Journal of Functional Analysis 281 (2021) 109145

Contents lists available at ScienceDirect

JOURNAL OF

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Hypercontractivity of the semigroup of the )

Check for

fractional Laplacian on the n-sphere

Rupert L. Frank ", Paata Ivanisvili ©*

& Mathematics 253-37, Caltech, Pasadena, CA 91125, USA

b Mathematisches Institut, Ludwig-Mazimilans Universitdt Minchen,
Therestenstr. 39, 80333 Miinchen, Germany

¢ Department of Mathematics, North Carolina State University, Raleigh,
NC 27695, USA

ARTICLE INFO ABSTRACT

Article history: For 1 < p < g we show that the Poisson semigroup e~tV=2 on
Received 17 January 2021 the n-sphere is hypercontractive from LP to LY in dimensions

Accepted 14 June 2021 . P —1
Available online 18 June 2021 n < 3 if and only if e~V < ZTI' We also show that the

Communicated by L. Gross equivalence fails in large dimensions.
© 2021 Elsevier Inc. All rights reserved.

MSC:
39B62
42B35
47A30

Keywords:
Hypercontractivity
Poisson semigroup
n-Sphere

* Corresponding author.
E-mail addresses: rlfrank@caltech.edu (R.L. Frank), pivanis@ncsu.edu (P. Ivanisvili).

https://doi.org/10.1016/j.jfa.2021.109145
0022-1236/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jfa.2021.109145
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2021.109145&domain=pdf
mailto:rlfrank@caltech.edu
mailto:pivanis@ncsu.edu
https://doi.org/10.1016/j.jfa.2021.109145

2 R.L. Frank, P. Ivanisvili / Journal of Functional Analysis 281 (2021) 109145

1. Introduction
1.1. Poisson semigroup on the sphere

Let

S" = {z e R" : |z|| = 1}

be the unit sphere in R™*!, where |zf| = \/a?+ ...+ 22 4 for & = (z1,...,2041) €

R™+!1. Let A be the Laplace-Beltrami operator on S™. We will be working with spherical
polynomials f : S™ — C, i.e., finite sums

F§) =" Ha(€),

d>0

where H, satisfies
AHd = —d(d +n — I)Hd.

The heat semigroup e'® is defined by e'®f = 3. e~ U=Vt [,; The hypercontrac-
tivity result for the heat semigroup on S™ states that for any 1 < p < ¢ < oo, any integer
n > 1, and any t > 0 we have

—1
e flly < IIfllp, forall f if and only if e " < \/§:17 (1)

where [|f[|P = Hf||’£p(S o) = Jsn |f|Pdoy, and do, is the normalized surface area
measure of S™. The case n = 1 was solved independently in [9] and [10], and the general

case n > 2 was settled in [7]. We remark that the condition e™" < ,/2’%} in (1) is

different from the classical hypercontractivity condition e~* < \/Z—Z} in Gauss space
due to Nelson [8], and on the hypercube due to Bonami [2]. The appearance of the extra
factor n in (1) can be explained from the fact that the spectral gap (the smallest nonzero
eigenvalue) of —A equals n.

In [7] the authors ask what the corresponding hypercontractivity estimates are for the
Poisson semigroup on S™. As pointed out in [7], there are two natural Poisson semigroups
on S™ one can consider: 1) e V=2 F and 2) P,f = S r?Hy, r € [0, 1]. Notice that when
n = 1 both of these semigroups coincide (with r = e™*). It was conjectured by E. Stein
that

: . p—1
|Prfllg < |Ifllp if and only if = < —1
holds on S™ for all n > 1. Besides the case n = 1 mentioned above, the case n = 2 was
confirmed in [4], and the general case n > 2 in [1].
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The question of hypercontractivity for the semigroup e~ *V=2 on S™ for n > 2, how-
ever, has remained open. Since the spectral gap of vV—A equals y/n, it is easy to see

that a necessary condition for the estimate ||e *V=2f|, < |||/, is e —tVn < \V q_L see

Section 2.1. One might conjecture that this necessary condition is also sufficient. Sur-
prisingly, it turns out the answer is positive in small dimensions and negative in large
dimensions.

Theorem 1.1. Let 1 <p < q,n>1, andt > 0. Then

. LT L ot /m -1
0) 121l <Ufly oraltfimplies (i) < (Bt (@)

Moreover, (ii) implies (i) in dimensions n < 3. Finally, for any ¢ > max{2,p}, there
exists ng = no(p,q) > 4 such that (i) does not imply (i) in dimensions n with n > ng.

It remains an open problem to find a necessary and sufficient condition on ¢ > 0 in
dimensions n > 4 for which the semigroup e *V~2 is hypercontractive from LP(S™) to
La(S™).

2. Proof of Theorem 1.1
2.1. The necessity part (i) = (ii)
We recall this standard argument for the sake of completeness. Let f(§) = 14+eH;(€)

where H; is any (real) spherical harmonic of degree 1, i.e., AH; = —nH;. Then
e VIAF(E) =14 eV H | (€). As € — 0, we obtain

/ 1+ ce~ VA H, (€) | don
Sn

= / <1 + qse_t‘/ﬁfﬁ(f) + %526_%%}]12(5) + 0(53)> don,
Sn

-1
=1+ 7‘1@2 J2e-2m) 1 3 4 0().

Thus,
T -1, _
le™ =2 lly = 1+ Lo VR + O(E). (3)

Similarly, we have

p—1
| Hll5 + O(e?). (4)

£l =
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Substituting (3) and (4) into the inequality |[e=*V=2f|l; < ||f]lp, and taking e — 0 we
obtain the necessary condition e~2V" < z%i which coincides with (ii) in (2).

2.2. The sufficiency part (ii) = (i) in dimensions n =1,2,3
Our goal is to show that if 1 < p < ¢ and if ¢ > 0 is such that e~ 2V" < 2’%}, then

||e*t\/jf||q < Hf||p in dimensions n =1,2,3. (5)

The case n = 1 was confirmed in [10]. In what follows we assume n € {2,3}. First we
need the fact that the heat semigroup e*® has a nonnegative kernel. Indeed, for each
t > 0 there exists Ky : [—1,1] — [0, 00) such that

etAf /Kt §-n)f(n)don(n),

N

where £ -n = Z;’ill &n; for €= (&1, &nyr) and = (M1, ..., Mnt1), see, for example,
Proposition 4.1 in [7]. Next, we recall the subordination formula

o0
1 d
= / e—y—ﬁ/(‘ly)% valid for all 7 > 0. (6)

By the functional calculus, we deduce that the Poisson semigroup e~ V=2 hasa positive
kernel with total mass 1. The latter fact together with the convexity of the map z +— |z|P
for p > 1 implies that ||e~ tan < || fllp, for all ¢ > 0. Thus, it suffices to verify (5) for
those ¢ > 0 for which e~ 2tV = 71

Next we claim that it suffices to verify (5) only for the powers p, ¢ such that 2 < p < g.
Indeed assume (5) holds for 2 < p < ¢. By duality and the symmetry of the semigroup

e”"V=% we obtain [le”"V "2 flly < [|flly where p' = Py, ¢ = 1< ¢ <p <2
Notice that 2 ﬁ = Z/jv thus we extend (5) to all p,q such that 1 < p < ¢ < 2. It

remains to extend (5) for those powers p, ¢ when p < 2 < ¢q. To do so, let p < 2 < ¢, and
let t > 0 be such 6_2t\/ﬁ = 5—71 Choose t1,ty > 0 so that t = t1 4+t and e 21V = p—1
and e~ 22V = . Then we have

lem™V =2 fllg = eV =2 eV 2 f)llg < lle™™ V=2 Flla < 1 flp-

In what follows we assume 2 < p < q. We will use a standard argument to deduce the
validity of the hypercontractivity estimate from a log Sobolev inequality. Nonnegativity
of the kernel for the Poisson semigroup combined with the triangle inequality implies
letV=Af| < e ™V TAf] for any f. Thus by continuity and standard density arguments
we can assume that f > 0, f is not identically zero, and f is smooth in (5).
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The equality e~ 2tV" = Z%i implies ¢ = 1 + e2*V"(p — 1). Fix p > 2 and consider the
map

o) = [le™™ "2 fllqr) >0, t>0,

where ¢(t) = 1+ €2V (p —1). If we show /() < 0, then we obtain ¢(t) < ¢(0) = || f|,,
and this proves the sufficiency part. Let 1 (t) = In p(¢). We have

Lo =-u| [V s,
Sn
29 ~tVA
Jon (e R) (ln(eft‘/jf)q + Z_aéft—ijf) doy
Jsu(e7tY=2 f)adoy, .

Clearly 9’ < 0 if and only if

/(e_tmf)qln(e—tmf)qdon _ /(e_tmf)ngn In /(e—tmf)qdan
Sn sm 5
< 8 [ (B o R e i

ql
Sn

Let g = e *V=2f > 0. Then we can rewrite the previous inequality as

2
91n qdan—/ 9doy,, In / Ido, | < qi/ =1/~ Agdo,, 7
/9 g Sg Sg 2(‘1*1)\/%9 V—Ag (7)

Sn

where we used the fact that ¢/ = 2(q — 1)y/n. Since e~*V=2 is contractive in L>(S™)
with a nonnegative, symmetric kernel, it follows that the validity of the estimate (7) for
g = 2 implies (7) for all ¢ € [2,00); see, e.g., Theorem 4.1 in [3].

Let g = >~ Ha be the decomposition of g into its spherical harmonics. Then the
estimate (7) for ¢ = 2 takes the form

k(k+n—1)
2] 2dn—/2dn1 /Zdn< 20— || Hy |2
/gngo g°do, In gPdon | <Y 2y - [ HEll2

Ssn Sn Sn k=0

It follows from Beckner’s conformal log Sobolev inequality [1] (which is a consequence
of Lieb’s sharp Hardy-Littlewood—Sobolev inequality [6]) that for any smooth nonnega-
tive g = > )~ Hy we have
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k>0

/92 ln92dan—/92d0n In /g2d0n < ZAn(k) | Hy ||

Sn Sn Sn

5) is a consequence of the following

with A, (k) = 2n an;lo m Thus, the estimate (5

lemma.

Lemma 2.1. Let n € {2,3}. Then for all integers k > 1 one has

k—1
1 [k(k+n—1)
< .
nZQm—I—n* n

m=0

Proof. We first check the inequality for k£ < 3 by direct computation. Indeed, the case
k =1 is an equality. The case k = 2 can be checked as follows,

_2+_ [2+om

n
1 =
+2+n 2+n n

which is true because n(2 + 2n) < (2 + n)? holds for n = 2,3. The case k = 3 can be

checked similarly:

2+ 2n n 6+ 3n
+ <
24n 44n — n

holds for n = 2,3 (notice that this inequality fails for n = 4).
Next, we assume k > 4. We have
_ 1)

it S 2 k+
+/ dxz——i—ln(
n
0

+ m +

m=1

k—1 1

m +

m=0

[SININTE]

S|

< 7
T+ 3

VIS
S
VIS

Thus it suffices to show

k4 —
E+ln<++>_2 kktn-1) _,
n b) n n

Notice that the left hand side, call it h(k), is decreasing in k. Indeed, we have

1 2k+n—1 1 1
W (k) = - < -
*) stk—=1 nyknlk+n-1) " 5+k—=1 Vkn

1 1
< — <0.
o /Th-1) Vkn

On the other hand, we have for n = 2, 3,
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9 9 214
h(4)———|—ln<6+n>——1/ T .
n n n n

Indeed, if n = 2, h(4) = 1 +2In2 — V10 < 0, and if n = 3, h(4) = 23M3=W2 - g

2.3. Counterezample to (ii) = (i) in high dimensions
Let A := 271, and let Cy‘) (x) be the Gegenbauer polynomial
R L) ‘
Ci @) = (=1

Jj=0

N,

T(d—j+)\) o
Fova =2 > ®

where |4] denotes the largest integer m such that m < £, and I'(z) is the Gamma
function. Notice that if we let Yy(§) = C’C(l’\)(f - e1), where e; = (1,0,...,0) € R*HL,
then Yy(§) is a spherical harmonic of degree d on S™. In particular, for ¢ > 0 such
that e=2tV" = fz’—jll, the estimate ||e’tmf\|m(§n) < || fllzr(sn) applied to f = Yy4(&) is

equivalent to the estimate

1 d(d+n—1)
Yallq < etVd(dFn—1) _ (q— 1) 3V . -
Yall, ~ p—1
Next, we need
Lemma 2.2. For any d > 0 we have
lim Yallzssm dony _ halla.ay (10)
n=oo ||YallLo(sndo,)  IhallLe®.dy)
.2
where dy(y) = 6;27:2 dy is the standard Gaussian measure on the real line, and hq(x) is
the probabilistic Hermite polynomial
o) L5 (—1)id! 242 )
a\x) = 7T ey -
(d — 24)!
= i d—2j5) 27
Proof. Indeed, notice that
1
Wil = [ 166 eoPdonn©) = [IePOPaa - a2
Sn 1
where c) = % In particular, after the change of variables t = \/%\ in (12), and

multiplying both sides in (12) by (d!/(2)\)%/?)? we obtain
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() it ne ()

where 1;_ 55 /35(s) denotes the indicator function of the set [—v/2A, v2A]. Notice that
by Stirling’s formula for any j > 0, and any d > 0 we have

C) S

p 2 2
\/ﬁ (1 - 5) ]'[7\/5,@](8)(18’

L Dd=j+X)
Adoo A7 T(\)

=1 (13)

Therefore, (11) and (8) together with (13) imply that for all s € R we have

. d! N S
lim ———~ — | = .
. ey ax ) = )
Invoking Stirling’s formula again we have

) e §2 A=z 6752/2

Finally, to apply Lebesgue’s dominated convergence theorem it suffices to verify that for
all s € R and all A > g we have the following pointwise estimates

a (4 $2\* 73 L < Co5 12
a) \/72—)\ o) pm,\/ﬁ](b’)_ €

POV . sl)e2(@)
) o () < e+ s,

where Ao, C, ¢1(d), ca(d) are some positive constants independent of A and s.

To verify a) it suffices to consider the case s € [—v/2\, v/2)]. Since limy_, o0 % = \/%
it follows that \j:%\ < C for all A > Xy, where )\g is a sufficiently large number. Next,
the estimate (1 — %)’\_1/2 < C'e=*"/2 for 5 € [—V2X,V2)] follows if we show that
(1—3)In(l —¢) < C"/X—t forall t := % € [0,1] where C” is a universal positive
constant. The latter inequality follows from In(1 —¢) < —¢ for ¢ € [0, 1].

To verify b) it suffices to show that for all A > Ay > 0 and all integers j such that

d > j > 0 one has

1 T(d—j+))
A7 T(N)

< C(d—3j),

where C'(d — j) depends only on d — j. The latter inequality follows from (13) provided
that A > Ao where )\ is a sufficiently large number.
Thus, it follows from the Lebesgue’s dominated convergence theorem that

lim W"Yd”LP(Sn,dan) = |lhall e ®,av)-

n—oo (n
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The lemma is proved. O

Now we fix ¢ > max{p,2} and, in order to prove the failure of (ii) = (i) for all
sufficiently large n, we argue by contradiction and assume that there is a sequence of
dimensions {n; };>1 going to infinity such that (ii) = (i) in Theorem 1.1 does hold. Then,
by combining (9) and (10) we have

Vd

hall 1q — ER
lhallLe(r,dv) < (q 1) _ (14)

lhallLe R,y — \p—1

On the other hand, a consequence of the main result in [5] and the assumption ¢ >
max{p, 2} is that

1
. <|hd||Lq<R,dW>)1/d ( g—1 )
lim ( —— - (-7 - ’
d—oo ||hd||LP(R,d~/) max{p, 2} -1
which is in contradiction with (14).

Remark 2.1. Let B(z,y) be the Beta function. The estimate (9) for p = 2 and ¢ = 4
takes the form

1
(L—l) 4 2\ =2 d(d+n—1) (n B 1)2B(1/2’ n/2)
2 1— 2 < n 1
/|Cd O (1 =)= dt <9 Pedin -0 Bm-La P
-1

where we used the fact that ||Yy[|2, (sm) = The numerical computa-

-1
d(2d+n—n1)B(n—1,d) '
tions show that the inequality (15) already fails for d = 7 and n = 13.
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