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1. Introduction

1.1. Poisson semigroup on the sphere

Let

Sn = {x ∈ Rn+1 : ‖x‖ = 1}

be the unit sphere in Rn+1, where ‖x‖ =
√

x2
1 + . . . + x2

n+1 for x = (x1, . . . , xn+1) ∈
Rn+1. Let Δ be the Laplace–Beltrami operator on Sn. We will be working with spherical 
polynomials f : Sn → C, i.e., finite sums

f(ξ) =
∑
d≥0

Hd(ξ),

where Hd satisfies

ΔHd = −d(d + n− 1)Hd.

The heat semigroup etΔ is defined by etΔf =
∑

d≥0 e
−d(d+n−1)tHd. The hypercontrac-

tivity result for the heat semigroup on Sn states that for any 1 ≤ p ≤ q < ∞, any integer 
n ≥ 1, and any t ≥ 0 we have

‖etΔf‖q ≤ ‖f‖p for all f if and only if e−tn ≤
√

p− 1
q − 1 , (1)

where ‖f‖pp = ‖f‖pLp(Sn,dσn) =
∫
Sn |f |pdσn, and dσn is the normalized surface area 

measure of Sn. The case n = 1 was solved independently in [9] and [10], and the general 
case n ≥ 2 was settled in [7]. We remark that the condition e−tn ≤

√
p−1
q−1 in (1) is 

different from the classical hypercontractivity condition e−t ≤
√

p−1
q−1 in Gauss space 

due to Nelson [8], and on the hypercube due to Bonami [2]. The appearance of the extra 
factor n in (1) can be explained from the fact that the spectral gap (the smallest nonzero 
eigenvalue) of −Δ equals n.

In [7] the authors ask what the corresponding hypercontractivity estimates are for the 
Poisson semigroup on Sn. As pointed out in [7], there are two natural Poisson semigroups 
on Sn one can consider: 1) e−t

√
−Δf , and 2) Prf =

∑
rdHd, r ∈ [0, 1]. Notice that when 

n = 1 both of these semigroups coincide (with r = e−t). It was conjectured by E. Stein 
that

‖Prf‖q ≤ ‖f‖p if and only if r ≤
√

p− 1
q − 1

holds on Sn for all n ≥ 1. Besides the case n = 1 mentioned above, the case n = 2 was 
confirmed in [4], and the general case n ≥ 2 in [1].
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The question of hypercontractivity for the semigroup e−t
√
−Δ on Sn for n ≥ 2, how-

ever, has remained open. Since the spectral gap of 
√
−Δ equals 

√
n, it is easy to see 

that a necessary condition for the estimate ‖e−t
√
−Δf‖q ≤ ‖f‖p is e−t

√
n ≤

√
p−1
q−1 ; see 

Section 2.1. One might conjecture that this necessary condition is also sufficient. Sur-
prisingly, it turns out the answer is positive in small dimensions and negative in large 
dimensions.

Theorem 1.1. Let 1 < p < q, n ≥ 1, and t ≥ 0. Then

(i) ‖e−t
√
−Δf‖q ≤ ‖f‖p for all f implies (ii) e−t

√
n ≤

√
p− 1
q − 1 . (2)

Moreover, (ii) implies (i) in dimensions n ≤ 3. Finally, for any q > max{2, p}, there 
exists n0 = n0(p, q) ≥ 4 such that (ii) does not imply (i) in dimensions n with n ≥ n0.

It remains an open problem to find a necessary and sufficient condition on t > 0 in 
dimensions n ≥ 4 for which the semigroup e−t

√
−Δ is hypercontractive from Lp(Sn) to 

Lq(Sn).

2. Proof of Theorem 1.1

2.1. The necessity part (i) ⇒ (ii)

We recall this standard argument for the sake of completeness. Let f(ξ) = 1 + εH1(ξ)
where H1 is any (real) spherical harmonic of degree 1, i.e., ΔH1 = −nH1. Then 
e−t

√
−Δf(ξ) = 1 + εe−t

√
nH1(ξ). As ε → 0, we obtain

∫
Sn

|1 + εe−t
√
nH1(ξ)|qdσn

=
∫
Sn

(
1 + qεe−t

√
nH1(ξ) + q(q − 1)

2 ε2e−2t
√
nH2

1 (ξ) + O(ε3)
)
dσn

= 1 + q(q − 1)
2 ε2e−2t

√
n‖H1‖2

2 + O(ε3).

Thus,

‖e−t
√
−Δf‖q = 1 + q − 1

2 ε2e−2t
√
n‖H1‖2

2 + O(ε3). (3)

Similarly, we have

‖f‖p = 1 + p− 1
2 ε2‖H1‖2

2 + O(ε2). (4)
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Substituting (3) and (4) into the inequality ‖e−t
√
−Δf‖q ≤ ‖f‖p, and taking ε → 0 we 

obtain the necessary condition e−2t
√
n ≤ p−1

q−1 which coincides with (ii) in (2).

2.2. The sufficiency part (ii) ⇒ (i) in dimensions n = 1, 2, 3

Our goal is to show that if 1 < p < q and if t ≥ 0 is such that e−t2
√
n ≤ p−1

q−1 , then

‖e−t
√
−Δf‖q ≤ ‖f‖p in dimensions n = 1, 2, 3. (5)

The case n = 1 was confirmed in [10]. In what follows we assume n ∈ {2, 3}. First we 
need the fact that the heat semigroup etΔ has a nonnegative kernel. Indeed, for each 
t > 0 there exists Kt : [−1, 1] → [0, ∞) such that

etΔf(ξ) =
∫
Sn

Kt(ξ · η)f(η)dσn(η),

where ξ · η =
∑n+1

j=1 ξjηj for ξ = (ξ1, . . . , ξn+1) and η = (η1, . . . , ηn+1), see, for example, 
Proposition 4.1 in [7]. Next, we recall the subordination formula

e−x = 1√
π

∞∫
0

e−y−x2/(4y) dy√
y

valid for all x ≥ 0. (6)

By the functional calculus, we deduce that the Poisson semigroup e−t
√
−Δ has a positive 

kernel with total mass 1. The latter fact together with the convexity of the map x 
→ |x|p
for p ≥ 1 implies that ‖e−t

√
−Δ‖p ≤ ‖f‖p for all t ≥ 0. Thus, it suffices to verify (5) for 

those t ≥ 0 for which e−2t
√
n = p−1

q−1 .
Next we claim that it suffices to verify (5) only for the powers p, q such that 2 ≤ p ≤ q. 

Indeed, assume (5) holds for 2 ≤ p ≤ q. By duality and the symmetry of the semigroup 
e−t

√
−Δ we obtain ‖e−t

√
−Δf‖p′ ≤ ‖f‖q′ where p′ = p

p−1 , q′ = q
q−1 , 1 < q′ ≤ p′ ≤ 2. 

Notice that p−1
q−1 = q′−1

p′−1 , thus we extend (5) to all p, q such that 1 < p ≤ q ≤ 2. It 
remains to extend (5) for those powers p, q when p ≤ 2 ≤ q. To do so, let p ≤ 2 ≤ q, and 
let t ≥ 0 be such e−2t

√
n = p−1

q−1 . Choose t1, t2 ≥ 0 so that t = t1 + t2 and e−2t1
√
n = p −1

and e−2t2
√
n = 1

q−1 . Then we have

‖e−t
√
−Δf‖q = ‖e−t2

√
−Δ(e−t1

√
−Δf)‖q ≤ ‖e−t1

√
−Δf‖2 ≤ ‖f‖p.

In what follows we assume 2 ≤ p ≤ q. We will use a standard argument to deduce the 
validity of the hypercontractivity estimate from a log Sobolev inequality. Nonnegativity 
of the kernel for the Poisson semigroup combined with the triangle inequality implies 
|e−t

√
−Δf | ≤ e−t

√
−Δ|f | for any f . Thus by continuity and standard density arguments 

we can assume that f ≥ 0, f is not identically zero, and f is smooth in (5).
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The equality e−2t
√
n = p−1

q−1 implies q = 1 + e2t
√
n(p − 1). Fix p ≥ 2 and consider the 

map

ϕ(t) = ‖e−t
√
−Δf‖q(t) > 0, t ≥ 0,

where q(t) = 1 + e2t
√
n(p − 1). If we show ϕ′(t) ≤ 0, then we obtain ϕ(t) ≤ ϕ(0) = ‖f‖p, 

and this proves the sufficiency part. Let ψ(t) = lnϕ(t). We have

q2

q′
ψ′(t) = − ln

⎛
⎝∫

Sn

(e−t
√
−Δf)qdσn

⎞
⎠

+

∫
Sn(e−t

√
−Δf)q

(
ln(e−t

√
−Δf)q + q2

q′
∂te

−t
√

−Δf

e−t
√

−Δf

)
dσn∫

Sn(e−t
√
−Δf)qdσn

.

Clearly ψ′ ≤ 0 if and only if

∫
Sn

(e−t
√
−Δf)q ln(e−t

√
−Δf)qdσn −

∫
Sn

(e−t
√
−Δf)qdσn ln

⎛
⎝∫

Sn

(e−t
√
−Δf)qdσn

⎞
⎠

≤ q2

q′

∫
Sn

(e−t
√
−Δf)q−1√−Δ(e−t

√
−Δf)dσn.

Let g = e−t
√
−Δf ≥ 0. Then we can rewrite the previous inequality as

∫
Sn

gq ln gqdσn −
∫
Sn

gqdσn ln

⎛
⎝∫

Sn

gqdσn

⎞
⎠ ≤ q2

2(q − 1)
√
n

∫
Sn

gq−1√−Δgdσn, (7)

where we used the fact that q′ = 2(q − 1)
√
n. Since e−t

√
−Δ is contractive in L∞(Sn)

with a nonnegative, symmetric kernel, it follows that the validity of the estimate (7) for 
q = 2 implies (7) for all q ∈ [2, ∞); see, e.g., Theorem 4.1 in [3].

Let g =
∑

k≥0 Hd be the decomposition of g into its spherical harmonics. Then the 
estimate (7) for q = 2 takes the form

∫
Sn

g2 ln g2dσn −
∫
Sn

g2dσn ln

⎛
⎝∫

Sn

g2dσn

⎞
⎠ ≤

∑
k≥0

2
√

k(k + n− 1)
n

‖Hk‖2
2.

It follows from Beckner’s conformal log Sobolev inequality [1] (which is a consequence 
of Lieb’s sharp Hardy–Littlewood–Sobolev inequality [6]) that for any smooth nonnega-
tive g =

∑
k≥0 Hk we have
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∫
Sn

g2 ln g2dσn −
∫
Sn

g2dσn ln

⎛
⎝∫

Sn

g2dσn

⎞
⎠ ≤

∑
k≥0

Δn(k) ‖Hk‖2
2

with Δn(k) = 2n 
∑k−1

m=0
1

2m+n . Thus, the estimate (5) is a consequence of the following 
lemma.

Lemma 2.1. Let n ∈ {2, 3}. Then for all integers k ≥ 1 one has

n

k−1∑
m=0

1
2m + n

≤
√

k(k + n− 1)
n

.

Proof. We first check the inequality for k ≤ 3 by direct computation. Indeed, the case 
k = 1 is an equality. The case k = 2 can be checked as follows,

1 + n

2 + n
= 2 + 2n

2 + n
≤

√
2 + 2n

n
,

which is true because n(2 + 2n) ≤ (2 + n)2 holds for n = 2, 3. The case k = 3 can be 
checked similarly:

2 + 2n
2 + n

+ n

4 + n
≤

√
6 + 3n

n

holds for n = 2, 3 (notice that this inequality fails for n = 4).
Next, we assume k ≥ 4. We have

k−1∑
m=0

1
m + n

2
= 2

n
+

k−1∑
m=1

1
m + n

2
≤ 2

n
+

k−1∫
0

1
x + n

2
dx = 2

n
+ ln

(
k + n

2 − 1
n
2

)
.

Thus it suffices to show

2
n

+ ln
(
k + n

2 − 1
n
2

)
− 2

n

√
k(k + n− 1)

n
≤ 0.

Notice that the left hand side, call it h(k), is decreasing in k. Indeed, we have

h′(k) = 1
n
2 + k − 1 − 2k + n− 1

n
√

kn(k + n− 1)
≤ 1

n
2 + k − 1 − 1√

kn

≤ 1
2
√

n
2 (k − 1)

− 1√
kn

≤ 0.

On the other hand, we have for n = 2, 3,
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h(4) = 2
n

+ ln
(

6 + n

n

)
− 2

n

√
12 + 4n

n
≤ 0.

Indeed, if n = 2, h(4) = 1 + 2 ln 2 −
√

10 < 0, and if n = 3, h(4) = 2+3 ln 3−4
√

2
3 < 0. �

2.3. Counterexample to (ii) ⇒ (i) in high dimensions

Let λ := n−1
2 , and let C(λ)

d (x) be the Gegenbauer polynomial

C
(λ)
d (x) =

� d
2 �∑

j=0
(−1)j Γ(d− j + λ)

Γ(λ)j!(d− 2j)! (2x)d−2j , (8)

where �d
2� denotes the largest integer m such that m ≤ d

2 , and Γ(x) is the Gamma 

function. Notice that if we let Yd(ξ) = C
(λ)
d (ξ · e1), where e1 = (1, 0, . . . , 0) ∈ Rn+1, 

then Yd(ξ) is a spherical harmonic of degree d on Sn. In particular, for t ≥ 0 such 
that e−2t

√
n = p−1

q−1 , the estimate ‖e−t
√
−Δf‖Lq(Sn) ≤ ‖f‖Lp(Sn) applied to f = Yd(ξ) is 

equivalent to the estimate

‖Yd‖q
‖Yd‖p

≤ et
√
d(d+n−1) =

(
q − 1
p− 1

) 1
2

√
d(d+n−1)

n

. (9)

Next, we need

Lemma 2.2. For any d ≥ 0 we have

lim
n→∞

‖Yd‖Lq(Sn,dσn)

‖Yd‖Lp(Sn,dσn)
=

‖hd‖Lq(R,dγ)

‖hd‖Lp(R,dγ)
, (10)

where dγ(y) = e−y2/2
√

2π dy is the standard Gaussian measure on the real line, and hd(x) is 
the probabilistic Hermite polynomial

hd(x) =
� d

2 �∑
j=0

(−1)jd!
j!(d− 2j)!

xd−2j

2j . (11)

Proof. Indeed, notice that

‖Yd‖pp =
∫
Sn

|C(λ)
d (ξ · e1)|pdσn(ξ) =

1∫
−1

|C(λ)
d (t)|pcλ(1 − t2)λ− 1

2 dt, (12)

where cλ = Γ(λ+1)
Γ( 1

2 )Γ(λ+ 1
2 ) . In particular, after the change of variables t = s√

2λ in (12), and 

multiplying both sides in (12) by (d!/(2λ)d/2)p we obtain
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(
d!

(2λ)d/2

)p

‖Yd‖pp =
∫
R

∣∣∣∣ d!
(2λ)d/2

C
(λ)
d

(
s√
2λ

)∣∣∣∣
p

cλ√
2λ

(
1 − s2

2λ

)λ− 1
2

1[−
√

2λ,
√

2λ](s)ds,

where 1[−
√

2λ,
√

2λ](s) denotes the indicator function of the set [−
√

2λ, 
√

2λ]. Notice that 
by Stirling’s formula for any j ≥ 0, and any d ≥ 0 we have

lim
λ→∞

1
λd−j

Γ(d− j + λ)
Γ(λ) = 1. (13)

Therefore, (11) and (8) together with (13) imply that for all s ∈ R we have

lim
λ→∞

d!
(2λ)d/2

C
(λ)
d

(
s√
2λ

)
= hd(s).

Invoking Stirling’s formula again we have

lim
λ→∞

cλ√
2λ

(
1 − s2

2λ

)λ− 1
2

1[−
√

2λ,
√

2λ](s) = e−s2/2
√

2π
for all s ∈ R.

Finally, to apply Lebesgue’s dominated convergence theorem it suffices to verify that for 
all s ∈ R and all λ ≥ λ0 we have the following pointwise estimates

a) cλ√
2λ

(
1 − s2

2λ

)λ− 1
2

1[−
√

2λ,
√

2λ](s) ≤ Ce−s2/2

b) d!
(2λ)d/2

C
(λ)
d

(
s√
2λ

)
≤ c1(d)(1 + |s|)c2(d),

where λ0, C, c1(d), c2(d) are some positive constants independent of λ and s.
To verify a) it suffices to consider the case s ∈ [−

√
2λ, 

√
2λ]. Since limλ→∞

cλ√
2λ = 1√

2π
it follows that cλ√

2λ ≤ C for all λ ≥ λ0, where λ0 is a sufficiently large number. Next, 
the estimate (1 − s2

2λ )λ−1/2 ≤ C ′e−s2/2 for s ∈ [−
√

2λ, 
√

2λ] follows if we show that 
(1 − 1

2λ ) ln(1 − t) ≤ C ′′/λ − t for all t := s2

2λ ∈ [0, 1] where C ′′ is a universal positive 
constant. The latter inequality follows from ln(1 − t) ≤ −t for t ∈ [0, 1].

To verify b) it suffices to show that for all λ ≥ λ0 > 0 and all integers j such that 
d ≥ j ≥ 0 one has

1
λd−j

Γ(d− j + λ)
Γ(λ) ≤ C(d− j),

where C(d − j) depends only on d − j. The latter inequality follows from (13) provided 
that λ ≥ λ0 where λ0 is a sufficiently large number.

Thus, it follows from the Lebesgue’s dominated convergence theorem that

lim d!
d/2 ‖Yd‖Lp(Sn,dσn) = ‖hd‖Lp(R,dγ).
n→∞ (n− 1)
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The lemma is proved. �
Now we fix q > max{p, 2} and, in order to prove the failure of (ii) ⇒ (i) for all 

sufficiently large n, we argue by contradiction and assume that there is a sequence of 
dimensions {nj}j≥1 going to infinity such that (ii) ⇒ (i) in Theorem 1.1 does hold. Then, 
by combining (9) and (10) we have

‖hd‖Lq(R,dγ)

‖hd‖Lp(R,dγ)
≤

(
q − 1
p− 1

)√
d

2

. (14)

On the other hand, a consequence of the main result in [5] and the assumption q >

max{p, 2} is that

lim
d→∞

(‖hd‖Lq(R,dγ)

‖hd‖Lp(R,dγ)

)1/d

=
(

q − 1
max{p, 2} − 1

) 1
2

,

which is in contradiction with (14).

Remark 2.1. Let B(x, y) be the Beta function. The estimate (9) for p = 2 and q = 4
takes the form

1∫
−1

|C(n−1
2 )

d (t)|4(1 − t2)
n−2

2 dt ≤ 9
√

d(d+n−1)
n

(n− 1)2B(1/2, n/2)
d2(2d + n− 1)2B2(n− 1, d) , (15)

where we used the fact that ‖Yd‖2
L2(Sn) = n−1

d(2d+n−1)B(n−1,d) . The numerical computa-
tions show that the inequality (15) already fails for d = 7 and n = 13.
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