi: 10.1038/s41467-
021-26022-3.

[72]	F. Zenke and T. P. Vogels, “The remarkable
robustness of surrogate grad ient lea rn ing
for inst i l l ing complex funct ion in spik ing
neural networks,” Neural Comput., vol. 33,
no. 4, pp. 899–925, 2021, doi: 10.1162/neco
_a_01367.

[73]	 E. Hunsberger and C. El iasmith, “Spik-
ing deep networks with LIF neurons,” 2015,
arXiv:1510.08829.

[74]	 Y. Bengio, N. Leonard, and A. Courville, “Esti-
mating or propagating´ gradients through sto-
chastic neurons for conditional computation,”
2013, arXiv:1308.3432.

[75]	 K. Jamieson and A. Talwalkar, “Non-stochastic
best arm identification and hyperparameter opti-
mization,” in Proc. 19th Int. Conf. Artif. Intell.
Statist., 2016, pp. 240–248.

[76]	 D. P. K ingma and J. Ba, “Adam: A method
for stochast ic opt imizat ion,” 2014, arX iv:
1412.6980.

[77]	 J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl,
“Algorithms for hyper-parameter optimization,”
in Proc. Adv. Neural Inf. Process. Syst., 2011,
vol. 24.

[78]	 I. Loshchilov and F. Hutter, “SGDR: Stochas-
tic gradient descent with warm restarts,” 2016,
arXiv:1608.03983.

�

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2022 at 20:34:06 UTC from IEEE Xplore. Restrictions apply.

