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Hypercontractivity on the unit circle for ultraspherical
measures: linear case

Paata Ivanisvili, Alexander Lindenberger, Paul F. X. Miiller and
Michael Schmuckenschliager

Abstract. In this paper we extend complex uniform convexity estimates for C to R”
and determine best constants. Furthermore, we provide the link to log-Sobolev in-
equalities and hypercontractivity estimates for ultraspherical measures.

1. Introduction

The starting point of this paper is Bonami’s sharp complex convexity estimate (see Chap-
ter III, Theorem 7 of [3])

1 1/2
(1.1) / |x + al|dm(Z) > (|x|2 + Eaz) for x € R%, a € [0, 00),
St

where S! denotes the unit circle in R? and m denotes the usual Haar measure on S!,
with m(Sl) = 1. Davis, Garling and Tomczak-Jaegermann, see Proposition 3.1 of [4],
presented a proof of (1.1) based on the power series representation of elliptic integrals.
We remark that the estimate (1.1) can be seen as a corollary of hypercontractivity on the
unit circle for analytic polynomials. Independently, Rothaus [7] and Weissler [8] showed
that for any 1 < p < ¢ < oo and any trigonometric polynomial f = 3" a; ¥, one has that

(/Sl ‘ Zakr\k\ék‘qdm@))l/q - (/Sl ) Zakzk)pdm(ﬁ))l/p

holds if and only if |r| < +/(p —1)/(¢g — 1), r € R.If f is an analytic polynomial, i.e.,
S =2 k-0ak¢ k_ then using a personal communication by Janson, Weissler (see Corol-

lary 2.1 of [8]) obtains that || Y o axr*¢¥lly < || Ykso akt* |, holds if and only if
|r| < +/p/qforall0 < g < p < oo. The choice ¢ = 2, ap = x,a; = 1 and a; = 0 for
all k > 2 gives

(1.2) </§1|x + a{lpdm(f))l/p > (le2 + gaz)l/2 for x € R?, a € [0, 00),
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forall 0 < p <2, and p/2 is the best (i.e., largest) real constant satisfying (1.2). Alek-
sandrov, see Lemma 9.11 of [1], presented an elegant analytic proof of (1.2). The proofs
in [8], respectively [1], of (1.2) are complex analytic in nature; they do not seem to work
in the vector-valued case, i.e., find the largest C = C(p, n) > 0 such that

1/p
(1.3) (/S _1|x +a§‘|1’d0) > (|x]® + Ca2)1/2 for x € R, a € [0, 00),

where | - | is the n-dimensional Euclidean norm, and m is replaced by o, the normalized
Haar measure on the unit sphere in R”. Let us also mention that Beckner’s hypercontrac-
tivity [2] on n-sphere implies the bound || 1+rH1(§)[|La(sm-1,d0) <11+ H1 ()l Lr (571 ,40)
forallr < \/(p—1)/(g —1),where 1 < p <q < o0, and H;:S"~! — C is any spherical
harmonic of degree 1, i.e., Agn-1 H; = —(n — 1) H;. While Beckner’s result pertains to
the circle of ideas discussed in the present paper, it does not seem to directly imply our
estimate (1.3).

Recently, see [5], we recorded a proof of (1.2), based on Green’s identities and sub-
harmonicity estimates, such as

/ Ix + at|? dm(¢) > max{a, |x|}¥, B eR, x € R% a € [0, 00).
Sl

In the present paper we obtain the largest C in (1.3) in dimensions n > 3. The cases
n = 3 and n > 4 are treated separately. For n = 3, we were able to adjust the argument
in [5]. In dimensions four and higher, our proof uses Riesz potential operators on R”,
acting on the surface measure o.

In Section 3 we exhibit connections between the inequalities (1.3) and advanced tech-
niques based on logarithmic Sobolev inequalities. By change of variables, we reduce the
question to the study of hypercontractivity for ultraspherical measures on the unit circle,

dvp(z) = cpmlsin(@)|™dh, z =€ €S', vp(SYH) =1, m > —1,

applied to “linear polynomials” on S! given by f(z) = a + bz.
For m = —1, by definition, we set dv_; (z) = %(51 (z) + 6-1(2)). We are interested in
real numbers m, p,q,r, with0 < p < g < oo and r € R, such that

(1.4) ||1 + rbZ”Lq(Sl’dvm) < ||1 + bZ”LP(Sl,dvm) forall b € R.

Taking b — 0 in (1.4), one easily obtains a necessary condition on the 4-tuple (m, p,q,r),
namely,

+m
(15) r < 277
q+m
If m = —1, then we are in the setting of a celebrated theorem of Bonami [3], also known as

Bonami-Beckner—Gross “two-point inequality”, which says that (1.5) implies (1.4) when
(m,p,q,r) =(—=1,p,q,r) and g > p > 1. A theorem of Weissler [8] shows that (1.5)
implies (1.4) when (m, p,q,r) = (0, p,q,r) and ¢ > p > 0. Inequality (1.3) with the
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largest C, the main theorem of our paper, in an equivalent way can be restated as (1.5)
implies (1.4) when (m, p,q,r) = (n —2,p,2,r),withn >2,n € Nand2 > p > 0.In
Section 3, using log-Sobolev inequalities for ultraspherical measures, we show that (1.5)
implies (1.4) for 4-tuples (m, p,q,r), with g > p > 6 and all m > —1. Despite of partial
progresses, the description of all 4-tuples (m, p, g, r) for which (1.4) holds true remains
an open question.

Perhaps an advantage of the reformulation (1.4) over the vector-valued inequality (1.3)
is that the estimate of the type (1.4) can be asked for semigroups such that the analytic
polynomials Py, deg(Px) = k, orthogonal with respect to the measure dv,,, are eigen-
functions of the generator of the semigroup. Namely, given a sequence 0 = g < A; <---
(eigenvalues), 0 < p < g < oo, find the largest C > O such that forall r e R, |r| < C, we
have

(1.6) H 3 r*kakpk(z)‘
k>0

L4(S" ,dvm) = H Zak P LP(S',dvm)’
k>0

for all a; € C, k > 0. Here we assume that a j = O starts for some large j > N in order to
avoid convergence issues of the infinity series. Our main results only cover the linear case
ap,a; € R, and ax = 0 for all k > 2, and they do not cover hypercontractivity in such
generality as (1.6).

For the reader’s convenience, we state explicitly the higher dimensional results that
we obtain in this paper using both approaches. In Section 2 we prove

a7 x4+ rayIILq(gn—l,da(y)) <|lx + ayIILp(Sn—l,da(y)) forall x € R"?, a € R,

ifg=2,0<p<2,n>2|r| <+ (p+n—2)/n,r eR.In Section 3, in particular, we
verify inequality (1.7)if6 < p <gq,n >2,|r| < /(p +n—2)/(q +n—2),r € R.

2. Main theorem

In this section, S*~1 denotes the unit sphere in R”, o denotes the normalized Haar measure
on S"71, and B’ (x) denotes the open ball in R” with radius r > 0, centered at x € R";
and we set for convenience B! = B7(0). We remark that the notations used in Section 3
will be different from the ones in Section 2.

Theorem 2.1. Letn € N, withn > 2. Let p € (0,2l and A < (n + p —2)/n. Then
2.1 / |x —az|Pdo(z) = (|x|> + 2a®)?'?  forx € R", a € [0, 00),
Sn—l

and (n + p —2)/n is the best (i.e., largest) constant satisfying (2.1).

We start with the elementary observation that (n + p — 2)/n is the best (i.e., largest)
constant satisfying (2.1). For x € R?, with |x| = 1,and a, A € R, define

(2.2) I(a) = /;’H|x —az|Pdo(z) and g(a) = (1 + Aa?)?/?.
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Assuming that (2.1) holds true, for A > 0, we have
(2.3) I(a) > g(a) fora > 0.

We now show that (2.3) implies that A < (n 4+ p — 2)/n. Clearly, we have that /(0) = 1,
g(0) =1, g’(0) =0and g”(0) = p/A. Next, since

dalx —az|? = plx —az|P™%z-(az — x),
we have I'(0) = 0. Hence, (2.3) implies that 1”(0) > g”(0). Calculating further
lx —az|? = p(p = 2)lx —az|?~*(z - (az = x))* + plx —az|[P7?|z]%,

and invoking the integral identity

/ (- 2)Pdo(z) = -
Sn—l n

gives I”(0) = p(p —2)/n + p. Thus, I”(0) > g”(0), implies that A < (n + p — 2)/n.

Before turning to the proof of Theorem 2.1, we determine the parameters # and g for
which x + |x|? is a subharmonic mapping on R”, and draw consequences (analogous to
Jensen’s formula in complex analysis).

Lemma 2.1. Letn € N and q € R. The function f:R" \ {0} - R, x > |x|9, is subhar-
monic if and only if ¢ > max{0,2 —n} or ¢ < min{0,2 — n}, and then

2.4) /Snil |x —az|?do(z) = max{a, |x|}? fora e R, x € R".
Proof. Fori € {1,...,n}, we have
0 f(x) = qxilx|!7, B f(x) = qlx97? 4+ q(q = 2)x7[x |17,
and therefore
(2.5) Af(x) =q(n+q—2)|x|""2.
Clearly the sign of the factor ¢(n + g — 2) determines if f is subharmonic or not.

We next turn to verifying that ¢(n + ¢ — 2) > 0 implies (2.4). If a < |x|, the mean
value property of subharmonic functions directly yields

/ |x —az|?do(z) > |x|9.
Sn—1
To treat the case a > |x|, we define H,: B} (0) — R by
H,(x) := / |x —az|?do(z).
Sn—1

and notice that H, is subharmonic and rotational invariant, i.e., there exists a function
hq:[0,a) — R such that

Hy(x) = ha(|x]) forx € [0,a).
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Using subharmonicity and rotational invariance, together with the representation of the
Laplace operator in 7-dimensional spherical coordinates, we obtain

0< AH.(x) = |x|'7"0,(r = r" 1oha(r))(|x|) for |x| € (0,a).

This yields
" Yh,(r) =0 forr €0,a)

and, consequently,
ha(r) > ha(0) = a? forr €[0,a).

Hence, for a > |x|, we have H,(x) = hy(]x|) > a4, and hence

/ |x —az|?do(z) > af. [
Ssn—1

Proof. We now prove that (2.1) holds true for A := (n + p — 2)/n. Since the case n = 2
is already known, we consider n > 3. An application of the divergence theorem yields that

(2.6) / |x —az|?do(z)
Ssn—1 1 ¢ 1
= 1+a2p(p+n—2)[ / (i)n / |x —az|P"%do(z)drdt.
0 0 t Sn—1

Indeed, put /:R" — R, f(y) := |x —ay|?, and define a vector field X by X(y) :=
V f(ty). Then divX(y) = tAf(ty) and, by the divergence theorem,

2.7 d; /S'H f(tz)do(z) /Sn X(z)-zdo(z)

= avol, (B nVol, (B7) / Af(ty)dy

nvol, (B )/Bn Af()dy

/ / " YA f(rz)drdo(z).
tnil 0 Snfl
Integrating the identity (2.7) from t = O to t = 1 and invoking (2.5) gives (2.6). Define

H(a,x):= [ |x —az|P~2do(z2).
Ssn—1

Then H(a, -) is rotational invariant, i.e., there exists a function /: [0, 00)? — R such that
H(a, x) = h(a, |x|). By (2.6) and re-scaling, we have

a t
(2.8) / |x —az|Pdo(z) =1+ p(p +n —2)] / 7" h(u, 1) dude.
Sn—1 0 0

The proof of Theorem 2.1 will be obtained by proving suitable lower estimates for the
volume integral appearing on the right-hand side of (2.8). We will distinguish the case
where x > |x|?2 is sub-harmonic (corresponding to n = 3 and p < 1), and the case
where sub-harmonicity fails (corresponding ton > 4 or p > 1).
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21. Casen=3and p <1

First note that

a t
(2.9) 1+p(p+1)/ /t_zuzmax{l,u}p_zdudt
0 0
14 2t g2, aelo,1],
a2 b s

Indeed, (2.9) follows from a direct calculation separating the casesa < 1 anda > 1.
For a < 1, we calculate

a t a t a2
/ / t~2u? max{1,u}?"2dudt = / t_2/ wrdudt = —,
0o Jo 0 0 6

which yields (2.9) fora < 1.
For a > 1, we calculate

a t
/ / t~2u? max{1, u}? 2 dudt
0o Jo

1 t a 1 a t

=[ 1_2/ uzdudt—i-/ 1_2/ uzdudt+/ t_2/ u? dudt

0 0 1 0 1 1
1 a_1—1+ af? —1 n 11

6 3 (r+Dp  (A+p)

which yields (2.9) for @ > 1, by arithmetic.

Since x > |x|?~2 is subharmonic, forn = 3 and p € (0, 1], Lemma 2.1 yields (a, x) >
max{1,a}?~2. Applying this estimate to (2.8) and invoking (2.9), we obtain

1+ p(p+1)a2, a<l,
(2.10) / |x —az|Pdo(z) > ?2_ N
s2 a? + % _ ¥’ a> 1.

Defining
14 22+ 42, a€[0.1],
g@)=1dar+ p(i;p) _ p(lz—p), a% e (1, % ,
3
a®, a*? > 35
it suffices to show
1 p/2
(2.11) / |x —az|Pdo(z) > g(a) > (1 + p—31— az) .
S2

We first consider a? > 3/(2 — p). In this case, we have

1 p/2
p+ a2) .

(2.12) / |x —az|?do(z) > a? > (1 +
S? 3
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Figure 1. Plots of the functions ¢ and ¢’ for p € {0.1,...,0.85, 1}.

Indeed, by Lemma 2.1, x — |x|? is subharmonic. Taking into account that |x| = 1 and
a?> > 3/(2— p), Lemma 2.1 yields

/ |x —az|?do(z) > max{a, 1}? > a”.
Sn—1
To obtain the second estimate in (2.12) note that > > 3/(2 — p) holds if and only if
a?>1+ 2,2
= - .
We now turn to the case a® < 3/(2 — p). By (2.10), in this case, it remains to show

the second inequality of (2.12). If moreover a € [0, 1], this is just Bernoulli’s inequality.
If finally a? € (1,3/(2 — p)), we proceed as follows: For p € (0, 1], we define

$(1) =17/

p2—-p) p(l-p) p+1 \p/2
A —(L+———Q .

We show that ¢(¢) > 0 for ¢t € (1,3/(2 — p)). Indeed, since ¢t < 3/(2 — p) holds if and
onlyifr <1+ pTHt,W(aget

P (p— p2—p) _ p(p+1) p+1 \p-2)/2
") = Ze-2/2 _ (32 1 ;
r0=3 6 6 (1+ 3 )
> <£ — M)AP—Z)/Z _ p2—p) 1302
—\2 6 6

_ P(26— p) (P22 _~3/2) 5
Due to ¢p(1) > 0, this implies ¢(¢) > 0 fort € (1,3/(2 — p)). Summing up for p € (0, 1]
andt = a? € (1,3/(2 — p)), we have

ar 4 PC=P) _pU=p)
3a 2 -

1 p/2
(1 + %az) .

2.2. Casen>3orp>1

Since we cannot apply Lemma 2.1, we need another lower bound for A(a, 1). In order to
accomplish that, we use the formula

(2.13) rt = ! /00 1821 exp(—ﬁ) dr = ! /00 18/ exp(—r2t)dt,
I'(¢/2) Jo t ['(£/2) Jo
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which holds for all » > 0 and ¢ > 0. Putting ¢ :=2 — p,ie., p =2 —, we get

H(a, x) =/ |x —az|P~2do(z2)
Sn—1

- ﬁ /0°° /SH e exP(‘M) do(z)drt
it (L o)t

We are thus left with finding a good lower bound for

/ exp(Ax - z)do(z) = / cosh(Alx - z|)do(z),
sn—1 sn—1

where A > 0 and |x| = 1. The obvious bound is 1, which eventually turns out not to
be sufficient for p < 4/(n + 2), so we take the second Taylor approximation, that is,
coshs > 1 + s2/2. By (2.13) and the functional equation of the gamma function, we
conclude

242 o 1+ a?
h(a,1) > (1 4+ a*>)~%/? —/ 17823 exp(— dr
(a,1) > (1 +a°) +nF(§'/2) A exp( . )

242T(¢/2 + 2)
nT'(¢/2)
4-pQ2-p a .

2n (1+ a2)2> = y@-

=(+a*)7?+ (1 +a?)78/22

= (1 +a)"7 (14

According to (2.8), it remains to prove that

p+n—2 2)117/2
—a .
n

a t
1+ pp+n —2)[ / 7y (w) dude > (1 +
o Jo
We set ¢ := (n + p — 2)/n and show
a t
F(a):=14p(p+n —2)/ / My () dude — (1 + ca?)P/? > 0.
o Jo
Since F(0) = 0, this follows from F’ > 0, i.e.,
a
n/ w" Ly (u)du — a(1 + ca®)?/?71 > 0,
0

which in turn follows from
na" "y(a) — da(a" (1 + ca®)?’* 1) > 0.

Rearranging terms this amounts to

(4—p)2— p)a’ ( 1 +a? )1—1’/2 a’c(2 - P)( 1 + a? )2—p/2
2]1(1 + a2)2 1+ ca? n(l + az) 1+ ca?
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Put x := (1 + ca?)/(1 + a?); then x € (c, 1) and

1— 1-— 2 1—
s x’ | 4a? = a X

xX—c xX—c 1+a2 1-c¢

Thus, we have to show that

4=PC=PU=X6=0) _ ny, cC=pU=X) ,n,_

1+ +
2n(1 —c¢)? n(l —c)
ie.,
(1—c)+c(2—p)
L LIPS PG D e (=1 -)
- (4-p)2-p)(1-0)x—c) ~ | _ — 2y — o)
| 4 Gop 2n(pl—c)2x x—c l—c+Q2-5)1—-x)(x—0)

Consideringn >4 or p > 1,wehavec =1— (2 — p)/n > 1/2. So, eventually it suffices to
prove that given ¢ := 2 — p/2 € [0, 1], then for all (x, y) € [0, 1]? satisfying x > y > 1/2,
we have

(2.14) x(1—y+q1-x)(x—y)>=1—y—(1-y>)(1—x).

The function g — x9(1 — y + ¢(1 — x)(x — y)) is decreasing. Indeed, the derivative of
the logarithm with respect to ¢ is

1— _ 1 1— — 1 1
(1= —y) —log—f—( X y)—log—fl—x—log—SO,
1—y+q(1-x)(x~-y) x I—y x *

where we simply used the fact y < x < 1. Thus, we only have to prove, that, assuming
1/2 <y <x <1, we have

(l—y+20-x)x—y)—1+y+1—y*)(1-x)>0.
The left-hand side is a polynomial in x of order 4, which factorizes to
(1—x)(x —y)2x> +y —1).
Due to the conditions on x and Yy, this is obviously non-negative. ]

However, the polynomial is negative for y < x < 1/2, and thus inequality (2.14) does
not hold for small values of p and n € {2, 3}. Hence, the above argument does not apply
to dimensions two and three!

3. Hypercontractivity for ultraspherical measures on the unit circle

Here we place the estimates of Theorem 2.1 in a wider framework, provided by logarith-
mic Sobolev inequalities and hypercontractivity. To this end, we first rewrite it as follows:

ForO< p<2,n>2,|r|<+(p+n—-2)/n,r € R, we have

B x +rayllresetao6y) < I1x +ayllirsn-1,4(y)) forallx € R”, a € R.



P. Ivanisvili, A. Lindenberger, P. F. X. Miiller and M. Schmuckenschliger 1344

; g _ 1=y=(1—y»)(1-x)
Figure 2. Plots of x — x 1=y Fa—x)G—y) fory € {0.5,0.3} and g € {1, 1.1,...,2}.

In this section we consider (3.1) for the range of parametersn >2,and 0 < p < g < co.
We are interested to find the largest possible constant C = C(n, p, q) > 0 such that for all
reR,|rl <C(p,q,r), we have

(32)  lx+arylrasr o)) < IX +ayllLrsr140¢ forallx e R" aeR.
First we prove a theorem on the unit circle for ultraspherical measures
dv (2) = cplsin(@)|™dO  for all real m > —1,
where z = ¢'? € S!, and the scalar Cm = % is chosen in such a way that
Vm(SY) = 1. Form = —1, we set dv_y(z) = %(5_1(2) + 81(2)).
Theorem 3.1. Letm > —1 and 6 < p < gq. We have

(33) ||1 + rbz||Lq(§1,d,,m) S ||l + bZ||LP(§1,dvm) fO}" (lll b S R

if and only if |r| < \/(p +m)/(q + m).
Let us show that the theorem implies the following corollary.

Corollary 3.1. For any 6 < p < q, all integers n > 2, and any real |r| < ,/f;j::j,
inequality (3.2) holds true.

Indeed, without loss of generality, we can assume |x| = 1 in (3.2). Next, for y =
V1.--..yn) €S" Land A = (n —2)/2, we have

X + ayll7 » sn-1 400y = / (1 +2a(x, y) + a*)?*do(y)

Snfl
_ FA+1) ! 2\p/2 20A—(1/2)
= Tara 112 /_1(1 + 2at + a*)?’*(1 —t7) dr
TG+ 1)

T TA/2T(A+1/2)

/;1|1 +az|?dvay(z) = |1 + aZ”]ij(Sl,dvnfz)'

/ ﬂ(l + 2acos(8) + a®)??sin?*(0)d0 (1 = cos(h))
0
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Similarly, we have ||x + ray | pesr—1,40(y)) = II1 + raz|Last,av,_,)- Thus, the inequali-
ties (3.2) and (3.3) are the same withm = n — 2
Next we prove Theorem 3.1.

Proof. As the measure dv_;(z) = %(8_1 (z) 4+ 61(2)) is the weak™* limit of the measures
dvy, (z) when m — —1, m > —1, without loss of generality, we can assume that m > —1
in the theorem.

First we show that the assumption |r| < \/(p +m)/(q + m) is necessary for the
hypercontractivity (3.3). Indeed, notice that

2
3 2 = 2 1 m =1- Cm =-]1-— = ——
[ G024 = e [ o @ sino)pap = 1 - =y - T

Therefore,
1/p
T 1 + bz|? dvp,
11+ b2l = ([ 1140217 o (2))
- (/ (1 + 2b%(2) +b2)P/2dvm(z))l/p
st
_ p : p(p 1/p
- (/S 1+ 2ebne) + b7 + _(E - 1)4b2(5)t(z))2 + o(bz)dvm(z))
_ p p(p /p
- (1 + 56+ bZ/(%(z))zdvm)

b2 p-2 1
=14 =+ —b0— b*
+ 7 + > 2 + o(b?)
b2 m+p
=14 — b?
+ 2 +2 +o(0.
So the inequality |1 + rbz|Le(st au,) < |1 + bzllLr(st ap,,) implies r2 mig < 'r'r”—g.

Since p,q > —m, we obtain |r| < \/(m + p)/(m + q).

Next we show that the necessary condition |r| < \/(p +m)/(q + m) is also suffi-
cient for (3.3). Since ¢ > 1 and dv;,(z) = dv(—z), the map 7 = |1 + rbz| Lecst av,,)
is even and convex on R, and hence it is nondecreasing on [0, o). Thus, it suffices to
prove (3.3) in the case when r = /(p 4+ m)/(q + m). Let m = 2. After rescaling b as
b+ b/\/p + m, we can rewrite (3.3) as follows:

S (/: <1 " \/qzitzz Ty izzx)q/zd“ *(Z))l/q
-1 b b? / /
= (/_1 (1+ \/% o +2A>p zd‘“(t))l K

where duy (t) = 2¢23 (1 — t2)*~(1/2 dt is a probability measure on [—1, 1]. Rescaling b
as b > b/~/2, we see that inequality (3.4) simply means that the map

2

S = (/_11(1 + % + Sﬁ_—k)sd,u;k(t))l/
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is nonincreasing on (3, co) (here s = p/2). If we differentiate in s, then after a certain
calculation we see that it suffices to show the following log-Sobolev inequality: Put f(¢) =

1 +2bt/+/s + A+ b%/(s + L), then
f £o I 5 dprg — / £* duz In / £ dus
d
—sszs_lg fdpy = s? / fs_l(bt(s + k)_3/2 +b%(s + k)_z)du,\.

Therefore, if we let b(s + A)~1/2 = b and g(r) = 1 + 2bt + b2, then our log-Sobolev
inequality rewrites as follows:

2 ~ ~
(3.5) /gs Ing*dpuy —/gsdm ln/gsdm < ik /gH(bt + b%)dpy.
s
The log-Sobolev inequality of Mueller—Weissler, see p. 277 of [6], for du,, states that

(3.6) / g Ing*duy — / g duyln / g du;

s? 22 41 N2 52
< S—2d - N2 S—2d )
_2(Zk+1)2(k+1)/(g)g Ma+1 4(A+1)/(g)g Lot

Thus, we need to show that

_ 4L+ 1 P
/(g’)zgs 2dpups < 40+ 1) g 7 (bt + b?)du,.
s+ A
After an integration by parts, we can rewrite the left-hand side of the last inequality as
4L +1
( +1) / s=lth duy

s—1

(here we used the fact that Cz(“” = ﬁ;l}z). Hence, to prove (3.3) it suffices to show that
(3.7) 1 / e i = —— [+ Bydus
’ s—1 s+ A '

We can rewrite (3.7) as

_ tA+1)
s ld > s ld
/g miz | gy 8

Integrating the right-hand side by parts, we see that it is enough to show
[+ 2ar+ @ o = [0+ 200+ @) 20

for all ¢ = b > 0. We claim that it suffices to consider the case when a € (0, 1). Indeed,
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otherwise, we can write
/(1 +2at +a?)*'duy (t) = a?67V /(a_2 +2a '+ 1) N (t)
=0 [@2 42074 ) P a0
= q? /(1 +2at 4+ a?®)* 2 dupq (1)
> f(l + 2at +a®)S 2dpsgq(1).

The inequality (s — 1)/(s —2) > 1 implies
(s—1)/(s—2)
/(1 t2ar +a®) "V du, (1) > (/(1 +2at + a?)" 2 dm(t)) :

Next, by Jensen’s inequality, we have [(1 + 2at + a?)*"2dua > (1 + a?)*72 > 1. Thus,

(s—1)/(s—2)
(/(1 + 2at + a*)*? dm(t))

> /(1 + 2at 4+ a®)*2duy(1).

So, we need to show that [ (1 + 2at 4+ a?)*2du (t)> [(1 + 2at +a*) 2 dps41(2).
The inequality trivially holds true if s = 3. Considering the linear function F(t) = 1 +
2at + a?, it suffices to show that

o0 oo
(3.8) / P73t e [—1,1]: F(t) > r)dr Z/ P73t € [—1,1]: F(t) > r)dr.
0 0
Consider h(u) = puy(t e [-1,1]:t > u) — pup41(t € [-1,1] : t > u). Clearly, h(—1) =
h(0) = h(1) = 0. Also
() = =2e20(1 =1®)* 712 4 200045 (1 —u?)*H1/2

1
-9 212 (2 2)_
caa42(l —u”) (2(/\_’_1) u
It follows that A(u) < 0 on [—1,0] and A(x) > 0 on [0, 1]. Thus, ¢(r) = uy(t € [-1,1]:
F(t) >r) — pup+1(t € [-1,1] : F(¢) > r) changes sign only once, that is, there exists
ro € [0, 00) such that ¢(r) < 0 on [0, ro] and ¢(r) > 0 on [rg, 00). If ry = 0, then (3.8)
trivially holds true. If 7o > 0, then we have

(3.9) fooo((:—o)s_3 ~1)g(r)dr =0

because the integrand has nonnegative sign. Therefore, inequality (3.9), together with
Jo @(r)dr =0, implies [ r*¢(r) dr = 0. n
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